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Abstract

In previous work we have studied optimal time-consistent monetary policy in an
economy where prices are sticky due to Taylor-type price setting by monopolistically
competitive firms. In this environment a monetary policy authority has the incentive
to run an expansionary monetary policy with high inflation in order to reduce the
distortion implied by the mark-up pricing of firms. On the other hand, running an
inflationary policy introduces a relative price distortion which lowers welfare. With
full commitment, the second effect tends to dominate and the policy authority pursues
a low inflation policy. Without commitment, a policy maker tends to discount the
effects of the relative price distortion, since his own actions affect only a fraction of the
price distribution whereas the rest is determined by past or future policy makers. This
tends to raise the equilibrium inflation rate in the economy without commitment. In
this paper we take the analysis one step forward and allow the price setters to respond

to a high inflation environment by increasing the frequency at which they adjust prices.
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1. Introduction

In models with nominal rigidities the optimal inflation rate under time consistent policy can
differ radically from the rate that would be chosen by a policy maker with perfect credibility.
Generally the perfectly credible optimal inflation rate is close to zero, and in models that
ignore the generally small welfare losses associated with the area under the money demand
curve the optimal rate is zero (see King and Wolman [1999] ). Further, that rate is generally
insensitive to other aspects of the economy, namely the amount of government spending,
the elasticity of labor supply, or the elasticity of the demand for commodities. Intuitively
this result occurs because it is suboptimal in these model economies to have firms charge
different prices for goods that are perfect substitutes. Zero inflation implies that all firms
charge the same price in steady state.

Because a discretionary policy maker has only limited control of the price distribution —
essentially inheriting a distribution that is largely fixed by previous policy actions and that
will be perturbed by future policy makers as well —it is generally optimal for that policy
maker to inflate. He does so in an attempt to lower the average markup charged by firms
and hence to increase the level of output which is inefficiently low. Dotsey and Hornstein
[2001] find that the optimal level of inflation can be greater than 10% in a typical four period
staggered contracting model.

The trade-off between the benefit of a lower average markup resulting from higher infla-
tion and the cost of the distortion due to the dispersion of relative prices caused by inflation
induces the time consistent policy maker to choose higher inflation the less control he has
over relative prices. Thus, at first glance it would appear that “stickier” economies would
end up with higher inflation and the cost of a lack of credibility would be particularly high
for those economies.

To more formally understand the relationship between inherent price stickiness and opti-
mal inflation, we construct an economy where the degree of stickiness is endogenous. Firms
can choose whether it is optimal to incur the costs of frequent price changes or to set their
price for a specified length of time. The proportion of firms that flexibly set their price
will, therefore, be a function of the rate of inflation because the cost of keeping ones price
fixed increases with the inflation rate. Thus, the current policy maker potentially can have
a greater effect on the distribution of prices in a state dependent setting than in a time
dependent setting, and the optimal rate of inflation should vary with the costs of changing
prices.

We find that state dependent pricing behavior does influence the optimal rate of inflation,

but in a manner that is counterintuitive. Namely the greater the fraction of firms that find



it optimal to flexibly set their price the higher is the optimal inflation rate. Intuitively the
reason is as follows. As a greater fraction of firms find it optimal to adjust their price each
period the less will any inflation rate distort relative prices. Given a smaller distortionary
affect, the planner is able to simultaneously reduce the markup through somewhat higher
inflation and reduce the distortion arising from firms charging different prices.

The paper proceeds as follows......

2. The model

There is an infinitely lived representative household with preferences over consumption and
leisure. There is a final good which is used for private and public consumption. The final good
is produced using a constant-returns-to-scale technology with a continuum of differentiated
intermediate goods. Each intermediate good is produced by a monopolistically competitive
firm with labor as the only input. Each intermediate goods firm sets a nominal price for its
product, and there are costs associated with the nominal price determination. We extend the
standard Taylor-type staggered price setting framework, where firms fix their nominal price
for a finite number of periods .J, to an environment a fraction of firms are able to change their
price in each period. We assume that firms have the option of setting their nominal price for
J periods or of paying a fixed cost that enables them to reset their nominal price in each of
the following J periods. The cost that a firm has to pay for the alternative option is random.
In equilibrium there will be a fraction of firms that draw a low cost and choose to reset their
nominal price in each of the following J periods. We refer to these firms as ‘flex-price’ firms.
Those firms that draw a high price will find it optimal to set their nominal price for the next
J periods. We call these firms ‘fix-price’ firms. Like Dotsey, King and Wolman (1999), our
approach endogenizes the fraction of firms adjusting prices in a Taylor-type staggered price
setting framework, but there are a number of important differences. In response to higher
inflation greater flexibility in their model is achieved in two ways. First, a greater fraction
of firms who have maintained their price over a certain number of periods optimally choose
to adjust, and second there may be an endogenous shortening of the contract length. In our
setup, the time between price adjustment is fixed, and it is the fraction of firms that opt
for flexible price setting that changes. In both frameworks higher inflation leads to more

flexibility because the average length that any particular price is maintained declines.



