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Abstract

This paper constructs a model with four groups of households who have prefer-

ences over labor supply, consumption of polluting (energy related) and non-polluting

(non-energy) goods and emissions. It quantiÞes the model for the French economy and

computes its optimal tax equilibria under ten different tax regimes. When preferences

are such that polluting good taxes have only an externality-correcting role, we Þnd: (i)

environmental taxes result in very modest redistribution from higher- to lower-ability

persons; (ii) environmental taxation does not entail a �double dividend�; (iii) in the

second-best, the optimal environmental levy is larger than the Pigouvian tax. Secondly,

when preferences imply that polluting good taxes embed optimal tax objectives in addi-

tion to the externality-correcting role, we show: (iv) polluting goods must be subsidized

rather than taxed; (v) this subsidy turns into a tax as the elasticity of substitution

between polluting and non-polluting goods increases, but that it continues to remain

below the marginal social damage of emissions; (vi) levying a tax on the polluting good

equal to its marginal social damage is welfare reducing in that it induces a redistribution

from the poor to the rich.



1 Introduction

A number of authors have recently studied the optimal tax design problem with exter-

nalities, and the structure of environmental taxes, in light of modern optimal tax theory

à la Mirrlees (1971). This theory allows for heterogeneity among individuals and jus-

tiÞes the use of distortionary taxes on the basis of informational asymmetries between

tax authorities and taxpayers. A hallmark of this literature is its inclusion of nonlin-

ear tax instruments. [See, among others, Kaplow (1996), Mayeres and Proost (1997),

Pirttilä and Tuomala (1997), and Cremer, Gahvari and Ladoux (1998).] These studies

are exclusively theoretical. The empirical studies of environmental taxes, on the other

hand, have remained squarely in the Ramsey tradition. As such, they typically assume

identical consumers and allow for linear tax instruments only; see, e.g., Bovenberg and

Goulder (1996). Most recently, Mayeres and Proost (2001) have introduced consumer

heterogeneity and distributional aims. However, that paper remains within the Ramsey

tradition considering only linear tax instruments.

The linearity assumption is problematic from a policy perspective. It may severely

undermine the role that income taxation can play in offsetting the possible �regressive

bias� of environmental taxes. Poterba (1991) estimates that the expenditure shares

of such polluting goods as gasoline, fuel oil, natural gas and electricity decrease at all

income deciles as income increases. This suggests that environmental taxes may entail

undesired redistributive consequences. The question facing the policy makers is thus to

determine how serious this problem is and how, i.e. through what tax instruments, it

can best be offset. When income taxes are artiÞcially restricted to be linear, it is the

linearity restriction that may be behind the apparent redistributive role that emerges

for other non-environmental tax instruments. Implementing policies determined on the

basis of such restrictions, may then harm rather than help income distribution.

The purpose of this study is to examine the efficiency and redistributive power of

polluting good taxes in different tax environments, paying particular attention to tax
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systems that include nonlinear income taxes. This is important. The usefulness of

environmental taxes must be evaluated in relation to other tax instruments that the

government has at its disposal. Restricting income taxes to be linear, as is often done,

has no basis in theoretic or policy grounds. The feasibility of a particular tax instru-

ment is ultimately determined by the type of information that is available to the tax

administration. To the extent that incomes are publicly observable, they can be taxed

nonlinearly (and not just linearly). Consequently, there are no informational grounds

for restricting income taxes to be linear. Moreover, as a policy matter, governments of

almost all countries do employ graduated income tax schedules. These considerations

call for an examination of environmental taxes in presence of nonlinear income taxes.

For the purpose of comparisons, we also consider settings with linear income taxes as

well as Þrst-best differential lump-sum taxes.

A second important feature of our study is our explicit recognition of the two poten-

tial roles of polluting good taxes: externality-correcting and optimal tax considerations.

That taxation of polluting goods must not be based solely on environmental grounds is

often ignored in the discussions of this issue. This is a serious omission that may result

in misdirected policy recommendations. Whereas the negative externality properties of

polluting goods call for their taxation, their �necessity� attribute calls for their subsi-

dization. Whether polluting goods should be taxed or subsidized thus depends, in the

absence of explicit emission taxes, on which effect dominates the other. Of course, the

(non-environmental) efficiency costs of such taxes or subsidies also play a role here.

The paper also attempts to partially Þll another gap in the literature, independently

of environmental issues. This concerns numerical calculations of optimal general in-

come tax schedules when household types are Þnite. With the notable exception of

Saez (2000), we are unaware of any such studies which are calibrated for a �real� econ-

omy. The current paper solves numerically a general income tax problem with two

dimensions of heterogeneity. The model is calibrated for France. It enables us to ex-
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amine the directions in which the incentive compatability constraints of various income

groups bind.

We model an economy consisting of four groups of individuals who differ in earning

abilities and may differ in tastes as well.1 They have preferences over labor supply,

two categories of consumer goods, �non-polluting� and �polluting�, and total level of

emissions in the atmosphere (a negative consumption externality). Emissions result

when people consume polluting goods. We identify the consumer types, specify which

goods are polluting and which ones are not, and then derive the parameter values

of the consumers� utility functions (assumed to be nested CES in labor supply and

goods, and in polluting and non-polluting goods). We carry out these tasks using a

mix of calibration and estimation methods as dictated by the limitations of the data

available. All the data come from the �Institut National de la Statistique et des Etudes

Economiques� (INSEE), France.

The four groups are identiÞed as �managerial staff�, �intermediate-salaried employ-

ees�, �white-collar workers� and �blue-collar workers�. The data covers 117 consump-

tion goods which we aggregate into: non-energy consumption representing non-polluting

goods, and energy-related consumption representing polluting goods. The data enables

us to determine the groups� earning abilities, their labor supplies and their net-of-

tax-wages. We estimate the values of the elasticities of substitution between labor

supply and consumption goods, and between polluting and non-polluting goods, using

annual data on labor supply and consumption of different goods (energy-related and

non-energy) in France for the years 1970�97. We derive the other parameter values of

the utility function (except for emissions) by calibrating the model for the French econ-

omy. We base the calculation of the emissions parameter on the assumption that the

social damage of a ton of carbon emissions is 850 French francs. This reßects the 1990

recommendation of a carbon tax of this magnitude by the �Groupe Interministériel sur

1Ideally, one would like to allow for more types. The limitations of the data does not allow this,
however.
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l�Effet de Serre��a French Government Commission set up to undertake an economics

study of the greenhouse effect.

We specify ten different tax regimes and compute the consumption levels, labor

supplies, and utilities of the four groups, as well as the supporting optimal taxes, un-

der each. A system of uniform lump-sum taxes constitutes our �benchmark�. Three

tax regimes are built around a linear income tax system. In one, no (differential) con-

sumption taxes are levied. In the other two, the polluting good is taxed once at the

�Pigouvian� rate and once optimally. Four tax regimes are formed around a general

income tax schedule. In one, no (differential) commodity taxes accompany the income

tax. The next two constrain the polluting good tax to be linear. The tax is set once

at the Pigouvian rate and once optimally. Finally, we allow for a nonlinear tax on the

polluting good. In all these cases, the non-polluting good serves as the numeraire and

thus goes untaxed. The last two tax regimes allow for differential lump-sum taxes with

and without a tax on the polluting good.

All computations are performed twice; once under the assumption that different

individual types have identical preferences and once that they have heterogeneous pref-

erences. Under the Þrst assumption, the tax on the polluting good will have solely an

externality-correcting role.2 Our preference speciÞcation implies that, without emis-

sions, commodity taxes would be redundant in this case. Income taxation (whether

general or linear) is all that is needed for optimal tax policy. The efficacy and the role

of environmental taxes are thus understood best in this case. Under the second scenario,

when individuals differ in taste, differential commodity taxes are useful instruments of

tax policy. Consequently, the optimal tax on the polluting good will have two com-

ponents: one for correcting the pollution and the other for conventional optimal tax

objectives.

The optimal tax computations help shed light on a host of policy issues. SpeciÞcally,

2See Cremer et al. (1998).
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we shall seek to provide answers to the following questions. (i) To what extent envi-

ronmental taxes push the society�s utility frontier upwards? In particular, what is the

power of environmental taxes in this respect relative to income tax instruments? (ii) Do

the redistributive properties of environmental taxes depend on what income taxes are

employed, namely, a linear income tax, a general income tax, or differential lump-sum

taxes? (iii) Which groups gain and which lose as result of environmental taxes and to

what extent (using a Utilitarian social welfare function)? (iv) Does levying environmen-

tal taxes imply a �double dividend�? (v) What is the size of the optimal environmental

tax relative to the Pigouvian tax in the second-best? Suppose polluting goods must be

taxed for two reasons: externality-correcting and optimal tax considerations: (vi) Would

optimal tax considerations alone call for their taxation or subsidization relative to non-

polluting goods? (vii) Will externality-correcting-cum-optimal-tax-objectives call for a

net tax or a net subsidy on the polluting goods? (viii) How is this affected by the elas-

ticity of substitution between polluting and non-polluting goods? (ix) If environmental

taxes are set at the Pigouvian rate, rather than optimally, will the society�s welfare

necessarily improve? Finally, and independently from environmental issues, the paper

sheds light on four questions relating to general income and consumption taxation. (x)

What is the relationship between the marginal income tax rate and the elasticity of

substitution between leisure and consumption goods? (xi) To what extent, relative to

a linear tax system, a general income tax schedule enhances the society�s ability to

achieve its optimal tax objectives? (xii) How prevalent is bunching in nonlinear income

tax schedules, and will it be affected by the availability of consumption taxes? (xiii)

How effective are nonlinear consumption taxes as instruments of optimal tax policy?

2 The model

The economy consists of four groups of individuals who differ in earning abilities and

may differ in tastes as well. Each person, regardless of his type, is endowed with one unit
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of time. He has preferences over labor supply, L, and two categories of consumer goods:

a �non-polluting� good x, a �polluting good� y, and total level of emissions E in the

atmosphere. Emissions are created through the consumption of the polluting good. All

consumer goods are produced by a linear technology subject to constant returns to scale

in a competitive environment. The producer prices of consumer goods are normalized

at one.

All consumer types have nested CES preferences in goods and labor supply and in

the two categories of consumer goods. They also have identical elasticities of substitu-

tion between leisure and non-leisure goods, ρ, and between polluting and non-polluting

goods, ω. Differences in tastes, if any, are captured by differences in other parameter

values of the posited utility function, i.e. aj and bj .3 Assume further that emissions en-

ter the utility function linearly. Denote an individual�s wage by w and his gross income

by I = wL. The preferences for a person of type j can then be represented by

fj = U(x, y,
I

wj
; θj)− φE, j = 1, 2, 3, 4, (1)

where θj reßects the �taste parameter� and4

U(x, y,
I

wj
, θj) =

µ
bjQj

ρ−1
ρ + (1− bj)(1− I

wj
)
ρ−1
ρ

¶ ρ
2(ρ−1)

, (2)

Qj =
³
ajx

ω−1
ω + (1− aj)y ω−1ω

´ ω
ω−1

. (3)

Next, normalize the population size at one and denote the fraction of people of type j

to total population by πj . Total level of emissions is then related to the consumption

3We impose these restrictions because of the data limitations. Goulder et al. (1999) have used a
similar structure for consumer preferences to examine the cost effectiveness of different environmental
policies. However, because their model is one of identical consumers, they assume that aj and bj also
do not vary across consumers.

4The role of 1/2 in the exponent of (2) is to ensure that the speciÞed CES utility function is strictly
concave.
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of the polluting good according to

E =

4X
j=1

πjyj, (4)

Consumers choose their consumption bundles by maximizing (1)�(3) subject to their

budget constraints. These may be nonlinear functions as we allow for the possibility that

the income tax schedule is nonlinear. We will, however, for the purpose of uniformity

in exposition, characterize the consumers� choices, even when they face a nonlinear

constraint, as the solution to an optimization problem in which each person faces a

(type speciÞc) linearized budget constraint. To do this, introduce a �virtual income�

into each type�s budget constraint. Denote the j-type�s marginal income tax rate by tj

and let wjn = wj(1− tj). We can then write j�s budget constraint as

pxj + qyj =M j + wjn

µ
Ij

wj

¶
, (5)

where p and q are the consumer prices of x and y, and M j consists of the individual�s

exogenous income plus the income adjustment term (virtual income) needed for lin-

earizing the budget constraint. Note also that Ij = wjLj so that wjn(Ij/wj) = w
j
nLj .

The Þrst-order conditions for a j-type�s optimization problem are

1− aj
aj

¡xj
yj
¢ 1
ω =

q

p
, (6)

(1− bj)¡xj/(1− Ij

wj
)
¢ 1
ρ

ajbj
h
aj + (1− aj)(xj/yj) 1−ωω

i ω−ρ
ρ(1−ω)

=
wjn
p
. (7)

3 Types, goods, and the data

In order to compute the optimal tax rates, we have (i) to identify the consumer types,

(ii) to specify which goods are polluting and which ones are not, and (iii) to estimate

the parameter values of the consumers� utility functions. We carry out these tasks using

a mix of calibration and estimation methods as dictated by the limitations of the data
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available to us. All the data come from the �Institut National de la Statistique et des

Etudes Economiques� (INSEE), France.

To identify the types, we use two data sources: �budget des familles� and �Enqute

sur l�emploi�. The Þrst are consumption surveys conducted for eight different household

types; they are available only for four different years. The second are surveys on em-

ployment and wages also classiÞed by household types. These surveys are available on

an annual basis starting with 1987. The most recent year for which both data sources

are available is 1989. We use this year as the basis for our calibrations. Out of the

eight categories, only four report any wage incomes. They are classiÞed as: �manage-

rial staff�, �intermediate-salaried employees�, �white-collar workers� and �blue-collar

workers�. They constitute the four types of individuals in our model. The data covers

117 consumption goods which we aggregate into: (i) non-energy consumption represent-

ing non-polluting goods (x), and (ii) energy-related consumption representing polluting

goods (y).

The 1989 data also enables us to determine the types� earning abilities; wj �s. We

can compute these from data provided on gross wage incomes (Ij = wjLj) and labor

supplies (Lj) using the relationship wj = Ij/Lj . Wage incomes for each of the four

household types are reported in INSEE (1991b) on an annual basis for the year 1989.

