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Abstract

This paper analyzes the second order bias of instrumental variabies estimators for a dynamic panel model
with fixed effects. Three different methods of second order bias correction are considered. Sirmulation

experiments show tnat these metnods perform well if tlie mode! does not have a root near unity bus break

down near the unit circle. To remedy the problem near the wnit root a woa

is used. We show thal an estimator based on long differencing the model is approximately achieving

the minimal biag in a certain class of instrumental variables (IV) estim

Simulation experiments
document the performance of the proposed procedure in finite samples.
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1 Introduction

We are concerned with estimation of the dynamic panel

del with fixed effects. Under large n, fixed

T asymptotics it is well known from Nickel. (1981) that the standard maximum likelihood estimator
suffers from an incidental parameter problem leading to inconsistency. In order to avoid this problem the
Hterature has focused on instrumental variables estimation (GMM) applied to first differences. Examples
include Anderson and Hsiao {1982), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond
(1991). Ahn and Schmidt (1995), Hahn (1997), and Blundell and Bond {1998) considered further moment

restrictions. Comparisons of information contents of varietics of moment restriciions wade by Ahn and

Schmidt (l€9 ) and Hahn (1999) suggest that, unless stationarity of the initial leve. gy is somehow

7/

exploited as in Blundell and Bond (1998}, the crthogonality of lagged ieveis with first differences provide

the lctl“ ges’ source of information

Unfortunately, the standard GMM estimator i after first differencing has been found to suffer

from substantial finite sample biases. See Alonso-Borrego and Arellano (1996). Motivated by tnis prob-

lem, modifications of lielihood based estimators ermerzed in the literature. See Kiviet (1995), Lancaster
(1997), Hahn and Kuersteiner (2000). The likelihooa

based estimators do reduce finite sample bias com-
pared to the standard maximum likelihood estimator, :

remaining bias is still substantial for T’
relatively small.

In this paper, we attermnpt to eliminate the finite sample bias of the standard GMM estimator obtained
after first differencing. We view the standard GMM estimator as a minimum distance estimator that
combines 7' — 1 instrumental variable estimators (2SLS) applied to first differences. This view has been
adopted by Chamberiain (1984) and Griliches and Hausman (1986). It has been noved for quite a while
that TV estimators can be quite biased in finite sample. Sec Nagar (1959), Mariano and Sawa (1972),
Rothenberg (1933), Bek ('094) Donald and Newey (1998) and Kuersteiner {2000). If the ingredients of

the mnimum distance estimator are all biased, it is natural to expect such bias in the resultant minimurm

distance estimator, or g uiva;,entm GMM. We propose to climinate the bias of the GMM estimator oy

repiacing au the in g reclients with Nagar type bias corrected instrumental variabie estimators. To our

knowiedge, the idea of appiying a minimum distance estimator to bias corrected instrumental variab.cs

estimasors is new in the literatu

We counsider a second order a.pp‘_‘oach to the bias of the G nakor uging the formula contained in

Hahn and Hausman (2000). We find that the standard GMM estimator suliers from si cant bias. Tac

bias arises from two primary sources: the corrclation of the structural eguation erver ‘,Vith the reduced

form error and the low explanatory power of the instruments. We atie to solve these problems by

using the “long difference tecnnique” of Griliches and Hausman {1386). Griicues and Hausman noted that

bias is reduced when iong differences are used in the errors in variable probiony and a similar result worls

here with the second order bias. Long differences also increascs tiv - nower of the instruments

which further reduces the finite sample bias and also decreases ¢ stimator. To increase

further the explanatory power of the instruments, we use the tecanique of abca residuals as

additional instruments a technique introduced in the simuitancous cqum@g moae oy Hausman, Newey,

and Taylor (1987) and used in the dynamic panel data context oy Aln and Schmias (1995}, Momnte Carlo

results demonstrate that the long dlf"fercnce estimator performs quite well, cven for high positive valucs

Lere previous estimas

are nadly nlased.

caicuiasions do ot wredict weill the performance of tie estimator for

7

ws that our approximations do not work well
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these high values of




near the unit circle where the model suifers from a near non-identification problem. Tn order to analyze
the bias of standard GMM procedm es under these circumstances we consider a local to non-identification
asymptotic approximation.

The alternative asymptotic approximation of Staiger and 5 1897} and Stock and Wright (2000)

is based on letting the correlation between instruments and re; lecreases &b a prescribed rate of the

samnple size. In their work, it is assumed that the murber of irstruments is held fixed as the sample size

increases. Their limit aistribution is nonstandard and in special responds to exact small sample

distributions sucn as the one obtained by Richardson (1968} for the bivariate simuitaneous equations
ips (1989) and Choi and Phillips (1992) on the

asymptobics of 25LS in the partially identified cass. Dufour (1997), Wang and Zivot ( (1998} and Nelson,

model. This approacn is related to the work by |

Startz and Zivot (1998) analyze valid inference and tests in the presence of weak instruments. The

associated blas and mean squared error of 28LS trder weak instrument assumptions was obtained by
Chao and Swanson (2000).

In this paper we use the wealt instrument asymptotic approximations to analyze 2513 for the dynamic

panel model. We analyze the immpact of stationarity sssumptions on the nonstandard limi distribution.
Here we let the autoregressive parameter tend to unity in a similar way as in the near unis root literature.
Nevertheless we are not considering time series cases since in our approximation “he number of time
periods T is held constant while the number of cross-sectional observations n tends o infinity.

Our limiting distribution for the GMM estimator shows that only moment conditions involving initial
conditions are asymptotically reievant. We define a class of estimators based on linear combinations of
asymptotically relevant moment conditions and show that a bias minimal estimator within this class can
approximately be based on taiing long differences of the dynamic panel model. In general, it turns out
that under near non-icentification asymptotics the optimal procedurcs of Alvarez and Arellano (1998},
Arellano and Bond (1991) , Al and Schmidt (1995, 1997) are suboptimal from & bias point of view and

inference optimally siould be based on a smaller than the fuli set of moment conditions. We show that a

L

bias minimal estimator can be obtained by using a particular linear combtination of the original moment

conditions. We are using the weak instrument asymptotic approximation “o “he distribution of the IV

estimator to derive the form of the optimal lincar combination.

2 Review of the Bias of GMM Estimator

Consider the usual dynamic pancl model with fixed effects:

der the case wr

~ is large and 7' is small. The neual

foun of the mods.

where the instruments are based on the orthoge

Instead, we consider a version of the GMM es or deveioped by Arellano and Bover (1995), which

simplifies the caaracterization of the *weignt matrix

n GMM es:;lmatiou. ‘We define the innovation




Uy = oy + e. Arellano and Bover {1995) eliminate the fixed effect oy in (1) by applying Helmert’s
transformation
+ . J’. ' ) - )
’Ll,“ = \, e Lu“ — 7],—:-5' ('Lti’-[;_]_‘l e uiT) s L= J_, . ,,[ -1

o

instead of fivst differencing.! The transformation produces

t=1,...,7—1

&

where 5J5 - . U 2y fQy » o » . Our moment restriction is swmmarized ;

e

T-1

goene 5o

5

It can pe shown that, with the homoscedasticity assumption on &, the optimal is
proportional to a block-diagonal matrix, with typical diagonal block equal to E {225 , the

optimal GV estimator is equal to

/ 2\ o
’“\"“L?"' ‘Tn'L)7yi =

basrs cenote the 25L5 of yf on

i), and Py = Iy (25007 Z]L Now, let

7 e v

o~

Y2515t = TPt

If 4 ave 1.1.d. across £, then under the standard (ﬁrst order) asymyptotics where 7' is fixed and n grows

o infinity, 1% can be shown that

o [fe -~ .
Vil basrss — B, ... basrsr—1 — NA{0,T),
AN

where U is a diagonal wmatrix with the -th diagonal dembnuc eque. to Var(ez)/ (pimn= "z} P} )

Thercfore, we may corsider a minimum distance estimator,
) Y

-~ NI T ay—1 - =l o AN
[ besog:—0 (@ Pray) Y ! b2s518: =0
min
M o . — - .
SaspeT-i—b )| g \wr_ Prosp o) 7 \ Sespsr-1 b

The reswta wumn distance estimator is numerically identical to the GV estimator in (2):

Thelefo"c Ehe GMM estimator uG'/\ 7 T 2, lincar combination of tae 25LS estimators

UovLS 1y ,OQSLSH/ —3. 1t has long been kn 'may be subject to substantial finite sample

bias. Sec Nagar {1959}, Rothenberg and Donald and Newey (1998} for velated
s \ /1 LS /
discussion. It is therefore natura. to conjec ciznination of the /DLD may oe subject to

quite substantial finite sample bias.

