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Abstract. We construct a dynamic, stochastic rational expectations
model of labor reallocation that is designed so that its key parame-
ters can be estimated for trade policy analysis. A key feature is the
presence of time-varying idiosyncratic moving costs faced by work-
ers. As a consequence of these shocks: (i) Gross ‡ows exceed net
‡ows (an important feature of empirical labor movements); (ii) the
economy features gradual and anticipatory adjustment to aggregate
shocks; (iii) wage di¤erentials across locations or industries can per-
sist in the steady state; and (iv) the normative implications of policy
can be very di¤erent from a model without idiosyncratic shocks, even
when the aggregate behaviour of both models is similar. It is shown
that the solution to a particular planner’s problem yields a compet-
itive equilibrium, thus facilitating the analysis and simulation of the
model for policy analysis.
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The e¤ect of a given change in trade policy is crucially a¤ected by the costs
workers may face in adjusting to it. This is espcially true of the distributional
e¤ects of the change, but it also extends to the e¢ciency e¤ects. For example, the
e¤ects of opening up a sector of the economy previously protected from import
competition depend crucially on how easily the workers in that sector can …nd
employment in other sectors. If geographic or sectoral mobility costs are high,
the e¢ciency bene…ts are thereby reduced and the burden borne by those workers
is increased. Analysis of the e¤ect of trade on wages thus always requires the
use of some assumption on the degree of labor mobility.2 Further, the e¤ects of
immigration into a particular region of the country depend on how ‡uid labor
is between that region and others, sand so the literature on labor-market e¤ects
of immigration has always required assumptions on the degree of mobility (see
Borjas et. al. (1996), Slaughter and Scheve (1999)).3

The cost of labor reallocation is also a crucial issue driving the political econ-
omy of trade policy, as emphasized for example in static approaches by Magee
(1989) and Irwin (1996), and in dynamic analyses of endogenous trade policy
such as Staiger and Tabellini (1999) and McLaren (1997, 1999).

This paper proposes a workhorse model of equilibrium labor reallocation that
is designed to address these policy questions head-on. It incorporates a number
of features that are intended to make the model helpful in analyzing trade policy
changes in particular, and to be consistent with the broad empirical features of
the adjustment process. It also has the bene…t that its parameters can be esti-
mated econometrically, thus providing for more detailed policy analysis through
simulation, a project which is being carried on in parallel with the theoretical
execise detailed here.

The model is an in…nite-horizon dynamic stochastic model with rational ex-
pectations, in which from time to time random shocks may hit labor demand
either in a sector or in a region of the country (for example, changes in trade
policy or terms-of-trade shocks). In response to these shocks, each worker at each

2For example, speci…c-factors models and the Stolper-Samuelson approach have very di¤erent
implications for the relationship between trade and wages, driven entirely by di¤erent assump-
tions about mobility costs; and the appropriate time horizon for measuring the labor-market
e¤ects of trade also depends on assumptions about mobility costs. See Slaughter (1998) for an
extended discussion.

3For example, the di¤erences between the Hecksher-Ohlin approach, the “factor-proportions
analysis” approach, and the “area analysis” approach to the e¤ects of immigration (Borjas et.
al., 1996) are entirely driven by di¤erent assumptions about labor mobility. See Slaughter and
Scheve (1999) for an extensive discussion.
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moment may choose whether to remain where she is or to move to another sector
or geographic location. If the worker moves, she will pay a cost that has two
components: A portion that is the same for all workers making the same move,
which is a parameter of the model and is publicly known; and a time-varying
idiosyncratic portion. The latter is an extremely important feature of the model,
because it generates all of the model’s dynamics and allows for gross ‡ows to
exceed net ‡ows. If individual situations can vary, one may …nd large numbers
of workers moving in opposite directions at the same time, and this is indeed a
prominent feature of the equilribium of the model. This is important because
empirically gross ‡ows of workers across geographical locations and industries are
substantially larger than net ‡ows.

Many authors have proposed theoretical models of the dynamics of factor
reallocation in response to a trade or policy shock (a number of the issues are
reviewed in Neary (1985). Mussa (1978, 1982) studies the dynamics of adjustment
in a trade model, with capital as a quasi-…xed factor bearing convex adjustment
costs. In both models, labor is either completely immobile (that is, labor faces
in…nite moving costs) or costlessly mobile (faces zero moving costs). The roles
of the capital and labor could easily be reversed to consider labor adjustment
dynamics. Dixit (1993) studies a similar model with random trade shocks and
a …xed cost to each reallocation, and Dixit and Rob (1994) consider …xed labor-
adjustment costs in a model with random labor-demand shocks and risk-averse
workers. Matsuyama (1992) studies a model whose workers cannot reallocate once
they have chosen a sector, so the dynamic adjustment to a trade shock comes
entirely through new labor market entrants. Dehejia (1997) studies political-
economic implications of the adjustment process in a Mussa-type model.

Finally, two important papers are particularly closely related to the model used
here. Jovanovic and Mo¢t (1990) o¤er an approach based on a matching model,
in which workers disappointed in the job-match with their employers search for a
better match, and in each period some fraction of them move across sectors to do
so. Topel (1986) studies the dynamics of geographic reallocation of labor using
an equilibrium overlapping generations model with idiosyncratic moving costs.

Our theoretical model di¤ers from all of the above approaches in two ways.
First, we allows gross ‡ows to exceed net ‡ows, which is important given the em-
pirical importance of gross ‡ows highlighted above. Jovanovic and Mo¢t (1990)
shares this feature, but the other studies mentioned above do not. For this rea-
son, idiosyncratic shocks are a key feature of our model. Unlike Jovanovic and
Mo¢t (1990), we allow for such shocks to be non-pecuniary in nature (such as
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job dissatisfaction or personal constraints on geographic location).4 Topel (1986)
allows for idiosyncratic moving costs, but constrains gross interregional ‡ows to
be equal to net ‡ows.5

Second, our model has been tailor-made to allow for estimation of the moving-
cost parameters, a feature shared by none of the other equilibrium models.

In examining the model, we …rst study a particular (distorted) planner’s prob-
lem in some detail, because it turns out that the planner’s solution is also a market
equilibrium. This provides a number of results on the market equilibrium that
would be very di¢cult to derive by other means. The key properties include
gradual adjustment of the economy to an external shock; anticipatory adjustment
of the economy to an anticipated shock; and persistent wage di¤erentials (across
sectors or regions of the economy) even in the long run steady state, for reasons
that appear to be novel in the literature. In addition, it is shown that if the
variance of idiosyncratic shocks is su¢ciently high, the aggregate behaviour of
the model will mimic a static model with no labor mobility, even though in fact
mobility will be high and the normative features of the equilibrium will be very
di¤erent from that of the static model. This highlights the importance of second
moments of moving costs (such as the variance of the idiosyncratic shocks) as well
as the …rst moment, and points out an advantage of our structural approach over
reduced-form econometric approaches.

The following section lays out the structure of the model. The subsequent
section analyzes the solution to the planner’s problem of the optimal rule for the
allocation of labor, and …nds the key Euler condition that charcterizes optimal-
ity. The subsequent section shows that this optimal rule is implemented by the
decentralized rational expectations equilibrium. The following section elaborates
the most important properties of the equilibrium. Finally, we brie‡y discuss a
special case of the model that o¤ers a simple form to the equilibrium, a¤ording
empirical estimation.

4In a sense, this actually …ts their data better than their own model, since they …nd that
movers on average experience a loss in wages, which is the opposite of what one would expect
if the point of moving was to …nd a higher wage.

5In addition, Topel (1986) requires the number of regions to be large so that asymptotic
properties can be used to solve the equilibrium. Our model requires no such assumption.
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2. The model.

Consider a model in which production may occur in any of n ‘cells,’ where a cell is
taken to mean a particular industry in a particular place. For example, ‘pharma-
ceuticals in New Jersey’ might be one of the cells, as might ‘pharmaceuticals in
Delaware’ or ‘food service in New Jersey.’ In each cell there are a large number of
competitive employers, and the value of their aggregate output in any period t is
given by xi

t = X i(Li
t; st), where Li

t denotes the labor used in cell i in period t, and
st is a state variable that could capture the e¤ects of policy (such as trade protec-
tion, which might raise the price of the output), technology shocks, and the like.
Assume that X i is strictly increasing, continuously di¤erentiable and concave in
its …rst argument. Its …rst derivative with respect to labor, denoted X i

1, is then a
continuous, decreasing function of labor; this is, then, the demand curve for labor
in the cell. Denote the total value of output by xt = X(Lt; st) ´ P

i X i(Li
t; st).

