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Abstract: It is well known that sunspot equﬂi’bria may arise under an interest
operating procedure in which the central bank varies the nominal rate with
movements in future inflation (a forward-looking Taylor rule). This paper
denmnshateb that these sunspot equilibria may be learnable in the sense of E-
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i{.  Introduction.

The celebrated Taylor (1993) posits that central bank behavior can be described
by a fairly simpie rule linking nominal rate movements to movements in inflation and
output. This seminal paper has spawned a large literature concerned with issues of
stability: under what situations can a Taylor-rule formulation of monetary policy create
real indeterminacy and thus sunspot' fluctuations in the model economy? See for
example, Benhabib, Schmitt-Grohe and Uribe (1999), Bernanke and Woodford (1997),
Carlstrom and Fuerst (2001a,2001b,2000a), Clarida, Gali and Gertler (2000), and Kerr
and King (1996). As forcefully argued by Evans and Honkapohja (2001), sunspot
equilibria are compelling only if they are not “fragile” to reasonable assumptidns about
“learning”. We follow Evans and Honkapohja (2001), and interpret “learning”™ as E-
stability, so that an equilibrium is “fragile” if it is not E-stable. The issue raised in this
paper is whether the sunspot equilibria induced by some Taylor-rules are E-stable.””

A robust result of the papers on indeterminacy is that sunspots are particularly
likely in cases in which the central bank responds to forecasted inflation. We will thus
focus on Taylor rules in which the central bank responds to forecasted inflation.
Honkapohja and Mitra (2001) analyze the basic monetarv model considered here, and

conclude that the sunspot equilibria arising from a forward-looking monetary policy are

' The term “sunspot” is in one sense misleading since these shocks are accommodated by monetary policy,
But we use the term since the ceniral bank introduces real indeterminacy by responding to forecasis which
can be driven by sunspots.

* B-stability typically implies that least-squares learning converges to the rational expectations equilibrium,
although there are some technical issues in the case of a continuum of equilibria (as is the case with the
sunspot equilibria examined below). See Evans and Honkapohja (2001) for a detailed discussion.

? Woodford (1990) was the first to demonsirate the learnability of stationary sunspot equilibyia in an
overiapping generations model.




not E-stable.” They show that the only equilibria that are E-stable are the minimum state
vector (msv) solutions where inflation ’depends only on fundamental shocks. McCallum
(2001) concludes from this that only the msv solution is empirically relevant.

In this paper we consider two variants of the analysis in Honkapohja and Mitra
(2001) and demonstrate the existence of E-stable sunspot equilibria. First, we consider a
different timing scenario. A microfoundation of the model analyzed by Honkapohja and
Mitra is that money balances at the end of goods market trading is what aids in
transactions. Carlstrom and Fuerst (2001) refer to this as “cash-when-I'm-done” (CWID)
timing. Inamodel with CWID timing Honkapohja and Mitra demonstrate that sunspot
equilibria are not E-stabie. But CWID is a peculiar timing convention. In conirast,
suppose that cash balances held in advance of goods irading are the balances that aid in
transactions, what Carlstrom and Fuerst (2001) call “cash-in-advance” (CIA) timing.

One contribution of this paper is to demonstrate that in a model with CIA timing there
exist E-stable sunspot equilibria.

Our second modeling variation is a different assumption on the nature of learning
in the model. Honkapohja and Mitra (2001) examine a model in which there is
symmetric learning by both the public and the central bank. That is, both the ceniral bank
and private sector have common expectations. This can be interpreted as the private
sector learning, and the cenfral bank operating off of private sector forecasts. In conirast,
this paper examines a case in which the forecasts of the central bank and private sector
differ, and coincide only in the long run. There are many possible differential learning

scenarios. Here we take one extreme: We assume that only the central bank is subject to

Hounkapohja and Mitra (2001} demonstrate that “resonant frequency” sunspot equilibria may he
s nnder certain policy rules.




a learning process, while private sector expectations are always rational. This assumption
s analogous to the assumption in Sargent’s (1999) analysis of 7he Conguest o7 American
Inflation. A second contribution of this paper is to demonstrate that in this case of central

bank learning the sunspot equilibria are typically E-stable. In essence, central bank

policy can lead the public to believe in sunspots.
The outline of the paper is as follows. In the next section we present the basic

CWID monetary model and the results of Honkapohja and Mitra (2001). We then
consider the CIA variant of this model. Here sunspots can be learnabie. In section 3, we

demonstrate that sunspots are typically learnable when there is asymmetric learning and it

1s the central bank doing the learning. Section 4 concludes.