L Areliano and Bover (1995) notes i » oF not

Heimert’s transformation is used instead of first differencing.




3 Bias Correction using Alternative Asymptotics

In this section, we consider the usual dynamic pane. modei with fixed effects (1) using the alternative
ssymplotics where n and 7' grow to infinity at the same rate. Such approximation was originally developed
Yy Beidker (1994), and was adopted by Alvarez and Arellano (1998) and Hahn and Kuersteiner (2000) in

the dynamic panel context. We assume
— [ %.4.6. b . ..
Condition 1 & ~ N(O,a'“) overt and .

i . 1ol 9
We also assume stationarity on y;0 and normality on a;”:

.l S o? . . 2
Condition 2 0] oy ~ N ( =7 %) and o ~ N (\0,0’&)u

In order to guarantee that Z]Z; is nonsingular, we will assume that
Condition 3 L — p, where 0 < p < 1.9

Alvarez and Arvellano (1998) show that, under Conditions 1 - J,

. L o
VAT (Bosns — (P == @+ 8)) ) = N (01— 4)

kN \ e v
where b is defined in (2) and (3). By cxamining the asymptotic distribution (4) under such alternative
asymptotic approximation where n and 7" grow to infinity at the samc rate, we can develop a bias-corrected
estimator. This bias-corrected estimator is given by

7T

‘Z;GJ\/HV = o 1bGJ\/I]\/I -+ ;"“‘ -~]—(
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Combining {4) and (5), we can easily obtain:

Theorem 1 Suppose that Conditions 1 - & wre sotisfied. Then, \/f"T ‘

Hahn ard Kuersteiner (2000) establish by & 1 that V(0,1 — ,62) is the
minimal asymptotic distribution. As such, the bias corrected G iz efﬂcicnt. Although the bias cor-

rected GMM estimator banras does have a desiral bhotics, it would

not be easy o generalize the development leading t s sirictly exogenous

variables. Such a generalization would require the stripution of the

standard GMM estimator ur”or the alternative ¢ > frivial. We therefore

consider eliminating biases in uogr 5,¢ instead. An estimator trat removes the hig her order bias of tasrs,z

" is the Nagar type estimator. Let

o~

L’I‘Jagm‘,t -

nd K denotes the number of instrume
as in Donald and Newey \l&" 8). We may also use LIML for the t-th

where M; =1 — F;, A =~ i equation. For

example, we may use Ay = -

equation, in which case Ai: would oe estimated by usual minimum eigenvalue scarch.

arc expected to

2This condition allows us to use lots of intermed Alvarez and Arelianc (299

ation of this concition.

1 Arellano (1998) oniy re

be robust ¢ v

3 Alvar Ty is singular for every 1.

< 5 < co. We require p < 1 to guarantee that
l [&3
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We now examine properties of the corresponding minimun: distance estimator. One possible weight
matrix for this problem is given by

-

1 -

£l sk L Y
i Py — Ay j\/flml) 0

~ £ - . oy
U K’L“%vf ‘PT—lx'T._l — /\T—leﬁ_l-ﬂ([T—

With this weight matrix, it can be shown that the minimum distance estimator is given by

~ B Z \:& Pyl — Ao
S lay Paaf — My’

ONagar = <6>

One possiby to examine the finite sample property of the new egiimator iz fc usc tne alternative

asymptotics:

Theorem 2 Suppose that Conditions 1-8 are SCLWS;& . Also suppose thai w ana T grow io infinity at the

VT (bnagar — B) — N {0,1 — f .

same vaie. 1A

Proof. Lemmas 10, and 11 in Appendix A along with Lemma 2 of Alvarez and Areilano (1998)

establish that

/ s
Mye} ) - N[0, |
7 \ - P
and
H 7 /7
= T\( -
74 et —

irom which the conclusion follows. =

In Table 1, we summarized finite sample properties of dwagar and 977y approximased oy 10000

Monte Cario runs.* Here, bryasr is the estimator where As in (G) are replaced by the corre

“eigenvalues”. In general, we find that dyggar and 0777 successfully remove bias accurate

close 16 one and the sample size is small.

4 Bias Correction using Higher Order Expansions

In the previous section, we explained the bias of the G estimator as a rvesult of the biases of the 2SLS

estimators. In this section, we consider eliminatior o ¢ “ne second order Taylor type

approximation. Such perspective has been adopted . ana Rothenberg (1983).

o)

For this purpose we first analyzc the second order bias of a general minimization estimator ¢ of a

single parameter 8 € R defined by

A aro /o

&= arg )

for some ¢ C R. The score for the minimization problem is denoted by ¢) = 0Qy, (¢} /Fe. The criterion
o ; -1

function is assumed to be of the form gn( = g(c) G(e)” glc) where g (c) and G {c) are defined in

Condition 7. The criterion function depeunds on prim? d W {wg, ¢ m a‘ming RF xR

into R? for d > 1, where w; are i.i.d. observations. We agsume that &

following additional conditions on w;, §, and .

“In our Monte Carlo experiment, we let ;2 ~ IV (0,1), ai; ~ N (0,1), and 30 ~ IV |

(S



Condition 4 The random vartables w; are 1.9.6.

Condition 5 The
T C R is a compact sei such that § € int O, Assume that 6 (wy,¢) and ¥ {w;, ¢ saiisfy o Lipschitz

condition ||6 (wy, 1) — & (wy, e2)]| < M ’Luq\ ]: — ¢z

“/

funcitons 8 (w,c) and o [w,c) ore three imes differeniiable in ¢ for ¢ € C where

J

e some function Ms(y : R — R and ¢,60 € O

with the same statement holding for .
] < 0.

and My(.; satisfy B [Ms (w;)] < oo and

he
‘J»:Tb ‘L‘J'

Ny

Condition 6 Let§; (w;,c) = 396 (wy,2) [ 87, U (wy, ) = b (wi, ) b (wy, €) and U (wy, ¢) = 87 (g, ¢} /5

7/ /
Then, \j(c) = E[6; (ws, )|, and Aj(c) = EW; (w;, )] all exisi and are finite for § =0,...,3. For sim-
plicity, we use the noiaiion N; = X; (0}, A; = A, (5, .
Condition 7 Let g(c) = -{E 18w e g5{e) = £ 0L, 65 (ws,0) LS U (i, e ) (wi,c)’
and Gy i) . Then g(c) = E[6 (wy, v 2 B (wy, 0)],

,««/

A
and Gx )

Our asyil.nptotic approximation of the second order bias of b is based on an approximate estimator b
. w EERN ; « , ) oore F o N [ 7 :
such shat b—06 = op ( {n™%}. The approximate bias of b is then defined as B ’LJ — [ while the original

estimator b need not unccessarily possess momments of any order. In order to justify our approximation we

need o establish that b is /r-consistent aud that S, (b)) = 0 with probability tending to one. For this

purpose we introduce the following additional conditions.

