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Abstract

"This paper develops the inferential theorﬁf Tor factor models of large dimeusions. The
principal component method is considered because it is easy to implement in practice
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1 Introduction

Ficonomists nowadays have the luxury of workinz with an increasingly large volume of data.
For example, the Penn World Tables contain fhirty wvariables for more than one-hundred
countries covering the postwar years. The Wcrx Banlk has data for about two-hundred
countries over forty years. State and sectoral level data are also widely available. A useful
method for summarizing information in date rich environments is factor analysis. More
importantly, many economic problems fall dirscily irio the framework of large-dimension
factor models; e.g., the arbitrage pricing thecry of Ross [1976); the rank theory of consumer
demand systems of Lewbel {1991}; diffusion-index for "sz'uocmg of Stock and Watson (1998,
1999), and disaggregated-business-cycle methodology of Forni and Reichlin (1998). While
there is a well developed interential theory for small-dimension (classical) factor models, the
inierential theory for large-dimension factor mcdzls is not well understood. The purpose of
this paper is to partially fill in this gap.

The classical factor analysis assumes a fixec N with T independent and identically dis-
tributed (iid} observations; both the factors and idiosyncratic errors are iid and the id-
losyncratic covariance matrix is diagonal; woiie not essential, normality is often assumed
and maximum likelinood estimation is used in estimation. In addition, inferential theory
is based on the basic assumption that the sample covariance :r‘\ri:c is root-T" consistent
and asymptotically normal, see e.g, Anderson (1‘963 984, and Lawley and Maxwell (1971).
These assumptions are no longer appropriate or . [m ensicnal models. The iid assump-
tion and diagonality of the idiosyncratic cove airix are too strong for economic time
series data. The maximum likelihood estimation is not feasible for large-dimension factor
models because of the size of the number of ; cters to be estimated. IMoreover, the
consistency of the sample covariance matrix ‘o the po“ujatlon N x N covariance matrix is
nol a well defined problem when NV and 7" boin approach infinity.

‘There is a growing literature that recognizes
and proposes new methodologies. Motivated o
Rotnschild (1983) introcuced the notation of “zp;
diagonal covariance matriz. Furthermore, Champer
component analysis is equivaient to factor ana s
normality) when N increases to infinity. But tn
covariance matrix. Connor and Korajezyk (1986,1988,
matrix and suggested that when N is much larzer than 7', the /N-dimension factor model
can be treated as a T-dimension modsl. They applied the principal component method
to tne 7" x T sample covariance matrix. This approach of computation has been used in
most recent literature as in Stock and Watson [1998,1999), Bernanie and Boivin (2000},
and others. Forni and Lippi (1997), Forni and Reichlin (1998} considered large dimension
dynamic factor models and :ufmessed different methods for estimation. Forni, Hallin, Lippi
and Reichlin (2000a] formuiated the dynamic principal component method by extending the
analysis of Brillinger (19871.

Imitations of the classical factor analysis
ge pricing theory, Chamberlain and
ciimate faCL or mﬁdd to allow for non-

)»w —

sumed a known N x N population
1931 studied the unknown covariance
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Some preliminary estimation theory of large factor models nas been cbtained in the




literature. Connor and Korajezyk (1986) proved consistency for the estimated factors with
T fxzed. For 1nferunu3 that requires large T, mey used sequential limit argument (N converges
to infinity first and then 7" converges to infinity}'. Stock and Watson (1999) studied the
uniform consistency of estimated factors and derived certain rate of convergence for large N
and large 7'. The rate of convergence was also studied by Bai and Ng (1999}, Forni et al.
(2000a,c) established consistency and certain rate of convergence for the e\tlmaueq common
components Tor dynamic factor models.

rowever, inferential theory is not well urderstood for iarge-dimension factor models. For

example, limiting distributions are not available in the literature. In addition, the rates of

convergence derived thus far are not the ones that would deliver a (non-degenerate) con-
vergence in distribution. In this paper, we derive the rate of convergence and the limiting
distributions for the estimated factors, factor “cadings, and common components, estimated
by the principal component method. Furtherrcre, the results are derived under more general
setup than classical factor analysis. In additicn to large N and large 7', we allow for serial
and cross-section dependence for the idiosyncratic errors; we aiso allow for heteroskedasticity
in b tﬂ rhmenswns Under uassmal factor modaels aay /\/ is nxed one can mﬂy consistently

strate that both the factorq and facwr Iocu‘:i:s can pe COHSlsten’tly estimated (up to a
normalization} under the large-model paradigm.