Svmmetric Learning in a Sticky Price Model.

IL
A. Sunspots and Learnability in the CWID Model.

The analysis is conducted using the now-standard sticky price model that is given

(23

by the following two equations:

where
U, = O 8,
i
7. =-—denotes the inflation rate from time t-1 to time t. z, denotes marginal cost, I, is




the nominal interest rate, and u, denotes a shock to the pricing equation.” All variables
are expressed as log deviations from the non-stochastic steady-state. Below we find it
convenient to assume p+A>1.

To close tiie model we need to specify the central bank reaction function. In what
follows we assume a reaction function where the current nominal interest rate responds to
expected inflation:

R, =7,

where T > 0 is the response of the nominal interest rate to movements in expected
inflation. Under any such interest rate policy the money supply (not modeied) responds
endogenously to satisfy the interest rate rule. It is this endogeneity of the money supply
that leads to the possibility of real indeterminacy and sunspot equilibria. That is, there is
real indeterminacy if different money growth rules support the interest rate target (3).°
These are then associated with different real outcomes because of the sticky price
assumption (1).

To proceed, use (1) to eliminate z, from the system:

o B/))/TJH U, = —/Z[R - Ef ] ] + Evg,ﬂ’ﬂf-e-‘i - ZL*/)?/T LU, (4)

Using (3) to eliminate the nominal rate, we have a second-order difference equation in 7,
For determinacy, we need both roots of the corresponding characteristic equation to be

outside the unit cirele. Straightforward calculations imply that there is real determinacy 1f

S See Clarida, Gali, and Gertler (2000), and the references therein. Following Yun (1996), Caristrom and
ST ritten in the
marginal cost form nsed above. In this case, A represents the link between marginal cost and prices, while
; ia, Gali, and Gertler (2000) framework A represents the link between output and prices. One
m the curreni model by veplacing owr & with Clarida et al.’s Ao, where ¢ is the elasticity of
iporal subsiitation.




and oniv 1t

For reasonable calibrations (P =.99, A = .3), the upper bound is quite high, about 14, so
that the basic conclusion is that a v greater than unity will achieve determinacy. If there

is determinacy, the equilibrium can be written as

AT e A a5
P P e
; 4TSV

where v,,., 1s unique and denotes the “minimum state vector” (msv) solution. If 7 lies
outside the determinacy region, then we have two cases. Fort <1 only one root of the

characteristic equation given by (4) is explosive, while the other is in (0,1). If

AL +1)+ 4 T . ..
T > = ———_ 0one root is explosive while the other 1s in (-1,0). In either case we have
A

real indeterminacy and multiple equilibria. In particular there are sunspot equilibria

given by

Ty =AT T U, + 08, + 0,8, o~

At oy

where o, e (-1,1) 15 unique, 7y # 7, 1S Unique, &, and o, are arbitrary, &,,, is the

{msvy
mnovations in the u, process, and s,,, is an arbitrarv iid, mean-zero sunspot shock. Note
that although the msv soiution uniquely determines the respounse of 7., to g,,, &, is

arbitrary in the case of sunspot equilibria because both g... and s are white noise.

i

Are these sunspot equilibria iearnable? Following the methodology outitned in

—_ -

Hvans and Honkapohija (2001), posit the following percetved law of motion (PLM:

¢ See Carlstrom and Fuersi (2000D) for a discussionn.
]




T, = a7 by, o8 +ds, (PLM)

Notice that this PLM has the same form as the sunspot equilibria (5). Using this PLM
scrolled forward fo eliminate the forecasts in the equilibrium condition (4), we can then

solve for the implied actual law of motion (ALM):

T, =a,7, b +c,8 +ds, (ALM)

By replacing all expectations with this common PT.M, we are assuming symmetric
learning between the public and the central bank.” We now have the mapping
T(a..b,,cp,d)) = (a,,b,,¢,,d,). The fixed points of this T-mapping are the rational
expectations equilibria. An equilibrium is said to be E-stable if this mapping is stable
evaluated at the equilibrium in question. Bullard and Mitra (2000) study the E-stability
of the msv equilibrium.” Our focus is on sunspot equilibria.