Labor supplies are reported on a weekly basis as �weekly working hours� (WWH) in

INSEE (1989). Given that a typical individual in France works for 47 weeks in a year, his

hourly wage is equal to Ij/47WWHj . To translate this to a yearly Þgure, we multiply

it by 7×52×18 = 6552 where we have assumed that each person has a total endowment
time of 18 hours per day (he must sleep for at least 6 hours). In short, wj is computed

according to

wj =
6552Ij

47WWHj
.

Additionally, we may compute, for each type, a �net-of-tax-wage� wjn = (1 − tj)wj .
This is done on the basis of marginal tax rate, tj , that type j faces. The marginal tax
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Table 1. Data Summary:1989
(monetary Þgures in 100,000 French francs)

(1)
Managerial Staff

(2)
Intermediary Level

(3)
White Collars

(4)
Blue Collars

π 15.41 % 24.77 % 20.00 % 39.82 %

px 2.541108 1.742072 1.279786 1.283748

qy 0.155970 0.134835 0.098048 0.117815

pQQ = px+ qy 2.697078 1.876907 1.377834 1.401563

px/pQQ 0.942171 0.928161 0.928839 0.915940

qy/pQQ 0.057829 0.071839 0.071161 0.084060

L 0.296164 0.268980 0.257534 0.276849

w 7.254181 4.407053 3.004338 2.760310

t 0.288000 0.192000 0.144000 0.096000

wn 5.164977 3.560899 2.571714 2.495320

M 1.167396 0.919096 0.715530 0.710735

rates for 1989 are from the French official tax publications (Ministere de l�Economie et

des Finances, 1989). Note also that from the Þgures for wjn and Lj, we can calculate

the value of the j-type�s virtual income, M j , through equation (5). Table 1 provides a

summary of the 1989 data.

Next, we must estimate of the parameter values of the utility function. The limited

(to only four years) time series data on consumption of different types preclude us from

estimating the parameters ρ,ω, bj and aj directly from Þrst-order conditions (6)�(7). For

this, we have to use another data source. This data, given in INSEE (1998), is annual

but macro; i.e. aggregated over all household types. The data covers the years 1970�

1997 and is given both at 1980 constant prices as well as current prices. For estimation

purposes, we thus proceed as if equations (6)�(7) apply to a �representative� household.

This allows us to estimate ω and ρ from our aggregate data. Upon estimating ω and ρ,

we calibrate aj and bj from the 1989 disaggregated data. The calibrations are performed

once assuming these parameters differ across individuals (heterogeneous tastes) and once

assuming they are the same (identical tastes).
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3.1 Estimation of ω

Logarithmic transformation of (6), for a representative individual, yields,

ln
x

y
= constant+ ω ln

q

p
. (8)

Equation (8) serves as our estimating equation. Its OLS estimation yields (with the

standard errors of the estimates in parentheses)

ln xy = - 2.2653 +0.2035 ln qp ,

(0.0193) (0.1072)
(9)

R2 = 0.1218; DW = 0.1369.

The coefficient of ln(q/p) in (9) is not statistically signiÞcant. However, the very low

value of DW statistic in (9) indicates that there is a serious problem of autocorrelation

among the residuals. To correct for this, we next consider the OLS estimation of equa-

tion (8) with the lagged values of ln(x/y) and ln(q/p) also as regressors. Using OLS

again, we obtain

ln xy = - 0.0265 +0.2689 ln qp −0.2236 ln( qp)−1 +0.9927 ln(xy )−1
(0.1788) (0.0914) (0.0899) (0.0792)

(10)

R2 = 0.8869; DW = 1.8481.

The DW statistic in (10) is close to 2 and the coefficient of ln(q/p) is statistically

signiÞcant. Our estimate of ω, the elasticity of substitution between x (non-energy

related goods) and y (energy related goods), is thus 0.2689.5

3.2 Estimation of ρ

For the purpose of estimating ρ, we assume that individuals choose their optimal al-

locations on the basis of a �two-stage� optimization process. Each person chooses Q,
5We are not aware of any other econometric studies to estimate this parameter�at least not within

the context of dividing goods between polluting and non-polluting and certainly not for the French data.
Goulder et al. (1999), citing an earlier study by Cruz and Goulder (1992) depicting the US economy in
1990, use a value of 0.85 for this parameter.
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interpreted as �aggregate expenditure on consumer goods�, and L to maximize (2) in

the Þrst stage and then allocates Q between consumption of x and of y in the second

stage. The Þrst-order condition for the second-stage problem is then given, as previ-

ously, by equation (6). As to the Þrst-stage, one can write the budget constraint of a

j-type as

pQQ = w
j
nL+M

j, (11)

where pQ is the �price� of Q. This yields the Þrst-order condition

1− bj
bj

µ
Qj

1− Lj
¶ 1

ρ

=
wjn
pQ
. (12)

Assuming a representative individual, logarithmic transformation of (12) yields,

ln
Q

1− L = constant+ ρ ln
wn
pQ
. (13)

Equation (13) is estimated using data on L,wn, Q and pQ for years 1970-1997 from

INSEE résultats (1998). As far as L is concerned, the reported data are on annual

working hours (AWH). With our previous assumption that the yearly endowment of

time (normalized to be one) is 6552 hours, we thus calculate L as AWH/6552. Turning

to wn, we have data on total number of wage earners (TWE), their wage incomes

(TWI), and their wage income taxes (TWT ). This allows us to calculate wn on a

yearly basis as

wn =
(TWI − TWT )/TWE

AWH/6552
.

Turning to Q, we have data on the consumption of all households and not just the

wage earners as desired. To generate the latter series, we assume that wage earners�

share of total consumption during 1979�1997 has remained the same as in the year

1989 (for which we have the Þgures). Finally, we estimate pQ from 1979�1997 data on

consumptions at current and at constant prices.
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Table 2. Calibrations: heterogeneous tastes
(ρ = 0.7927,ω = 0.2689)

(1)
Managerial Staff

(2)
Intermediary Level

(3)
White Collars

(4)
Blue Collars

a 0.999988 0.999971 0.999972 0.999945

b 0.501877 0.467265 0.446461 0.466293

The OLS estimation of (13) yields (with the standard errors of the estimates in

parentheses)

ln Q
1−L = 3.4706 +0.7927 ln wnpQ

(0.0189) (0.0815)
(14)

R2 = 0.7843; DW = 1.0901.

The low value of the DW statistic indicates that the residuals are serially correlated.

We nevertheless do not attempt to correct for this. This is because our 0.7927 estimate

of ρ is very much within the range of its estimates in the literature. Stern (1976), in

his classic study of an optimal linear income tax system, suggests a value of 0.4 on the

basis of estimates for married males in the US. Wales and Woodland (1979) give the

estimates of 0.83 and 0.91 (depending on the estimation method) based on PSID data.

Goulder et al. (1999) use a value of 0.96. More recently, Bourguignon (1999) observes

that the existing estimates for the wage elasticity of labor supply are anywhere between

0.1 and 0.5. These values can be shown to correspond to a range of estimates for ρ

equal to 0.58 to 1.06; see the Appendix.

3.3 Calibration of aj and bj

Given the estimates of δ and ρ, one can then compute aj and bj, for j = 1, 2, 3, 4, on the

basis of 1989 INSEE data. We calculate the values of aj�s and bj �s numerically as the

solution to the non-linear system of equations (6)�(7) using GAUSS. They are presented

in Table 2 (and in Table 6 in the Appendix for different values ρ and ω). Note that
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Table 3. Calibrations: idetical tastes
(ρ = 0.7927,ω = 0.2689)

a 0.999970

b 0.468704

whereas the values of bj depend on both ρ and ω, the values of aj are independent of ρ

(but depend on ω).

Finally, we recompute the values of aj and bj on the assumption that they do not

differ across types; i.e. all individual types have identical tastes. This is again done

on the basis of equations (6)�(7) using the data aggregated over the four types and

weighted in proportion to their size. These numbers are reported in Table 3 (and in

Table 7 in the Appendix for different values ρ and ω).

3.4 Calulation of φ

The starting point for calculation of φ, the coefficient of emissions in the utility function,

is a 1990 recommendation of the �Groupe Interministériel sur l�effet de Serre�. This

was a French Government Commission set up to undertake an economics study of the

greenhouse effect. The recommendation called for a carbon tax of 850 French Francs per

ton of emitted carbon. We assume that 850 French francs measures the social damage

of a ton of carbon emissions. Next, we calculate the carbon content of a unit of the

polluting good (energy-related consumption goods).6 This provides an estimate of the

social damage of a unit of emissions, i.e. φ/µ where µ is the shadow cost of public funds

(the Lagrange multiplier associated with the government�s budget constraint). To arrive

at an estimate of φ, we calculate µ by solving our optimal tax problem in the Þrst best

without the externality. This gives us a value for φ for each set of parameter values for

ρ,ω, aj and bj , j = 1, 2, 3, 4.

6We do this based on the carbon content of oil, coal, natural gas and electricity, and by calculating
their share in energy-related consumption goods.
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4 Tax policies

The usefulness of environmental taxes must be evaluated in relation to other tax instru-

ments that the government has at its disposal. Of particular interest is the structure of

the accompanying income taxes, e.g., linear or nonlinear. The feasibility of a particular

tax instrument is ultimately determined by the type of information that is available

to the tax administration. Public observability of individual incomes typically allows

the government to impose nonlinear income taxes. Nevertheless, the income tax liter-

ature has traditionally paid a great deal of attention to the study of the linear income

taxation. We will consider both income tax instruments.

4.1 The linear income tax

The procedure for determining the optimal tax policy when the income tax is linear, is

to determine the values of the tax parameters that maximize a social welfare function

deÞned in terms of the individuals� indirect utility functions. For this purpose, we Þrst

determine the j-type�s demand functions for nonpolluting and polluting goods, and his

labor supply function, from equations (5)�(7). We have

xj = x(p, q, wjn,M
j ; θj); yj = y(p, q, wjn,M

j ; θj); Lj = L(p, q, wjn,M
j; θj). (15)

Note that the demand and supply functions for different consumer types will be of

different functional forms, when written as functions of p, q, wjn and M j, whenever aj

and bj differ across types. Finally, using (15), we can derive the j-type�s indirect utility

function: v(p, q, wjn,M j ; θj).

Turning to social welfare, we adopt a utilitarian outlook.7The government�s problem

can be speciÞed as one of choosing its tax instruments in order to maximize

4X
j=1

πjv(p, q, wjn,M
j ; θj)− φ

4X
j=1

πjy(p, q, wjn,M
j; θj), (16)

7This may easily be generalized by considering an �iso-elastic� function with a varying �inequality
aversion index�.
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subject to its revenue constraint

4X
j=1

πj
£
(p− 1)xj + (q − 1)yj + twjLj − T ¤ ≥ R̄, (17)

where t is the tax rate and T is the lump-sum tax element of the linear income tax

schedule, and R̄ is the government�s external revenue requirement. Note also that in

the absence of any other exogenous income, T = −M j.

The full array of tax instruments in the government�s optimization problem are:

p− 1, q − 1, t and T . However, because the demand functions for goods, and the labor
supply function, are all homogeneous of degree zero in p, q, wjn andM j, we can, without

any loss of generality, set one of the commodity tax rates at zero (one of the consumer

prices at one). We will choose the nonpolluting good to be the one whose tax rate is

set at zero. That is, we shall set p = 1 everywhere. Different tax policies are then

identiÞed through imposition of different constraints on these instruments and thus on

the problem (16)�(17).

We consider four tax policies. The Þrst is one of a uniform lump sum tax (ULST ).

This serves as our �benchmark� for evaluating other tax regimes. To derive the equi-

librium under this policy, we have to impose the additional constraints that q = 1 and

t = 0 on problem (16)�(17). Consequently, T will be the only available tax instrument.

Next, we consider the possibility of levying a linear income tax absent any commodity

taxes (LITACT ). To Þnd the equilibrium under LITACT , we impose the constraint

q = 1 on problem (16)�(17). The feasible tax instruments are now only t and T . Third,

we consider a linear income tax accompanied by a tax on the polluting good equal to its

marginal damage (LINPDT ). This requires the constraints q−1 = φ/µ, where µ is the
Lagrangian multiplier associated with the government�s budget constraint (17).8 Again,

the optimizing tax instruments are t and T . Finally, we consider a tax regime consisting

8This deÞnition of the �Pigouvian tax� is that of Cremer et al. (1998). Bovenberg and van der
Ploeg (1994), and others, deÞne this term differently. We also calculate the value of the Pigouvian tax
based on their deÞnition. This is discussed in more detail at the end of Section 5.
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of a linear income tax in which the polluting good is taxed optimally (LINODT ). No

additional constraints need be imposed on problem (16)�(17); the feasible tax instru-

ments are t, T and q.

4.2 The general income tax

Next, we consider four other tax regimes formed around a general income tax (where

we continue with our normalization rule of setting the tax on the nonpolluting good to

be zero; i.e. p = 1). The main complication that arises when one allows for a general

income tax is that (in contrast to a linear income tax) one can no longer count on the

individuals� incentive compatibility constraints to be satisÞed automatically. To ensure

that the desired equilibrium satisÞes these constraints, one has to impose them on the

government�s optimization problem directly.

We employ two different procedures depending on the feasibility of nonlinear com-

modity tax instruments.

4.2.1 Linear commodity taxes

Denote M j +wjnLj ≡ cj. From equations (5) and (6), determine the demand functions

for xj and yj as xj = �x(p, q, cj ; θj) and yj = �y(p, q, cj; θj). Next, derive cj and Ij as the

solution to the following problem for the government. Maximize

4X
j=1

πjU
¡
�x(p, q, cj; θj), �y(p, q, cj ; θj),

Ij

wj
; θj
¢− φ 4X

j=1

πj �y(p, q, cj; θj), (18)

with respect to cj and Ij, subject to the resource constraint

4X
j=1

πj
¡
Ij − cj + (p− 1)xj + (q − 1)yj¢ ≥ R̄, (19)

the incentive compatibility constraints, for j 6= k; j, k = 1, 2, 3, 4,

U
¡
�x(p, q, cj ; θj), �y(p, q, cj; θj),

Ij

wj
; θj
¢ ≥ U¡�x(p, q, ck; θj), �y(p, q, ck; θj), Ik

wj
; θj
¢
, (20)
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and an additional constraint that q = p = 1. Having determined cj and Ij , and thus

xj and yj , we can then determine tj , the j-type�s marginal income tax rate required to

implement these allocations, from (7). Moreove, if implementation is to be carried out

through a menue of linear income tax schedules (possibly truncated), we can calculate

the required lump-sum tax to be levied on the j-type, T j(= −M j), from (5).