We also consider the case of large /V but fixed 7. We show that to consistently estimate
the factors, a necessary condition is asympiotic independence and asymptotic homoskedas-
ticity in the time dimension. In contrass, under the framework of large N and large T,
we establish not only consistency but consistency in the presence of seriai correlation and
teterosicedasticity.

The rest of the paper is organized as fol.cws. Section 2 sets up the model, introduces
rotation and assumptions. Section 3 provides tie asymptotic theorv for the estimated fac-
tors, factor loadings, and common components. Section 4 provides additional results in the
absence of serial correlation and heteroskedasticity. The case of fixed T' is also studied.
Section 5 derives consistent estimators for the covariance matrices occurring in the limiting
distributions. Concluding remarks are proviced in Section 6. All proofs are given in the
appendices.

2 Preliminaries

Let X be the observed data for the i** cross zection unit at time ¢, for ¢ = 1,... N, and
i=1,...7. Consider the following model

g = /x F g = C; + S, ‘,‘/1\5

S - N

!Connor and Korajezyk (1986) recognized the imporiance 2ous timit theory. They stated that
“Ideaily we would like to allow 77 and T to grow simuitaneousiy {pos&mv with their ratio approaching some
limit). We know of no straightforward technique for solving this problem and leave it for future endeavors.”

Studying simultaneous limit is only a recent endeavor.

(3]




where I iz a 7 1 vector of common factors, .; is a 7 x 1 vector of factor loadings, Cj = ALF;
is the common component, and e; is the ’d]csvn«:ratic component, of X;;. None of the right
hand side variabies are observable and the crniyv cbservable variable is X.. In the context of
arbitrage pricing theory, X;; represents the resurn of security 4 at period #; F represents the
vector of factor returns; \; represents security ©’s exposure to the factors; and ey represents
the idiosyncratic component of returns. Although # is labelled as time, it has different
meanings with different applications. For example, m the rank theory of consumer demands,
{ represents the % household and ¢ represents the i** cons umption good.

The above factor modeis are used in many Umcr applications. For example, the coinci-
dent index model of Stock and Watson (1989) {larze 7' but a small N) and diffusion-index
forecasting of Stock and Watson (1999) (large IV and large 7). They showed that an index
of economic activity based on N = 61 series provides non-trivial improvements to inflation
forecasts. Bernanke and Boivin (2000) considered the conduct of monetary policy when
there is an abundance of information. In their analysis, the information from over 200 se-
vies 1s pooled with the factor model. Tong f' 000} examined the profitability of momentum
traaing strategies and its linkage with systemstic factors, estimated by the principal com-
poneni method (N = 311 and 7' = 408). Fuml et 91 2000b) studied business cycles among
Buropean countries with large-dimension data

When N is small, the model can be cast “nder the state space setup and be estimated
by maximizing the Gaussian likelihood via tne Kalman filter. As N increases, the state
space and the number of parameters to be estimated increase very quickly, rendering the
estimation problem challenging, if not impossibie. But factor models can also be estimated
by the method of principal components. As snown by Chamberlain and Rothschild (1983),
principal component estimator approaches to ‘;ie maximum hkehrm ¢ estimator when N
increases (though they did not consider sampiing variations). Yet the former is much easier

to compute. Thus this paper focuses on the vrcoerties of principal component estimators.