It 15 straightforward to demonstrate that if agents know mt, when forecasting 7.,
and 7., then the coeffictent a, maps into zero so that the sunspot equilibria are not E-
stable. Hence, Honkapohja and Mitra {2001) extend the analysis by assuming that when
forming expectations agents do not know w., so that time-t forecasts are functions only of
7., and the exogenous shocks. As noted by Evans and Honkapohyja (2001), this increases
the chances for E-stability. One confribution of Honkapolija and Mitra (2001} is to
demonstrate that even in this case the sunspot equilibria are still not E-stable so that

sunspots are not learnable.’

the nexi section we will consider a particular form of asymuneiric learning in which oniy the ceniral
1k is learning. In ihis case we replace only the central bank’s forecast with the PLM.

ar
° It is important to note that our PLM does not include a constant term, while a constant term is central io
*he resulis in the Bullard-Mitra paper.

* However, Honkapohja and Mitra (2001) demonstrate that a different type of equilibria, “resonant
frequency” sunspot equilibria, may be learnable under certain policy rules.




B. Sunspots and Learnability in the CIA Model.

Before abandoning the possibility of E-stable sunspots in the case of symumeiric
learning, consider the alternative money-demand timing convention suggested by
Carlstrom and Fuerst (2001). The Fisher equation given by (2) has as its
microfoundations the assumption that money balances at the end of the period (after

leaving the goods market) aid in transactions—what Carlstrom and Fuerst cail “cash-

when-I'm-done” timing (CWID). If we instead assume that cash available before entering

the goods market aid in transactions—what Carlstrom and Fuerst call “cash-in-advance”

timing (CIA}, equation {2) becomes

As before we use (1) to eliminate z, from the system.

zT Esﬁ;7t+1 —U, = H/Z[Rt-a—l —- L e J + B e T E,/)'/'Z',_ — A (7
In this case Caristrom and Fuerst (2001) demonstrate that there is real indeterminacy
under the forward-looking Taylor rule for all values of 7. Are any of these sunspot
equilibria E-stable? Ves, but only a few. We tirst characterize the indeterminacy, and

then look at E-stability.

Proposition 1: Under the assumption of CIA timing there is real indeterminacy ror ail
values of 7. Inparticular:

a. If=z<1,the equilibria are characterized by the AR(1) process

Ty =0T, — MU, + 0,8, T8, AR(]_) (8)




where 0 <o < 1 is unique, v 1s unique, and ¢, and &, are arbitrary.

o NiEN ) ey I | o
b If 1<r<- Y i =7, there are two stable real roots to the characteristic
P Ao )

equation, so that there are two distinct AR(1) processes of the form (8) where 0 < o, <

I takes on one of these two values. There are aiso AR(2) equilibria characterized by

- 7T, + — 7 R 0nE 058, . AR(2) (9)

- g,

If © > 1, the roots of the characteristic equation are complex with norm in (0,1) so

::“:

that the equilibria are characterized by the AR(Z) process (9).

Proof: Since questions of determinacy depend only upon deterministic dynamics, the
proof focuses only on the AR coefficients without loss of generality. The characteristic
equation of (7) is given by

ie)=(p+Ar)e’ —(1+ f+ Ae+1.

We have h(0) > 0, h’(0) <0, and h(1) = A(t-1). Hence, if t < 1 there is one root in (0,1)
and one outside (0,1). Since there are no predetermined variables we have real
indeterminacy.

Now suppose that T > 1. In this case we have h'(1) > 0. Hence, if the roots are real,
they are both in (0,1). These two roots are both possible AR(1) coefficients.
Alternatively, we can write this as the AR(2) in (9). The roots are real if and only if
(1+ A+ A = 4(F+10)

Solving this for T vields the =" in the proposition. If the roots are complex, their norm is

B

i (0,17 and the equilibria are then characterized by the AR(2). QED

l




In conirast to the CWID model in which there is indeterminacy only for very
small or very large values of 7, Proposition 1 implies that in the case of CIA timing real
indeterminacy arises for all values of t. Note that the nature of the equilibria varies }
around T = 1. Fort <1, the sunspot equilibria are of the AR(1) form given by (8), while
for T > 1 there are sunspot equilibria of the AR(2) form given by (9).