Assume that s follows a …rst-order Markov process on some state space Ss.
Note that this formulation allows for advance warning of policy changes, for ex-
ample. To incorporate this possibility within this framework, the variable s could
be a vector with two elements: the …rst, a tari¤ ¿ on imports competing with cell
i’s ouput, and the second a variable · that measures the political climate, taking a
value of either 0, indicating a protectionist climate, or 1, indicating a liberalizing
climate. If · follows a non-degenerate …rst-order Markov process independent of
¿ , and ¿ follows a Markov process such that the distribution of ¿ t+1 conditional
on ¿ t and · = 0 stochastically dominates the distribution conditional on · = 1,
then a change in · can signal a likely future change in tari¤ policy.

The economy’s workers form a continuum of measure L. Each worker at any
moment is located in one of the n cells. Denote the number of workers in cell i at
the beginning of period t by Li

t, and the allocation of workers by Lt = [L
1
t ; : : : ; Ln

t ].
This allocation vector must lie in the domain SL ´ fL 2 <njLi ¸ 0;

P
i Li = Lg.

If a worker, say, µ 2 [0; L], is in cell i at the beginning of t, she will produce in
that cell, collect the market wage wi

t for that cell, and then may move to any
other cell.

If a worker moves from cell i to cell j, she incurs a cost Cij ¸ 0, which is the
same for all workers and all periods, and is publicly known. This can include,
for example, moving costs, if i and j are in di¤erent locations; training costs
(tuition and time required for sector-speci…c schooling, for example) if i and j
are in di¤erent industries; and a miriad of psychic costs as well that come from
leaving a familiar location or occupation and moving to a new one. For example,
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in an economy with two sectors (textiles (T) and shoes (S)) and two regions (East
(E) and West (W)), suppose that cells 1, 2, 3, and 4 are T-E (textiles-East),
T-W, S-E and S-W respectively. In that case, C12, C21, C34, and C43 are costs
of moving between the regions, which include moving company services, realtors’
fees, search costs for a new house, and the like. On the other hand, C13 and C24

are costs of moving out of the textile business and acquiring the human capital
required to be an e¤ective worker in the shoe business, which could involve night
school or the time cost of making the right network connections for the new line
of work.

In addition, if she is in cell i at the end of period t, the worker collects an
idiosyncratic bene…t "i

µ;t from being in that cell. These bene…ts are independently
and identically distributed across individuals, cells, and dates, with density and
cumulative distribution function f and F : < 7¡! <+ respectively. One can
think of these as capturing anything in one’s personal situation that may a¤ect
the direction or timing of labor market decisions independently of wages. For
example, in the example of the previous paragraph, a worker in T-E may become
terribly bored of the textile business and long for a change. This would correspond
to a low value for "1 and "2. On the other hand, this person may fall in love with
someone who lives in West, inducing high values for "2 and "4. Finally, the
worker’s family may have a member who is at the moment under the care of a
trusted local doctor, or the children may be near the end of high school, and at
the same time the worker has developed a good working rapport with her current
employer. In that case, any move would be costly, and we have low values for "2,
"3, and "4.

Thus, the full cost for worker µ of moving from i to j can be thought of as
"i

µ;t ¡ "j
µ;t + Cij. Adopt the convention that Cii = 0 for all i.

All agents have rational expectations and a common constant discount fac-
tor ¯ < 1, and are risk neutral. Finally, we make the following boundedness
assumptions:

9x Ä X(L; s) · x8L; s 2 SL £ Ss; and

Z
"F n¡1(")f(")d" < 1. (2.1)

6



3. The planner’s problem.

It is useful to examine the idealized social planner’s solution to the problem of
allocating workers to cells in this framework. Note that we mean ‘social planner’
in a narrow sense. It has already been made clear that the state variable s can
include policy variables such as trade barriers, and these will all be treated as
exogenous. In addition, if this country is large on the world market, a nationalis-
tic social planner would take into account its e¤ect on prices to exploit national
monopoly power, but the social planner discussed here will not do so. Given
these quali…cations, the social planner chooses an allocation rule, which can be
summarized as a set of functions Dij : (<n £ SL £ Ss) 7¡! [0; 1], with the in-
terpretation that Dij(";L; s) is the fraction of workers in cell i with idiosyncratic
shocks " = ("1,: : : ,"n) who will be moved to cell j. Naturally, we must have

nX
j=1

Dij(";L; s) = 18i 2 f1; : : : ng; " 2 <n, L 2 SL and s 2 Ss. (3.1)

The planner wishes to maximize:

Efstg1
t=1

1X
t=0

¯t
nX

i=1

"
X i(Li

t; st) + Li
t

Z
¢ ¢ ¢

Z Ã
nX

j=1

Dij(";Lt; st)("
j ¡ Cij)

!
nY

j=1

(f("j)d"j)

#
;

(3.2)

subject to (3.1) and:

Li
t+1 = Li

t

ÃZ
¢ ¢ ¢

Z
Dii(";Lt; st)

nY
j=1

(f("j)d"j)

!

+
X
k 6=i

Lk

Z
¢ ¢ ¢

Z Ã
nX

j=1

Dki(";Lt; st)

!
nY

j=1

(f("j)d"j);

with fLi
tgn

i=1and s0 given, with respect to the functions Dij. The …rst term in the
square brackets of the objective function is simply the value of the output in cell
i, and the second term is the aggregate of idiosyncratic bene…ts "j, contingent on
location decisions, and net of non-idiosyncratic moving costs Cij. The constraint
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is simply the law of motion for the stock of workers in each cell: Li
t+1 equals the

measure of period t cell i workers who remain there to period t+1, plus aggregate
arrivals to i from other cells.

It will be convenient to denote by mij
t the fraction of workers in cell i who move

to j in period t. Of course, this is equal to
R ¢¢¢ R

Dij(";Lt; st)
Qn

k=1(f("
k)d"k).

It is easy to demonstrate that an optimal allocation rule will always take a
particular form. First, for any pair of cells, i and j, at each date and state, there
is always a threshold "ij such that no worker in i moves to j if her realization of
"i ¡ "jis greater than "ij, and no worker in i remains in i if her "i ¡ "j is less than
"ij. Thus, "ij may be interpreted as the marginal idiosyncratic moving cost for a
mover from i to j.

Proposition 3.1. Consider an optimal allocation rule fDijgi;j2f1;:::ng. Fix i, j 6=
i, t, Lt, and st, and suppose that at that state mij

t ; mii
t > 0. For any number ",

de…ne:

Â(") ´
Z µZ 1

¡1

Z 1

"j+"

Dij(";Lt; st)f("
i)d"if("j)d"j

¶ Y
k 6=i;j

¡
f("k)d"k

¢
, and

»(") ´
Z ÃZ 1

¡1

Z "j+"

¡1
Dii(";Lt; st)f("

i)d"if("j)d"j

! Y
k 6=i;j

¡
f("k)d"k

¢
.

(In other words, for any number ", Â(") is the fraction of i workers who have
"i ¡"j > " and move to j; and »(") is the fraction of i workers who have "i ¡"j < "
and remain in i.) Then there exists "ij such that Â("ij) = »("ij) = 0 .

We will adopt the convention that "ii = 08i, and will denote the matrix of
these thresholds as " ´ f"ijgi;j2(1;:::n). An important note is that "i ¡"j < "ij does
not ensure that the worker goes to j, because it is possible that she will choose
a third option. That point is clari…ed by the following proposition, which shows
how all of the "ij together fully determine the choices of each worker (to within a
set of measure zero).

Proposition 3.2. Let the conditions in the previous proposition hold, and sup-
pose that we have chosen a set of "ij as described there. Then Dij(";Lt; st) = 1
if and only if j solves:

max
k2f1;:::ng

f"k + "ikg

8



(except possibly on a set of measure zero). Equivalently, Dij(";Lt; st) = 0 if and
only if j does not maximize f"k + "ikg, except possibly on a set of measure zero.