2.1. The representative household

The representative household’s utility is a function of consumption ¢;, and the fraction of

time spent working ny,

U=E iﬁt Ine+vIn (1 —ny)], (2.1)

=0
where v > 0, and 0 < 3 < 1. The household’s period budget constraint is

PtCt + Bt+1 + Mt+1 S Vtht + Rt_lBt + Mt + Ht, (22)

where P, (W) is the money price of consumption (labor), By (M¢41) are the end-of-period
holdings of nominal bonds (money), and R; ; is the gross nominal interest rate on bonds.The
agent owns all firms in the economy, and II; is profit income from firms. We will use the
term “real” to denote nominal variables deflated by the price of consumption goods, and we
use lower case letters to denote real variables.

The first order conditions of the representative household’s problem are

N o= 1/e, (2.3)

wy = e/ (1—mny), (2.4)
_ BAt11 Ry

|- Et[ . .PM/PJ, (2.5)

Equation (2.3) defines the Lagrange multiplier on the resource constraint, that is the marginal
value of consumption. Equation (2.4) states that the marginal rate of substitution between
consumption and leisure equals the real wage. Everything else unchanged, the consumer
will work more with higher wages. Equation (2.5) is the Euler equation, and states that if
the real rate of return increases, then the household increases future consumption relative

to today’s consumption.

2.2. Firms
There is a final good which can be used for private and public consumption
Ct = Y- (26)

The final good is produced using a continuum of differentiated intermediate goods as inputs
to a constant-returns-to-scale technology. Producers of the final good behave competitively in
their markets. There is a measure one of intermediate goods, indexed j € [0, 1]. Production

of the final good y as a function of intermediate goods y (j) used is

1
y=| [ v

3

]E/(“) (2.7)



where £ > 1. Given nominal prices P (j) for the intermediate goods, the nominal unit cost
and price of the final good is

T/(H) (2.8)

p=[ Pur=d

For a given level of production, the cost-minimizing demand for an intermediate good j is

y(j) = [P(G)/P] "y (2.9)

Each intermediate good is produced by a single firm, and j indexes both the firm and
good. Firm j produces y(j) units of its good using a constant-returns technology with labor

as the only input,
ye(J) = 2ene () (2.10)

The aggregate technology shock z, follows a stationary AR(1) process
Inzg =vIlnz 1+ wu (2.11)

with |y| < 1, E [u] = 0, E [uf] = 0. Each firm behaves competitively in the labor market,

and takes wages as given. Real marginal cost in terms of final goods is

U, = w/z. (2.12)

Alternatively, the average mark-up in the economy is 1/1,. The mark-up represents a dis-
tortion and reduces welfare. Since each intermediate good is unique, intermediate goods pro-
ducers have some monopoly power, and they face downward sloping demand curves (2.9).
Producers set their nominal price to maximize the discounted expected present value of

future profits.

2.3. Nominal Price Adjustment

Every J periods an intermediate goods producer has the choice between pre-setting his
nominal price for the next J periods or paying a price to be able to reset his nominal price
in each of the following J periods. The price a producer has to pay is a random variable.
We first consider the behavior of each producer, once he has decided whether he wants to
be a ‘flex-price’ or a ‘fix-price’ firm for the next J periods. Based on the values associated
with each option, we then characterize the optimal choice between the two options.

A ‘flex-price’ firm can set its nominal price in each of the following .J periods conditional
on the state of the economy. In every period, a flex-price firm sets its relative price p* = P*/P,

to maximize real profits

™y = max (pl’g - wtp’s) Y-

4



The optimal price and profit for a ‘flex-price’ firm are

p; = wp  withp=e/(e—1),
mr o= Iy with I = (p— 1) ()"

The value of a ‘flex-price’ firm at time ¢ which has chosen to be a ‘flex-price’ firm 7 periods

ago, can be defined recursively as

v, = T A B[ Auatf ] form=0,...,0 =2 (2.13)

Ut*,JA = 7 + B [A¢11041] forr=J—1.

Future real returns are discounted with the representative household’s state contingent pric-
ing kernel A;;11 = BM41/A. After J periods, the firm has to decide again whether to
become a ‘flex-price’ or a ‘fix-price’ firm, and v represents the expected value of behaving
optimally once the price of either option has been observed.