Condition 8 (i) There exisis some finite 0 < M < co sue the etgenvalues of B[V (ws,c)| are

ach interval IM 1 \/ﬂ or ¢

i J

contained in the com ; (3) the vector E'[6 (wy, )l = 0 if and only if
Cc = /6,’ {GZL/; /"\1 75 0.

\2‘1‘7714 < oo, I 5 My (w)™" 77‘ <00, B [supccp 16 (ws, €)

G |
kT

Condition 9 There ewisis somen > 0 such that B |

<«
~

oo, and B {supcec v (2, 3>||é'7]| < oo

Con

sence of a unique interior minimuinm
1 B of Andrews (1994) and is
of the critervion finzti

ntees the ¢

lon 8 is an identification condition that

of the Imiting criterion Tanction. Condition 9 correstonds to ASSYL

used 0 esstablish a stocnastic equicontinuity proper

Lemma 1 Under condiiions 4 - 9, b defined in (7] satisfies /(b — £) = O0,(1) and S, {b) = 0 with
probabiiity tending o .
Proof. See Apperciz B. =
Based on Lemma 1 the firss order condition for {7 ¢
P S NS N =L o N o —E o . /
0=20 () GO 0B~ g B CH O GE o) wp — L. ©

A second order Taylor expansion of (8; around £ ie terms of order

op(n™"). In Appendix B, it is shown thas

i 1 /71
Vi(E = B) = =@+ = [ I 9)

(See Definition 2 in Appendix B for definition of T, T, ,and T Iznarinv the oy term in {9},

and taking expectations, we obtain the “approximate mean” of 4/ (b — [}, We present the second order

bias of & in the nexs Tasorem.




Theorem 3 I[Under Conditions 4-¢

(10)

where
B[] =0,
T VR B AT Ty 7 g=1g] (p—1 —i
E ‘L}:ztlace(/& B \bi—=7 | — 2N AT E [ b A6y — trace (AT AL AT R :
and
. TR o
Far [‘I’i‘} = 8)\ A~ E On 16 A AL —4/\, A~ E q‘ A ”//q"k//: AT
—SA;A—lE[aiég;A TALATIA AN ATTE (85 AT
and

E[0%] = 4N A~
Proof. See Appenaix B. w

wia {10) exactly

Remark 1 For the poriicular case where ; = §;, i.2. wnen b is o CUE, the bias |

coineicdes with Newey cnd Smith’s {20 OJ

ator of the dynamic panel model. The GMM

We now apply taese general results to the GMM ¢

estimator daoprag caa Lo

understood to he a solution to Sne minimization problem

W

for c e
/ n i
AN ) 3
™o = |
Zi T Sy alin] rm i
Ty, 4 — 3, 1—1 -1

‘We now characterize the { ke dynamic panel model

using Tneorem 4. It ca

(11)

where




Proof. See Appendix C. m
In Table 2, we compare the actual performance of bgp s and the prediction of its bias based on

Theorem 4. Table 2 tabulates the actual bias of the estimator apprommquuq by 10000 Monte Carlo runs,

and compares it with the second order bias based on the formula (11). Tt is clear that thc second order

theory does a reasonably good job except when (J is close to the unit circ.e 9,115 7 s gmadl.

Theorem 4 suggests a natural way of eliminating the bias. Suppose that By, Sy, b3 are +/m-consistent
estimaicrs of B1, Do, Bs. Then it is easy to sce that

—~ _/7\ l . /S . /,\ o~ N PN

bpcy = boren — o { Bu+ Ba - B | (12)

er Dias Cquafl tozero. Define

v —1 ~;: ok
=7 Zz—‘ ezt sZitZsg and

Let 31782 and Bz be de

s,1{¢,8) in By, Bs and Hs.

satisfy the +/n-consistency requirement, and hence, tne estimator (12) will be first

order ec;.wi‘vaf_ellt to b@M a and will have zero second order bias. Becausc the summand

in the rumerator of Js is equal to zero for s

bpce = 0guins — = + Ba + Bs | {13)
A
wheve
1 1,
~ B = Tz=,
7
Second order asymptotic theory predicts appr that dgog v nlfl be relatively free of bias.
We examined whether such prediction is reasonabiy accurate in finite samp.c by 5000 Monse Carl

Table & swmmarizes tac properties of bgpge. We & t the second order theory is

-y accurate tnless § is close to one. It is tr scture that bpeog wowd have

a ressonable finite sampie bias property as long as

cse to ore. Such a conjecture is verified
in Table 3.

5 Long Difference Specification: Finite Iteration

In previous sections, we noted that even the second order asym

27 to be a good approximation

around 5 ~ 1. This phenomenon can be explained oy tne “weal amens” problem. See Staiger and

1

ingtrument problem can be alleviated

Stock (1997). Blundell and Bond (1998) argueci

by assuming stationarity on the initial observatior gis. Such condition may or may nct de

appropriate for particular applications. Frrtner, sts

; o turns out to ne a predominant
1999}, We there

r¢ Sura to some other method

source of information around § = 1 as noic

to overcome the weak instrurnent probis tesionarity assumption.

1

5The difference of Monte Carlo runs Lere induc
i-3.

s of b prng) across Tables

[@'8)




We argue that some of the difficulties of inference around the unit circie would be alleviated by taking a

long difference. To he specific, we focus on a single equation based on the Jong difference
2/, e 3\ -t
yir — yin = B {yir— — i) + {Gir — €i1) (14)

Tt is easy 50 ses that the initial observation gy would serve as a valid instrument. Using intuition as in

Hausman and Ta;ylor (1983) or Ahn and Schmidt (1995, we can sec that yir—1 — [yir—2, -+ .\ Yiz — By
would pe 7aid instruments as well.

5.1 Intuition

Tn Hahn-Hausman (HH) {1999} we found that the bias of 28LS (GMM) depends on 4 factors: “Explained”

iance between “he stochasiic disturbance of the

variance of the first stage reduced form equation, ¢

structural equation and the reduced form equation, the number of lnstrurcents, and sample size:

i {(number of instruments; x “covariance”,
n “Explained” variance of the first stage reduced form equation

Similarly, the Donald-Newey (DN) (1999) MSE formmu.
firs differences [FD) and long differences (LD) to see why LD does so much velter in our Monte-Carlo

2 depends on the same 4 ‘We now consider

S,

experiments.

Agsume that T = 4. The first difference set up is:
ya—ys=Fys —52, tea—es (15)
Tor the RES variabies 5 uses the instrument equation:
ys—ya=(B—1iz+ate

Now calculate the R2 for equation (15) using Aln-Scan [AS) moments under “idea. corditiors”

where vou know § in the sense that the nonlincar rest:’ restrictions: We would then

4
\e

use (ya, 41, yo, &+ €1, 0+ €2) as instruments. Asgsum * SyInno.s, dus not -

e

additional momens information, we can write
Yo=1T"77" <oy

and the first

I5 can be shown that the cos

'", ana the “expiained variance” in the

of 2513 is equal to

whick s equal to —19 for 5 = .9.