The Þrst case we examine using this procedure, is when no commodity taxes accom-

pany the general income tax (GITACT ). This is achieved by imposing the constraint

q = 1 on problem (18)�(20). The next two tax regimes we examine, complement a

general income tax with a tax on the polluting good. One sets this tax at a Pigouvian

level (GITPDT ) and the other chooses it optimally (GITLDT ). They are found by

following exactly the same procedure as above except that in the former q is set equal

to 1+ φ/µ (instead of 1), and in the latter q is chosen optimally.

4.2.2 Nonlinear commodity taxes

The tax policies considered thus far, have stipulated a tax rate on the polluting good

(including zero) which must be the same for all individuals regardless of their type. We

next investigate the signiÞcance of differentiating this tax amongst the individual types

(i.e. levying a nonlinear tax on the polluting good). Whether or not the government

can impose nonlinear taxes (on the polluting good or any other good) would of course

depend on the structure of public information in the economy. If consumption levels

are known at an individual level (i.e. who buys how much), nonlinear commodity taxes

are feasible. On the other hand, if the available public information is only on aggregate

sales (anonymous transactions), we can only levy linear commodity taxes. While the

latter possibility is more realistic for the majority of goods, there exist real examples

where individual consumption levels of a polluting good are observable (e.g. electricity).

The problem of nonlinear taxation of such goods is thus a relevant policy consideration.

Consequently, we will also study a tax regime in which polluting goods may be taxed

nonlinearly (GITNDT ).
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The availability of both a general income and a general commodity tax allows us to

derive the optimal allocations directly. This requires Þnding the solution to the following

government problem. Maximize

4X
j=1

πjU(xj, yj ,
Ij

wj
; θj)− φ

4X
j=1

πjyj , (21)

with respect to xj, yj and Ij, subject to the resource constraint

4X
j=1

πj(Ij − xj − yj) ≥ R̄, (22)

and the self-selection constraints

U(xj , yj,
Ij

wj
; θj) ≥ U(xk, yk, I

k

wj
; θj), j 6= k; j, k = 1, 2, 3, 4. (23)

Having determined the optimal allocations (xj , yj, Ij), one can calculate the (marginal)

tax rate on the polluting good, for the j-type, from equation (6). This is given by

(1/aj − 1)(xj/yj)1/ω − 1. Then, T j and tj are determined from equations (5) and (7).

4.3 First best and welfare

For comparison purposes, we will also calculate two tax regimes in which differential

lump-sum taxation is feasible. They differ in their tax treatment of the polluting good.

In one, the polluting good goes tax free (FBADT ). This is found by dropping the self-

selection constraints (20) in problem (18)�(20) and adding the constraint that p = q = 1.

In the other tax regime, the polluting good is taxed optimally. This is of course, the

Þrst-best allocations (FB). This is attained by dropping the self-selection constraints

(23) in problem (21)�(23).

Finally, to conduct welfare comparisons, we report equivalent variation, EV , of a

change in policy from the �benchmark allocation� B to one of the tax �alternatives�

discussed. Thus, for each type j = 1, 2, 3, 4, we calculate an EV j from the following

relationship

v(pB, qB, w
j
n,B, T

j
B + EV

j
i ) = v(pi, qi, w

j
n,i, T

j
i ),
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where subscript B denotes the benchmark (ULST ) and subscript i refers to one of

the tax options: LITACT , LINPDT , LINODT , GITACT , GITPDT , GITLDT ,

GITNDT , FBADT , and FB.

5 Optimal taxes with identical tastes

In this section, we compute the solutions under our various tax schemes assuming that

the four types have identical tastes. The efficacy and the role of environmental taxes are

understood best in this case. The reason for this is that the tax on the polluting good

here will have solely an externality-correcting role. Our speciÞcation of preferences

in (2)�(3) implies that without emissions, commodity taxes are redundant. Income

taxation (whether general or linear) is all that is needed for optimal tax policy. [See

Atkinson and Stiglitz (1976) and Deaton (1979)].

The results are reported in Table 4. To examine the robustness of our results,

we additionally calculate the tax solutions for a number of other values of ρ and ω

around their estimated values. These solutions (corresponding to ρ = 0.5, 0.99 and

ω = 0.1, 0.5, 0.99) are reported in Tables 8�12 in the Appendix. The general pattern

of the results and the lessons that emerge do not appear to depend on the values of

ρ and ω. For the sake of brevity, we limit our discussions below to the case where

ρ = .79 and ω = 0.2689. However, when relevant, we will also mention the changes

that occur as either ρ or ω changes. We begin with tax policies that do not include

environmental taxes thus leaving pollution �uncorrected�. This allows us to isolate the

impact of environmental taxes when we introduce them. First is the benchmark case

of a uniform tax on all types (ULST ). This requires that everyone pays a tax equal to

36,764 French francs to pay for government expenditures. At the other extreme, we

have the case with differential lump-sum taxes but no environmental taxes (FBADT ).

This is characterized by a lump-sum tax of 494,986 and 128,684 francs on types 1 and

2 and a positive grant of 90,163 and 134,042 francs on types 3 and 4. It is clear that
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the uniform taxation of all types leaves us way off the �ideal� redistributive tax.

Next, consider a linear income tax. This gets the economy closer to the FBADT

by increasing the tax payments of types 1 and 2 to 57,751 and 40,214 while reducing

the taxes of types 3 and 4 to 31,027 and 29,375 francs. [A j-type household�s total tax

payments, from all sources, is denoted by TP j in the Tables.] The tax schedule that

achieves this consists of a rate of 17.6% coupled with a lump-sum tax of 7,312 francs.

Note that the lump-sum element here is a tax and not a positive grant. This suggests

that our linear tax system is in fact regressive.9

A general income tax (GITACT ) further improves the redistributive power of the

tax system. The tax payments of types 1 and 2 are now increased to 106,698 and 43,429

while the taxes of types 3 and 4 are reduced to 16,984 francs each. Types 3 and 4

end up paying the same taxes because the tax equilibrium here calls for pooling these

two types together giving them an identical income and consumption bundle (but of

course different labor supply levels). This is implemented by marginal tax rates of 0.6,

21.4, 22.8 and 9.1 percent on types 1 to 4. If we use a menu of linear tax schedules for

implementation, these marginal income tax rates will have to be accompanied by lump-

sum taxes of 104,818 , 3,626, -11,919 and 4,874 francs. Note also that the highest-wage

person�s marginal income tax rate is positive (though very small). This is in keeping

with Cremer et al.�s (1998) result who showed that unless the polluting good is taxed

optimally, the allocation of the �top� individuals must be distorted.

We now turn to the tax systems that include environmental taxes. Begin with the

implications of introducing an environmental tax when we have differential lump-sum

taxes. The FB equilibrium is supported by a lump-sum tax of 494,495 and 127,981

francs on types 1 and 2 and a positive grant of 91,087 and 135,022 francs on types 3 and

4. Additionally, there will be a 10% tax on the polluting good. This latter tax raises

493, 704, 923 and 979 francs from types 1 to 4. Note that the lower wage persons will

9The average tax rates for types 1 to 4 are: 20.11%, 21.47%, 22.98% and 23.38%.
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Insert Table 4 here.
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pay higher environmental taxes. This reßects the fact that at the Þrst-best utilitarian

solution, lower wage-earners will consume more of all goods, including the polluting

good, than the higher wage-earners and thus pay higher taxes too.10

The introduction of environmental taxes in a Þrst-best environment results in a

redistribution of total tax payments by different households. A comparison of FBADT

and FB reveals that total tax payments of types 1 and 2 are increased by two and one

francs while the tax payments of types 3 and 4 are reduced by one franc each. These

changes are very modest indeed. The welfare implications of the environmental tax can

be determined by considering the changes in the EV terms for different types (as we

move from FBADT to FB). Types 1�4 gain 29, 18, 11 and 9 francs. Obviously, we

have a Pareto improving environmental tax, albeit, a modest one.11

Next, consider introducing an environmental tax into second-best settings. The in-

teresting point to note now is that our preference speciÞcation implies that LITPDT =

LITODT and GITPDT = GITLDT = GITNDT . That is, the optimal tax on the

polluting good is equal to the Pigouvian tax (and is linear). Start with the case when

the income tax instrument is linear. The polluting good should be taxed at a rate of

9.4%. This allows the income tax rate to be cut from 17.6% to 17.1%. On the other

hand, the lump-sum tax element of the linear income tax is increased from 7,312 to

7,365 francs. The introduction of the environmental tax thus allows the government to

cut other distortionary taxes in the economy.

The introduction of an environmental tax into a linear income tax system, has very

modest redistributive implications. Types 1 and 2 pay eleven and one francs less and

types 3 and 4 pay three and four francs more in total taxes. In welfare terms, EV

10This result corresponds to the general property that with a utilitarian, or any concave, social welfare
function, Þrst-best allocations require the higher wage persons to work more but to receive no more (in
after tax pay) than the lower-wage persons. See Stiglitz (1987).
11The introduction of an additional instrument (which is not redundant) pushes the utility frontier

upwards. However, when the optimum is characterized by the maximum of a particular social welfare
function (utilitarian or otherwise), this does not necessarily imply a Pareto improvement. This point
should be borne in mind later on also when we discuss other tax policies that are not Pareto improving.
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Þgures in going from LITACT to LITODT indicate gains of 27, 15, 7 and 7 francs for

types 1 to 4. While, per household, these are clearly modest gains, it is interesting to

note that the introduction of the environmental tax makes all household types better

off. The tax is Pareto improving.

Now consider the introduction of an environmental tax into a general income tax

framework. The optimal environmental tax is 9.7%. As with the linear income tax case,

introduction of an environmental tax allows �other� distortionary taxes (now consisting

of the marginal income tax rates on all types) to be cut. We observe that the marginal

tax rate of types 2 to 4 are reduced from to 21.4% to 21.0%, from 22.8% to 22.4% and

from 9.1% to 8.6%. Additionally, the marginal tax rate of type 1 goes to zero. This is

as expected, and reßects the famous no distortion at the top result. Note also the tax

equilibrium continues to be one of pooling types 3 and 4.

Turning to redistributive implications, the changes in total tax payments continue

to be very modest. Payments of types 1 and 2 are reduced by ten and one francs

while those of types 3 and 4 are increased by three francs each. To gauge the welfare

implications of these changes, consider what happens to the various EV terms as we go

from GITACT to GITPDT . They indicate gains of 26, 15, 9 and 8 francs for types

1 to 4. The environmental tax is thus Pareto improving in this setting as well. We

also note that the gains for each household type is very similar to the gains under a

linear income tax. It appears that the welfare gains due to environmental taxes do not

depend on whether the government employs a linear or a general income tax to achieve

its optimal tax objectives.

Examining Tables 8�12 indicate that the nature of our results is robust to the vari-

ations in the values of ρ and ω. Two points are worth mentioning. First, as the value of

ρ increases, the optimal marginal income tax rate decreases (with linear as well as gen-

eral income tax schedules). This is intuitive enough. A higher elasticity of substitution

between leisure and goods imply a higher efficiency cost of taxation. This in turn calls

23



for the optimal tax rate to be lower. Note also that when we have a linear tax schedule,

the lump-sum tax element also increases. The tax remains positive even for the lowest

value of ρ (=0.5) thus implying a regressive income tax system. Second, the optimal

environmental tax is not sensitive to the variations in ω. This is not surprising. With

identical tastes, the role of the environmental tax is solely externality correcting. This

role is insensitive to the variations in ω.

We close this section by making two Þnal observations. The Þrst observation con-

cerns the recent controversy over the �double-dividend� hypothesis. According to this

hypothesis, environmental taxes are more welfare enhancing in second-best environ-

ments. The �argument� is that there will be two sources of beneÞts in the second-best.

One is, as in the Þrst-best, the welfare improvement due to the imposition of Pigouvian

taxes. The second, and the purportedly �additional� source, is due to the reduction in

the existing distortionary taxes (that the �new revenues� make possible). There are a

number of different interpretations of this claim; see Goulder (1995) for a survey. One

simple and direct way to examine the validity of the double dividend hypothesis is by

comparing the welfare gains that we have computed for the Þrst- and the second-best

settings. The gains in going from FBADT to FB were 29, 18, 11 and 9 francs for types

1�4. The corresponding gains were 26, 15, 9 and 8 francs in going from GITACT to

GITPDT and 27, 15, 7 and 7 francs in going from LITACT to LITODT . Each type

thus gains more when the environmental tax is introduced in the Þrst-best than when

it is introduced in either of the two second-best settings considered. Evidently, not only

is there no double dividend, there is even less of a dividend in the second-best! Note

also that this result is robust in that it holds in all the tax solutions derived under the

different values of ρ and ω we have considered.

Our second observation relates to the concept of �the Pigouvian tax�. Our discus-

sion of the Pigouvian tax and its equality to the optimal environmental tax, given our

speciÞcation of preferences, is based on Cremer et al.�s (1998) deÞnition of the Pigouvian
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tax. According to this deÞnition, a tax is called Pigouvian if it is equal to the marginal

social damage of pollution, as measured by φ/µ. Bovenberg and van der Ploeg (1994),

Bovenberg and de Mooij (1994), Kaplow (1996), Fullerton (1997) and others deÞne the

Pigouvian tax differently. Their deÞnition is based on the Samuelson�s rule for optimal

provision of public goods. They term a tax Pigouvian if it is equal to the sum of the

private dollar costs of the environmental damage per unit of the polluting good across

all households. In our notation, their Pigouvian tax is
P
j π

jφ/αj, where αj is the

j-type�s private marginal utility of income. To see how the optimal environmental tax

compares with this conception of the Pigouvian tax, we have also calculated the values

for this alternative deÞnition. This is shown in our tables by τ ≡ φ
P
j π

j/αj. Note

that whereas the optimal environmental tax is calculated to be 9.4%, under LITACT ,

τ is equal to 9.1%. That is, the optimal environmental tax is larger than the Pigouvian

tax.

This Þnding may appear surprising in light of Bovenberg and de Mooij�s (1994) result

that the optimal environmental tax must be lower than the Pigouvian tax. It does not

contradict their claim, however. The point is that their result holds if preferences satisfy

certain separability assumptions and that labor supply functions are upward sloping.