A ‘fix-price’ firm sets the same nominal price for each of the following J periods, and it
chooses the price that maximizes the expected value of the discounted stream of profits over
the next J periods. Let p, » = P,_; o/ P; denote the time ¢ relative price of a firm which has

set its price 7 periods ago, then these relative prices evolve according to

Pt—-1r-1
y=——forr=1,...,J—1. 2.14
P, Pt/Pt,l ( )

and the firms’ real profits are
T = (Per — 1) Py Y-
Given the sequence of relative prices, the time ¢ value of a ‘fix-price’ producer which has set

its price T periods ago is defined recursively as'
Vtr = Tir + Et [At,t—i-lvt—&-l;r-i—l] for T = 0, ceey J—2 (215)
Vg1 = Tygo1+ B [Apipateya]  forr=J-—1

The analogous recursive definition of the marginal value of a time t ‘fix-price’ producer which

has set his price 7 periods ago, is

vi,T = 77;,7 + By [At,t+1v£+1,r+1 (Pt/Pt-&-l)} fort=1,...,J -2 (2.16)

/ /
Veg1 = Tpg-1

where a prime denotes the derivative with respect to the current relative price, vy, =

Ver (Per) /Oper and m, - = Omy s (pr.r) /OPtr x-price’ producer which can adjust his
O0vy - (pe.r) /Opy, d m . = Omr (prr) /Oprr. A “fix-price’ d hich djust hi
price, sets the initial relative price p ¢, such that his marginal value is zero,

0= W;,o + E {At,t+1v1/5+1,1 (Pt/PtH)} (2.17)

1'We have suppressed the dependence of the firm’s value on variables other than it’s own relative prices.




After repeated substitutions for the marginal value of a ‘fix-price’ firm we obtain the alter-

native representation of the profit maximizing relative price,

720 By [At,t+7¢t+T(P i/ Pt)HEZ/HT}
Z}I;é Ey (At i1 (Prir ) P ) Y4+]
If there is zero inflation and marginal cost is constant, then the price set by ‘flex-price’

Pro = p* (2.18)

and ‘fix-price’ firms is identical, and the optimal relative price is a constant markup over
marginal cost. In general, however, a firm’s pricing decision depends on future marginal
costs, the future aggregate price level, future aggregate demand, and future discount rates.
For example, if a firm expects marginal costs to rise in the future, or if it expects higher
rates of inflation, it will choose a relatively higher current price for its product.

We now assume that every J periods a fraction of 1/.J intermediate goods firms have the
choice of becoming a ‘flex-price’ or a ‘fix-price’ firm. In order to become a ‘flex-price‘ firm
for the next J periods, a firm has to hire ¢ units of labor in the current period. For each
firm the value of ¢ is determined by a random draw from a probability distribution with
cumulative density function F'(£). The optimal strategy of a firm is to choose a reservation
value £* such that it becomes a ‘flex-price’ firm if £ < £*. Let a = F (") denote the fraction
of firms who decide to become ‘flex-price’ firms.

At the reservation cost value, the firm is indifferent between being a ‘flex-price’ or a
‘fix-price’ type,

Vrog — § W = Vro
and a firm will choose to be a flex-price type if vro — Ewp > vy Before a firm receives
its random ‘price-adjustment cost’ shock, the unconditional expected value of being able to

choose its type is

o= o (v — wE €€ < &) + (1~ ) v where oy = F (7).

2.4. Market Clearing

In each period, a fraction 1/.J of the firms have the option to become either a ‘fix-price’ or
a ‘flex-price ’ firm, and a fraction «; chooses to become a ‘flex-price’ firm. Let f; denote
the time ¢ measure of ‘flex-price’ firms, and f; ; the time ¢ measure of ‘fix-price’ firms who
set their nominal price 7 periods ago. The distribution over ‘fix-price’ and ‘flex-price’ firms

then evolves according to

fio = (1—ay)/J (2.19)
ft+1,7+1 = ft,TfOYTZO,...,J—Z

J—1
ft* - 1_th,‘r'
7=0
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Given the distribution over firm types, we obtain the following restriction on relative

prices from the aggregate price index (2.8)

J-1
L= fip; + Z ft,rpt,rl_g- (2.20)
7=0

Given the distribution over firm types, the production function of an intermediate goods
producer, the demand function (2.9) for a firm’s product, and labor market clearing we

obtain .

J-1
Yo = zagny with a, = | ff (p7) " + Z JiaDes (2.21)
7=0

For an efficient organization of production, one would use the same amount of each interme-
diate good, since these goods enter the final goods production function symmetrically. Yet,
in an economy with sticky prices and inflation, different intermediate goods producers charge
different prices, and therefore sell different quantities. Production in the economy with sticky
prices is then in general inefficient, and the allocational efficiency coefficient a; < 1 reflects

the distortion introduced by unequal relative prices.