Number of Instruments —19 - 5 —19 .
: = 5 % 100 = —om e x 100 = =105
Sample Size & 100 0.9

We now turn to the LD setup:




- 2
Tt can be shown that the covariance between the first stage and secona stage errors is —f%52, and the

hss) £7

“explained variance” in the first stage is given by

. (26° —4p* —26° - 457 + /Lp — 28+ 6)o? + 50— 2 —2p
&

SN 2 3
%\42,6 — 3+ G /) g%~ 14 ,6
o 0_12 - - - - -
where ¢ = =% Therefore, the ratio that determines the bias 18 equa. 50
(=20 =3+ 08V —1+p5"

J /

(26° —4p* — 20° + 407 + 40 —~ 28° +6) o2+ [ — fH+2 - 26

which is equal “o

9 E70 e —~d4
T8 + oo e XD
g% 44,8306 x 102

for § = .9. Note that the maximum value thas this ratio can take In aosoiiie ter s is
—. 37408

which is much smaller than —19. We thercfore conclude that the long difcrence increases R* but decreases
the covariance. Further, the number of instruments is smaller in the .ong difference specification so we
should expect even smaller bias. Thus, all of the factors in tne HH equation, sxcept sampie size, calse

the LD estimator 5o nave smadler bias.

5.2 WMonte Carlo

For the long difference specification, we can use y; as well as the “resicluais” gir—s Gasr_a, « ooy Yiz— B

as valid instruments.® We may estimate [ pp ving 2 e equation (14) using

.0 25 instrument. We may then use m, 1 — 090G SYiT Dy« -« > Tid nstrument S0 tac
0 305 Y SLS P Y

iong difference rquauon (14) to estimate f. Cal the estimator tb,w = this procedure,

we can define bggbs,‘é,y bQSLS,O7 . Slmllalm we may first estimate @ by Arveliano and Bover, ana use

ke
&

(yio,ymgi — OO MM YT 2y« -+ Y2 — baM 1 Vit 1 as instrument to the long difference equation {14} to es-
/

>

-~

timate £, Call the estimator bagrs,1- By iferating thi

G i i, 4

B -
e can define bonsare, CanRd,3, -
N

Lﬂie‘ii/‘iSG, aay first estimate /6 by bL;_f\/jL. and 1.8¢ ) SIA ST =%, e s Y2 — ':)LJJ\/[Lyil) as

instrument to

ng difference equah()h (14 to est! . By iterating

this procedurs, wz can define bL M2, B ox of uhe long differ-
w = 100, & = 2.9 and

Tound

ence estimator weris quite well. We impiem

0?2 = ¢? = 1. Ow finding with 5000 monte carlo runs is

bl

that the iteration of the long difference estimator works quite

We compared performances of our estimator ‘v‘.rafith Blundell atozr, which use

additional information, i.c , 0B B4
with tne long differc timator ‘«;7;;*5;_." IAL,2, OnThiE,3. Lo exach definmition of Desi, 4., OBE4,

see Appendix E.
In our Monte Car

6%We acknowledg:
o I:: Table 7, we com

ith the second order theory developed in Appendix F.

ERV)




Carlo runs is contained in Table 5. In terms of bias, we find that Blundell and Bond’s estimators bB B3

and br> 54 have similar properties as the long dlffelence estlmator(s) although the former dominates the

latter in terms of variability. (We note, how that oB g1 and bB B2 are geriously biased. This indicates

—

that the choice of weight matrix matters in Implementing Blundell and Bond’s pl‘ocedu:re.‘w TTLis resudt is

not surprising necause the long difference estimrator does not use the information contained in she initial

condition. See Hahn (1999) for related discussion. We also wanted to examine the sensitivity of Biundell

and Bond’s estimator to misspecification, i.e., nonstationary distribution of ;. For this situation the

7

sensitivity, we considered the cases

estimaior tH ne mconslstent In order to asse

where vy ~ | 355 } Our Monte Carlo resuits e 5000 runs are contained in Table 6, which
N J e

containg resiuts for Sz = .5 and Sp = 0. We fina $aab the long difference estimator is quite robust,

whereas bz zs and dppe become quite biased as predicted by the first order theory. (We note that bppy

and bppe arc less sensitive 1o misspecification. Sucn robustness consideration suggests that choice of

weight matrix is not straightforward in implementing Blundell a,nd Bond’s nrocedure.) We conclude that

the long difference estimator works quite weil even compared to Blundell and Bond’s (1998) estimator.®

6 Near Unit Root Approximation
Our Monte Carle simulation results summarized in Tanles 7, 2, and 3 indicate that the praviousiy dis-

cussed approximations and the bias corrections that ars based on them do not work wel near the unit

circie. This is because the identifcation of the model becomes “weal” near the v See Blundell

and Bond (1998}, who related the problem to the analysis by Stalger and Stocz (1097, In this Section,

we formally culop‘; approximasions local to the points ir the param pace taal are not identified. To

be specific, we consider model (1) for T fixed and = We analyze

tion. We anal GMM estimators

the blas of the associated wealk instrument Hmit distriou

Y
that exploit Ahn and Schmidi’s (1997) moment corcitions and show ﬂiat’; 2, strict subseh of the full set of

moment restrictions should be used in estimation iz order 5o mini

of moment resirictions leads to the inference pased ¢

Following Ahn and Schmidt we exploit the momasrt cor

Eluyio]l = oanl

e Wikt

with 1 =[1, ..., 1] a vector of dimension 7" and u; = |

i

maore COH’.‘LPELCE;:')T as

yech B [uul]

a F i)

.

RS

/5 EN
1 SV

Oy
i
|
Q

ator which extracts

where the redundant moment conditions have been edminated by use of the ve

the upper diagonal elements from a symmetric matrix. Representation \L! ) 1"‘28‘1148 1?’3 ciear that the vector

b e RTITHL/2+T ig contained in a 3 dimensional suhspace which is

G=T(T+1)/2+ T — 3 restrictions immposed on 5. Thie statement is ¢ 5 to ’\m and Schmidd’s

(1997) analysis of the number of mmoment conditions.

SWe did try to conpare the sensitivity of thic two mo

- (2000) report ¢

numerical problem. Nuwmnerical problem sccins to e ar

problems with CURE.




GMM estimators are obtained from the moment conditions by elirinating the unknown parameters

o2,0% and ¢ay,. The set of all GMM estimators leading to consistent estimates of 8 can therefore be
ed oy a (I'(T+1)/2-T) x & mas

comp.ement of b, This matrix A satisfies

descril 2 A which cortains ail the vectors spanning the orthogonal

ci that

L Tt=1 8% =2,..,T-1;k=2,..,T
Az = [Usg — i1, o, ti7 — g7 1) . 1t becomes transparexs that any other representation of the

moment conditions can be obtained by applying & corresponding nonsingular linear Operator C o the

matriz A. I can be checked that there exists a nonsingtiar masrix C such that o AC = 0 is identical to
the moment conditions (4a)}-{4¢c; in Ahn and Schmids {1997)
We investigate the properties of {infeasible) GMM :S‘ti:'“la‘tors based on
= - \

Eluplus (8)] =0, ElugAuy (8)] =0

obtained by setting Avy: (5) = Ay — ,5A9¢5_1 Here, we assume that tae instruments ug are observable.
GHRTTAN Also let gin () =

VIR

Tet g;1 (B) denote a column vector consisting

N R s ; s - . . . _

[yio/_\u,: (£)). Finally, &5 g, (L) = n ,—8/2 3 the optima. welght matrix £, =

E i (B) 9 (6,) J The infeasible GMM estimator of a possin.y transformed set of moment conditions
04 gn () snen soives

Lagre = argming, (L) 2120 Q,C0 CVgn () {17;

— . . . — . /",\ ~i7 ~i . -
where C iz a G x o~ matrix for 1 < » < @ suck 270 = I, and ranic ( e Puv 0y > 1 W

)7 o denote the Moore-Penrose inverse. "Wz thus allow the use of a singular weight mats
=— 09 (0)/ 08, fip =

feasible 25LS estimator can be written as

use (C

Choosing ~ less than G allows to sxciude certain = t conditions. Let f

S a0 £ — . —3/2 oo Vo
B (226, and f, =n 8250 {_ Zl,dw] . The

= (A0 E2O O

roptotics. We make the foilowing

‘We are now aualyzing tne behavior of Byg70—0,, under .o

additional assum;

Alsonote that Ay, = fz :

Under the gencrating mechanism descri

lished.