This allows us to write the planner’s problem in a simple way, as the choice
of a function "(L; s) giving the thresholds at each date and state. The realized
current-period payo¤ to a given worker in cell i is equal to that worker’s wage,
wi

t, plus ("j ¡ Cij), if that worker moves to cell j. Conditional on the "ik’s and on
"j, the probability that this worker does move to cell j is

Q
k 6=j F ("j + "ij ¡ "ik).

For this reason, the realized value of the objective function (3.2) will be:

Efstg1
t=1

1X
t=0

¯tU(Lt; st; "(Lt; st)), (3.3)

where

U(L; s; ") ´
nX

i=1

"
Xi(Li; s) + Li

nX
j=1

ÃZ 1

¡1
("j ¡ Cij)f("j)

Y
k 6=j

F ("j ¡ "ij + "ik)d"j

!#
.

(3.4)

We can write the gross ‡ows of workers out of sector i as a function of the
"ij’s:

mij("i) =

Z 1

¡1
f("j)

Y
k 6=j

F ("j + "ij ¡ "ik)d"j, (3.5)

where "i = ("i1; : : : ; "in). We can write mi¢("i) = (mi1("i); : : : min("i)). This
allows us to write the law of motion as a function of the "ij’s:

Li
t+1 = mii("i)Li

t +
X
k 6=i

mki("k)Lk (3.6)

= L0
tm("), (3.7)

where m denotes the full matrix of gross ‡ows and a prime on a vector indicates
the transpose.

The planner, then, maximizes (3.3) subject to (3.6).
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3.1. The gross ‡ows function.

Equation (3.5) de…nes all gross ‡ows out of cell i as a function of "i. It is convenient
to de…ne a truncated version of this function, which allows us to state a useful
property of the gross ‡ows. First, let x¡k denote the vector made by deleting the
kth element of x (if x has fewer than k elements, x¡k = x). After deleting one or
more elements of a vector, continue to index the remaining elements in the same
way, so, for example, if x 2 <n and n > i, then (x¡i)

n = xn. Then, for any i,
de…ne emi¢ : <n¡1 ! f em 2 (0; 1)n¡1 :

P
i emi < 1g, with emi¢("i

¡i) = (mi¢("i))¡i.
Thus, emi¢ de…nes the gross ‡ows out of i, but not the residual category of i workers
who stay in i, and it de…nes them as a function of "i

¡i.
The above-mentioned property can now be stated:

Proposition 3.3. For any i, the function emii¢
is invertible.6

Thus, we can meaningfully write either the gross ‡ows as a function of the "ij’s
(that is, mij("ij)) or vice versa ("ij(mij)) without ambiguity. This result is useful
partly because it is helpful in deriving the planner’s …rst order condition. In
addition, note that although the "ij’s are useful from the point of view of theory,
they are of course unobservable to an econometrician. However, in some cases
the gross ‡ows mij themselves are observable in conventional labor force surveys.
This theorem gives us a way of inferring the values of the unobservable "ij’s by
studying the observable mij’s. This is a key to the econometric estimation of the
model.

3.2. The planner’s …rst order condition.

It is clear that the optimization problem presented above can be represented as a
stationary dynamic programming problem, with Bellman equation:

V (L; s) = max
"

fU(L; s; ") + ¯Ees[V (eL; es)js]g, (3.8)

where V : SL £ Ss 7! < is the value function, eL and es are the next-period values
of the labor allocation vector L and the state s, with eL calculated from L and "

6Because of the dominant diagonal property, the function must be ‘univalent’ as a conse-
quence of Theorem 4 of Gale and Nikaido (1965). That is, any two di¤ferent "i vectors will
induce two di¤erent emi vectors. However, that is not enough for our purposes. We need to
verify as well that for any feasible emi vector there exists an "i vector that will induce it, or in
other words, that the function is also ‘onto.’
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by (3.6), and where the expectation is taken with respect to the distribution ofes, conditional on s. Properties of standard dynamic programming problems will
hold here; for example, the value function will be di¤erentiable in L. In addition:

Proposition 3.4. The value function is (i) non-negative; (ii) uniformly bounded
from above; and (iii) concave in L.

The …rst order condition with respect to the e"ij terms can be obtained me-
chanically, and rearranged to yield the following.

Proposition 3.5. In an optimal allocation, the condition:

"ij + Cij = ¯E

µ
@V

@eLj
¡ @V

@eLi

¶
(3.9)

will hold at all times.

To interepret this condition, recall that "ij denotes the value of "i ¡ "j for
the marginal mover from i to j, and is thus the marginal idiosyncratic cost of
reallocating a worker from i to j. The left hand side of the equation is therefore
the marginal cost of moving workers from cell i to cell j. The right hand side is
the discounted marginal value of doing so.

In order to shed more light on the right-hand side of this condition, the enve-
lope condition can be applied to the Bellman equation, yielding the following.

Proposition 3.6. The marginal value of a worker in cell i in the optimal alloca-
tion satis…es:

@V (L; s)

@eLi
= X i

1 + ("
i
t) + ¯

@ ~V

@eLi
, (3.10)

where

("i) =
NX

j=1

Z 1

¡1
("j + "ij)f("j)

Y
k 6=j

F ("j + "ij ¡ "ik)d"j. (3.11)
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This equation has a natural interpretation. An increase in the number of work-
ers in cell i has three e¤ects. The …rst is the direct e¤ect of increased production
in cell i. The last is the bene…t those workers generate in cell i if that is where they
remain. The middle term, which is simply the average value of maxjf"j + "ij

t g
for all workers currently in cell i, is the additional bene…t owing to the ability to
reallocate these workers into other cells. The  function is thus a measure of the
option value resulting from the ability to move workers from one cell to another.

Putting this together with (3.9) then yields the Euler equation for this opti-
mization problem:

"ij
t + Cij = ¯Et[X

j
1(L

j
t+1; st+1)¡ X i

1(L
i
t+1; st+1) + ("

j
t+1)¡ ("i

t+1)(3.12)

+¯

Ã
@V (Lj

t+2; st+2)

@Lj
t+2

¡ @V (Li
t+2; st+2)

@Li
t+2

!
], (3.13)

which, then, using (3.9) again, can be rewritten in the useful form as follows.

Proposition 3.7. In an optimal allocation, the condition:

"ij
t + Cij = ¯Et

¡
Xj

1(L
j
t+1; st+1)¡ Xi

1(L
i
t+1; st+1) + ("

j
t+1)¡ ("i

t+1) + "ij
t+1 + Cij

¢
(3.14)

will hold at all times for all i 6= j.

This is the key condition for characterizing the optimal dynamic allocation
of workers, and also for estimating the model econometrically. The economic
meaning of this condition is fairly straightforward. Recall the left hand side of the
equation is the marginal cost of moving workers from cell i to cell j at time t. The
right hand side is the marginal bene…t of such a reallocation. As indicated in (3.9),
that marginal bene…t is equal to the di¤erence in the expected discounted social
marginal value of a worker in the two cells next period. As indicated in (3.10), that
has three parts: The direct e¤ect of the di¤erence in marginal social products in
the two cells, the continuation value of leaving the reallocated workers in the new
cell next period, and the additional value that comes from exercising the option
of reallocating some portion of them next period. The direct e¤ect is indicated by
the …rst two terms on the right hand side of (3.14), and the di¤erence in option
values is indicated by the following two terms. The di¤erence in continuation
values is indicated by the …nal two terms, which are simply the marginal cost
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of moving a worker from i to j next period, which by next period’s …rst order
condition (3.9) must be equal to the di¤erence in the expected discounted social
marginal value of a worker in the two cells the following period.

4. Market Equilibrium.

Here we show that the optimal allocation rule analyzed above is also the equilib-
rium of a decentralized economy. Assume that all workers and employers take
wages as given. In each cell i at each date t, the wage wi

t will adjust to clear the
market, so that wi

t = Xi
1(L

i
t; st) at all times. Assume that any worker who chooses

to move from i to j herself will bear both the common moving cost, Cij, and the
idiosyncratic moving costs, "i ¡ "j. All agents have rational expectations and a
common constant discount factor ¯ < 1, and are risk neutral.