Our preference speciÞcation does satisfy their separability assumptions, but it does not

guarantee an upward-sloping labor supply function. Indeed, under LITACT , the tax

equilibrium calls for all types to be on the backward-bending part of their labor supply

functions. This in turn results in a marginal cost of public funds which is less than

one causing the optimal environmental tax to be larger than τ . The importance of

our Þnding is that it occurs under an empirically relevant optimal tax scheme. It thus

indicates that, as a policy prescription, one may not be able to rely on Bovenberg and

de Mooij�s result. This result is also robust and holds in all the tax solutions derived

under the different values of ρ and ω we have considered. Note also that the optimal

environmental tax continues to be larger than τ under a general income tax (9.7% versus

25



9.4%).12

6 Optimal taxes with heterogeneous tastes

We now turn to the case when individuals have heterogeneous tastes. Under this circum-

stance, differential commodity taxes are useful instruments of tax policy. Consequently,

the optimal tax on the polluting good will have two components: one for correcting the

pollution and the other for conventional optimal tax objectives. Failure to understand

this point may result in wrong policy recommendations.

The results are reported in Table 5 (for ρ = 0.7927 and ω = 0.2689), as well as

Tables 13�17 in the Appendix (corresponding to ρ = 0.5, 0.99 and ω = 0.1, 0.5, 0.99).

We again limit our discussion to the case reported in Table 5 while noting any changes

in the results in the footnotes. We start with tax policies that do not include a tax

on the polluting good. These tax policies are thus suboptimal in two ways. They

do not use commodity taxes that can enhance welfare, and they also leave pollution

�uncorrected�. These tax structures appear to be quantitatively very much like those

that resulted under the assumption of identical tastes. The benchmark case of a uniform

tax on all types now requires everyone to pay a tax equal to 36,584 French francs. The

case with differential lump-sum taxes (FBADT ) requires a lump-sum tax of 481,445

and 128,438 francs on types 1 and 2 and a positive grant of 85,462 and 131,461 francs on

types 3 and 4. The linear income tax schedule consists of a marginal tax rate of 18.3%

and a lump-sum tax of 5,724 francs. Again, this is a regressive tax.13 It raises 61485,

39,834, 29,385 and 28,539 francs from types 1 to 4. Finally, the general income tax is

supported with marginal income tax rates of 0.4, 22.6, 17.8 and 11.3 percent on types 1

to 4. It raises 122,813, 40,691, 12665 and 12,665 francs from them. Types 3 and 4 are

again pooled ending up with the same before- and after-tax incomes in equilibrium.14

12Cremer et al. (2000) have shown that with a general income tax, the optimal environmental tax
may be larger, equal to, or smaller than τ .
13As ρ decreases, the lump-sum tax element turns into a rebate, making the tax progressive.
14Their consumption bundles though differ. Identical incomes do not imply identical consumption
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Now consider taxing the polluting good starting with the case when we have dif-

ferential lump-sum taxes. The optimal Pigouvian tax is again 10%. To study the

redistributive implications in going from FBADT to FB, we examine the changes in

total tax payments and welfare of different groups. Total tax payments of types 1 and

2 are increased by 22 and 6 francs while the tax payments of types 3 and 4 are reduced

by 2 and 11. Considering the EV terms, we note that the environmental tax is Pareto

improving resulting in gains of 9, 14, 14 and 19 for types 1�4.

We next turn to second-best settings, beginning with the linear income tax. Out-

comes under LITPDT and LITODT are now markedly different. If we tax the polluting

good simply for �corrective� purposes (LITPDT ), we will tax it by 9.4% (equal to mar-

ginal social damage of pollution). The optimal tax on this good, on the other hand, is a

subsidy of 4.9%. It is apparent that optimal tax objectives calls for a subsidy on pollut-

ing goods (relative to non-polluting goods). Even when adjusted because of pollution

consideration, we still want to subsidize these goods.15 Clearly, tax recommendations

based on Pigouvian considerations alone, can be very misleading.

Note that LITPDT is supported by a marginal tax rate of 17.9% and a lump-sum

tax of 5,759 francs, while LITODT is supported by a marginal tax rate of 18.6% and

a lump-sum tax of 5,704 francs. That is, the marginal income tax rate decreases when

we go to LITPDT , but it increases if we go to LITODT . Taxing the polluting good

optimally in this case increases the other distortionary tax in the economy rather than

reducing it!16

Taxation of the polluting good, also implies redistribution among types. In going

from LITACT to LITPDT , we reduce the total tax payment of type 1 by 253 francs

while increasing the tax payments of types 2�4 by 6, zero and 94 francs. On the other

hand, in going from LITACT to LITODT , we increase the total tax payment of type 1

patterns when tastes differ.
15This result does not hold at high values of ω.
16This result does not hold at high values of ω.
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Insert Table 5 here.
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by 138 francs while reducing the tax payments of types 2�4 by 2, zero and 52 francs. This

suggests that a Pigouvian tax on the polluting good results in an income redistribution

from less well-off to more well-off. An optimal tax on the polluting good, on the other

hand, brings about the desired redistribution from the rich to the poor.

The redistributive implications of LITPDT and LITODT are best highlighted by

contrasting the welfare implications of the two tax schemes. The EV values indicate

that, unlike the homogeneous taste case, the introduction of a tax on the polluting good

(whether Pigouvian or optimal) is no longer Pareto improving. More interestingly, the

two policies will have opposite redistributive implications. Levying a Pigouvian tax

beneÞts the wealthy and hurts the poor. On the other hand, if the polluting good is

taxed optimally, the rich would lose and the poor would gain.17 According to the EV

Þgures, in moving from LITACT to LITPDT , types 1�3 gain 408, 6 and 11 francs

while type 4 (the poor) loses 94 francs. In moving from LITACT to LITODT , types

1�3 lose 171, 12 and 12 francs while type 4 gains 45 francs. That �environmental taxes�

result in a higher degree of redistribution when tastes are heterogeneous should not

be surprising. These taxes now reßect an optimal tax objective in addition to their

externality correcting objective.

Next consider the introduction of an environmental tax into a general income tax

framework. There are three different tax policies: GITPDT,GITLDT and GITNDT .

In case of GITPDT , we should levy a tax of 9.7% on the polluting good. This allows

a cut in the marginal income tax rates for all types. Households of types 1�4 now face

marginal income tax rates equal to zero (down from 0.4), 22.2 (down from 22.6), 17.3

(down from 17.8) and 10.8 (down from 11.3) percent. The total tax payments (income

and consumption) for types 1 and 2 are cut by 305 and 17 francs while types 3 and 4

see their taxes raised by 15 and 120 francs. Clearly, levying a tax on the polluting good

equal to its marginal social damage, induces redistribution from the poor to the rich.

17This result does not hold at high values of ω.
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This is precisely what we observed in the case with the linear income tax. In welfare

terms, the EV values indicate that in going from GITACT to GITPDT , types 1�3

gain by 320, 27 and 3 francs while type 4 (the poor) loses by 113 francs.

Turning to GITLDT , the optimal tax on the polluting good is a subsidy of 5.1%.18

This is in line with what we observed in the linear income tax case. This subsidy

results in an increase in the marginal income tax rates for all types. Types 1�4 now face

marginal income tax rates equal to 0.7 (up from 0.4), 22.8 (up from 22.6), 18.1 (up from

17.8) and 11.6 (up from 11.3) percent. GITLDT also results in a redistribution from

the rich to the poor in marked contrast to GITPDT .19 In going to GITLDT (from

GITACT ), types 1 and 2 pay 169 and 8 francs more in total taxes, while types 3 and

4 pay 9 and 66 francs less. In terms of welfare, the EV values indicate that the move

entails losses of 190, 23 and 8 francs for types 1�3. On the other hand, type 4 gains by

55 francs.

Finally, consider going from GITACT to GITNDT so that the government levies

nonlinear taxes on the polluting good. The tax will be 9.3% for type 1. This is equal

to the marginal social damage of emissions so that the tax is wholly Pigouvian. This

should not be surprising. With the ability to levy nonlinear commodity taxes, the no

distortion at the top result applies. That is, in the absence of pollution, type 1 must

face a zero marginal tax rate on income and on consumption goods. In the presence

of pollution, the top individuals must face only a Pigouvian tax just for the purpose of

correcting the pollution. Turning to types 2�4, type 2 will now face a subsidy of 14.3%,

type 3 a tax of 11.5% and type 4 a subsidy of 4.0%. As far as marginal income tax

rates are concerned, type 1 faces a zero rate (down from 0.4), type 2 a tax rate of 23.2

(up from 22.6), type 3 a tax rate of 17.4 (down from 17.8) and type 4 a tax rate of 11.5

(up from 11.3) percent. Note that types 1 and 3 face a lower rate, and types 2 and

18This will turn to a tax at high values of ω.
19At high values of ω, GITLDT , as with GITPDT , also implies a redistribution from the poor to

the rich!
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4 a higher rate. Imposition of optimal nonlinear taxes on the polluting good does not

induce a universal cut in other distortionary taxes.

Like GITLDT , and in contrast to GITPDT , levying an optimal nonlinear tax on

the polluting good results in a redistribution from the rich to the poor. The extent

of the redistribution, however, is much more signiÞcant. In going from GITACT to

GITNDT , type 1 pays 1,394 francs more in total taxes, while types 2�4, pay 41, 103

and 463 francs less. In terms of welfare, this translates into EV changes of 1,413 francs

loss for type 1 and of 17, 76 and 463 francs gains for types 2�4. Evidently, the nonlinear

tax on the polluting good, and nonlinear commodity taxation in general, is a powerful

redistributive mechanism.

The strong redistributive power of the nonlinear tax on the polluting good can best

be measured by directly comparing GITLDT and GITNDT (which differ only in that

the former levies a linear tax on the polluting good and the latter a nonlinear tax).

If we were to go from GITLDT to GITNDT , type 1 will pay 1,225 francs more in

total taxes, while types 2�4, pay 49, 94 and 397 francs less. In terms of welfare, this

translates into EV changes of 1,223 francs loss for type 1 and of 40, 84 and 408 francs

gains for types 2�4. It appears that switching from a linear tax on the polluting good

to a nonlinear tax, induces redistributive changes that dwarf those brought about by

the introduction of the linear pollution tax in the Þrst place.

One further aspect of the nonlinear taxation of the polluting good that signiÞes

the redistributive power of these taxes is worth mentioning. The tax solutions under

GITADT,GITPDT and GITLDT all involved pooling types 3 and 4 together offering

them the same before- and after-tax incomes.20 On the other hand, GITNDT allows a

separation in the before- and after-tax incomes offered these groups.

We end our discussion by making two observations regarding the implications of

20Types 3 and 4 consume different amounts of polluting and non-polluting goods despite having the
same before-tax incomes. This is due to their different tastes. In the previous identical tastes case,
these types consumed identical bundles. Note also that this property does not hold for higher values of
ω.

31



changing ρ and ω. The former affects the income tax rate and the latter the environ-

mental tax rate. An increase in ρ lowers the optimal marginal income tax rate (with

linear as well as nonlinear income tax schedules), just as it did when tastes were iden-

tical. In the present case, however, the lump-sum element of the linear income tax will

eventually turn into a subsidy. That is, the linear income tax schedule will become

progressive. Second, observe that the optimal environmental levy will turn from a net

subsidy at low values of ω to a tax at high values of ω. The reason is that as ω increases

the efficiency cost of a potential tax differential between polluting and non-polluting

goods increases. This reduces the optimal rate of subsidy on polluting goods due to

redistributive considerations.21

7 Conclusion

This paper has constructed a model with four different groups of households who

have preferences over labor supply, consumption of polluting (energy related) and non-

polluting (non-energy) goods and emissions. It has quantiÞed the model for the French

economy and has computed its optimal tax equilibria under ten different tax regimes.

In doing so, it has been able to shed light on a number of questions concerning the

properties of optimal environmental taxes. In particular, it has shown that: (i) En-

vironmental taxes are welfare improving but the changes are very modest; they add

minimally to gains due to income tax instruments. (ii) The welfare gains due to envi-

ronmental taxes remain low regardless of the income tax instrument employed (linear,

general or differential lump-sum). (iii) Environmental taxes allow for further redistribu-

tion from higher-ability to lower-ability persons and can make all types better-off. (iv)

Environmental taxation does not entail a �double dividend�; they result in higher wel-

fare gains in the Þrst-best than in the second-best. (v) In the second-best, the optimal

environmental levy is larger than the Pigouvian tax. When polluting goods must be

21In the identical tastes case, when the environmental tax reßects only Pigouvian considerations, its
optimal value was invariant to changes in ω.
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taxed for both externality-correcting and optimal tax considerations: (vi) they should

be subsidized relative to non-polluting goods because of their redistributive properties.

(vii) Externality-correcting-cum-optimal-tax-objectives call for a net subsidy on pollut-

ing goods. (viii) This net subsidy will turn into a net tax as the elasticity of substitution

between polluting and non-polluting goods increase. (ix) Levying a tax on the pollut-

ing good equal to its marginal social damage is welfare reducing in that it induces a

redistribution from the poor to the rich. (x) The optimal marginal income tax rate

decreases (with linear as well as with general income tax schedules) as the elasticity of

substitution between leisure and consumption goods increase. (xi) Graduating marginal

income tax rates (i.e. using a general income tax schedule instead of a linear tax sys-

tem), enhances the society�s ability to achieve its optimal tax objectives considerably.

(xii) When using a general income tax alone, or in combination with linear commodity

taxes, we found that the two lowest ability groups must be bunched together and of-

fered the same before- and after-tax incomes. However, the ability to use a nonlinear

consumption tax (on the polluting good) eradicates the bunching property and allows

a separation in the before- and after-tax incomes offered these groups. (xiii) Nonlinear

commodity taxation is a powerful redistributive mechanism.

These Þndings are, of course, not meant to be the last word on such important

policy question as the taxation of energy. The research can be extended in a number

of directions. One may examine different preference structures, other social welfare

functions, a more disaggregated set of goods, and different parameter values including

the assumed marginal social damage of emissions. In particular, it would be enlightening

to compute the optimal tax structures for a model consisting of a greater number of

types than four. This needs more extensive data; maybe one can Þnd it for other

countries.
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Appendix

Computing ρ on the basis of wage elasticities: Rewrite equation (12) as

Q =

µ
b

1− b
¶ρµwn

pQ

¶ρ
(1− L). (A1)

Substituting for Q from (11) in above and solving for L, we have

L =
1−AMw−ρn
1+Aw1−ρn

, (A2)

where

A ≡
µ
1− b
b

¶ρ
pρ−1Q . (A3)

From (A2), we the derive the elasticity of labor supply as

²LL ≡ wn
L

∂L

∂wn
=

ρM

wρn/A−M − 1− ρ
wρ−1n /A+ 1

.