9Kruiniger (2000) consicer




Lemma 2 Assume §,, = exp(-c/n)} for some ¢ > 0. For T fived anc s n — co

A
T AN

and
where|&,, ~ N(0,5) with £ = 29 = 6 Mo, where

GLU:
§=2e’s
o2
I | oo é 2 =1 J ‘
| |
. . . i i . -
M = I, My =} !
A \ l |
U 4 ! ‘ — ;
. | :
—1l I — £

and Yo = 5. We wiso have

[C’é, C"{ l such that Cr""

Corollary 1 Lei fogr.g — By be given by (18). If Condition 10 is

NP

15 limiting distribution for the standard w

(19}, is basea on normal vectors that have zero meax.

the fixed effcct in the initial condition, scaled U

for the process y;. Inspection of the proof snows tha viration pars

10 An siternative way to paran

e 3
a; ~ N (0, CC_> and ;9 ~ N 1 o, T

I
—
-
L
Q
8]
~.
o
T
@

where g

the statio



‘ limit distribution is dominated by a stochastic component related to the fixed effect. This situation seems

‘ to he similar to time series models where deterministic trends can dominate the asyraptotic distribution.

| Based on Corollary 1, we define the following class of 2SLS cstimators for the dynamic panel model.
‘ The class contains estimators that only usc 2 =onredundant set of momen’ conditions involving the initial

conditions vig.

Definition 1 Let f55; 5 be defined as f5g7,5 = argming gan (BY 1 1 i Qu\ i Clgan (C), where go o, (,C} =
G, € is o symmelric posz’tive definite (T — 1) x (T — 1) mairiz o consi

T-1

iz of full column rank r1 < T — 1 such that G107 = I

Next we Surm

to the analysis of the asymptotic bias for tne estimat

model. Since the limis only depends on zerc mean normal random vecso
Smith (1995

’ ~ 2 + . . . . o
Theorem 5 iLei X* 104, 0] be the szztmg distribution of

/

_ , . N1
3 10. Let D={D+ D" /2, where D = [ {0204 CrMiC.
1 AN 7/ N J. 1

Y

‘ where vy = rank {C1), (a}, is the Pochammer order invari-

| ani polynomial defined by Davis (1980) and The mean

B {X (C’l,Q)J exists for vy > 1.

‘ Proof. See Appendizx D. =

‘ The Theorem shows that the bias of Bg, ¢ both depends on the choice of U5 and the %
Q). Note fore examplc that & [X(Cy, Ip-1)] = tr Iy

T

\ The problem of minimizing the bias by choosing opiimal matrices Oy and {1 does

ey

‘ an aralytical somtion bub could in principle be carrica oub numerically for a given number of !

‘ T. Tor our purpose we are not interested in such an sxact minimum. We show however

‘ particular choices of §1 where O = Tr_y or O = Xoy and su )\ﬂquen’; rminimization over 7 @

- out that toe optimum is the same for

‘ soiution for the bias minirnal estimator can be found. It tv

be rasesonably well approximated by a

weight matrices. The “heorem also shows that the optimur:

i rocedure tnat s very casy to implement.
‘ J

‘ with D = (D +D") /2,

as a function of the weight matr

for large 7" the minim:

|
i cstimator.




= L . 1
Theorem 6 Let X (L/‘ , P\ be as defined in Definition 1. Let D = (D -- I} /2 where D = (Cf_QCl | C1M{C.

N A
Then
Moreover,
s 5 g T [ |
E {X (O, _Z’j_:/} =T L’/; 1 |

Let Cf = argming, |E [7"(011,.?7“—1)][ subject to CiCq = 1,7 * = p. where p; s the !

/2. As T — oo
n jor Ch = 1/‘:]_‘ Zl_}*/‘

etgenvector corresponding to the smallest eigenvaiv
walue ofD, minl; — 0. Let L =[1,...,1] be T — 1 wecior.

as T — co.

-
|

Theorem & shows that the estimator that minimizes the bias is based only on a single momens
condition which is a linear combination of the moment conditions involving 4,0 a8 instrument where the
weights are the elements of the eigenvector g, corresponding to the smallest ewenvalue of (M- + 1) /2.

This eigenvalue can be easily computed for any giver 7. The Theorem aiso snows that at least for large

T a heuristic method wnich puts equal weig wioment conditions leads to essentially the same

bias reduction as the optimal procedure. The Le iic procedure twrns out be equal so the moment

condition B [{wir — w43 ) v40] which can be motivated &y taking "long differences” of the model equation

- £ -1 - g Le. by considering

e

N
ar
&

It can also be shown thas a 2SLS estimator that uses = g Yo remaing olased

even as I — co. ;

7 Long Difference Specification: Infinite Iteration 5

We found that the iteration of the long difference es woil. In the (24 1)-th iberation, !

our iterated estimator estimates the model

YT T Y41

o~ N ~
— EoyYir—2}, where [y s
’ - / o -
operties of an esti

based on 25LS using instruments z; ([J’ ,;)

We

based on an infinite iteration, and see if it improves oia

the estimator obtained in the previous 1Lerau101’

converges'!, the estimator is 2 fixed point to the minirmiz

M There is no a priori r . poing. To show I

prove that the iterations arc & coniraction mapping.



where &; (00 = 2 () (5sr — v ) — b (wer—1 — wi0)). Call the minimizer the infinitely iterated 2SLS and

denote it fr9c7 5. Another estimator which resembles 8144, ¢ is CUE, which solves

iy

‘N NN N \

= y VNN N e i SN A
Bovp = argmin L (0) aloiﬂlL ( ‘> &) ) Y (BB J) { /T & (b
° it 7 \i=1 . i ;

Their acst

. performance approximated by 5000 Mounte Carlo runs alorz wisa she biases predicted by

second orae

eory in Theorem 4 are summarized in Tables 8 and 9. We find $nat the long difference
based estimators have quite reasonable finite sample properties even when 5 is close bo 1. Similar to the
finite iteration in the previous section, the second order theory ssem o bo next o irrelevant for £ close
to 1.

We compared performances of our cstimators =

Ann ard Schmids’s {1995) estimator as well as

In

Blundell and Bond’s {1998) estimator. Both estin: are acfined in two-step GMM procedu
{ P I

order v make a accurate comparison with our lorg diference strategy, for which there is no ambisuity

of welight matrix, we decided o apply the co vis updating estimator to thelr moment restrictions.