2.5. General representation of the planning problem

The policy maker follows a policy which maximizes the expected present value of the repre-
sentative agent’s lifetime utility subject to the restriction that the allocation can be supported
as a competitive equilibrium. The agent’s current period utility u (z,y, R) is a function of
the state of the economy x, other non-predetermined variables y, and the policy instrument,
which we take to be the nominal interest rate R. We assume that the policy maker cannot
commit to future policy actions, and for this reason we study Markov-perfect equilibria.
In a Markov-perfect equilibrium we can view policy as being determined by a sequence of
independent policy makers, and today’s policy maker assumes that future policy makers will
select the policy instrument as a given function of the state, Ry = Fj (x;) for s > t. Also,
given the decision rules of future policy makers, next period’s non-predetermined variables
and the lifetime utility of the representative agent from period ¢ + 1 on will be given by the
functions Gyi1 (z441) and Viyq (2441). We represent the competitive equilibrium restrictions
through a system of equations which represent market clearing (resource constraints, C,),
and optimizing behavior (first-order conditions, C,). Given these restrictions, the policy

maker chooses the nominal interest rate and non-predetermined variables optimally
Vi(ze) = maxp,y, u(@e, yi, Re) + BE[Vi1 (2441)]
S.b. X1 = Cw(%: e, Ry, uz,t—i—l)
E; [Cyl ($t+1, Yt+1, Rt+1)] = Cyo(xt, Yt, Rt)

Yer1 = Gry1(ze41) and Rypy = Fyypa(@441).

(2.22)
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The utility maximizing choice implies policy functions for today’s instrument and non-
predetermined variables, R; = F(x;) and y; = G¢(z¢), and a value function which reflects
maximal lifetime utility of the representative agent from today on, V; (z;). A stationary
Markov-perfect equilibrium for this problem is characterized by the triple Z = (F,G,V)
such that (2.22) maps Z;,; into itself, that is 7,y = Z; = Z.

We study a linear-quadratic approximation of the model, and a full description of our
methodology can be found in the technical appendix. Our procedure essentially follows the
presentation in Svensson and Woodford (2000). Briefly, conditional on an initial guess of
the steady state nominal interest rate, we can solve for the steady state of the competitive
equilibrium. We then construct a linear-quadratic approximation of the objective function,
and a linear approximation of the first order conditions and resource constraints for the
competitive equilibrium around this steady state. We then obtain the steady state to the
planner’s problem, which includes the steady state of the nominal interest rate. We adjust

the initial guess of the steady state nominal interest rate until the two rates are the same.

2.5.1. Representation of our specific problem

In a standard rational expectations equilibrium, when the policy rule specifies the choice of
policy instrument R; as some given function of state and flow variables, we treat the lagged
relative prices p;_1, for 7 = 0,...,J — 2, which have been set by firms in the past J — 1
periods as state variables. From the point of view of the planning problem, however, nominal
levels are of no concern. The equations which characterize the competitive equilibrium
in any given period, involve real variables, relative prices, the nominal interest rate, and
the inflation rate, but not the current period price level. Given that the price level is
arbitrary, past nominal prices impose restrictions on the current allocation only through
their relative prices. To clarify this point define the normalized lagged prices of ‘fix-price’
firms as ¢, = pr_1,-1/Pr-1,7-2, for 7 = 1,...,J — 2. Using the transition equation for

relative prices (2.14), we can rewrite the constraint on relative prices (2.20) as

Pt—l > 1—¢

J-1
1= fip; + ft,optlﬁg + lz ft,th,Tl_E] (pt—l,J—Q 2
T7=1 t

with ¢ s1 = 1. Since the policy maker is free to choose the current inflation rate, the level
of lagged relative prices, that is p;_; ;2 does not represent a restriction on the policy mak-
ers choices, that is it is not pay-off relevant. Lagged relative price are only pay-off relevant
through their restriction on relative prices. From this we conclude that only the normalized
lagged relative prices should be included as state variables, since in a Markov-perfect equi-

librium decisions depend only on pay-off relevant variables. Finally, the normalized lagged
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prices of ‘fix-price’ firms evolve according to

Pr—1t

Qriy1 = forr=1,...,J —2. (2.23)

Py-2¢t

We now define the dynamic constraints of the planning problem using the equations
which characterize the competitive equilibrium,(2.3), (2.4), (2.5), (2.6), (2.12), (2.13), (2.15),
(2.16), (2.17), (2.19), (2.20), (2.21), and (2.23), and the law of motion of exogenous shocks
(2.11). The state variables are the lagged normalized prices, the measure of ‘fix-price’ firms,
and the exogenous shocks, ¢y = [g¢1,.-., .72, fta,---s fry-1,2). A convenient choice of
the flow variables includes consumption, the relative price of the current price adjusting
firm, and the marginal value of firms that have changed their prices in previous periods,
Yt = [Ct; Qot; Vs - - - VY _o,). Solving for the behavior of these variables allows us to recover

the behavior of all the other variables in the model.

3. Results for Exogenous Measure of ‘Flex-Price’ Firms.

For the following we assume that the types of each firm are fixed. In particular, the measure
of ‘flex-price’ firms is fixed at «. There is thus no decision on becoming either one of the

two types and the measures are simply
fir=01—0a)/Jand f =«

This means that the value equations for ‘flex-price’ firms are no longer relevant, and the

values of ‘fix price’ firms are defined as

Vir = T+ B [Aviivei1 4] for m=0,...,J—2

Vt,g—1 = TtJ-1 + Et [At7t+1vt+170] forr=J—1.