An equilibrium then takes the form of a decision rule by which, in each period,
each worker will decide whether to stay in her cell or move to another, based on
the current allocation vector L of labor across sectors, the current aggregate state
s, and that worker’s own vector " of shocks. In the aggregate, this decision rule
generates a law of motion for the evolution of labor allocation and, by the labor
market clearing condition just mentioned, for the wage in each sector. Given this
behavior for wages, the decision rule must be optimal for each worker, in the sense
of maximizing her expected present discounted value of wages plus idiosyncratic
bene…ts net of moving costs.

Let the maximized value to each worker of being in sector i when the labor
allocation is L and the state is s be denoted by bÀi(L; s; "), which, of course,
depends on the worker’s realized idiosyncratic shocks. Denote by Ài(L; s) the
average of bÀi(L; s; ") across all workers, or in other words, the expectation ofbÀi(L; s; ") with respect to the vector ". Thus, Ài(L; s) can also be interpreted as
the expected value of being in cell i, conditional on L and s, but before the worker
learns her value of ". In contrast to the previous section, de…ne "ij

t by:

"ij
t ´ ¯Et[À

j(Lt+1; st+1)¡ Ài(Lt+1; st+1)]¡ Cij. (4.1)

It will be seen to be equivalent to the de…nition of the previous section.
Assuming optimizing behavior, we can write:bÀi(Lt; st; "t) = wi

t +max
j

f"j
t ¡ Cij + ¯Et[À

j(Lt+1; st+1)]g
= wi

t + ¯Et[À
i(Lt+1; st+1)] + max

j
f"j

t + "ij
t g. (4.2)
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Taking the expectation of (4.2) with respect to the " vector then yields:

Ài(Lt; st) = wi
t + ¯Et[À

i(Lt+1; st+1)] + ("
i
t), (4.3)

where  is as de…ned in (3.10). Using (4.3), we can rewrite (4.1) as:

Cij + "ij
t = ¯Et[À

j(Lt+1; st+1)¡ Ài(Lt+1; st+1)] (4.4)

= ¯Et[w
j
t+1 ¡ wi

t+1 + ¯Et+1[À
j(Lt+2; st+2)¡ Ài(Lt+2; st+2)]

+("j
t+1)¡ ("i

t+1)]

= ¯Et[w
j
t+1 ¡ wi

t+1 + Cij + "ij
t+1 + ("

j
t+1)¡ ("i

t+1)]

However, it is immediately evident that this is identical to (3.14), once we use
the labor market clearing condition that the wage in each cell will be equal to the
marginal value product of labor in that cell at that moment. Thus, (3.14), the
condition that characterizes the planner’s optimum, is equivalent to (4.4), which
is the equilibrium condition chararcterizing the decentralized equilibrium. Hence-
forth, we can refer to the planner’s optimum and the equilibrium interchangeably.
Since the planner’s problem is well-behaved, we thus have a proof of the existence
of competitive equilibrium and a method for computing it as well.

Two remarks on this are called for. First, this is an optimum allocation in
an extremely restricted sense. In particular, it should be pointed out once again
that the optimization problem anaylzed here takes trade policy (for example) as
given, and looks only at the allocation of workers conditional on it. In addition,
the objective function set up in the previous section did not make any allowace
at all for distributional values. However, a large part of the interest in this prob-
lem springs from distribution values in practice; the point is, precisely, to analyze
who the gainers and losers will be from a given change in trade policy, for exam-
ple, and how badly the latter will be hurt. Thus, the actual objective function
for policy analysis will generally be di¤erent from that studied above. Second,
Dixit and Rob (1994) have pointed out that in the presence of risk aversion and
missing insurance markets, the market equilibrium of a labor adjustment process
with rational expectations will not generally be even constrained e¢cient. Those
elements have not been incorporated into this model, but it would be of interest
to incorporate them into a later version.

The point of the equivalence of the optimal rule and the decentralized equilib-
rium is not to make an argument for nonintervention in the adjustment process,
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but to facilitate more convenient computation and analysis of the decentralized
equilibrium. We now turn to that task.

5. Properties of the equilibrium.

A number of key properties of the adjustment process can now be seen immedi-
ately.

(i) Continual reallocation of workers. Condider a special case of the model in
which the state variable s is a constant. Then one can analyze steady states of
the model, which can be calculated in the following way. For any matrix of "ij’s,
one can compute a matrix of gross ‡ow rates from (3.5), and holding those ‡ow
rates constant one can compute steady-state values of the labor allocation vector
L from (3.6). All of this information can then be used to calculate the right hand
side of (3.14) for any i 6= j. Subtracting Cij, one can then compare the result with
"ij. A …xed point of this process is then a steady state. Since this computation
induces a continuous function, a steady state must exist. Label the steady state
value of the "ij matrix so computed "¤, the associated matrix of gross ‡ows m¤,
and the associated steady state labor allocation vector L¤.

The point is that even at this steady state, there will still be a constant
reallocation of workers. This is because the integrals in (3.5) will always have
positive values. The reason is that the workers experience idiosyncratic shocks
constantly, and each one will wish to change jobs or to move periodically for
personal reasons. Thus, the model has no trouble accomodating the empirical
fact that gross ‡ows are much larger than net ‡ows.

(ii) Gradual adjustment. It is easy to see that even in response to a shock that
permanent alters the demand for labor in a given cell the adjustment process in
this model will not be immediate. Indeed, if the economy is in a steady state
and a shock occurs that changes the steady state allocation, the economy will not
reach the new economy in any …nite time. To see this, consider once again the
special case in which s is a constant. Suppose that the economy’s steady state
allocation vector is L¤, with an associated steady state value "¤ of the "ij matrix
and associated matrix of gross ‡ows m¤. Denote the labor allocation matrix at
time t by Lt, and suppose that L0 6= L¤. Suppose that at time T , 0 < T < 1,
the economy is in the steady state. Then at time t = T ¡ 1, the right hand side
of (3.14) will take its steady state values, so the values of "ij on the left hand side
must be equal to the corresponding elements of "¤. But then (3.5), the matrix of
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gross ‡ows mij
T ¡1 at time T ¡ 1 must equal the values in m¤. But then working

backward from the law of motion (3.6), we …nd that LT ¡1 must be equal to L¤.
Continuing in this logic, we …nd that L0 = L¤, which is a contradiction.

Thus, the economy can move only gradually toward the steady state if it is
not already in it. The reason is again the idiosyncratic shocks. Suppose that a
given sector has enjoyed protection from imports for many years but suddenly
the protection is taken away, and the change is expected to be permanent. The
demand for labor in the sector drops, and the result is a reduction in the wages it
pays; workers begin to reallocate themselves to other sectors, but each period a
fraction of the workers waits because for those workers the cost of moving is high,
and it is in their interest to wait in hopes of a lower draw for their moving costs
in the near future.

(iii) Anticipatory movement of workers. In general, in this model if a change
in labor demand in some cell is foreseen in advance, that will result in a movement
of workers before the fact. This can be seen most easily in a two-cell version of the
model. Suppose that cell 1 is an export sector and cell 2 is an import-competing
sector, which is protected by a tari¤. At time 0, the government announces that
it will eliminate the tari¤ beginning in period T > 0. There are no other changes
in the economy at any time. This can be incorporated into the model by letting
st = t8t > 0, and by letting X2(¢; s) have one functional form when s ¸ T and a
di¤erent one when s < T . The function is shifted down and ‡atter when s ¸ T
compared with the function when s < T . Let L¤, "¤ and m¤ denote the steady
state values for the economy with the tari¤ in place (call this the ‘tari¤-a¤ected
steady state’), and suppose that L0 = L¤. It can be seen quickly that no matter
how large T is, the adjustment begins immediately, in the sense that because of
the announcement the gross ‡ows even in period 0 are already di¤erent from m¤.