We will now turn to E-stability of these equilibria. [f we assume that 7. 1s known
when generating forecasts the earlier discussion applies and the sunspot equilibria are not
E-stable. Hence, we once again must restrict the information set by assuming that . is

not known when generating forecasts.

Proposition 2: Assume CIA timing and that . is not observable for time-t forecasting.

Fort <1 the AR(1) equilibria given by (8) are not E-stable. However, for

e SR AY 28
i< r< - =
21

the AR(2) equilibrium given by (9) are E-stable.

Proof- Let us first consider the AR(1) case. Suppose that the PLM is given by

To=am. b Fes ds.

3 L

Under the assumption that , is not observable for time-t forecasting, we have

Ty =a 7, + abu, , +acs +ads, +b o +bes,

Ex ,=a 7z +abu_+ace+ads +bla+pou  +&)




Substituting this into (7) we have that the PLM maps into the ALM via:

T(a)=(+ 5+ Da, —( L+ Ana;

T(b. ==+ p+ANa, + p)b ~(f+ An)al + pla, + o), +{1- 2 p

i

,

T(e)) = (L+ g+ ANa,c, +b)—(f+An)ale, + b (a, + p)|+ (1= p)
T(d)=_C+/pg+Dad, —(f+ if‘)czfcﬁ'z
It is straightforward to demonstrate that at a, = o, T°(¢c,) = T7(d,) = 1, ie., there are no
iearning dynamics for the coefficients on the innovations. Following Evans and
Honkapohja (2001), this implies that for E-stability of the sunspot equilibria we need
focus only on the mappings of a, and b,. Since this system is diagonal, the E-stability
condition is that T(a,) < 1 and T°(g,) < 1, evaluated at the sunspot equilibria. Consider

a, first:

The AR(1) solution is o such that T(o) = ¢ Using this fact we have that F-stability

requires

It is straightforward to show that only the larger of the two real roots satisfies this

condition. If T < 1, the larger root is outside the unit circle so the AR(1) equilibria are not

F-stable.™




We now analyze the case where T > 1 so that we have AR(2) equilibria. Let the
PLM be given by
T, =407, a7, , o, e - ds,
Using this PLM and the assumption that 7, is not part of the information set, we have the
following T-mapping from PLM to ALM:

T(a) = (1 F+ A)a} +a,) ~(f+ 200 +2a,a,)

Tia,)= {1+ 5+ Daa, —(f+Ac)a a,
Ry . . Joqtly g Ll

Tib) =1+ f+ A=a,(f+ ADNa, + plb, ~ i+ A0)a, + p*)b; + pli= p)
T(c)=[1+p+A=a(f+ i) ac, +b)~(fF+Air)a,c. +b p)+{i—p)
T(d) =1+ p+d—a(f+Ar)ad, ~(f+17)a,d,
As before, our focus is on the system in a,, a,, and b.. Note first that this system o
derivatives is once again block recursive. Evaluating the derivatives at the equilibrium

values of

we have T'(b,) = ~(p+at)p” < 1. Hence, we need only examine the subsysten: 1 a; and

a,. The characteristic equation of this sub-matrix (evaluated at the AR(2) values) 1s

! As before we have T°(¢c,} = T7(d,) = 1, ie., there are no learning dynamics in these coefficients.




a+p+a°
g+ Ar

gl(e)=¢e" + Ae—~ A, where A
Note that g(1) > G and g(0) = -A. Recall from Proposition 1 that the roots of h (the
characteristic equation of (7)) are real when A > 0. If A >0, g(0) <0 so that the two roots
of g are below unity and we have E-stability. If A <0, the roots of g are compiex, and we
need the real part to be less than unity. Expressing this condition in terms of T yields the

expression in the proposition. QED

Proposition 2 implies that the AR(2) suuspot equilibria are learnable for an
empirically relevant range. For example, with [} = .99, A = .3, we have E-stability for 1 <