Everything else remains unchanged. We first provide a graphical analysis of the the case
when ‘fix-price’ firms set their price for only two periods. We show that in a Markov-perfect
equilibrium, the steady state inflation rate increases as the share of ‘flex-price’ firms in the
economy increases. We then calculate the steady state outcomes of linear approximations to
the case where ‘fix-price’ firms set their price for more than two periods. We find again that
the steady inflation rate increases as the fraction of ‘flex-price’ firms increases. We also find
that the steady state inflation rate increases with the duration for which ‘fix-price’ firms set

their price.



3.1. The analytics of o increases when J = 2.

We first assume the ‘fix-price’ firms set their price for only two periods. This case is rel-
atively easy to study, because there are no endogenous state variables. Since there are
no endogenous state variables in the Markov-perfect equilibrium, the current period policy
maker assumes that his choices do not affect future outcomes. The policy maker then solves
a static optimization problem. We reformulate the policy maker’s problem as a trade-off
between two distortions, the mark-up distortion and the relative price distortion. On the
one hand, the policy maker would like to increase the inflation rate, in order to reduce the
mark-up distortion. On the other hand, a higher inflation rate magnifies the relative price
distortion. We argue that a bigger share of ‘flex-price’ firms dampens the relative price dis-
tortion, and thus allows the policy maker to lower the mark-up through a higher inflation
rate.

We now construct a simplified representation of the Markov-perfect equilibrium in terms
of the marginal cost ¥ and the coefficient of allocational efficiency a. For this we assume that
aggregate productivity is constant, that is there are no stochastic shocks to the economy.

We first define the reduced form period utility function in terms of a and ¢

_ Ya va
u = log (VCL n ¢) + vlog (VCL n ) , (3.1)

where we have used equations (2.4) and (2.21) to express consumption and leisure as functions

of a and 9. The constraints are now summarized by the following three equations

P (L= o) + B (L= W ) = 0, (32
o () (1= a) 3 (4 pl) = 1, (33
alatroy+ -3 (e +e)| = 1, (34

where a “ /77”7

denotes next period’s value. Equation (3.2) is a simplification of the optimal
initial relative price of a ‘fix-price’ firm, (2.17). This equation represents a constraint on the
current period policy maker’s choices, who takes the choices of next period’s policy maker,
¢ and pf, as given. Equations (3.3) and (3.4) restate the relative price constraints (2.20)

and the definition of the allocational efficiency (2.21).
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Figure 1. The Constrained Optimization Problem.

In Figure 1 we graph an indifference curve and a constraint curve relating allocational
efficiency a to real marginal cost . For the particular example we set the time discount
factor g = 0.99, the demand elasticity parameter ¢ = 10, productivity z = 1, and the leisure
coefficient v such that the fraction of time spent working is one third. The indifference curve
and the constraint curve are consistent with the Markov-perfect equilibrium, and the bullet
points on the curves denote the equilibrium values of variables.

The shape of the indifference curves is standard, they are negatively sloped and convex.
Utility is increasing in a because the relative price distortion declines with a. Utility is
increasing in 1 because the markup declines with real marginal cost. Notice also that the
shape of the indifference curves is independent of the share of ‘flex-price’ firms a.

The construction of the constraint function is a bit more involved, and the steps are
represented in Figure 2. First, conditional on marginal cost we can use the optimal pricing
equation (3.2) to find the initial relative price of a ‘fix-price’ firm, py. As expected the initial
relative price is increasing with marginal cost. Next, we use the restriction on relative prices
(3.3) to calculate the relative price of the ‘fix-price’ firm which cannot adjust prices. This
price has to decline with marginal cost, since both p* and py are increasing with marginal
cost. Finally, we calculate allocational efficiency a using equation (3.4) and our results for pg
and p;. Note that at the steady state there is a trade-off between the relative price distortion
and the mark-up distortion, that is the constraint graph is negatively sloped. For very low

values of the marginal cost, that is very high mark-ups, the constraint curve is positively
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sloped, and a further reduction of the mark-up also leads to more allocational efficiency. The
steady state inflation rate is represented by the ratio pg/p;, and given the movements of the

two prices we see that the higher marginal cost (lower mark-up) is associated with higher

inflation.
Optimal Price of Fix-Price Firm Price Index Equation
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o102 o 1017 — —a=02
81015 8 1.005
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o 2
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Figure 2. The Policy-Maker’s Constraint Function.