In this two-cell situation, the Euler condition (3.14) becomes:

"12
t + C12 = ¯Et

¡
X2

1 (L
2
t+1; st+1)¡ X1

1 (L
1
t+1; st+1) + ("

2
t+1)¡("1

t+1) + "12
t+1 + C12

¢
(5.1)

for movers from cell 1 to 2, and vice versa for movers in the other direction. Given
that "21

t+1 = ¡"12
t+1 ¡ C12 ¡ C21 at all times (see (3:9)), we can meaningfully write

"21
t+1 as a function of "12

t+1. Using this in the Euler equation, it is straightforward to
show that the third, fourth and …fth terms on the right hand side of the equation:

("21
t+1("

12
t+1); "22)¡ ("11; "12

t+1) + "12
t+1

= ("21
t+1("

12
t+1); 0)¡ (0; "12

t+1) + "12
t+1
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are a strictly increasing function of "12
t+1. Thus, a change in the pattern of next-

period gross ‡ows with a given L vector will always result in a di¤erent value for
the right hand side of (5.1). Now suppose that the tari¤-a¤ected steady state
behavior of the model continues until T ¡ 1, so that Lt = L¤, f"ij

t g = "¤, and
fmij

t g = m¤ for t < T . Then LT = L¤ as well, so the right hand side of (3.9)
will be di¤erent from what its tari¤-a¤ected steady-state value would be, and so
"12

T ¡1 must also be di¤erent from ("¤)12, a contradiction. Thus there must be a
deviation from tari¤-a¤ected steady-state behavior at some point before period T .
Now suppose that the tari¤-a¤ected steady state behavior of the model continues
until T ¡ 2. Then LT ¡1 = L¤, so "12

T ¡1 must di¤er from ("¤)12. But then the right-
hand side of (5.1) for t = T ¡2 will be di¤erent from its tari¤-a¤ected steady-state
value, and so "12

T ¡2 must also di¤er from ("¤)12, a contradiction. Thus, there must
be a deviation from the tari¤-a¤ected steady state behavior at some point before
T ¡ 1. Proceeding in this way, we can see that the adjustment process to the new
policy must begin immediately at time t = 0.

The reasoning behind this has to do once again with idiosyncratic shocks.
Even if wages are currently equal in the two sectors, if a worker knows that an
event will occur shortly in the future that will depress wages in sector 2 for a
long time afterward, and if that worker happens to have low moving costs at the
moment, understanding that her moving costs may not be so low later on, she
may simply jump at the opportunity to move now. For example, a worker who has
been separated from one …rm in the sector that will experience the shock, instead
of looking for employment with another …rm in the same sector, may simply move
to the other now that it is as easy to …nd a job there as in the worker’s current
sector.

It should be noted that anticipatory movements of labor are also a feature
of Mussa-type models, as studied in detail by Dehejia (1997). However, in those
models, the anticipatory behavior is a result of the existence of a retraining sector
with rising marginal costs, while in the current model it arises purely from the
presence of time-varying idiosyncratic moving costs. Anticipatory reorientation of
an economy associated with a forthcoming change in trade policy is an important
phenomemon empirically, as documented for the case of accessions to trade blocs
by Freund and McLaren (1999). This mechanism provides an additional potential
source for it.

(iv) Anticipatory changes in wages. This is an immediate corollary to the
point just made. In the example discussed above, if workers begin to leave sector
2 immediately as soon as the planned future liberalization is announced, then
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clearly wages in sector 2 will begin to rise right away and wages in sector 1 will
begin to fall right away. Of course, sector 2 wages will then drop abruptly at the
date of the actual liberalization, and continue to adjust after that.

This is important for a number of reasons. First, in doing empirical work
on the relationship between tari¤s and wages, the issue of timing could be ex-
tremely important. Simply looking at a pair of snapshots taken before and after
a liberalization, for example, could miss a large part of the actual movement in
wages; further, in the simple story just told, if the pre-liberalization data were
collected very shortly before the liberalization, the empirical results would over-
state the downward e¤ect of the liberalization on wages in the a¤ected sector.
Second, these anticipatory e¤ects on wages can provide a motive for gradualism
in trade policy. If the government wishes to compensate the workers harmed by
a liberalization but cannot do so through lump-sum transfers, announcing the
policy change in advance and allowing these adjustment mechanisms to do their
work can in principle be an e¤ective way of doing so. This is a point made by
Dehejia (1997) in the context of a Mussa-type model.

(v) Persistent wage di¤erentials in long-run equilibrium. A feature of the
model that is not obvious is that it generally predicts wage di¤erentials across
cells even in the steady state.

Consider, once again, a version with two cells and with s constant. Suppose
that C12 = C21, and suppose that there is a steady state in which w2 ¸ w1.
Observe that if in that steady state L1 > L2, then we must have m21 > m12. From
(3.5), this implies that "21 > "12. From (3.11), this implies that ("2) > ("1).

From (4.3) applied recursively, that means that À2 > À1. But from (4.1), this
implies that "21 < "12, a contradiction. Thus, in order to have L1 > L2 in the
steady state, we must also have w1 > w2. Thus, in the steady state a sector
will have a higher wage than the other if and only if it has more workers than
the other. This conclusion contrasts sharply with the behavior of a Mussa-type
model, in which factor returns are equalized across sectors in the long run (see
Mussa (1978)).

The reasoning is as follows. Suppose that both cells had the same wage in
the steady state, but cell 1 was ten times the size of cell 2. In that case, workers
would be indi¤erent between the two cells apart from idiosyncratic e¤ects. In
each period, a certain fraction of the workers in either cell would realize negative
moving costs, which could be interpreted as boredom with the current job or
location or a desire to move to the other cell to realize some personal opportunity.
With the wages identical, an identical fraction of the workers in each cell would
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wish to change sectors in each period. However, this would imply a much larger
number of workers moving from 1 to 2 than vice versa. The result would be
net migration toward 2, which would push down the wage in cell 2 and pull up
the wage in cell 1. The wage di¤erential thus created would then tend to slow
down migration out of 1 and speed up migration out of 2, and this process would
continue until the aggregate number of workers moving in each direction would
be equal.

These e¤ects, which might be called ‘frictional’ wage di¤erentials, thus provide
a new reason for persistent intersectoral or geographic wage di¤erences, quite in-
dependent of compensating di¤erentials, e¢ciency wages and union e¤ects, which
have been emphasized in the labor economics literature. It should also be empha-
sized that these e¤ects occur even if the average moving costs Cij are all equal
to zero. The persistent wage di¤erentials are induced entirely by the variance in
idiosyncratic e¤ects.

(vi) Limiting behaviour as idiosyncratic shocks become important. Finally,
there is a sense in which the aggregate behaviour of the model when idiosyncratic
shocks are very important mimics the aggregate behaviour of a static model with
no mobility at all. This underlines how crucial it is to take account of gross
‡ows, as is being done here, and to estimate the structural parameters of the
mobility costs, because using a reduced-form econometric approach could produce
normative conclusions that would be seriously in error.

To make this point, consider a class of distributions for the "i’s indexed by ± >
0 in the following way. For a particular distribution function G1 and associated
density g1, the distribution function G± and density g± are de…ned by G±(") =
G1("=±) and g±(") = g1("=±)=±. Thus, G± is a radial mean-preserving spread
of G1 for ± > 1; the probability that " · y with the distribution G1 is equal
to the probability that " · ±y with the distribution G±. With this family of
distributions, if ± is very small, then idiosyncratic e¤ects are trivial most of the
time, but as ± becomes large, idiosyncratic e¤ects become more important and
can eventually dwarf wages in their e¤ect on workers’ decisions. The asymptotic
e¤ects of increases in ± are summarized in the following.

Proposition 5.1. When the distribution of idiosyncratic shocks is given by the
family G±, as ± ! 1 the matrix of gross ‡ows mij converges uniformly in equi-
librium over the whole state space to a matrix each of whose components is equal
to 1=n.

Thus, if ± is very large, regardless of the labor demand shocks, workers would
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always be approximately evenly distributed across the cells of the economy. In the
extreme case, the number of workers in each cell would be completely insensitive
to, for example, the elimination of tari¤s, and all of the adjustment would occur in
the form of changes in wages. Aggregate data would suggest that each industry
has in e¤ect a captive labor force, and the cost of the elimination of a tari¤ on
textiles, for example, would be borne entirely by workers in the textile sector,
while all other workers would enjoy a net bene…t through lower textile prices.
However, this would be quite wrong. In such an economy, far from being captive,
workers would be very footloose, and a typical textile worker would face only a 1=n
chance of continuing in the textile sector next period. Therefore, particularly if n
is large, the cost borne by the textile workers would be very low; for most of such a
worker’s future career, she would be in other sectors, enjoying the bene…t of lower
prices. It may in fact be a Pareto-improving liberalization, while the reduced-
form approach would mistakenly conclude that one sector of workers would be
badly hurt and would bitterly oppose the liberalization. Thus, a focus on gross
‡ows in equilibrium, and attention to the variance of mobility costs as well as
their means, are, in principle, crucial to getting the normative conclusions right.