We haa dgifficulty of finding giobal minimura for Ahn and Schonidt’s (1095) moment restrictions. We
therefore used Rothenberg type two step itcration, which would have the same second order property as

the CUE itself. (See Appendix I.) Again, in order to make a accurate comparison, we applied the two

long difference and Blundell and Bond (1998} as well. We call these estimasors

step iteration idea to o1

-~

Beovme,as: Povps,ros 804 foyme pp- We set =100 and 1" = 5. Again tne number of monte carlo runs

was set equal to 5000. Our resuits are reporsed in Tables 10 2 Z. We can sce that the long differsr

nator. We do not know why G50 1o
CUE,LD

estimator has a comparabie p*"cpemy to Ahn and Schunidt’s estin

o~

hag such a large median bias at £ = .95 whersas Oopyg 1 p does not ha

8 Conclusion

Iaslons

We have investigated the bias of the dynamic panel effects estimators usi

12 second order appro:
and Morte Carlo simuiations. The sccond order approximations confirm <he presence of significan’ Sias

—

as the narameter becomes large, as has previously

been found in Monte Car.o investigations. Use of the

second crder asymptoiics to define a second order tnbiased estimator usin

maticrs, 2w wnfortunately does not solve tne o

the lorng difference estimator of Grili Uauo experime

this estimmator works quite well, removing n values of the paramet

Indeed, the iong differences estimator does co " second order asymptotics

would predict. Thus, we consider ailternative asym pL: : circle approximasion.

asymptotics indicate that the previously proposed cat! ic fixed effects problem suffer

from iarger biases. The calcwiations a.so aemons nce estimator shoula work I

eliminating the finite sampie s previously found. ’ npiotics explain our Monte

~

Carlo finding of the excellent performance of the lon




Technical Appendix

A Technical Details for Section 3

Lemma 3

Proof. We have

] denoctes the conditional expectation given 2. Because B [¢f] = 0, Ey

sween e and v -, which does not depend on 7 due to joint normality.

covariarce o

sectional inzenendence, we have

from which the conclusion foillows. M

Lemma 4

where v,

2l

34y in

Proof. Follows by modifying the developments from (AZ3) to

Alvarez and Arellano (1998},

Lemma 5 Suppose ingi s < i. We have

‘ EA I
/’M_r—rww L -G
P R _,_7 - v N i J

Elves] Y T I Z N I

YL Lol L Pj- L

e . |
_:_ (v‘:" | b z S - { (l_—l — ) =
hd ™ A NZ = - v
VT —t+:i(T—0" (-0




(L—f -5 17

T : o BT
B e > Sn i
— i+ 1T —s){(T—t)(1-5) | =g

We have
Ti T Y-t
Yie = Qi+ Oyie—1 + €i
f rm - N
My = . [ T A i
g, T T e SR
/

and hence

, .
T Y R N i L
. / 970
\’ "o + _}_ 1 L

[

y 7

We now comptte & o — 2 ;). It can be shown that

where 7 is a i-dimensioan! corwmn vector of oncs, and ‘

e - i—2
= R
= ——




Therefore, the conditional variance is given by

oL — T

=

2 ‘Zel €€/_|_(1—16> 2l 9 i
o !

we obtain

- 2
. i J_ — )Y .
7er 4 ( nm o3
and hence,
o -

Now, it can be shown thatt?

|

\

gi ~—1 g l "/9 L SN/ \Z\v 3

27 ”:5:5 k_;(]_ﬁ)_l_ L, /6/ i ‘i

from which we obtain
T — o] o o T

i L\ufu — - N i

‘We now characterize & |t Using (20), and the ‘ndeperderce

we can see that

With (21), we obtain she first conciusion.
)

As for Flvier

~ 4t

], we note

128ce Amemiya (1985, p. 164), for example.

19




Combining with (20), we obtain

the second conciusion.

and P [vieh] s <, we nose that

!

| T (126
Fliet] = —. \ /5
[viel] T s ri(T-SA=F

" el . 7 AN A
V T'— 51 T —s) (T —53{1—-£)
and
JH =5+ L0
/7 N /- N
(T—s)(I' =t {1=F,
]
Lemma 6
T - 2
L L U 2 A A
=N ——E ] =l
n =i - =

A

Sum of the first two terms on the right can be bounded above oy

. -

and the third term can He bounded above in

where ' is a generic constant. Therefore, we have




It can be shown that
i
|
|

2 T
— gz \ L —~
P —— =0(og?), N e =0(1) |
L ~ 2 Ta (e Y - Lt A :
L e Ul 7=

Using tae assumption that T'/n = O (1), we obtain the desived conclusion.

-

Lemmea 7

tant. Conciusion easiy follows

5

o
o

Lemma 8

refore, we

T-1 . jiml .
SR SN
' = —F VA (T 2}

=1 We=1 X

But because

-

we can bouna

WT Lis<t 7t

Because

we nave

Lemma 9




Proof. Note that

Here, the second equality is based on Lemma 4. Lemmas 6, 7, an
tevms on the far right are all of order o(1). m

Lemma 10

. g N

— N { 0, —

N L

Proof. Follows easily by
(1998). m

roof of Theoremn 2 in Alvarez and Avellano

Lemmea 11

Proof. First, note that z, Mzl = 2 sherefore have

By conditioning, it ca

Therefore,

Modifying tne proof of Lemma 6, we can esiablish

‘We now show that

We have

,
¢

1 K
Var [ LN
i ( ni A —
\ 4




Modilying 1 using normality, we

caw show 1

Using (20}, we can show that
T % T—s | 1 g g
Elugvi] = / : [ & 2 o
wavid =\ VT s (T T e Ry

Adopting tLc same argument zs n the proofs for Lemmas 6 - 8, we can skow

B  Technical Details for Section 4
Definition 2

=3N AT -5

(=2 \A. )\17

Proof of Lerama 1. By Lemma 2 (a) ar

7 1t follows that sup.co |Dn ( ) Q ()] = o,(1}, =

open interval of length e cens at #. By Coanditicn

for all € > 0. It then follows from standara arguments that & —
N

Pri(8,(6y£0) <Pr(be a/J\ =1 -Prbcmt ) <L

\

denotes the boundary o

nD

(WS




Using simiiar arguments as in Pakes and Pollard (1989) we write

IA

—1 — — i
- ) IS ¢ 1 ISR YR ’/- N 1~ 75 o 20 — ‘7‘\_ i 7 oY
< ]g&o) GO gy =2y Z0AD) —gf)y FE gk;)%
g =Ty o
,;ﬂ D) ) N K\//\!

s G e a ()]

! ¥ -
i ,\/ 1 ¥ | i 7 N 5 ~ 0 TN L ~ . - 5 PR PP ~ -
where |9 (b} G (b) " g{ u)i < gBYGB) Ty (5)1 = 5 {n7") by the definition of & and Condition 9. We
.
have G ) 7 tency of & and the wniform law of large nwmbers, from which we ohbain

g(B) G T g(B) =0, w7 . We also have

Therefore, we obtain

AN <
(—-«’ L i S~
N7

P ; —1 . I N oy e —
2 BV GO MO | oo s B = A FE T ()
=00 nThy

-\

The terms G(8) 7, and A (6)7 are O,(1) by ¢ s law of large nuim
Alsc

Theorers 1 and 2 in Andrews (1994) and Conditions

tne terms g (b) and A{d) are o, (1) by consist

% of ia‘rgek nuirbers.