Substituting for A in terms of L from (A2) in above, we can rewrite the elasticity of
labor supply as

²LL =
ρM

(wnL+M)/(1− L)−M − 1− ρ
(wnL+M)/wn(1− L) + 1 . (A4)

Equation (A4) governs the relationship between ρ and ²LL. Given any value for ²LL, one
can compute the corresponding value of ρ for every individual type. Simple calculations
give

²LL = 0.1 ²LL = 0.5
ρ1 0.67 1.06
ρ2 0.60 0.95
ρ3 0.56 0.89
ρ4 0.58 0.93
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Table 6. Calibrations: heterogeneous tastes

(1)
Managerial Staff

(2)
Intermediary Level

(3)
White Collars

(4)
Blue Collars

6.1. ρ = 0.5,ω = 0.2689
a 0.999988 0.999971 0.999972 0.999945

b 0.705082 0.603996 0.524800 0.549138

6.2. ρ = 0.99,ω = 0.2689
a 0.999988 0.999971 0.999972 0.999945

b 0.428783 0.420778 0.420182 0.438268

6.3. ρ = 0.7927,ω = 0.10
a 1.000000 1.000000 1.000000 1.000000

b 0.503043 0.468617 0.447747 0.467825

6.4 ρ = 0.7927,ω = 0.50
a 0.997322 0.995749 0.995835 0.994034

b 0.499749 0.464573 0.443768 0.463126

6.5 ρ = 0.7927,ω = 0.99
a 0.943852 0.930069 0.930737 0.918016

b 0.491792 0.455777 0.435085 0.453718

Table 7. Calibrations: idetical tastes

7.1. ρ = 0.5,ω = 0.2689
a 0.999970

b 0.590297

7.2. ρ = 0.99,ω = 0.2689
a 0.999970

b 0.427287

7.3. ρ = 0.7927,ω = 0.10
a 1.000000

b 0.469961

7.4. ρ = 0.7927,ω = 0.50
a 0.995689

b 0.465890

7.5. ρ = 0.7927,ω = 0.99
a 0.929604

b 0.457065
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Table 4. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0259, ρ = 0.7927,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093311 0.094253 0.094249 0.094249 0.096815 0.096812 0.096812 0.096812 0.100005 0.100000
τ 0.101443 0.090502 0.090987 0.090987 0.093826 0.094343 0.094343 0.094343 0.099768 0.100000
q1 − 1 0.000000 0.000000 0.094249 0.094334 0.000000 0.096812 0.096797 0.096781 0.000000 0.100001
q2 − 1 0.000000 0.000000 0.094249 0.094334 0.000000 0.096812 0.096797 0.096816 0.000000 0.100001
q3 − 1 0.000000 0.000000 0.094249 0.094334 0.000000 0.096812 0.096797 0.096807 0.000000 0.100001
q4 − 1 0.000000 0.000000 0.094249 0.094334 0.000000 0.096812 0.096797 0.096810 0.000000 0.100001
t1 0.000000 0.175626 0.171180 0.171176 0.005522 0.000002 0.000005 0.000005 0.000000 0.000010
t2 0.000000 0.175626 0.171180 0.171176 0.214118 0.209764 0.209764 0.209763 0.000000 0.000005
t3 0.000000 0.175626 0.171180 0.171176 0.228160 0.223884 0.223879 0.223879 0.000000 0.000003
t4 0.000000 0.175626 0.171180 0.171176 0.090846 0.085800 0.085794 0.085793 0.000000 0.000003
T 1 0.367637 0.073123 0.073647 0.073647 1.048175 1.054187 1.054177 1.054177 4.949857 4.944946
T 2 0.367637 0.073123 0.073647 0.073647 0.036260 0.036602 0.036601 0.036600 1.286843 1.279806
T 3 0.367637 0.073123 0.073647 0.073647 -0.119191 -0.119720 -0.119713 -0.119713 -0.901632 -0.910865
T 4 0.367637 0.073123 0.073647 0.073647 0.048738 0.049163 0.049172 0.049172 -1.340422 -1.350216
TP 1 0.367637 0.577513 0.577404 0.577404 1.066980 1.066878 1.066875 1.066875 4.949857 4.949877
TP 2 0.367637 0.402135 0.402117 0.402117 0.434286 0.434280 0.434278 0.434278 1.286843 1.286851
TP 3 0.367637 0.310266 0.310296 0.310296 0.159838 0.159867 0.159868 0.159868 -0.901632 -0.901639
TP 4 0.367637 0.293750 0.293789 0.293789 0.159838 0.159867 0.159868 0.159868 -1.340422 -1.340432
EV 1 0.000000 -0.231617 -0.231352 -0.231352 -0.698531 -0.698276 -0.698274 -0.698274 -4.582588 -4.582300
EV 2 0.000000 -0.047710 -0.047565 -0.047564 -0.087748 -0.087601 -0.087599 -0.087599 -0.919477 -0.919304
EV 3 0.000000 0.048451 0.048530 0.048530 0.190069 0.190157 0.190156 0.190156 1.269053 1.269157
EV 4 0.000000 0.065720 0.065788 0.065788 0.205986 0.206061 0.206060 0.206060 1.707853 1.707942
x1 2.459916 2.162836 2.165985 2.165987 2.204086 2.207386 2.207384 2.207383 0.823119 0.822048
x2 1.536740 1.386846 1.388845 1.388847 1.342906 1.344892 1.344893 1.344893 1.187041 1.185635
x3 1.051041 0.980355 0.981751 0.981753 1.002142 1.003610 1.003613 1.003613 1.556997 1.555294
x4 0.963463 0.907279 0.908567 0.908568 1.002142 1.003610 1.003613 1.003613 1.651251 1.649477
y1 0.149680 0.131603 0.128641 0.128638 0.134113 0.131017 0.131017 0.131018 0.050085 0.048754
y2 0.093507 0.084386 0.082485 0.082484 0.081712 0.079825 0.079825 0.079825 0.072228 0.070317
y3 0.063953 0.059652 0.058308 0.058306 0.060978 0.059568 0.059569 0.059568 0.094739 0.092241
y4 0.058624 0.055206 0.053961 0.053960 0.060978 0.059568 0.059569 0.059568 0.100474 0.097827
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.410416 0.395903 0.395914 0.395914 0.469409 0.469423 0.469423 0.469423 0.802718 0.802389
L2 0.453338 0.425084 0.425102 0.425102 0.421802 0.421823 0.421823 0.421823 0.577736 0.576985
L3 0.493497 0.449441 0.449468 0.449468 0.407064 0.407093 0.407095 0.407095 0.249673 0.248273
L4 0.503467 0.455106 0.455136 0.455136 0.443051 0.443083 0.443084 0.443084 0.149006 0.147401
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Table 5. Optimal allocations and supporting taxes when tastes are heterogenous: φ = 0.0259,ρ = 0.7927,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093374 0.094384 0.094379 0.094388 0.097100 0.097094 0.097104 0.097108 0.100005 0.100001
τ 0.100905 0.089592 0.090064 0.089338 0.093186 0.093689 0.092913 0.093122 0.099761 0.100007
q1 − 1 0.000000 0.000000 0.094379 -0.049091 0.000000 0.097094 -0.050745 0.097183 0.000000 0.099999
q2 − 1 0.000000 0.000000 0.094379 -0.049091 0.000000 0.097094 -0.050745 -0.143489 0.000000 0.099999
q3 − 1 0.000000 0.000000 0.094379 -0.049091 0.000000 0.097094 -0.050745 0.115138 0.000000 0.099999
q4 − 1 0.000000 0.000000 0.094379 -0.049091 0.000000 0.097094 -0.050745 -0.039588 0.000000 0.099999
t1 0.000000 0.183398 0.179101 0.185717 0.004237 -0.000036 0.006632 0.000003 0.000000 -0.000185
t2 0.000000 0.183398 0.179101 0.185717 0.225998 0.221896 0.228252 0.232259 0.000000 -0.000136
t3 0.000000 0.183398 0.179101 0.185717 0.178289 0.173260 0.181017 0.174012 0.000000 -0.000113
t4 -0.000000 0.183398 0.179101 0.185717 0.113479 0.108236 0.116324 0.114837 -0.000000 -0.000090
T 1 0.365838 0.057235 0.057590 0.057040 1.212649 1.214692 1.211288 1.231555 4.814449 4.811363
T 2 0.365838 0.057235 0.057590 0.057040 -0.005824 -0.006128 -0.005717 -0.005611 1.284378 1.277807
T 3 0.365838 0.057235 0.057590 0.057040 -0.085113 -0.084751 -0.085315 -0.087549 -0.854621 -0.863159
T 4 0.365838 0.057235 0.057590 0.057040 -0.008136 -0.007487 -0.008496 -0.011281 -1.314605 -1.325978
TP 1 0.365838 0.614848 0.612315 0.616224 1.228130 1.225081 1.229824 1.242067 4.814449 4.814669
TP 2 0.365838 0.398343 0.398395 0.398316 0.406907 0.406743 0.406989 0.406498 1.284378 1.284435
TP 3 0.365838 0.293849 0.293852 0.293847 0.126645 0.126804 0.126555 0.125622 -0.854621 -0.854639
TP 4 0.365838 0.285386 0.286332 0.284871 0.126645 0.127848 0.125985 0.122020 -1.314605 -1.314717
EV 1 0.000000 -0.273575 -0.270652 -0.275279 -0.861604 -0.858395 -0.863499 -0.875726 -4.449681 -4.449590
EV 2 0.000000 -0.047123 -0.047061 -0.047244 -0.065187 -0.064922 -0.065423 -0.065021 -0.919375 -0.919236
EV 3 0.000000 0.062196 0.062303 0.062080 0.229139 0.229169 0.229060 0.229901 1.219783 1.219920
EV 4 0.000000 0.071383 0.070440 0.071829 0.235925 0.234786 0.236476 0.240562 1.679803 1.679986
x1 2.651033 2.314690 2.319342 2.312114 2.314519 2.318265 2.312322 2.311690 0.938950 0.938064
x2 1.534044 1.378308 1.380190 1.377247 1.338483 1.340359 1.337396 1.335699 1.185366 1.184027
x3 1.009839 0.940091 0.941397 0.939356 1.001204 1.002933 1.000233 1.002651 1.476948 1.475333
x4 0.951961 0.894542 0.895251 0.894127 0.990147 0.991135 0.989572 0.991700 1.620048 1.618120
y1 0.127020 0.110905 0.108465 0.112291 0.110897 0.108342 0.112354 0.108033 0.044988 0.043809
y2 0.092686 0.083277 0.081392 0.084347 0.080870 0.078991 0.081944 0.084135 0.071619 0.069728
y3 0.060394 0.056223 0.054952 0.056944 0.059878 0.058505 0.060663 0.058232 0.088330 0.086000
y4 0.068199 0.064086 0.062600 0.064929 0.070935 0.069258 0.071894 0.071822 0.116062 0.112990
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.433390 0.419130 0.419086 0.419156 0.503647 0.503391 0.503779 0.504783 0.799317 0.799062
L2 0.452132 0.422034 0.422046 0.422030 0.414395 0.414357 0.414411 0.414411 0.576658 0.575938
L3 0.477999 0.429433 0.429446 0.429428 0.395337 0.395509 0.395245 0.394931 0.236543 0.235225
L4 0.502117 0.450679 0.450740 0.450647 0.430288 0.430474 0.430187 0.429496 0.152702 0.150850
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Table 8. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0263,ρ = 0.50,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093312 0.094356 0.094353 0.094353 0.097443 0.097439 0.097439 0.097438 0.100004 0.100000
τ 0.101724 0.088015 0.088488 0.088489 0.092081 0.092592 0.092592 0.092592 0.099778 0.100000
q1 − 1 0.000000 0.000000 0.094353 0.094703 0.000000 0.097439 0.097451 0.097440 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094353 0.094703 0.000000 0.097439 0.097451 0.097446 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094353 0.094703 0.000000 0.097439 0.097451 0.097693 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094353 0.094703 0.000000 0.097439 0.097451 0.097487 0.000000 0.100000
t1 0.000000 0.212597 0.208333 0.208325 0.005560 0.000003 -0.000002 -0.000005 0.000000 -0.000000
t2 0.000000 0.212597 0.208333 0.208325 0.261752 0.257639 0.257634 0.257638 0.000000 -0.000000
t3 0.000000 0.212597 0.208333 0.208325 0.284109 0.280117 0.280109 0.280125 0.000000 0.000000
t4 0.000000 0.212597 0.208333 0.208325 0.114559 0.109611 0.109600 0.109633 0.000000 0.000000
T 1 0.357961 0.016173 0.016401 0.016391 0.986395 0.992095 0.992103 0.992125 5.000344 4.996405
T 2 0.357961 0.016173 0.016401 0.016391 -0.030188 -0.030229 -0.030224 -0.030222 1.284760 1.278271
T 3 0.357961 0.016173 0.016401 0.016391 -0.191991 -0.192937 -0.192926 -0.192963 -0.929027 -0.938255
T 4 0.357961 0.016173 0.016401 0.016391 0.017829 0.018080 0.018094 0.018047 -1.369211 -1.379148
TP 1 0.357961 0.548598 0.548508 0.548515 1.002967 1.002899 1.002894 1.002906 5.000344 5.000397
TP 2 0.357961 0.394987 0.394970 0.394971 0.435635 0.435630 0.435628 0.435636 1.284760 1.284783
TP 3 0.357961 0.304918 0.304943 0.304941 0.159598 0.159617 0.159619 0.159613 -0.929027 -0.929044
TP 4 0.357961 0.287775 0.287808 0.287805 0.159598 0.159617 0.159619 0.159613 -1.369211 -1.369238
EV 1 0.000000 -0.210427 -0.210172 -0.210180 -0.644429 -0.644200 -0.644194 -0.644206 -4.643255 -4.643007
EV 2 0.000000 -0.049749 -0.049612 -0.049614 -0.098565 -0.098431 -0.098429 -0.098437 -0.927428 -0.927281
EV 3 0.000000 0.044196 0.044269 0.044270 0.179447 0.179529 0.179529 0.179531 1.286489 1.286589
EV 4 0.000000 0.062047 0.062107 0.062109 0.196327 0.196398 0.196397 0.196401 1.726696 1.726788
x1 2.060422 1.843611 1.846293 1.846295 1.864156 1.866943 1.866948 1.866946 0.673392 0.673085
x2 1.424358 1.307310 1.309193 1.309196 1.266912 1.268784 1.268787 1.268783 1.098336 1.098023
x3 1.045136 0.992853 0.994266 0.994269 1.016091 1.017582 1.017585 1.017579 1.553407 1.553179
x4 0.972189 0.933001 0.934324 0.934327 1.016091 1.017582 1.017585 1.017576 1.671145 1.670951
y1 0.125371 0.112179 0.109651 0.109642 0.113429 0.110793 0.110793 0.110794 0.040974 0.039919
y2 0.086669 0.079546 0.077753 0.077746 0.077088 0.075296 0.075296 0.075296 0.066831 0.065121
y3 0.063594 0.060413 0.059049 0.059044 0.061827 0.060388 0.060388 0.060384 0.094521 0.092115
y4 0.059155 0.056771 0.055489 0.055485 0.061827 0.060388 0.060388 0.060387 0.101685 0.099100
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.350661 0.345234 0.345243 0.345242 0.410874 0.410885 0.410885 0.410887 0.787782 0.787601
L2 0.424090 0.404316 0.404333 0.404332 0.403815 0.403832 0.403833 0.403833 0.555910 0.555457
L3 0.488191 0.452074 0.452099 0.452098 0.411909 0.411933 0.411935 0.411930 0.239287 0.238405
L4 0.503315 0.462827 0.462854 0.462853 0.448325 0.448351 0.448353 0.448347 0.146222 0.145206
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Table 9. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0258,ρ = 0.99,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093310 0.094242 0.094238 0.094238 0.096635 0.096631 0.096632 0.096630 0.100005 0.100000
τ 0.101251 0.091369 0.091860 0.091860 0.094470 0.094988 0.095000 0.094988 0.099762 0.100000
q1 − 1 0.000000 0.000000 0.094238 0.094547 0.000000 0.096631 0.096585 0.096168 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094238 0.094547 0.000000 0.096631 0.096585 0.096537 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094238 0.094547 0.000000 0.096631 0.096585 0.096689 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094238 0.094547 0.000000 0.096631 0.096585 0.096780 0.000000 0.100000
t1 -0.000000 0.162655 0.158126 0.158123 0.006344 0.000811 0.000009 0.000811 0.000000 -0.000000
t2 0.000000 0.162655 0.158126 0.158123 0.194714 0.190317 0.190305 0.190316 0.000000 -0.000000
t3 -0.000000 0.162655 0.158126 0.158123 0.206686 0.202304 0.202314 0.202301 0.000000 0.000000
t4 0.000000 0.162655 0.158126 0.158123 0.081227 0.076144 0.076158 0.076136 -0.000000 0.000000
T 1 0.374586 0.093761 0.094421 0.094405 1.107509 1.113999 1.116975 1.114062 4.914025 4.908511
T 2 0.374586 0.093761 0.094421 0.094405 0.063839 0.064225 0.064255 0.064236 1.288835 1.281450
T 3 0.374586 0.093761 0.094421 0.094405 -0.096543 -0.096950 -0.096961 -0.096950 -0.882263 -0.891497
T 4 0.374586 0.093761 0.094421 0.094405 0.055296 0.055748 0.055733 0.055749 -1.320068 -1.329769