6. A special case, and empirical implementation.

The model takes a particularly tractable form when a judicious choice of func-
tional form is made. Assume that the "i

t are generated from an extreme-value
distribution with parameters (¡°º; º), which implies:7

E["i
t] = 0 8i; t

V ar["i
t] =

¼2º2

6
8i; t

Note that while we make the natural assumption that the "’s be mean-zero, we do
not impose any restrictions on the variance, leaving º (which is positively related

7The cumulative distribution, mean, and variance for an extreme-value distribution with
parameters (®; º) are given by:

F (") = exp
n

¡e¡("¡®)=º
o

E(") = ®+ °º

V ar(") =
¼2º2

6

For further properties of the extreme-value distribution, see Patel, Kapadia, and Owen (1976).
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to the variance) as a free parameter to be estimated.
It can easily be shown that, with this assumption:

"ij
t ´ ¯Et[V

j
t+1 ¡ V i

t+1]¡ Cij = º[lnmij
t ¡ lnmii

t ] (6.1)

and:

("i
t) = ¡º lnmii

t (6.2)

Both these expressions make intuitive sense. The …rst says that the greater the
expected net (of moving costs) bene…ts of moving to j, the larger should be the
observed ratio of movers (from i to j) to stayers. Moreover, holding constant
the (average) expected net bene…ts of moving, the higher the variance of the
idiosyncratic cost shocks, the lower the compensating migratory ‡ows.

The second expression says that the greater the probability of remaining in
cell i, the lower the value of having the option to move from cell i.8 Moreover, as
one might expect, when the variance of the idiosyncratic component of moving
costs increases, so too does the value of having the option to move.

Substituting from (6.1) and (6.2) into (3.14) we get:

Cij + º[lnmij
t ¡ lnmii

t ] = ¯Et[w
j
t+1 ¡ wi

t+1 + Cij + º[lnmij
t+1 ¡ lnmii

t+1]

+º[lnmii
t+1 ¡ lnmjj

t+1]]

This expression can be simpli…ed and rewritten as the following conditional mo-
ment restriction:

Et

·
¯

º
(wj

t+1 ¡ wi
t+1) + ¯(lnmij

t+1 ¡ lnmjj
t+1)¡ (1¡ ¯)

º
Cij ¡ (lnmij

t ¡ lnmii
t )

¸
= 0

(6.3)

This has the virtue that it can be estimated with data on gross ‡ows and
wages, using standard Generalized Method of Moment techniques. This is an
ongoing project.

7. Conclusion.

This paper has articulated an equilibrium model of labor adjustment to external
shocks, which has been designed to be useful for trade policy analysis and to be

8Note that 0 < mii
t < 1, so ("i

t) = ¡º lnmii
t > 0.
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empirically estimable. The key features are an in…nite horizon in which all workers
have rational expectations; the possibility of shocks to labor demand in a sector
(as caused, for example, by a change in trade policy) or in a geographic location;
publicly observable costs of moving or of changing sectors; and time-varying, id-
iosyncratic private costs as well. We have shown that the equilibrium solves a
particular social planner’s dynamic programming problem, which facilitates anal-
ysis of the equilibrium. In addition, the equilibrium exhibits gross ‡ows in excess
of net ‡ows (and indeed, constant movement of workers even in a steady state),
which is an important feature of empirical labor adjustment; gradual adjustment
to a shock; anticipatory adjustment to an announced policy change; and persis-
tent ‘frictional’ wage di¤erentials across geographic locations or sectors, which
will exist even if the average moving costs are zero, and which provide a new and
independent theoretical rationale for wage di¤erentials in long-run equilibrium.

Finally, it is shown that the key equilibrium condition takes a particularly
simple form when the functional forms are chosen in a particular way, making
the econometric estimation of the parameters of the model feasible with data on
gross ‡ows and wages over time for a particular economy. This is the subject of
ongoing work.

8. Appendix.

Proof of Proposition (3.1). Clearly Â(") is decreasing and continuous, with
Â(") ! 0 as " ! 1 and Â(") ! mij

t as " ! ¡1. Clearly »(") is increasing and
continuous, with »(") ! mii

t as " ! 1 and Â(") ! 0 as " ! ¡1. Thus, we can
…nd an "¤ such that Â("¤) = »("¤). If Â("¤) = 0, we are done. If not, then we
have a positive mass of i workers who have "i ¡ "j < "¤ and who remain in i, and
an equal mass of i workers who have "i ¡ "j > "¤ and who move to j. Clearly, if
we simply reversed their roles, making the movers stay and the stayers move, the
next-period allocation of labor would be unchanged, and the total surplus would
be higher. Therefore, the original allocation rule could not have been optimal.

Proof of Proposition (3.2). Suppose that for some set A(1) µ <n with
positive probability measure, "j+"ij > "k+"ik and yet Dik(";Lt; st) > 08" 2 A(1).
Without loss of generality, assume that for all " 2 A(1), "j + "ij ¡ ("k + "ik) ¸e" > 0. For any positive N , consider the ball of radius 1=N around the point
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" = (¡"i1; ¡"i2; : : : ; ¡"in), and note that within such a ball will be points for
which the expression "i ¡ "i0 ¡ "ii0

is negative for all i0, points for which it is
positive for all i0, and points with every other possible combination of signs (note
that at the center of the ball "i ¡ "i0 ¡ "ii0

= 08i0) . For N = 1; : : : ; 1, de…ne a
subset of such a ball, B(N) µ <n, by B(N) = f" : "i ¡ "i0

> "ii08i0 6= j; "i ¡ "j <
"ij; andmaxi0

¯̄
"i0
+ "ii0 ¯̄

< 1=Ng. (Note that at the center of the ball, "i0
+ "ii0

=
08i0.) By the previous proposition, Dij = 1 everywhere on B(N) for all N .
De…ne a sequence A(N) of subsets of A(1), where for each N the probability
measure p(N) ´ R

A(N)
Dik(";Lt; st)

Qn
k=1(f("

k)d"k) of workers in A(N) who go to
k is equal to the smaller of p(1) and the measure of B(N). For large enough N ,
we will have "j + "ij ¡ ("k + "ik) < e" for all " 2 B(N), and a measure of workers
in A(N) going to k that is equal to the measure of workers in B(N) who go to j.
But then for every worker in A(N), "j ¡ "k ¸ "ik ¡ "ij +e", and the worker moves
to k; while for every worker in B(N), "j ¡"k < "ik ¡"ij+e", and the worker moves
to j. Clearly, if for " 2 A(N), we simply reduced Dik(";Lt; st) to 0 and increased
Dij(";Lt; st) by Dik(";Lt; st); and if for " 2 B(N), we reduced Dij(";Lt; st) to 0
and increased Dik(";Lt; st) to 1; then the total number of workers going to each
cell would be unchanged. However, a positive mass of workers in A(N) and in
B(N) will have reversed their roles; B(N) workers with lower values of "j ¡"k now
move to k and the A(N) workers with higher values of "j ¡"k move to j. Thus, the
next-period allocation of labor would be unchanged, and the total surplus would
be higher. Therefore, the original allocation rule could not have been optimal.

Proof of Proposition (3.3). First, we derive some information about the
derivatives of emij. They are as follows:

@ emij("i
¡i)

@"ii0 = ¡
Z 1

¡1
f("j)f("j + "ij ¡ "ii0

)
Y

k 6=j;i0
F ("j + "ij ¡ "ik)d"j < 0

if i0 6= j, and

Z 1

¡1
f("i0

)
X
k 6=i0

f("i0
+ "ii0 ¡ "ik)

Y
l 6=i0;k

F ("i0
+ "ii0 ¡ "il)d"i0

> 0 (8.1)

if i0 = j.
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Note that if i 6= i0,X
j 6=i

@ emij("i
¡i)

@"ii0 = ¡@mii("i
¡i)

@"ii0

=

Z 1

¡1
f("i)f("i ¡ "ii0

)
Y

k 6=i;i0
F ("i ¡ "ik)d"i

> 0.