FEquation fl) can be written as an /V- czmuz on time series

+ o

where Xy = (X, Xog, oo, X, A = e, = (&4, €9, ..., ene) . Alterna-
tively, we can rewrite (1) as a T- dlmen observations:
_X = F,;\ 5 : /C — :l[/ /’/ 3 /—\\/ !
where X, = (X, Xop, ., Xip)/, = [Py, Fs, o, P and e, = (eq, €, .. esr) . We will also
use the matrix notaticn:
Y — RTA L )

N
C:, 89y ENJ 18

data andg e = £
x rjand F' [T x r}) are both

where X = (X, X,, ..., X)) is 2T x N matriz of observed
a ' % N matrix of idiosyncratic errors. The matrices A (N

unknown.

Our objective is to derive the large sample properties of the unobserved factors and their
loadings estimated with the method of principal components when N and 7" are both large.




The method of principal components minimizes

Concentrating out A and using the normalization that #'F/T = [, {ar x r identity matrix),
the probler: is identical to maximizing ir (F' (XX F). The estimated factor matrix, denoted

by F is /T times s eigenvectors corresponding to the 7 largest eigenvalues of the 7' x T matrix
XX, and A = = (F"Fy7 ' F'X = F'X/T are the corvesponding factor loadings. The common
component matrix A’ is estimated by FA.
Because the factors and their loadings are identified only up to scale, the solution to the
above minimization problem is not unique. Another solution is given by (£ A), where A is
constructed as /N times the eigenvectors corresp cuding to the r largest cigenvalues of the
N % N matrix X’X. The normalization that A\ /N = I, implies ' = X A/N. The common
component matrix is estimated by F'A’. The first estimate (}7’ , Kl is easier to compute when
T ig less than NV and the second estimate (F, A} is easier to compute when T is larger than
N. We introduce a third estimator, which is a 1zo1manzed version of the second one:

F=FEF/TM?,  and A=AFF/T 72, (3)

It is clear that the three estimates lead to the same estimated common components, ie.,
FA = FA = FA? and the same optimal objective function V{r). The theoretical analySb
will Tocus on the third estimator, which has been studied by B&I and Ng (1999) to certain
extent.

Let ir(A) denote the trace of A and [JA]l = [:+{4"4)]*/2 denote its norm. Throughout, we
let F? be the » x 1 vector of true factors anc )C b2 the true loadings, with 7% and A® being
the corresponding matr‘?ces The subsequen: vsis assumes the number of factors {r) is
known without loss of generality since Bai arc (1999) showed that r can be consistently
estimated. For COHDIStth estimation of r, the fciiowing assumptions are made:

Assumption A: Factors

FWFN < 14 with M < ocoand T° 5" | FPFY 57 = “or some positive definite matriz Dy,
Assumption B: Factor loadings

< A< oo, and [AYAY/N -, 0 0 F

|2 ] some ¢ - positive definite matriz 2

Assumption C: Time and cross-section dependence and heteroskedasticity

There exists a positive constant M < co such that “or il N and T,

1. E{B%) = O.} E'Biffg < ]‘547




(s,s)] < M for all s, and

2. Blele,/N) = BINTVSN ejien) = vur(s, ),

(M)
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o
B
[q]
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( ) = 75 with |74 < |7y for some v and for all . In addition,

4. E(ez‘tejs' = Tiiis and | jVT -1 yl\ ) TN

5. For every | 7:,0,7551\7 /2 Tﬁi[ e — Bz

N i
1 1 .
ﬁ(ﬁ E H—j‘ \ Flegl|?) < M
. &/ - /
=1 =1

Assumption A is more general than that of ciassical factor analysis in which the factors
F; are iid. Here we allow F} to be dynamic sucn that A{(L)F, = ¢.. However, we do not
allow the dynamic enter into X, directly, so t bt eJ&LIOnShIU between X; and F) is still
static. For more general dynamic factor mode s, readers are referred to Forni et al. (2000a).
Assumption B ensures that each factor has & non-irivial contribution to the variance of X,.
We only consider non-ra ndom factor loadings “or simplicity. Our results still hold when the
Ai's are random, provided they are independent of the factors and idiosyncratic errors, and
El2AF < M. Assumption C allows for lim ‘ime serles and cross section dependence
in the idiosyncratic components. Heteroskedas®icities in both the time and cross section
dimensions are also allowed. Under stations o the time dimension, yy{s,?} = yy{s—
thougn the condition is not necessary. Given Assumption C1, the remaining assumptions
in C are easily satisfied if the e;; are independer’ for all ¢ and #. The allowance for some
correlation in the idiosyncratic Compo;em; sets up a modei to have an approzimate factor