TP 1 0.374586 0.604338 0.604190 0.604206 1.131070 1.130999 1.130997 1.130995 4.914025 4.914041
TP 2 0.374586 0.408907 0.408885 0.408887 0.437519 0.437494 0.437502 0.437496 1.288835 1.288839
TP 3 0.374586 0.312369 0.312409 0.312405 0.153603 0.153632 0.153629 0.153632 -0.882263 -0.882267
TP 4 0.374586 0.295550 0.295601 0.295596 0.153603 0.153632 0.153629 0.153632 -1.320068 -1.320074
EV 1 0.000000 -0.253364 -0.253061 -0.253081 -0.755530 -0.755315 -0.755307 -0.755310 -4.539458 -4.539165
EV 2 0.000000 -0.048320 -0.048162 -0.048166 -0.084368 -0.084211 -0.084216 -0.084211 -0.914259 -0.914075
EV 3 0.000000 0.052921 0.053001 0.053003 0.203384 0.203481 0.203480 0.203480 1.256836 1.256946
EV 4 0.000000 0.070555 0.070620 0.070624 0.219296 0.219379 0.219379 0.219378 1.694652 1.694747
x1 2.745719 2.389296 2.392817 2.392802 2.434924 2.438593 2.439715 2.438614 0.933981 0.932352
x2 1.613981 1.440927 1.443027 1.443020 1.396619 1.398634 1.398645 1.398637 1.248056 1.245895
x3 1.054847 0.972457 0.973854 0.973852 0.996059 0.997519 0.997513 0.997520 1.558995 1.556308
x4 0.957424 0.890840 0.892114 0.892113 0.996059 0.997519 0.997513 0.997522 1.637511 1.634691
y1 0.167070 0.145383 0.142113 0.142101 0.148159 0.144747 0.144815 0.144764 0.056830 0.055296
y2 0.098207 0.087677 0.085703 0.085697 0.084981 0.083018 0.083020 0.083020 0.075941 0.073891
y3 0.064185 0.059172 0.057839 0.057834 0.060608 0.059209 0.059210 0.059209 0.094861 0.092301
y4 0.058257 0.054205 0.052984 0.052980 0.060608 0.059209 0.059210 0.059207 0.099638 0.096950
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.453170 0.432718 0.432733 0.432731 0.512002 0.512027 0.512191 0.512032 0.813991 0.813557
L2 0.473508 0.439639 0.439662 0.439660 0.435465 0.435472 0.435476 0.435473 0.592875 0.591920
L3 0.497154 0.447352 0.447387 0.447383 0.402841 0.402871 0.402868 0.402871 0.256826 0.255078
L4 0.503663 0.449441 0.449478 0.449474 0.438454 0.438487 0.438484 0.438487 0.151100 0.149102
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Table 10. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0260, ρ = 0.7927,ω = 0.10
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093309 0.094250 0.094249 0.094249 0.096813 0.096812 0.096812 0.096812 0.100002 0.100000
τ 0.101453 0.090524 0.090986 0.090985 0.093850 0.094342 0.094342 0.094342 0.099778 0.100000
q1 − 1 0.000000 0.000000 0.094249 0.093898 0.000000 0.096812 0.096761 0.096761 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094249 0.093898 0.000000 0.096812 0.096761 0.096761 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094249 0.093898 0.000000 0.096812 0.096761 0.096761 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094249 0.093898 0.000000 0.096812 0.096761 0.096761 0.000000 0.100000
t1 0.000000 0.175423 0.171203 0.171219 0.005240 0.000001 0.000007 0.000007 -0.000000 -0.000000
t2 0.000000 0.175423 0.171203 0.171219 0.213911 0.209780 0.209783 0.209783 0.000000 -0.000000
t3 0.000000 0.175423 0.171203 0.171219 0.227962 0.223911 0.223908 0.223908 0.000000 0.000000
t4 0.000000 0.175423 0.171203 0.171219 0.090585 0.085810 0.085807 0.085807 0.000000 0.000000
T 1 0.367690 0.073467 0.073889 0.073887 1.049008 1.054618 1.054605 1.054605 4.949896 4.945227
T 2 0.367690 0.073467 0.073889 0.073887 0.036621 0.036864 0.036862 0.036862 1.286892 1.280133
T 3 0.367690 0.073467 0.073889 0.073887 -0.118910 -0.119497 -0.119490 -0.119490 -0.901575 -0.910455
T 4 0.367690 0.073467 0.073889 0.073887 0.049135 0.049436 0.049444 0.049444 -1.340363 -1.349783
TP 1 0.367690 0.577334 0.577296 0.577296 1.066852 1.066819 1.066818 1.066818 4.949896 4.949917
TP 2 0.367690 0.402151 0.402144 0.402144 0.434332 0.434332 0.434330 0.434330 1.286892 1.286898
TP 3 0.367690 0.310383 0.310393 0.310393 0.159941 0.159950 0.159951 0.159951 -0.901575 -0.901581
TP 4 0.367690 0.293885 0.293899 0.293899 0.159941 0.159950 0.159951 0.159951 -1.340363 -1.340372
EV 1 0.000000 -0.231398 -0.231305 -0.231305 -0.698396 -0.698310 -0.698308 -0.698308 -4.582552 -4.582448
EV 2 0.000000 -0.047688 -0.047637 -0.047637 -0.087730 -0.087681 -0.087679 -0.087679 -0.919457 -0.919389
EV 3 0.000000 0.048370 0.048399 0.048399 0.190026 0.190058 0.190058 0.190058 1.269062 1.269107
EV 4 0.000000 0.065622 0.065645 0.065645 0.205923 0.205951 0.205950 0.205950 1.707859 1.707900
x1 2.467946 2.170258 2.171379 2.171375 2.211655 2.212834 2.212831 2.212831 0.825798 0.824037
x2 1.541744 1.391552 1.392264 1.392262 1.347468 1.348174 1.348174 1.348174 1.190903 1.188496
x3 1.054454 0.983638 0.984135 0.984133 1.005513 1.006032 1.006034 1.006034 1.562061 1.559036
x4 0.966589 0.910305 0.910763 0.910762 1.005513 1.006032 1.006034 1.006034 1.656621 1.653445
y1 0.141816 0.124710 0.123655 0.123659 0.127089 0.125987 0.125987 0.125987 0.047453 0.046903
y2 0.088593 0.079963 0.079286 0.079289 0.077430 0.076758 0.076758 0.076758 0.068433 0.067647
y3 0.060592 0.056523 0.056044 0.056046 0.057780 0.057278 0.057278 0.057278 0.089761 0.088737
y4 0.055543 0.052309 0.051866 0.051868 0.057780 0.057278 0.057278 0.057278 0.095195 0.094111
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.410446 0.395951 0.395955 0.395955 0.469467 0.469473 0.469472 0.469472 0.802730 0.802414
L2 0.453371 0.425152 0.425158 0.425158 0.421876 0.421884 0.421883 0.421883 0.577762 0.577039
L3 0.493532 0.449531 0.449541 0.449541 0.407156 0.407164 0.407166 0.407166 0.249721 0.248372
L4 0.503502 0.455202 0.455213 0.455213 0.443151 0.443160 0.443162 0.443162 0.149060 0.147514
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Table 11. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0256, ρ = 0.7927,ω = 0.50
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093314 0.094256 0.094249 0.094249 0.096819 0.096811 0.096811 0.096811 0.100009 0.100000
τ 0.101429 0.090469 0.090988 0.090988 0.093791 0.094343 0.094343 0.094343 0.099755 0.100000
q1 − 1 0.000000 0.000000 0.094249 0.094310 0.000000 0.096811 0.096796 0.096796 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094249 0.094310 0.000000 0.096811 0.096796 0.096796 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094249 0.094310 0.000000 0.096811 0.096796 0.096796 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094249 0.094310 0.000000 0.096811 0.096796 0.096796 0.000000 0.100000
t1 0.000000 0.175922 0.171146 0.171143 0.005937 0.000017 0.000010 0.000010 0.000000 -0.000000
t2 0.000000 0.175922 0.171146 0.171143 0.214416 0.209737 0.209742 0.209742 -0.000000 0.000000
t3 0.000000 0.175922 0.171146 0.171143 0.228425 0.223838 0.223842 0.223842 0.000000 0.000000
t4 0.000000 0.175922 0.171146 0.171143 0.091197 0.085777 0.085782 0.085782 0.000000 0.000000
T 1 0.367561 0.072624 0.073301 0.073302 1.046946 1.053521 1.053549 1.053549 4.949801 4.944711
T 2 0.367561 0.072624 0.073301 0.073302 0.035735 0.036230 0.036224 0.036224 1.286772 1.279379
T 3 0.367561 0.072624 0.073301 0.073302 -0.119572 -0.120030 -0.120034 -0.120034 -0.901714 -0.911454
T 4 0.367561 0.072624 0.073301 0.073302 0.048200 0.048783 0.048778 0.048778 -1.340507 -1.350844
TP 1 0.367561 0.577774 0.577560 0.577560 1.067159 1.066957 1.066961 1.066961 4.949801 4.949851
TP 2 0.367561 0.402114 0.402079 0.402079 0.434213 0.434204 0.434204 0.434204 1.286772 1.286792
TP 3 0.367561 0.310098 0.310156 0.310156 0.159695 0.159751 0.159750 0.159750 -0.901714 -0.901729
TP 4 0.367561 0.293556 0.293631 0.293631 0.159695 0.159751 0.159750 0.159750 -1.340507 -1.340531
EV 1 0.000000 -0.231929 -0.231399 -0.231399 -0.698713 -0.698206 -0.698210 -0.698210 -4.582638 -4.582099
EV 2 0.000000 -0.047737 -0.047445 -0.047445 -0.087763 -0.087471 -0.087472 -0.087472 -0.919506 -0.919176
EV 3 0.000000 0.048570 0.048732 0.048732 0.190131 0.190309 0.190310 0.190310 1.269040 1.269244
EV 4 0.000000 0.065866 0.066003 0.066003 0.206077 0.206229 0.206230 0.206230 1.707844 1.708023
x1 2.448258 2.152064 2.158277 2.158281 2.193103 2.199590 2.199596 2.199596 0.819229 0.819207
x2 1.529476 1.380015 1.383960 1.383963 1.336290 1.340208 1.340205 1.340205 1.181434 1.181556
x3 1.046086 0.975590 0.978346 0.978348 0.997261 1.000154 1.000153 1.000153 1.549644 1.549958
x4 0.958925 0.902886 0.905427 0.905429 0.997261 1.000154 1.000153 1.000153 1.643454 1.643823
y1 0.161100 0.141610 0.135765 0.135762 0.144311 0.138202 0.138204 0.138204 0.053907 0.051397
y2 0.100643 0.090808 0.087057 0.087055 0.087931 0.084207 0.084207 0.084207 0.077741 0.074131
y3 0.068835 0.064196 0.061542 0.061541 0.065622 0.062841 0.062841 0.062841 0.101970 0.097244
y4 0.063099 0.059412 0.056955 0.056954 0.065622 0.062841 0.062841 0.062841 0.108143 0.103133
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.410373 0.395834 0.395855 0.395855 0.469325 0.469350 0.469352 0.469352 0.802701 0.802359
L2 0.453291 0.424986 0.425023 0.425023 0.421695 0.421737 0.421737 0.421737 0.577698 0.576911
L3 0.493447 0.449312 0.449365 0.449365 0.406938 0.406993 0.406993 0.406993 0.249606 0.248132
L4 0.503416 0.454968 0.455026 0.455026 0.442913 0.442974 0.442973 0.442973 0.148929 0.147239
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Table 12. Optimal allocations and supporting taxes when tastes are identical: φ = 0.0249, ρ = 0.7927,ω = 0.99
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093321 0.094261 0.094244 0.094248 0.096827 0.096810 0.096810 0.096810 0.100020 0.100000
τ 0.101398 0.090386 0.090982 0.090990 0.093708 0.094344 0.094344 0.094344 0.099723 0.100000
q1 − 1 0.000000 0.000000 0.094244 0.094167 0.000000 0.096810 0.096806 0.096811 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094244 0.094167 0.000000 0.096810 0.096806 0.096808 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094244 0.094167 0.000000 0.096810 0.096806 0.096814 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094244 0.094167 0.000000 0.096810 0.096806 0.096814 0.000000 0.100000
t1 0.000000 0.176746 0.171202 0.171073 0.006952 0.000021 0.000020 0.000022 -0.000000 -0.000000
t2 0.000000 0.176746 0.171202 0.171073 0.215114 0.209680 0.209683 0.209681 -0.000000 0.000000
t3 0.000000 0.176746 0.171202 0.171073 0.229070 0.223748 0.223750 0.223748 0.000000 0.000000
t4 0.000000 0.176746 0.171202 0.171073 0.092049 0.085743 0.085745 0.085743 0.000000 0.000000
T 1 0.367388 0.071257 0.072303 0.072507 1.043939 1.052106 1.052114 1.052105 4.949665 4.944014
T 2 0.367388 0.071257 0.072303 0.072507 0.034514 0.035375 0.035371 0.035375 1.286609 1.278363
T 3 0.367388 0.071257 0.072303 0.072507 -0.120493 -0.120761 -0.120763 -0.120761 -0.901898 -0.912797
T 4 0.367388 0.071257 0.072303 0.072507 0.046903 0.047889 0.047887 0.047889 -1.340695 -1.352271
TP 1 0.367388 0.578553 0.578082 0.577921 1.067599 1.067153 1.067155 1.067153 4.949665 4.949759
TP 2 0.367388 0.402097 0.402020 0.401994 0.434057 0.434035 0.434035 0.434035 1.286609 1.286649
TP 3 0.367388 0.309665 0.309793 0.309837 0.159357 0.159481 0.159481 0.159481 -0.901898 -0.901926
TP 4 0.367388 0.293048 0.293214 0.293270 0.159357 0.159481 0.159481 0.159481 -1.340695 -1.340742
EV 1 0.000000 -0.232837 -0.231613 -0.231416 -0.699141 -0.697963 -0.697965 -0.697963 -4.582750 -4.581506
EV 2 0.000000 -0.047833 -0.047149 -0.047100 -0.087797 -0.087109 -0.087109 -0.087109 -0.919576 -0.918814
EV 3 0.000000 0.048893 0.049282 0.049253 0.190292 0.190717 0.190718 0.190717 1.269003 1.269476
EV 4 0.000000 0.066263 0.066597 0.066555 0.206304 0.206672 0.206672 0.206672 1.707815 1.708232
x1 2.420759 2.126455 2.140373 2.140593 2.167167 2.181757 2.181758 2.181757 0.810054 0.812706
x2 1.512337 1.363796 1.372637 1.372750 1.320692 1.329470 1.329468 1.329470 1.168207 1.172211
x3 1.034395 0.964296 0.970475 0.970530 0.985741 0.992227 0.992226 0.992227 1.532298 1.537734
x4 0.948216 0.892478 0.898177 0.898222 0.985741 0.992227 0.992226 0.992227 1.625058 1.630867
y1 0.188060 0.165197 0.152093 0.152119 0.168360 0.154674 0.154675 0.154674 0.062930 0.057451
y2 0.117488 0.105948 0.097538 0.097553 0.102600 0.094252 0.094252 0.094252 0.090754 0.082864
y3 0.080359 0.074913 0.068961 0.068970 0.076579 0.070343 0.070343 0.070343 0.119039 0.108704
y4 0.073664 0.069333 0.063823 0.063831 0.076579 0.070343 0.070343 0.070343 0.126245 0.115287
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.410275 0.395662 0.395709 0.395721 0.469126 0.469189 0.469190 0.469189 0.802661 0.802284
L2 0.453186 0.424738 0.424818 0.424841 0.421449 0.421542 0.421541 0.421542 0.577613 0.576740
L3 0.493334 0.448975 0.449094 0.449130 0.406637 0.406762 0.406762 0.406762 0.249452 0.247812
L4 0.503301 0.454608 0.454737 0.454776 0.442587 0.442722 0.442722 0.442722 0.148754 0.146872
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Table 13. Optimal allocations and supporting taxes when tastes are heterogeneous: φ = 0.0263, ρ = 0.50,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093554 0.094823 0.094818 0.094826 0.098299 0.098294 0.098304 0.098309 0.100005 0.100000
τ 0.100123 0.084869 0.085323 0.084647 0.090218 0.090717 0.089895 0.090135 0.099772 0.100000
q1 − 1 0.000000 0.000000 0.094818 -0.044807 0.000000 0.098294 -0.061639 0.098317 0.000000 0.099995
q2 − 1 0.000000 0.000000 0.094818 -0.044807 0.000000 0.098294 -0.061639 -0.159162 0.000000 0.099995
q3 − 1 0.000000 0.000000 0.094818 -0.044807 0.000000 0.098294 -0.061639 0.116090 0.000000 0.099995
q4 − 1 0.000000 0.000000 0.094818 -0.044807 0.000000 0.098294 -0.061639 -0.045803 0.000000 0.099995
t1 -0.000000 0.242478 0.238417 0.244468 0.004478 0.000004 0.007401 -0.000001 -0.000000 0.000012