=28 —g(B) =0y T

11

From & standard CLT and consistency of & it follo

and g (B) G (®) >—C (rn=/%). These resuit SJC
06 < ‘U@- 1-[\(@-}—1”\;;45)5&:49‘.
G MIABI 0, (A

o corcade ©
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b= =0, (?1*1/2). n

Proof of Theorem 3. Note that we have

and

ST e B L S
GO =G - GGG (b — B

4
R £ Y et W Sl b i B B B et W e o \
4 == 2GT G GGG — GGG LT+ '
A 1 i 2 J ~J, )
4%
(Slh — AV 2 o ! \
. o=} Oy | -
IAZEERN M), T Y

6 and 7 a

and

BN AN T
21 i 0

[ p—

P

Ly

w= oG o 2o 26TGRGTICGT - 2 Lo+
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.1 1 , ,
fe=50G T GG g+ 50 (2G7'G1GT GG = G GG

i
!
;

<71C'MLg

pleatleNentleNeatiiicatlc Neasly

—L =1 B e A |
GG g+ 91 G GRE

GGG — GG
- g’:v— ﬂrfICT{_Lf/:r(ltT CJ_(,T og— g G
-+ ,Q;G’_"?gf:{_ g1 gG~ ("1(3{_1@1@_*:

We may therefors 1

Next note that P(|S, (&) > P(S, (5)] > ¢/n7t) for any € > 0 pocavse of Leowma 1. Thus

7

Sy (D) = op(n~") and we can subsume this error into the op(n™") ¢

Lemmas 12, 13, and 14 below, we may rewrite he first order condition {

1

v

or

based o v

[43520
(40

N
D
(&3

o

and
E (87 = 4N AT E [6:6;, AT, (23)
in the desirea conclusion. M
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2 Conditions 6 and 7

Lemma 12
b 3 7oa—1 I A— —
fip = 5 MAT e = MATIALAT N -0, (1))
Au = MNATTAIAT A o, (1)
Proof. Follows from pimg=0. »

Lemma 13 Under Conaiitons 6 and 7

2h1 —hg =T+

Proot. Because

a1l

~

ggg_lg]_ = (/_ -+ (§1 — ;\1)); ( AT — AT (G — A) ATH -~ s ’
kY

= .;xi,l\,\_;',:“i +2 (g1 — A= > AT A — /1\1]&_1 (G — A J‘\L._i.}\'l + o, (7::
’ 4 /7

we obtain

u
AT +2{gr = A AT A = e AT = AAT D oy )
Similarly, we obtain.
hs =20 AT ALAT o
The conclusion follows. m
Lemma 14 Under Conditions § and 7
N
o= 7 =1 ey -
2l g ge Tiane g i
Proof. We have
s s i NN
] . B Joioa T i~ i §
g1GT g =g —a) LA = AT M AT oy = g
N N ! s

siop —1 ’ SN A —D SN —L e AN A& -
= M\ T+ G — /\1) A g /‘1,/& e A*,/‘ I Vo S b

and

;o—
Tt

TOioLowE. M

from which the concizas

B2
-J




C Proof of Theorem 4

The second order hias is computed using Themem 4. Because the “weight matrix” here does not invo ve
the parameter of interest, we have A- = 0, which renders the third, sixth, and last terms in Theorem
4 equal to zero. Also, because the moment restriction is linear in the parameter of interest, we asve

>, =0 ,v“md"_ renders the seventh and eight termes in Theorem 4 equal to zero. Furthermore, because

9

—1

= 0 under conditional tne numerator in tne sscond

gk ~"L ould o

(3

— S A g

Lait=1

K ~7/J"-§ -

MNATE
and therefore, the second term should be equ

7

and

NoATE

D Proofs for Section 6
Proof of Lemma 2. Note that

Elluglhyis—|] <

; : Lo A (1Y), T
By independence of w;:Ayss—1 across 2, 16 o, (1}, By
7 : Tioin o —3/2 % L LW
the same reasoning, we obtair n=% /_”L.‘ g ce il W

b

Q
therefore obtain n=2/2% Y iy Ji1 = op
Next we consider n5/% Sy fao andn”

BlAyzyi0 =

28




and

=
[ —
r\
P>
2
Pon
3
k
O

8 7 il
such that Var (m (rom the mmomen’ conditions

that & [Q’Z 951 =0 and

. VoA
e AL/

The joint limiting distribution of 5/ . a trian-

gular array CLT. By previous a

with o= 02 /2 + O(n™*) where ¢ is the T — 1 dimensiz=a - 0 elements 1. Then

where
[« i
- __ | Zlin I
S — L |
Lo | ,
LYy yi ‘J ;
By previous calculations we nave found the diagorar eemerie of ¥ 5o and .
202052 o - - - i
—z=n*. The off-ciagona: e:ements of 311771 are founa to be ;
i e N, s"
21 1.2 1
L—XlrzLAyzs Yiol = 1y }
i i
- i
%
3
!
|
,
|
E
i
which is of lower order of magnitude w |

The off-diagonal clemenis of Tigs ,, ave

Ak

. [ —&°
Py

B AJ“AEngdJ =

For 249,,, we consider




It then follows that for £ € RTT+1/2T-6 gyeh that 00 = 1 n=3/2 57 g5 1/2 U —Ef;2,0i2(80) ]

Losi=1

N (0, 1) by the Lindeberg-Feller CLT for triangular arrays. It then follows from a stralghtforward apphca~

ol Jhr Cramer- Wolc sheorem and the continuous mapping theorem thab n=5/2 Py [ Ji2,0:12(Bq) \’] <

=1
~ N {0, 30. Note &

AT VB [fio] = u\f;“l/z | and thus does not

| where [;’

Finally wote that B [g:;,15.] = O (1). Also aote that
Var (Aus(fy)yio) = 2020% (1 6,) 7
The off-diagonal elements of & [ QZQ] are optained from
J/‘ —Zo? (1 - B, +0(n) i=: 5 —

E I_S.u%.\w S;J =

It therefore follows that

|
Proof of Theorem 5. Note tnat we
can take [ = +/6I,,. Define LWy 1"u J # LW Lz, Next use

the fact that £ [C’igy CHE, { = F'C] z 1C4) 7 = CLM|Cy, where the
second equality is based on (Cf%11Cy) ™% = 571 Using a conditiomng argument it then follows that

Note that 27Dz = 2Dz =

definite. The result then foliows from Smit

Also, W is symmetric positivs

Proof of Theorem 6. We first anaiyzc &
5t (C‘{ﬂ/fg@j)_l such that

in thie case W= (O e Ch) 7" =

and 5 tr f ) / 2tr W v:"i' (
Gl bL\/CC ors of (O] MsCy) ™" with corresn
T =1AT and 2 =

na Appendiy £

- M) Ch =

Let I'1 be an or

of mgcnwh cs

or
-

I

.

@

¢

ewemont of A-. Then it fcllows from

webric matrices Vi, s




and
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(V) = B d, (Y3)
\2/%

A4 (VLY —
Lol \YVZ) -

LZO (Y’)) = 1.
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Since all elements R~1)\n in 7\_1 /Xy satisfy 0 < j\ﬁl

’

implying that Cf ( L — A An } > 0, which holds with equality only

Algo note that if Y:,Yﬁ are dlagoudl matrices and Yy symme

fr T DTy, — 2

S

1 . i : " T i
= =5 NATCI RS D = A_/‘Ll\
1 - -

= —J

This shows that all the terms tr ( DT { L : b | Loy — A
'\ \ /) N /

- - ~1,% ;T - T—1
therefore ali the Serms O 1 " i (FIDF; L — A

For & =0, we have

anc (1), (%/ / (%). = 1/rq. This shows that |F
o d — 1} Then

ena all /€71
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where min i, is the smailest eiger
(1988, Theorem 10, p. 209).
minl;. Then I, — X" As

min,; /2. Inequality (28)

Next consider B[X{




It can be checked easily that A4y is negative definite symmetric. We can Sherc vinimize — tr (G ML O )
2 Y 14V oy

AN

It 1z now useful to cho

ose an orthocronal matrix R with j-th row p. such tha: B'F = RR = I and

8
agonal matrix of eigenvalues of —M; = 57 Then it follows that

ua . Nextt rote that all the cigenvaiues of 16T ZEFC OF one

The minimum of —4r K(JlM & l, is then founc by choosing vy = 1 and

= J except for the eigenvector p; corresponding o mini;. To shuw Saab tr rD/O" ) 8
also minimized for v- = 1 and Cy = p,, where tr 1D /Tli = min:;, consider augmenting 0y A column
vector © such that 'z = 1 aﬂc’ piz=0. Then C1Cy = Iy, ro = 2 and tr LML Cy = I +