Thus, the matrix of derivatives

r emi¢ ´
µ

@ emij("i
¡i)

@"ii0

¶
j;i0 6=i

,

which is the Jacobian of the emi¢ function, is a dominant diagonal matrix with pos-
itive elements on the main diagonal and negative elements o¤ the main diagonal.
This implies that it has an inverse (see Theorem 1 in McKenzie (1960)), and that
the inverse has only positive elements (see Theorem 4 in McKenzie (1960)). This
information is useful in the remainder of the proof.

The following notation will be helpful. For any vector x, let x[k] denote the
vector made up of its …rst k elements; let x¡[k] denote the vector made up of all
of its elements after the kth; and again let x¡k denote the vector made by deleting
the kth element of x (if x has fewer than k elements, x¡k = x).

Now, …x i. The proof will proceed by induction. De…ne the induction hypoth-
esis P (n0) for n0 · n as follows.

P (n0): For any "i 2 <n and for any m¤ 2 (0; 1)n with
P

j(m
¤)j = 1, there

exists a unique b" 2 <n0
such that (emi¢(b"; ("¤

¡i)
¡[n0])[n

0] = (m¤
¡i)

[n0].

In other words, P (n0) says that for any value of the "ij’s from j = n0+ 1 to n
and for any set of desired gross ‡ows m¤ from j = 1 to n0, we can …nd exactly one
choice of "ij’s from j = 1 to n0 (denoted "̂) that will provide exactly those desired
gross ‡ows. Where P (n0) holds, it will be useful to write the b" as a function:b"(("¤

¡i)
¡[n0]; (m¤

¡i)
[n0]).

Of course, the statement to be proved is simply P (n). It is clear that P (1)
holds, since by (3.5) mi1 is continuous and strictly increasing in "i1, mi1 ! 0 as
"i1 ! ¡1 and mi1 ! 1 as "i1 ! 1. Thus, the only task remaining is to show
that P (n0) implies P (n0 + 1).

Suppose that P (n0) holds, and so the b" function de…ned above exists. Fix
("¤

¡i)
¡[n0] and (m¤

¡i)
[n0]. Consider the …rst n0 elements of the ~mii¢

function as a
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function of ("i)n
0
. By (8.1), the derivatives of this function form an n0-square

dominant diagonal matrix with positive elements on the main diagonal and nega-
tive elements o¤ it. This implies that the inverse of that matrix exists and that it
has all positive elements (see Theorems 1 and 4 in McKenzie (1960), respectively).
This inverse is, then, the Jacobian of the b" function with respect to (m¤

¡i)
[n0].

For any "i;n0+1, de…ne:

¹("i;n0+1) ´ (emi¢)(b"(¹"i;n0+1; ("¤
¡i)

¡[n0+1]; (m¤
¡i)

[n0]); ¹"i;n0+1; ("¤
¡i)

¡[n0+1]),

the ‡ow vector resulting from a given choice for "i;n0+1, given that "i;k have been
…xed for k > n0 + 1 and that "i;k for k · n0 are adjusted to keep the …rst n0

elements of the ‡ow vector equal to (m¤
¡i)

[n0]. The ¹ function is di¤erentiable by
construction. The derivative of its …rst n0 + 1 elements is equal to:

µ
(@ ~mi¢)[n

0+1]

(@"i
¡i)

[n0+1]

¶ ·
@"̂

@¹"i;n0+1

1

¸
=

" ¡!
0

d¹n0+1

d"i;n0+1

#
.

The left hand side of this equation is an n0 + 1-square matrix of derivatives
multiplied by an n0 + 1-by-1 vector. The right hand side is an n0 + 1-by-1 vector
that has n0 zeroes, due to the de…nition of the "̂ function. Once again, by the
properties of dominant diagonal matrices, the inverse of the …rst matrix on the
left hand side exists and has only positive elements. Therefore, every element
of the vector on the left-hand side has the same sign as d¹n0+1=d"i;n0+1. Since
1 > 0, this means that d¹n0+1=d"i;n0+1 > 0. Further, d"̂=d"i;n0+1 is positive in
each element.

From (3.5), we can see that ¹n0+1 ! 0 as ¹"i;n0+1 ! ¡1. (For example,
as ¹"i;n0+1 ! ¡1, F ("n0+1 + "i;n0+1 ¡ "i;n) ! 0 pointwise, so by the dominated
convergence theorem mi;n0+1 ! 0.) Further, ¹k ! 0 as ¹"i;n0+1 ! 1 for k >

n0 + 1 (by a parallel argument), so ¹n0+1 !
³
1¡ Pn0

j=1(m
¤
¡i)

j
´

as ¹"i;n0+1 ! 1.

Therefore, by continuity, there exists a value of ¹"i;n0+1 such that

( ~mi¢("̂(¹"i;n0+1; ("¤
¡i)

¡[n0+1]; (m¤
¡i)

[n0]); ¹"i;n0+1; ("¤
¡i)

¡[n0+1]))[n
0+1] = (m¤

¡i)
[n0+1].

Finally, since d¹n0+1=d"i;n0+1 > 0, as noted above, this value of ¹"i;n0+1 is unique.
Thus, P (n0 + 1) holds.
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Proof of Proposition (3.4). Claim (i) is straightforward, since the planner
could always set Dii = 1 for all i, which would ensure a non-negative value for
(3.2) since Cii ´ 0. Claim (ii) follows from assumption (2.1).

The proof of claim (iii) is as follows. Return to the original form of the problem,
(3.2). For any L 2 SL and for any n £ n matrix D of functions Di;j : <n 7! [0; 1],
de…ne

B(L; D) =
nX

i=1

Li
t

Z
¢ ¢ ¢

Z Ã
nX

j=1

Dij(")("j ¡ Cij)

!
nY

j=1

(f("j)d"j).

This is the second term in the objective function. In addition, de…ne the Bellman
operator T on the space of bounded real functions on SL £ Ss by:

T (W )(L; s) = sup
D

f
nX

i=1

X i(L; s) +B(L; D) + ¯Ees[W (eL; es)js]g,

where eL is determined from L and D by (3.6). A …xed point of T will be a
solution to the Bellman equation, and by the usual logic of discounted dynamic
programming, T is a contraction mapping, so that there is a unique …xed point,
and it can be found as the limit of T k(W ) as k ! 0 for any bounded function W .

Now consider a bounded and concave function W , and consider two di¤erent
points in the state space, a = (La; s) and b = (Lb; s). In the optimization required
in the de…nition of T (W ), denote the allocation rule chosen at state a by Da, and
the induced next-period labor allocation by eLa, and similarly use Db and eLb for
state b. Now, consider the point c = ®La + (1 ¡ ®)Lb, for some a 2 [0; 1].
Construct the allocation rule:

Dij
c (") = [®Li

aDij
a (") + (1¡ ®)Li

bD
ij
b (")]=Lc.

Since Dc is a weighted average of Da and Db within each cell, it satis…es (3.1) and
is thus feasible. Note that:

B(Lc; Dc) =
nX

i=1

Li
c

Z
¢ ¢ ¢

Z Ã
nX

j=1

Dij
c (")("

j ¡ Cij)

!
nY

j=1

(f("j)d"j)

=
nX

i=1

Z
¢ ¢ ¢

Z Ã
nX

j=1

(®Li
aDij

a (") + (1¡ ®)Li
bD

ij
b ("))("

j ¡ Cij)

!
nY

j=1

(f("j)d"j)

= ®B(La; Da) + (1¡ ®)B(Lb; Db).

26



Further, the next-period labor allocation vector that it induces is equal to
®eLa + (1¡ ®)eLb. We now have:

T (W )(Lc; s) ¸
nX

i=1

X i(Lc; s) +B(Lc; Dc) + ¯Ees[W (eLc; es)js]g
=

nX
i=1

X i(Lc; s) + ®B(La; Da) + (1¡ ®)B(Lb; Db) + ¯Ees[W (eLc; es)js]g
> ®T (W )(La; s) + (1¡ ®)T (W )(Lb; s).

The …rst inequality follows from optimization, and the fact that Dc is feasible.
The last inequality follows from the concavity of X i and W , and from the fact
that Da is optimal at point a and Db is optimal at point b.

Therefore, if W is bounded and concave, so will be T k(W ) for any k, and so
must be the limit function, which is the true value function V . This completes
the proof.