t2 0.000000 0.242478 0.238417 0.244468 0.281311 0.277403 0.283855 0.287693 -0.000000 0.000007
t3 -0.000000 0.242478 0.238417 0.244468 0.213482 0.208228 0.216897 0.210225 -0.000000 0.000005
t4 -0.000000 0.242478 0.238417 0.244468 0.151012 0.146113 0.154201 0.151934 -0.000000 0.000004
T 1 0.350214 -0.041079 -0.041184 -0.041036 1.467170 1.470213 1.465175 1.491132 4.593594 4.589182
T 2 0.350214 -0.041079 -0.041184 -0.041036 -0.091130 -0.091799 -0.090690 -0.090133 1.227373 1.220676
T 3 0.350214 -0.041079 -0.041184 -0.041036 -0.200540 -0.200343 -0.200658 -0.205053 -0.794798 -0.802853
T 4 0.350214 -0.041079 -0.041184 -0.041036 -0.131835 -0.131987 -0.131731 -0.134509 -1.262938 -1.273755
TP 1 0.350214 0.663720 0.661114 0.665009 1.483417 1.479645 1.485895 1.500512 4.593594 4.593661
TP 2 0.350214 0.392544 0.392563 0.392536 0.408107 0.407953 0.408211 0.407459 1.227373 1.227398
TP 3 0.350214 0.257432 0.257433 0.257429 0.034249 0.034579 0.034032 0.032560 -0.794798 -0.794769
TP 4 0.350214 0.249128 0.250125 0.248635 0.034249 0.035640 0.033335 0.028884 -1.262938 -1.262993
EV 1 0.000000 -0.342245 -0.339300 -0.343797 -1.132784 -1.128873 -1.135486 -1.150068 -4.244349 -4.244164
EV 2 0.000000 -0.059785 -0.059691 -0.059906 -0.083126 -0.082865 -0.083414 -0.082776 -0.877969 -0.877822
EV 3 0.000000 0.080862 0.080973 0.080759 0.306129 0.306009 0.306122 0.307469 1.144334 1.144417
EV 4 0.000000 0.089976 0.088996 0.090403 0.311831 0.310490 0.312615 0.317223 1.612513 1.612633
x1 2.451883 2.140377 2.144409 2.138362 2.046549 2.050323 2.044027 2.042917 0.944884 0.944645
x2 1.452982 1.316226 1.318088 1.315286 1.288711 1.290605 1.287436 1.285768 1.138822 1.138517
x3 0.968752 0.918708 0.920014 0.918050 1.005428 1.007158 1.004272 1.006967 1.386680 1.386341
x4 0.923278 0.884353 0.885217 0.883910 0.994324 0.995302 0.993653 0.996054 1.541256 1.540963
y1 0.117478 0.102553 0.100273 0.103727 0.098057 0.095792 0.099627 0.095446 0.045273 0.044116
y2 0.087788 0.079526 0.077722 0.080455 0.077863 0.076036 0.079129 0.081393 0.068807 0.067048
y3 0.057937 0.054944 0.053698 0.055586 0.060130 0.058734 0.061098 0.058470 0.082931 0.080813
y4 0.066144 0.063356 0.061892 0.064110 0.071234 0.069529 0.072415 0.072264 0.110417 0.107602
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.402468 0.400686 0.400569 0.400748 0.500129 0.499817 0.500339 0.501624 0.769729 0.769546
L2 0.429081 0.405780 0.405798 0.405776 0.402691 0.402671 0.402713 0.402677 0.552524 0.552061
L3 0.458305 0.409769 0.409789 0.409763 0.366073 0.366294 0.365938 0.365471 0.224613 0.223805
L4 0.485321 0.433588 0.433732 0.433522 0.398436 0.398676 0.398289 0.397492 0.140830 0.139684
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Table 14. Optimal allocations and supporting taxes when tastes are heterogeneous: φ = 0.0258, ρ = 0.99,ω = 0.2689
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093302 0.094218 0.094213 0.094221 0.096606 0.096602 0.096610 0.096614 0.100005 0.100000
τ 0.101178 0.091474 0.091953 0.091210 0.094527 0.095038 0.094286 0.094491 0.099754 0.100000
q1 − 1 0.000000 0.000000 0.094213 -0.050328 0.000000 0.096602 -0.044238 0.096651 0.000000 0.100002
q2 − 1 0.000000 0.000000 0.094213 -0.050328 0.000000 0.096602 -0.044238 -0.133291 0.000000 0.100002
q3 − 1 0.000000 0.000000 0.094213 -0.050328 0.000000 0.096602 -0.044238 0.114746 0.000000 0.100002
q4 − 1 0.000000 0.000000 0.094213 -0.050328 0.000000 0.096602 -0.044238 -0.035758 0.000000 0.100002
t1 0.000000 0.160187 0.155798 0.162615 0.004406 0.000009 0.006485 -0.000002 0.000000 0.000008
t2 0.000000 0.160187 0.155798 0.162615 0.198430 0.194156 0.200457 0.204232 -0.000000 0.000004
t3 0.000000 0.160187 0.155798 0.162615 0.161787 0.156786 0.164154 0.156989 0.000000 0.000002
t4 -0.000000 0.160187 0.155798 0.162615 0.096566 0.091144 0.099132 0.097831 -0.000000 0.000002
T 1 0.376306 0.098873 0.099424 0.098570 1.128300 1.130659 1.127204 1.146162 4.887622 4.883166
T 2 0.376306 0.098873 0.099424 0.098570 0.040115 0.040132 0.040105 0.040393 1.307431 1.300261
T 3 0.376306 0.098873 0.099424 0.098570 -0.036071 -0.035568 -0.036304 -0.037486 -0.868513 -0.877381
T 4 0.376306 0.098873 0.099424 0.098570 0.044384 0.045438 0.043891 0.041278 -1.324003 -1.335661
TP 1 0.376306 0.603868 0.601324 0.605282 1.144751 1.141867 1.146126 1.157304 4.887622 4.887689
TP 2 0.376306 0.405339 0.405409 0.405300 0.412036 0.411877 0.412110 0.411753 1.307431 1.307458
TP 3 0.376306 0.311438 0.311446 0.311434 0.163506 0.163618 0.163454 0.162783 -0.868513 -0.868480
TP 4 0.376306 0.302740 0.303677 0.302218 0.163506 0.164665 0.162954 0.159187 -1.324003 -1.324062
EV 1 0.000000 -0.250496 -0.247536 -0.252269 -0.767641 -0.764587 -0.769197 -0.780374 -4.512441 -4.512165
EV 2 0.000000 -0.042549 -0.042505 -0.042666 -0.058253 -0.057979 -0.058462 -0.058118 -0.931951 -0.931767
EV 3 0.000000 0.055897 0.055999 0.055777 0.202777 0.202851 0.202685 0.203297 1.244159 1.244250
EV 4 0.000000 0.065292 0.064353 0.065745 0.210033 0.208947 0.210488 0.214370 1.699676 1.699809
x1 2.788346 2.432142 2.437242 2.429238 2.470586 2.474669 2.468589 2.468434 0.959422 0.958068
x2 1.589485 1.421932 1.423830 1.420825 1.378967 1.380911 1.377998 1.376544 1.222305 1.220148
x3 1.037762 0.958239 0.959549 0.957476 1.009691 1.011446 1.008826 1.011234 1.529319 1.526650
x4 0.971339 0.905102 0.905703 0.904729 0.998539 0.999552 0.998023 1.000133 1.664114 1.660910
y1 0.133600 0.116533 0.113983 0.118021 0.118374 0.115666 0.119727 0.115373 0.045969 0.044743
y2 0.096036 0.085912 0.083969 0.087046 0.083316 0.081390 0.084277 0.086432 0.073851 0.071855
y3 0.062064 0.057308 0.056014 0.058063 0.060385 0.059008 0.061072 0.058736 0.091462 0.088992
y4 0.069588 0.064842 0.063333 0.065722 0.071536 0.069855 0.072375 0.072356 0.119219 0.115978
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.454669 0.434583 0.434584 0.434583 0.514698 0.514490 0.514799 0.515718 0.812361 0.812014
L2 0.467847 0.434119 0.434124 0.434116 0.425300 0.425268 0.425315 0.425393 0.590777 0.589841
L3 0.491334 0.441690 0.441698 0.441686 0.410600 0.410763 0.410523 0.410324 0.250394 0.248694
L4 0.513433 0.461066 0.461076 0.461060 0.446900 0.447077 0.446816 0.446209 0.166405 0.164049
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Table 15. Optimal allocations and supporting taxes when tastes are heterogeneous: φ = 0.0260, ρ = 0.7927,ω = 0.10
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093369 0.094385 0.094383 0.094390 0.097097 0.097094 0.097109 0.097111 0.100002 0.100000
τ 0.100935 0.089627 0.090077 0.088527 0.093199 0.093683 0.092038 0.092915 0.099771 0.100000
q1 − 1 0.000000 0.000000 0.094383 -0.222203 0.000000 0.097094 -0.228754 0.097121 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094383 -0.222203 0.000000 0.097094 -0.228754 -0.240173 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094383 -0.222203 0.000000 0.097094 -0.228754 0.148378 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094383 -0.222203 0.000000 0.097094 -0.228754 -0.123229 0.000000 0.100000
t1 0.000000 0.183260 0.179181 0.193329 0.005005 0.000845 0.014394 0.000005 -0.000000 -0.000000
t2 0.000000 0.183260 0.179181 0.193329 0.226155 0.222182 0.235771 0.235720 0.000000 -0.000000
t3 -0.000000 0.183260 0.179181 0.193329 0.178274 0.173470 0.189986 0.173945 -0.000000 0.000000
t4 0.000000 0.183260 0.179181 0.193329 0.113473 0.108469 0.125683 0.118319 0.000000 -0.000000
T 1 0.365903 0.057487 0.057751 0.056615 1.210085 1.212223 1.207572 1.240693 4.818766 4.814604
T 2 0.365903 0.057487 0.057751 0.056615 -0.006087 -0.006313 -0.005414 -0.004642 1.285934 1.279244
T 3 0.365903 0.057487 0.057751 0.056615 -0.085076 -0.084764 -0.085847 -0.089095 -0.850836 -0.859090
T 4 0.365903 0.057487 0.057751 0.056615 -0.008103 -0.007522 -0.009539 -0.013202 -1.318983 -1.329899
TP 1 0.365903 0.614731 0.612362 0.620784 1.228368 1.225414 1.235634 1.250784 4.818766 4.818809
TP 2 0.365903 0.398386 0.398444 0.398274 0.406924 0.406787 0.407299 0.407150 1.285934 1.285948
TP 3 0.365903 0.293965 0.293947 0.293951 0.126685 0.126833 0.126319 0.125456 -0.850836 -0.850825
TP 4 0.365903 0.285508 0.286398 0.283242 0.126685 0.127840 0.123823 0.118485 -1.318983 -1.319014
EV 1 0.000000 -0.273416 -0.270770 -0.280677 -0.861819 -0.858808 -0.869690 -0.884369 -4.453878 -4.453792
EV 2 0.000000 -0.047127 -0.047154 -0.047476 -0.065209 -0.065041 -0.066023 -0.065615 -0.920823 -0.920757
EV 3 0.000000 0.062121 0.062175 0.061783 0.229141 0.229106 0.228950 0.229976 1.216098 1.216136
EV 4 0.000000 0.071300 0.070356 0.073413 0.235927 0.234777 0.238467 0.244152 1.684280 1.684339
x1 2.657915 2.320967 2.323802 2.313423 2.319610 2.321696 2.315007 2.312844 0.939731 0.938200
x2 1.539002 1.382893 1.383509 1.381031 1.342692 1.343370 1.340851 1.341290 1.188624 1.186228
x3 1.013062 0.943158 0.943616 0.941822 1.004424 1.005221 1.002288 1.004319 1.480245 1.477312
x4 0.955561 0.897983 0.897768 0.898300 0.993909 0.993845 0.993871 0.997332 1.627965 1.624326
y1 0.120267 0.105021 0.104205 0.107343 0.104959 0.104085 0.107507 0.103687 0.042521 0.042050
y2 0.087814 0.078906 0.078233 0.080805 0.076613 0.075944 0.078521 0.078664 0.067822 0.067043
y3 0.057217 0.053269 0.052816 0.054547 0.056729 0.056250 0.058098 0.055944 0.083603 0.082646
y4 0.064650 0.060754 0.060194 0.062322 0.067244 0.066620 0.069011 0.068369 0.110142 0.108853
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.433417 0.419168 0.419119 0.419282 0.503563 0.503323 0.504281 0.505545 0.799679 0.799409
L2 0.452166 0.422093 0.422093 0.422076 0.414388 0.414359 0.414488 0.414586 0.576889 0.576172
L3 0.478036 0.429510 0.429505 0.429486 0.395374 0.395530 0.394997 0.394669 0.237327 0.236036
L4 0.502159 0.450763 0.450805 0.450625 0.430328 0.430497 0.429917 0.429005 0.151840 0.150043
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Table 16. Optimal allocations and supporting taxes when tastes are heterogeneous: φ = 0.0256, ρ = 0.7927,ω = 0.50
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093382 0.094394 0.094386 0.094389 0.097101 0.097091 0.097100 0.097105 0.100009 0.100000
τ 0.100852 0.089558 0.090063 0.089611 0.093143 0.093659 0.093176 0.093267 0.099747 0.100000
q1 − 1 0.000000 0.000000 0.094386 0.010971 0.000000 0.097091 0.011178 0.096894 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094386 0.010971 0.000000 0.097091 0.011178 -0.068749 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094386 0.010971 0.000000 0.097091 0.011178 0.106592 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094386 0.010971 0.000000 0.097091 0.011178 0.009877 0.000000 0.100000
t1 -0.000000 0.183195 0.178575 0.182766 0.004844 0.000778 0.004713 0.000607 0.000000 0.000000
t2 0.000000 0.183195 0.178575 0.182766 0.225437 0.221502 0.225524 0.228790 0.000000 0.000000
t3 0.000000 0.183195 0.178575 0.182766 0.178236 0.172966 0.177989 0.173469 0.000000 -0.000000
t4 0.000000 0.183195 0.178575 0.182766 0.113399 0.107912 0.113188 0.112339 0.000000 -0.000000
T 1 0.365742 0.057487 0.057987 0.057350 1.209750 1.210671 1.209223 1.222817 4.806153 4.801648
T 2 0.365742 0.057487 0.057987 0.057350 -0.004831 -0.005894 -0.005902 -0.005141 1.281472 1.274165
T 3 0.365742 0.057487 0.057987 0.057350 -0.085045 -0.084745 -0.085553 -0.086645 -0.862309 -0.871338
T 4 0.365742 0.057487 0.057987 0.057350 -0.008041 -0.007451 -0.008611 -0.010046 -1.305966 -1.317955
TP 1 0.365742 0.614454 0.611675 0.614296 1.227440 1.224610 1.227764 1.236094 4.806153 4.806285
TP 2 0.365742 0.398207 0.398247 0.398234 0.406969 0.406674 0.406884 0.406538 1.281472 1.281522
TP 3 0.365742 0.293842 0.293878 0.293794 0.126637 0.126758 0.126501 0.125805 -0.862309 -0.862254
TP 4 0.365742 0.285385 0.286417 0.285453 0.126637 0.127855 0.126632 0.123973 -1.305966 -1.306076
EV 1 0.000000 -0.273120 -0.269778 -0.272904 -0.860955 -0.857807 -0.861213 -0.869729 -4.441562 -4.441102
EV 2 0.000000 -0.046968 -0.046768 -0.046969 -0.065159 -0.064739 -0.065172 -0.064744 -0.916631 -0.916307
EV 3 0.000000 0.062194 0.062382 0.062267 0.229096 0.229271 0.229235 0.229794 1.227323 1.227496
EV 4 0.000000 0.071372 0.070438 0.071317 0.235880 0.234813 0.235892 0.238643 1.671016 1.671267
x1 2.641028 2.306336 2.313743 2.306995 2.305350 2.311082 2.305401 2.306867 0.938574 0.938604
x2 1.526847 1.372020 1.375821 1.372369 1.332635 1.336044 1.332575 1.329856 1.180875 1.180979
x3 1.005160 0.935815 0.938405 0.936076 0.996559 0.999662 0.996755 0.999680 1.472980 1.473131
x4 0.946743 0.889704 0.891810 0.889916 0.984721 0.987266 0.984853 0.986292 1.607687 1.608130
y1 0.136845 0.119503 0.114600 0.118887 0.119452 0.114327 0.118792 0.114129 0.048632 0.046370
y2 0.099763 0.089647 0.085931 0.089182 0.087073 0.083344 0.086587 0.090042 0.077157 0.073573
y3 0.065009 0.060524 0.058015 0.060212 0.064453 0.061726 0.064108 0.061462 0.095265 0.090841
y4 0.073348 0.068929 0.066046 0.068571 0.076291 0.073025 0.075878 0.076038 0.124555 0.118791
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.433352 0.419109 0.419071 0.419093 0.503467 0.503161 0.503428 0.504135 0.798623 0.798334
L2 0.452083 0.422022 0.422051 0.422002 0.414489 0.414350 0.414346 0.414435 0.576237 0.575458
L3 0.477946 0.429439 0.429478 0.429406 0.395311 0.395477 0.395216 0.395078 0.234972 0.233568
L4 0.502057 0.450681 0.450773 0.450652 0.430259 0.430439 0.430156 0.429772 0.154430 0.152463
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Table 17. Optimal allocations and supporting taxes when tastes are heterogeneous: φ = 0.0248, ρ = 0.7927,ω = 0.99
(monetary Þgures in 100,000 French francs)