How does a larger share of ‘flex-price’ firms « affect the steady state outcome? We first
discuss the impact on the constraint curve, and then discuss the implications for the optimal
choice. In Figure 2, the dashed lines represent the effect of more ‘flex-price’ firms on py, p1,
and a. We first notice that the relationship between the initial relative price of a ‘fix-price’
firm py and marginal cost is independent of the fraction of ‘flex-price’ firms, except through
the impact on next period’s continuation values. For now assume that the fraction of ‘flex-
price’ firms increases, but that the choices of next period’s policy maker do not change. Thus
the pg curve does not move. Next we consider the impact of a higher a on the relative price
of the ‘fix-price’ firm which cannot adjust prices. For a given value of marginal cost, the
direct effect of a bigger share of ‘flex-price’ firms is ambiguous: as « increases the graph
of p; is tilted clockwise around its steady state value. Finally, for a given marginal cost,
the constraint curve which defines a depends directly on «, and indirectly on « through py
and p;. The direct effect of @ on a is unambiguously positive. Because inflation lowers the
relative price of ‘fix-price’ firms in the second period, they set an initial price which is higher

than the static profit-maximizing prize of ‘flex-price’ firms. Given this choice their second
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period relative price does not fall too much, but it does fall below the ‘flex-price’ firm price.

In the steady state the relative prices can thus be ranked as

Po > D > pi.

Now, as « increases we take away weight from the two extremes of the distribution which
characterizes production, that is we make the distribution more equal. This increases the

allocational efficiency. More formally, the elasticity of a with respect to « is

oo a «

Jo oo [% (bo*+77) = )] >0

since ¢

is a convex function. At the steady state the indirect effects of a higher « are
dominated by the direct effect. We have already noted that pq is independent of «, and the
marginal effect on p; at the steady state is zero.

At the steady state a higher o thus unambiguously increases the set of available choices
for the policy maker, while maintaining the trade-off between the two distortions. Given
the shape of the indifference curve and the constraint, this means that the policy maker will
choose to reduce both distortions, that is ¥ and a increase. To be consistent with a steady
state equilibrium, we also have to adjust the choices of next period’s policy maker. These

effects are quantitatively negligible.

3.2. The effects of J and « on steady states for J > 2.

We now study the role of duration of price stickiness J and extent of price stickiness «, when
both duration and extent are fixed exogenously. We find the Markov-perfect equilibrium
for a linear approximation of the economy. The details are described in the appendix. The
parameters of the economy have the same values as for the case J = 2 in the previous section.
Tables 1.a-1.d display the steady state values of inflation, production, production efficiency,
and the mark-up for Markov-perfect equilibria.

We find that for a given duration of price stickiness, .J fixed, the inflation rate increases
as the extent of price stickiness declines, that is « increases. The higher inflation rate is
associated with a lower mark-up, higher production efficiency, and higher production level.
This result confirms the case of J = 2. We also find that for a given extent of price
stickiness, « fixed, the inflation rate increases as the duration of price stickiness increases.
Quantitatively, the effects of variations in the share of ‘flex-price’ firms « for inflation, output,
production efficiency, and the mark-up are small. Relative to variations in «, the effects of
variations in the duration of price stickiness J on inflation, output, production efficiency,

and the mark-up are large.
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Finally, we would like to put the results on optimal time-consistent policy in perspective.
For this we compare the outcomes with the optimal full-commitment policy, King and Wol-
man (1999). We find that for all («, J) combinations the full-commitment solution involves
zero inflation, given our parameterization of the economy. Thus the time-consistent solution
diverges substantially from the full-commitment solution as the duration of price-stickiness

increases.

Table 1.a Steady State Markup 1/1).
J Q@

0.0 0.1 0.25 0.50 0.75 0.90

1.1114 1.1113 1.1113 1.1112 1.1112 1.1111
1.1122 1.1122 1.1121 1.1118 1.1115 1.1113
1.1146 1.1146 1.1147 1.1222 1.1161 1.1130

Table 1.b Steady State Relative Price Distortion a.
J Q@

0.0 0.1 0.25 0.50 0.75 0.90

0.9997 0.9998 0.9998 0.9999 0.9999 1.0000
0.9988 0.9989 0.9990 0.9993 0.9996 0.9998
0.9966 0.9965 0.9965 0.9899 0.9954 0.9982

Table 1.c Steady State Production y, quarterly
J Q@

0.0 0.1 0.25 0.50 0.75 0.90

0.3332 0.3332 0.3332 0.3333 0.3333 0.3333
0.3329 0.3330 0.3330 0.3331 0.3332 0.3332
4103322 0.3322 0.3322 0.3300 0.3318 0.3327

Table 1.d Steady State Inflation Rates p, quarterly
J Q@

0.0 01 025 050 0.75 0.90
143 144 146 148 151 1.53
1.88 193 199 213 231 246
239 254 283 647 6.20 6.07

4. Results for Endogenous Measure of ‘Flex-Price’ Firms
[To be written]
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Technical Appendix

This appendix describes the algorithms we use to find the steady state of an economy
with discretionary optimal policy. We first describe a Markov-perfect equilibrium for the
optimal control problem when the policy maker cannot commit to future policy choices. We
describe a simple algorithm to find a linear approximation to the equilibrium. This analysis
takes as a starting point the linear approximation of the environment. The description of the

linear-quadratic optimal control problem essentially follows Svensson and Woodford (2000).