Proof of Proposition (3:5). Note that the derivative of U with respect to
the choice variable is given by:

@U(L; s; ")

@"ii0 (8.2)

= Li
X
j 6=i0

Z
("j ¡ Cij)f("j)f("j + "ij ¡ "ii0

)
Y

k 6=j;i0
F ("j + "ij ¡ "ik)d"j (8.3)

¡Li

Z 1

¡1
("i0 ¡ Cii0

)f("i0
)
X
k 6=i0

f("i0
+ "ii0 ¡ ¹"ik)

Y
l 6=i0;k

F ("i0
+ "ii0 ¡ "il)d"i0

. (8.4)

Using the change of variables " = "j ¡ "ii0
+ "ij on the …rst integral and

rearranging yields:

@U(L; s; ")

@"ii0 = Li
X
j 6=i0
("ii0 ¡ "ij + Cii0 ¡ Cij)

@mij

@"ii0

= Li
nX

j=1

(¡"ij ¡ Cij)
@mij

@"ii0 .
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(The equality follows, …rst, because the term in parentheses equals zero when
j = i0, so we can lift the restriction that j 6= i0 without a¤ecting the equation; and
second, the sum of derivatives of the ‡ows across all cells resulting from a change
in "ii0

must equal zero.) The …rst order condition for the Bellman equation is,
then:

Li

nX
j=1

µ
¡"ij ¡ Cij + ¯E

@V

@ eLj

¶
@mij

@"ii0 = 0.

De…ne the function ~"i¢ as the inverse of the function emi¢ discussed in Section
(3.1). Then the …rst order condition implies, if i 6= 1:

X
i0 6=i

Ã
Li

nX
j=1

µ
¡"ij ¡ Cij + ¯E

@V

@eLj

¶
@mij

@"ii0
@e"ii0

@mi1

!

= Li
nX

j=1

µ
¡"ij ¡ Cij + ¯E

@V

@eLj

¶ X
i0 6=i

@mij

@"ii0
@e"ii0

@mi1
= 0

Now, note that

X
i0 6=i

@mij

@"ii0
@e"ii0

@mi1

takes a value of 1 if j equals 1, ¡1 if j equals i, and zero otherwise. Thus, the
…rst order condition reduces to:

L1

µ
¡"i1 ¡ Ci1 + ¯E

@V

@eL1
+ "ii + Cii ¡ ¯E

@V

@eLi

¶
= 0, or

"i1 + Ci1 = ¯E

µ
@V

@eL1
¡ @V

@eLi

¶
.

This equation says that the marginal cost of moving a worker from i to 1 is
equal at the optimum to the expected discounted marginal bene…t of doing so.
This can be repeated for any pair of cells i and j with i 6= j, to yield the indicated
condition.
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Proof of Proposition (3.6). Using (3.8) and (3.4), we have:

@V (L; s)

@eLi

= X i
1 +

nX
j=1

ÃZ 1

¡1
("j ¡ Cij)f("j)

Y
k 6=j

F ("j ¡ "ij + "ik)d"j

!
+ ¯

nX
j=1

mij @ ~V

@ eLj
,

where eV stands for E[V (eL; es)js] from (3.8). Rearranging, this becomes

Xi
1 +

nX
j=1

ÃZ 1

¡1
"jf("j)

Y
k 6=j

F ("j ¡ "ij + "ik)d"j

!

+
nX

j=1

mij

Ã
¡Cij + ¯

Ã
@ ~V

@eLj
¡ @ ~V

@eLi

!!
+ ¯

@ ~V

@eLi
,

which from (3.9) becomes

X i
1 +

nX
j=1

ÃZ 1

¡1

¡
"j + "ij

¢
f("j)

Y
k 6=j

F ("j ¡ "ij + "ik)d"j

!
+ ¯

@ ~V

@eLi
.

This is the indicated condition.
Proof of Proposition (5.1). Fix ± > 0. Rewrite the planner’s objective

function (3.4):

X(Lt; st) +
X

ij

Li
t

Z
"j

Y
k 6=j

G±("
ij
t ¡ "ik

t + "j
t)g±("

j)d"j ¡
X
i;j

Li
tm

ij
± ("t)C

ij,

where mij
± denotes the gross ‡ow from i to j as calculated from (3.5) using the

distribution G±, and, as before "ii = 08i. We can rewrite this function once again
as follows.

U±(L; s;e") ´
X(L; s) +

X
i;j

Li

Z
"j

Y
k 6=j

G±(±(e"ij ¡ e"ik) + "j)g±("
j)d"j ¡

X
i;j

Limij
± (±e")Cij,

where e" is an n-square matrix of real numbers with e"ii = 0. In other words, e" is
simply ", scaled down by a factor of ±.
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Since

mij
± (±e") =

Z Y
k 6=j

G±(±(e"ij ¡ e"ik) + "j)g±("
j)d"j

=

Z Y
k 6=j

G1(e"ij ¡ e"ik +
"j

±
)g1(

"j

±
)(
1

±
)d"j

=

Z Y
k 6=j

G1(e"ij ¡ e"ik + ")g1(")d"

= mij
1 (e"),

the gross ‡ows resulting from any given choice of e" are independent of ±.

Further, X
i;j

Li

Z
"j

Y
k 6=j

G±(±(e"ij ¡ e"ik) + "j)g±("
j)d"j

= ±
X
i;j

Li

Z
"j

±

Y
k 6=j

G1(e"ij ¡ e"ik +
"j

±
)g1(

"j

±
)(
1

±
)d"j

= ±
X

i

LiAi(e"i),

where

Ai(e"i) ´
X

j

Z
"

Y
k 6=j

G1(e"ij ¡ e"ik + ")g1(")d".

Each of these Ai functions takes a unique maximum at e"i = 0. To see this,
consider a sample of n independent draws from the distribution G1, and call the
realized values "1; : : : "n. The function Ai(e"i) is the expectation of the j¤th of
these, where j¤ is the value of j that maximizes fe"ij + "jg. On the other hand,
Ai(0) is simply the expectation of the highest of the "j’s. Thus, Ai(0) must be
higher.

We can now rewrite the objective function once again:

U±(L; s;e")=± =
X

i

LiAi(e"i) + [X(L; s)¡
X
i;j

Limij
1 (e")Cij ]=±. (8.5)
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The maximization of (3.3) is, of course, equivalent to maximizing the expected
present discounted value of U±(L; s;e")=±. Further, we can speak in terms of the
optimal choice of e" in each state instead of the optimal choice of " without making
any substantive di¤erence.

Fix¢ > 0. Let b¢ = P
i LiAi(0)¡supje"j¸¢

P
i LiAi(e") > 0, where je"j indicates

the absolute value of the element of e" that is farthest from zero. The point will
be to demonstrate that if ± is large enough, we will have je"j < ¢, regardless of
the value of L and s.

From (2.1) and the fact that
P

i Li ´ L, the last two terms of (8.5) can be
made uniformly arbitrarily small by choosing ± su¢ciently high. Choose ± high
enough that those two terms are always less than (1 ¡ ¯)b¢=2 in absolute value.
Now, suppose that the optimal rule for choosing e" has at some state (L¤; s¤) a
value of e" with je"j > ¢. Now, replace that rule with one that is identical except
that at that state, and at all other states after that state has once been reached,e" is set equal to 0. In the …rst period in which the change takes e¤ect, that
would increase the value of the …rst term of (8.5) by at least b¢. Thereafter, it
could not reduce the value of that term, because with e" = 0, that term would
be at its maximum. On the other hand, in the …rst period of the change or
in any subsequent period, the second two terms together could fall by at most
(1 ¡ ¯)b¢=2, so the expected present discounted value of the reduction in those
terms would be at most [(1 ¡ ¯)b¢=2]=(1 ¡ ¯) = b¢=2. Thus, the change in the
value of the objective function due to the change in rule evaluated at the state
(L¤; s¤) would be at least equal to b¢ ¡ b¢=2 = b¢=2 > 0. This contradicts the
assumption that the initial rule was optimal.

Thus, we have that e" as a function of L and s converges uniformly to the
constant 0 as ± ! 1. Since the function m1 is continuous and

mij
1 (0) =

Z Y
k 6=j

G1(")g1(")d"

=
1

n
G1(")

nj1¡1

=
1

n
,

we conclude that mij
1 (e"(L; s)) converges to the constant 1=n uniformly as ± !

1.
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