ULST LITACT LITPDT LITODT GITACT GITPDT GITLDT GITNDT FBADT FB
φ/µ 0.093396 0.094401 0.094383 0.094390 0.097108 0.097089 0.097098 0.097100 0.100021 0.100000
τ 0.100783 0.089466 0.090046 0.089794 0.093031 0.093650 0.093384 0.093398 0.099715 0.100000
q1 − 1 0.000000 0.000000 0.094383 0.051659 0.000000 0.097089 0.052291 0.097108 0.000000 0.100000
q2 − 1 0.000000 0.000000 0.094383 0.051659 0.000000 0.097089 0.052291 -0.001731 0.000000 0.100000
q3 − 1 0.000000 0.000000 0.094383 0.051659 0.000000 0.097089 0.052291 0.101827 0.000000 0.100000
q4 − 1 0.000000 0.000000 0.094383 0.051659 0.000000 0.097089 0.052291 0.048257 0.000000 0.100000
t1 -0.000000 0.183665 0.178292 0.180610 0.006217 0.000737 0.002484 0.000001 -0.000000 -0.000000
t2 0.000000 0.183665 0.178292 0.180610 0.226030 0.220932 0.223223 0.226097 -0.000000 -0.000000
t3 0.000000 0.183665 0.178292 0.180610 0.178782 0.172532 0.175316 0.172907 0.000000 0.000000
t4 -0.000000 0.183665 0.178292 0.180610 0.113997 0.107448 0.110367 0.110305 -0.000000 0.000000
T 1 0.365537 0.056639 0.057493 0.057133 1.205169 1.208826 1.209696 1.219063 4.798694 4.793752
T 2 0.365537 0.056639 0.057493 0.057133 -0.005919 -0.005904 -0.005988 -0.006089 1.278141 1.270009
T 3 0.365537 0.056639 0.057493 0.057133 -0.085898 -0.085058 -0.085472 -0.086488 -0.878301 -0.888377
T 4 0.365537 0.056639 0.057493 0.057133 -0.009010 -0.007756 -0.008358 -0.009662 -1.293488 -1.306935
TP 1 0.365537 0.614868 0.611507 0.612952 1.227866 1.223959 1.225733 1.231502 4.798694 4.798959
TP 2 0.365537 0.398076 0.398089 0.398083 0.406727 0.406508 0.406598 0.406473 1.278141 1.278242
TP 3 0.365537 0.293460 0.293581 0.293532 0.126285 0.126572 0.126435 0.125728 -0.878301 -0.878180
TP 4 0.365537 0.284981 0.286215 0.285684 0.126285 0.127789 0.127115 0.125315 -1.293488 -1.293714
EV 1 0.000000 -0.273626 -0.269234 -0.270979 -0.861433 -0.856774 -0.858737 -0.864873 -4.434513 -4.433448
EV 2 0.000000 -0.046928 -0.046352 -0.046493 -0.065140 -0.064309 -0.064569 -0.064305 -0.913672 -0.912920
EV 3 0.000000 0.062471 0.062879 0.062772 0.229273 0.229623 0.229556 0.230002 1.242979 1.243382
EV 4 0.000000 0.071673 0.070795 0.071253 0.236085 0.235005 0.235580 0.237421 1.658202 1.658775
x1 2.617342 2.284754 2.299104 2.292896 2.282951 2.296511 2.291230 2.294440 0.932963 0.935427
x2 1.509862 1.356319 1.364958 1.361217 1.317284 1.325863 1.322036 1.317230 1.168924 1.172876
x3 0.994112 0.925307 0.931134 0.928610 0.985308 0.992044 0.989054 0.992250 1.462701 1.467624
x4 0.934455 0.877965 0.883588 0.881152 0.971667 0.978298 0.975355 0.975897 1.581817 1.588451
y1 0.160111 0.139766 0.128629 0.133440 0.139655 0.128170 0.133264 0.128052 0.057072 0.052070
y2 0.116471 0.104627 0.096298 0.099896 0.101615 0.093312 0.096963 0.101786 0.090171 0.082328
y3 0.075907 0.070653 0.065024 0.067456 0.075234 0.069109 0.071804 0.068829 0.111686 0.101971
y4 0.085472 0.080305 0.073915 0.076675 0.088875 0.081638 0.084822 0.085193 0.144684 0.132207
w1 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181 7.254181
w2 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053 4.407053
w3 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338 3.004338
w4 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310 2.760310
L1 0.433266 0.418984 0.418964 0.418971 0.503223 0.502971 0.503189 0.503709 0.797985 0.797672
L2 0.451973 0.421829 0.421902 0.421868 0.414251 0.414264 0.414244 0.414220 0.575722 0.574862
L3 0.477827 0.429186 0.429292 0.429245 0.395038 0.395337 0.395193 0.395031 0.231694 0.230139
L4 0.501923 0.450403 0.450572 0.450497 0.429962 0.430287 0.430130 0.429809 0.156871 0.154672
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