Markov Perfect Equilibria.

In this section we describe the equilibrium outcome of the optimal control problem of
a discretionary policy maker. The policy maker chooses allocations which satisfy the con-
straints that support the outcome of a market equilibrium given the actions of the policy
maker. The policy maker maximizes an intertemporal objective function. For our appli-
cations this objective function is the expected present value of the representative agent’s
utility. We assume that the policy maker cannot commit to future policy choices, therefore
we study a Markov-perfect equilibrium.

The constraints of the policy maker, are the first order conditions and market clearing
conditions of the competitive equilibrium. It is useful to divide these constraints into two
blocks; one that contains the evolution of the predetermined state variables, x, and denoted
C,, and the other that involves the non-predetermined flow variables, y, and denoted C,,.

Formally, the constraints can be represented by

Te1 = O (xt:yt;Rt;u;c,tJrl) (4-1)
Etcyl (It+17yt+1,Rt+1) = CyO (xtutht) (4'2)

where R denotes the policy instruments and u is an iid random variable with mean zero.
There are n, state variables, n, flow variables, and ny instruments. Define Z; = [z}, y,, R}]'.
Equation (4.1) defines the law of motion for the state variables, and equation (4.2) reflects
the fact that the chosen allocation has to satisfy the private sector’s optimality conditions
in a market economy. The function C, is vector-valued of dimension n,, Cy and Cy; are
vector-valued of dimension n,, and E; denotes the private sector’s expectations conditional
on the information set ;. In this section we assume that the policy maker and the private
sector have complete information at time ¢, I; = {Z, : 7 < t}. Note that (4.1) and (4.2)

define an incomplete dynamic system, since the policy maker’s decision rule with respect to
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the policy variables has not been specified. If we were to specify the policy variables as a
function of the state and/or flow variables, such as in a Taylor-rule, we could solve (4.1) and
(4.2) for the implied rational expectations equilibrium.

The objective function of the policy maker is
Eo Y BU (%) (4.3)
=0

where 0 < # < 1. In our example U is the utility function of the representative agent, which
generates the competitive equilibrium. We are looking for a time consistent policy. For this
purpose we solve for the set of Markov-perfect equilibria where the policy maker’s decision

depends only on pay-off relevant state variables, that is
R, = F; (z¢) (4.4)
and the equilibrium outcome is such that the flow variables depend only on the current state
= Gy (1) (4.5)

For the Markov-perfect equilibrium the policy maker takes next period’s outcome functions

F, ;1 and Gy, and the continuation value function Vi, (x41) as given, and the optimization

problem is
Vi (xt) = mi?%f(Rt Ey [U (%a Yt, Rt) + Vi1 (%H)] (4-6)
(MPE) S.t. Ti41 = Cx (CEt, Yt Rt, um,t—‘,—l) (47)

Ei [Cy1 (e11, Gegr (Te41) , Frr (2e41))] = Cyo (4, Y, Ref4.8)

A Markov-perfect equilibrium is characterized by the triple (F, G, V') such that (4.6), (4.7),
and (4.8) maps (Fii1,Giv1, Viy1) = (F,G, V) to (Fy, Gy, Vi) = (F,G,V).

For the solution we proceed in several steps. We first construct a linear-quadratic approx-

imation of the problem around a steady state indexed by the policy instrument R*. We then

solve the LQ approximation, and derive the steady state of the approximation Rj,. This

defines a mapping from R* to R},. We solve for a steady state choice of policy instruments
such that R* = Rj .

Solving for an Approximate Steady State

Step 1. Suppose the steady state values of the policy instruments are given by R*.
Conditional on R* we can solve (4.1) and (4.2) for the steady state values of the state and

flow variables (z*,y*). Now derive a linear approximation of the constraints (4.1) and (4.2)

Tiy1 = [A;c:c: Axy: B;c] Zt + Ug t+1 (49)
E [Cpzye1) = CyozZ: (4.10)
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and a quadratic approximation of the period utility function?

x Uzy Umz Tt

T Uyy Uyz yt
T Uzy Uzz Rt

NRIRRS R

Step 2. Given the linear-quadratic structure, we guess that next period’s non-predetermined
variables are linear functions of next period’s state variable and that the continuation value

from next period on is a quadratic function of next period’s state variable. Specifically,
Rt+1 = Ft+1xt+1 (411)
Yer1 = GeaZen (4.12)

and ., Vi412441 is the continuation value.
We now determine the equilibrium outcome for the current period and next period,
conditional on the current state and policy choice. Assume that the matrix C, , is invertible,

then we can use (4.11) to eliminate the future policy decisions from (4.10)
EtytJrl = C;l%y {CyO,Z - (Cyl,x + Cyl,RFtJrl) [A:c:c: Axy: B;c]} Zt = [Ay;c,ta Ayy,t: By,t] Zt (413)

We now proceed as in SW. Substitute the transition equations for the state variables (4.9)

in our guess for next period’s flow variables (4.12) and take conditional expectations
Ei [yii1] = Geyr (Agaze + Agyye + B.Ry) .