T < 5.44. This region includes the celebrated Taylor coefficient of 1.3.7

III. Asymmetric Learning in a Sticky Price Model.
The former section made an extreme assumption: both the public and the ceniral
bank have common forecasts, both of which are rational only in the limit. In contrast, in

this section we assume that the private sector’s forecasts are rational but that the central

* Curiously, this range gets arbitrarily large as the economy approaches a flexible price modei (A->c0).
Yet for an economy which is perfectly flexible (so that squilibrivm is given by (6) with z, = 0) there is real
indeterminacy but sunspots are never learnable (this is inmediate given that 7, no longer enters into e
system). This suggests there might be a problem in the above analysis. As in Honkapoiija and Mitra
(2001), the above analysis assumes that when forming expectations agents do not know . But actual
inflation in the pricing equation (1) was assumed observable. Following Yun (1996} the microfoundations
of this pricing equation are that firms who set prices in time-t base their prices on the current price level
and forecasts of future prices. If the current price level is assumed to be not observable, then we should
also replace 7, in equation (1) with the expectation of 7, given current information. That is, in fue analysis
motion (ALM) solely in x., so that the coefficient a, maps into zero. {A similar argument holds in tho case
of the AR(2) equilibria.) Tnder this interpretation the sunspot equilibria are not B-stable. This criticism
does not apply to the anaiysis in Section IIT as we assuine that 7, is known when making forecass.

of E-stability, we should alsc replace 7, in equation { 1) with its PLM. In this case we have an actual law of



bank uses a forecasting rule that is rational only in the limit. In this case it is much more
likely for real indeterminacy to be learnable. If the central bank uses current inflation to
forecast future inflation, and if the public knows that the central bank is doing sc, then tne
AR(1) and AR(2) sunspot equilibria may be learnable. The central bank can lead the

economy to indeterminacy.

A. The CWID Model.
Let us begin with the case of CWID timing. The relevant equilibrium is given by
7 “Er/{;f;m-'i —Uu, = “/ZLR - ::"7:‘+1 1 T E:"'Tﬁ-i-‘; _Ez/;ﬁwrz U, (10)
The sunspot equilibria are of the AR(1) form in (§). Since only the centrai bank is subject
to learning we substitute the PLM only into the bank’s forecast:

- /-

R =77, =dax, +bu,] (11

As will soon be evident, because of the dynamics of asymmetric learning, the sunspot
equilibira can be E-stable even if the central bank observes 7, when forecasting ... .
Without loss of generality, we thus proceed under this assumption. Notice that with
asymumetric learning the forward rule with parameter t corresponds to (roughly) a current
rule with parameter ra,. Substituting (11) into (10), we have a second order system mn .
This system is indeterminate, with one root in the unit circle. This root 18 the ALM.

Under this mapping, is the AR(1) coetficient ever E-stable? Yes.

Proposition 3: Assume CWID timing, and ceniral bank learning. If't <1, then there 1s

real indeterminacy and the AR(1) equilibiia of the form (8) are E-stable. If
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z y , {hen there is real indeterminacy but the AR(1) equilibria of the form ()

are not E-stable
Proof: Substituting (11) into (10), we have the following system:
(I da) =+ f+ DE T, —E f7,, + (1= p= A )u,

In the neighborhood of the AR(1) equilibria, a, = a, this system is subject to

indeterminacy so that we can use the method of undetermined coefficients to solve 1t for
the ALM:
/ T e Iea b d ~
7, =1a)z + I(b)u,.,

where without loss of generality we ignore the sunspot coefficients. The mapping T(a,) is

given by the stable root (the smaller root) of the system:

_ (4 D)= (f+A) + 204 ) +1-4flza,
(¢ )=

so that

3~
s

di(a, )yl da, =

V(G + Ay +=2(A—- A +1—4p4ra,
For E-stability we need this to be less than one. Exploiting the fact that T(o) = o, where
o is the AR(1) solution, we can eliminate the square root and obtain:

AT

dT{a,yiaa, -~

We can now consider the two cases:

s YA
“ ya

Casel: 7> ———" .

i

3~

e




e Az 1+ f+ A+ (F+1)
dT'(a,)/aa, = - > prirprl)
ol peA-2af I+ A A-2al

where the inequality follows from the restriction on t. Since the AR(1) o < 0 1n this case,
we have that d7'(¢.)/da, > 1, so that the solution is not E-stable.