- ~ N

= 1. Since {; > i; we can bound tr ((V M Cy) =

tr (D/2) > I;. This argument can be repeated to more than cre orthogonal additions =z. It now fol-

By Parseval’s equality >

| /= N e o " . - N .

lows that £ [X (Cy, Ir—:)] = tr (D/r1) is minimized for vy = 1 and ' = p;, where 2, is the eigenvector
corresponding to the sma ML,SJ eigenvalue.
=1 such that x

Next note that from s < —x' Mha < mec

/() =T -1

- ; ; W1 e - . ) .
for 1 =[1,...,1] which saows that the sma_icst eigenvalue is =

function of the number of moment conditions.
The last part of the result foliows from 144 1/(1"1) —0. m

E  Blundell and Bond’s (1998) Estimator and Weight Matrix

Bludell and Bond (1998 sng:

where

—
e

Il

ey
-

They suggest a GMM cstimation:
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We examine properties of Blundell and Bond’s moment restriction for [ =

2ity. We consider four |

metnods of computing A, whaica in principle is a consistent estimator of 7 [g; {/

T M

This gives 1s a GMM estimator that minimizes (Y5, ¢ () AT5 (500, a: (5)). We call it bge-

We can compute

]

and oot g GML estima

. We call it ,gm

5. We can computs

where
2 1,0 g Y 0
0 e ;
ELASRE A EERRS
L=
L J 0 /-ﬂyg';vm;T—; ;

A

and obtain a G/ estimator that minimizes

N

\\/C LL(L]. lu U7

is one of the estimators considered by Blunde..

Wionte Carlo.

4. We can comput

i

A estimator that minix

oI the estimators con

F  Second Order Theory for Finitelyv Iterated Long Difference

Estimator

We examine second order oias of finitely ite




applied to tre single equation
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: is the “proper”
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and has mean zero, and O, = O, (1). is equal to the second

where f; is i.1

id.
order bias of § under our asswmnption (31). If g in ( distributed given z;, then the

second order bias of b is equal to »;— times

/\ A~ 1E [fzw EZJ

where A =I5 [za], b = B2z, ¢ = Flwa), A= F w2

Using {32), we can cnarvacterize the second order bias of iter

VRl

equation using a LIV |

ad to the iong difference

estimator as the initial estimator. For urpose, we need to nawve the

second order bias of toe LIML like estimator. In Appendix &, we presens a second order |

tmator. I fact, based on 500C runs, we found in our Worse Carlo experimenis thab the

~,» and brrarzo are smaller tnan pr craer theorvy. In Ta

= the second orde:

e ackual performance of the long difference b

juv)

S0Ugn

symptotic variance. ¢

It is sometimes of nterest 5o construct a
a consistent estimabor of ke

such exercise may appear to be reiated oniy *

asymptotic variance could be usefu. in practice f lcnce interval as weil: Fix

bootstrap as considered by Hali and Horowisz (1996} ent estimator for secona order

T

refinement. In Appendix H, we present a first orden

well as a consistent estimator
for the agymptotic variance.

o~

;. We have

Proof of (32). We first nresent an expansion for 2818




Write

We Call Lerive taay

and




Here, ¢ and A are defined in Theorem

32. Using arguments similar to the derivation of (27

7), we obtain ‘

and
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and

‘/7'”6'1— ;\\] A
(24 Ay

Losi=1

AMNA—1

T ke3 b

- ﬁ Zi'——l Z;E5 )
NATIN

NA-L)
s = N

) NATEAMT (5

o

The first two terms on the right side of (34
g .

standard firsi order asymptotics of the plug

estimator, which estabiishes Lemma 15, Ol The third Serm -

have mean equal to zero.

is the standard sccona order expansion !

= 0, ie., wnen the proper ‘nebrument is mown




sxachiy. Therefore, under conditional symmetry of g;, it can be shown tl

) K—-2)o,.
Bl = E 2o (35)

NA-IN )

LR I e =
A3 voirc w F

9

is the correction to the second order expansion “c az

se tae plug-in nature

3% . 15 1s not dificult to see shat

T[Bg] = —
Rl ,’Z‘,’C@']' A_lg _ (p"/A_IE Llcz
) NA=IN

(36)

Using (34, (35}, and (36), we can obtain the desirec n

G Second Order Bias of b;5,7,

Our by 7y modifies Arcliano zna Bover’s est
420
SR

where

\ 57 Lt

Ky = min
[+

‘We make the second order expansion of /7 (8 — 5.

equation model.'?

G.1 Characterization of Second Order Bias of LLIML

Consider a simple simuitancous equations maodel

coder anaiysis of L
re found in t:
ments: They all assume { the iustrom 2 tastic. Our purp [ order analysis,

which is more natural in modcel coi
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and exvarive LIML b tha

WLATE

or

where

We now expand G, (£, =35p~, anc

First,

3, bhe I

s i w0) (3

1
e

(e 9Ga(B) gna O

L 9Ga ()

ey 7 -
0=0Gn{f) - ERAY

note that

Gr (£)

N
(M)
(03]
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where A = £

]

(A —
Gy (5 =

where

and

where




and

(4

where

5\
¥

Combining (38}, (39}, (40, and {41), we obtain

a mean equal to zero. Therefore, under sym: . “he second order bias

ra 7 r - N
Ly J i \II Lo

- ( —l 5 PE - 50 =
ln i\ T L2 s

which Is quaiitativer < the same form as Rothenberg’s mean.

+~.2 Higher Order Analysis of the “Eigenvalue”

Let

wa can write

ad T, Jppy .
. Py — gy
. Y ¥
. /nl’ e 2 /’ q7

' Pr — re'z

the usual expression.

Note that




The rurmerator and the denominator may e rewritten as

and

G.3  Application to Dynamic Panel Model

We now 2 5 18, and make a second crder analysis of the right side of (37). First, nots

thas

and




It therefore follows that

*:‘C'p L .

Therefore, under symrosth
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L A R AP R 3 N 1
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H First Order Asymptotic Theory for Finitely Tterated Long

Difference Estimator
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Proof. See Appendix . m

Lumfe 15 can be used to establish the infiuence function of iterated 2SLS estimators by ras Ly

applied to the long difference. We first n

at the influence function or -

- is given by

L.

A

W, and Ay = Fzpzl,

Vo G =Dy e

Using Lemma 15

,5e1) - T'nig is because we use the instrument of the form:

again, we can see that the influence funchion of 5o i

o note that y; = wr

8. By Lemra 15,

X /\*1

Likewise, we can see
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Using (42) - (45), we ca

v (\bLIML,Z -

estimators of A, A,

A e
%‘VG
/7

T A JJ-_

(:

P
o~

and (g. Likewise, ict Ay,
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where 8 is any /m-cons:
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I  Approximation of CUE

We examine an easicr taod of calculating an estima’o:
crder adapting Rothenverg’s (1984) argument, who was co
F MLE. We basically a

Sorm solves

0 CUB up 5o &

rized version
nias remsoval. The CUE

erties of line
rgue that two Newton 1

k)

min L {¢) = ming (=) Z {27 g(c},
c
where
1
Sle) = L
= ANT) T

Let & denote the minimizer, and let L; iterated version of CUE. Supposs that
we have a «/n-consister’ cstimalor og.

method. Note that we

a 27 the usual GV a2

wrould have og — ¢

for any . /n—consistent estimator & [This ¢

o Tfor most estimators., Lot




It follows that

We can simii

This implies that

~ TN

5

~ding avound boy g, and noting that Ly (boyg) = 0, we can obtain

show that

by nas vers

J

V1 {ba — oy

7 simmilar propertics a

On ) coincide with those of ooy =.
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