Now substitute these expectation for next period’s flow variables in the optimality conditions

from the competitive equilibrium (4.13) and get
Gi1 (Azzxs + Agyye + BoRy) = Ayp e + Ayy 1y + By Ry
Assuming that A,,; — G¢11A,, is invertible, we can solve for this period’s flow variables

Y = Atlﬂt + Bth Wlth (414)
At = (Ayy,t - Gt—&—lAmy)il (Gt+1Amm - Aym,t)
Bt = (Ayy,t - GtHAxy)_l (Gt+1Bw - By,t) :

?In the following we will interpret the variables in terms of deviations from the steady state. Furthermore,

the first derivative of the utility function is implicitly included by adding a constant term to the vector of
state variables [1,2’]'. We have also normalized the covariance matrix of wu, such that the derivative of
Copu, = 1.
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Substituting (4.14) for this period’s flow variables in the transition equation (4.9) yields

xt+1 = A:‘CEt + Bt*Rt + Uw7t+1 Wlth (415)
A: = Amm + Azyﬂg}it
B: = B;C + Axy,tBt'

After substituting for y, from (4.14) and for x;;, from (4.15) in the period ¢ optimization

problem
maX{Zt’UZt + BE, [mQHVtthH]} s.t. (4.14) and (4.15).
we get
max [I;, R;} sz,t sz,t Tt
e sz,t sz,t Rt
+ﬁE [(A:It + B:Rt + UZ,H-I)/ ‘/t—i—l (A:It + B:Rt + uz,t—i—l)}
with
1 UZCZC Ux Ix
Quet = |Ls A o (4.16)
Uyz Uyy Ay
sz,t = [Ixa A;} + Y ~ }
Uy Uyz Uyy B,
~ U U, 0 ~ Us-
sz,t = Uzz + |:07Bt} Y ~ + |:O7qu :|
Uye Uy By i Uys
+ [Usa, Uy 0 (4.17)
zxy Yzy Bt . .

The first order condition for the optimal choice of the policy instrument is
0= (sz,t + ﬁB:/V;H—lB:) Rt + (sz,t + ﬁB:/w+1A;§k/) Tt

Assuming that Q.. + 5B;'V,11B; is invertible we can solve for the policy instrument and

define this period’s policy function R; = Fix; and flow variable equation y; = Gx; with

-F;f = - (sz,t + ﬁB:/‘/t—i—lB:)il (sz,t + ﬁB;,‘/t—i—lA:,) (418)
Gt == At + BtFt. (419)

Substituting for the policy function in (4.16) yields the current period value as a quadratic

function of the current period state defined by the matrix

*/
t

*/
Bt

I

5 (4.20)

Vi [A7, BZ‘]}
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A stationary Markov-perfect equilibrium to the policy maker’s decision problem is a triple of
matrices (F, G, V') which is a fixed point of the mapping defined by equations (4.13) through
(4.20).

Step 3. Calculate the steady state of the Markov-perfect equilibrium. Substituting the
policy rule F' and the equilibrium function G into the transition equation for the state
variables we get

Tro = Awtlg + AgyGrg + BoFalg.

Recall that constant terms are implicit in this equation through the definition of the state
variable which contains a constant term. We can solve this expression for the steady state
value of the linear approximation z7, and Rj, = Fzj,. Since we started with the as-
sumption that the steady state of the Markov perfect equilibrium is R* we adjust R* until
Rio = R"

Implementation of the algorithm.

The implementation of the algorithm is straightforward, with two minor exceptions. The
derivation of the Markov-perfect equilibrium suggests that we use a simple iteration scheme:
given an assumption on the triple (Fy 1, Gii1, Viy1) use equations (4.13) through (4.20) to
obtain values for the triple (F}, Gy, V;), and iterate until convergence. There are two problems
with simple iterations, which relate to the fact that we have not shown that such a process
will indeed converge.

First, we have found that frequently we obtain convergence on the linear terms of the
functions F', G, and V| but we cannot obtain convergence once we include the constant terms
in these functions. This problem is easily dealt with. Given the linear quadratic structure
we know that the linear terms are independent of the constant terms, and in a first run we
ignore the constant terms and interpret the model in terms of deviations from the steady
state. Essentially this means ignoring the linear terms of the utility function. Usually we
obtain convergence on the linear terms for this simplified model. After we have obtained
the linear terms, the constant terms can be obtained as a solution to a linear system of
equations. We need to know the constant terms since they will determine the steady state
of the approximation economy.

The second problem is that occasionally the simple iteration scheme does not converge
for the linear terms. In this case we solve the equations (4.13) through (4.20) as one big
system of non-linear equations. This procedure tends to be slower than simple iterations

and good starting values are required.
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