Case2: 1<1.

Expression (12) is increasing in o Setting oo = 1 we have

dl(a,)/da, <
) P44

<1

where the last inequality follows from t < 1. Hence, we must proceed to the T{(b.)

mapping:

T(b)=--
For the case T < 1 we have 0 <o <1, so that T°(b,) < 1. Hence, in the case of v < | we

have E-stability. QED

Remark: 1t is curious fo note that the sunspots fail to be E-stable only when t is large so

that the equilibria are oscillatory, a < 0.

B. The CIA Model.
In the case of CIA timing, the relevant equilibrium is given by

- i 1 - I [
mo—Epr., ==AR ~Ex |~Ex., —FE/p7T., (13)

As hefore, since oniv the ceniral bank is subject to learning we only replace their

e




forecasts with the relevant PLM. Recall that in the CIA model there are two forms of
indeterminacy, depending upon the size of t. For t < 1, we have AR(1) equilibria of the
form 1n (8), so that we repiace the interest rate with

R, =d&"r,,=claz +bu,] (14

In the case of © > 1, we have indeterminacy of the AR(2) form given in (9), and replace
the interest rate with

R,=d"z ,=tlar, +a,= ~bu.,] {1

Pl
Hn

[N
L

We now state:

Proposition 4: Assume CIA timing, and asymmetric learning (central bank {earning).

Fort < 1 the AR{1} equilibria in (8) are learnable if

Fort> 1 the AR(2) equilibria in (9} are learnable for all values of p.
Proor:
Case 1: t<1. Subsiitute (14) into (13). 'This system is indeterminate, with two positive

roots, one in (0,1). This smaller root is the ALM and is given by T(a,):

» ()
E-stability is given by d'T(a,)/da, < 1.
dl{ay dT{a dx . - - Aza
= = =) e = v T e - - - - -
da. dx da, 2 ouxt-djp o B Al-ra)+i+ O 2o

where the last equality comes from exploiting T(o) = o fo eliminate the square root. This




last term must be Iess than unity for E-stability. This implies there is E-stability 1f and

only if

For t < 1 this is always satisfied as « is the smaller root of the characteristic equation.

We now must turn to the b, coefficient:

T(/b ) - F:blp”(lhp)
Y e g D —a(f+ A -

where we are evaluating this at a, = .. For E-stability we need T°(b.) < 1. Imposing this

and using the fact that o is the root of the characteristic equation, we have

Case 2: t> 1. Substitute (15) into (12). This system is indeterminate and in the
neighborhood of the candidate sunspot equilibria can be expressed as an AR(2). This
AR(2) 1s our ALM:

]

| Tpen = ;) [(] + A= Am)r,, ~ (1= A,z (LU p)l= p= pldu, J

We thus have the mapping

g, =+ o5+i-dw /) o




b —(d—p—piad,)/! bp
Inspection reveals that this is E-stable. QED

IV, Conclusion.

This paper has shown that the developing consensus that policy-induced sunspots
are not learnable may be premature. This paper has considered two modifications to the
typical model, either one of which leads to the learnability of sunspot equilibria. First, if
we replace CWID money demand timing with the more intuitive CIA timing, then
sunspots are learnable over a relevant range of the parameter space. Second, sunspots are
learnable if the central bank is the one doing the learning.

There are several natural areas of further work. First, the Taylor rale examined
depended only on expected inflation. Future work will consider the case of'including a
measure of output in the policy rule. Second, the sunspot equilibria arise because of the
endogeneity of the supporting money supply process. What features of this money
supply behavior lead to E-stability? Finally, in the case of asymmetric learning, the
public was assumed to have raiional expectations. Future work needs to investigate
whether sunspots are learnable when both the public and the central bank learn put with
potentiaily different learning rules.

While addressing whether sunspots are learnable we have left unanswered the
question of how a particular sunspot is coordinated upon. While far from being a
complete answer to this important question we note that if the monetary authority
believes in a particular sunspot, rational expectations on the part of the public aictates
that they too will believe in that sunspoi. The central bank can lead us to real

indeterminacy.
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