,\1

‘/7

swucfurx It is more general than a cior model which assumes e is uncorrelated
across ¢, the framework on which the AFT thmw of T 0ss (1976) was based. Thus, the results
to be developed will aiso apply to strict factor models. When the factors and idiosyncratic
errors are independent {a standard assumption for conventional factor models), Assumption
D is implied by Assumptions A and C. Independence is not required for I to be true.
For example, suppose that e; = e l|Fi | with ¢ being independent of F, and e satisfies
Assumption C, then Assumption E howe.

Chambenam and Rothschild {1983}

oximate factor model as having
52 = E(ewey). If we assume e; to

983} defined an
bounded eigenvalues for the N x N bovariance mat




be stationary with Fie;e
is bounded by max; »

j:) = Tij, then from the matrix theory, the largest eigenvalue of €
|7:<]. Thus if we assume Z;V:l {7;5] < M for all 7 and all IV, which
implies Assumption C3, then (2 will be an approximate factor model in the sense of Cham-
berlain and Rothschild. Since we also allow for non-stationarity {e.g., heteroskedasticity in
the time dimension}, our model in certain sense is more general than approximate factor
models.

3 Asymptotic Theory

Assumptions A— D are sufficient for consistently estimating the number of factors 1\/ as well

as the factors and factor icadings, see Bai and Ng 1999, However, to derive their limiting
distributions, we need additional assumptions.
Assumption E: Weak dependence. For zome M < oo such that for all 7 and N
P k )
1. Toreach t, S0 . Jyis, )] < M
. oY eacll t, s= YIS, v)| = .

o S 1Y
2. Foreach i, >, <M.

This assumption strenginens C2 and C3, Tespec tively, and is still reasonable. For exam-

ple, in the r‘ase of independence over time, yyi5,¢; = 0 for s £ t. Then Assumption E1 is
N o o 9N

equivalent to & > i Fle2) < M for all t and V. Under cross- sectlon independence, E2 is

N Lui=1
equivalent to F(e;)* < i, which is implied by Assumoiion ClL.

/

Assumption F: "\/luments and central limit theorem. There exists an M < co such
that for all V and 7

i. For each ¢,

2. The r x r matrix satisiles

3. For each ¢, as N —+ co, }
|
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- Yo, — NN [ H
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where I';, = limiyr oo = > ZJ_T X0 \“ E(e”eﬂ, : \
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where &; = plim;_, = Zm: ST E[FFF¥ e eq).

LZai=1

Assumption F'is not stringent because the sums in F1 and F2 involve zero mean random
variables. The last two assumptions are simply central limit tneorems, which are satisfied
by various mixing processes.

Assumption G: The eigenvalues of the r x = matrix (3, %) are distinct.

The matrices X and 2, ave defined in Assumptions A and B, respectively. Assumption G
guarantees a unique limit for { F’FU /T, which appears in the limiting distributions. Other-
wise, its limit can only be aetgrmmed up to orthogonai transformations. Similar assumption
1s made in classical factor analysis, see Anderson (1953). Note that this assumption is not
needed for determining the number of factors. For example, in Bai and Ng (1999}, the num-
ber of factors is determined based on the sum of squared residuals V{r’, which depends on
the projection matrix Pg. Projection matrices are invariant to orthomnal ransformations.
Also, Assumption G is not required for studying the limiting distribution of the estimated
common components. The underlying reason is rhat Lh corminon components are identifi-
able. In the following analysis, we will use the “act i positive definite mairices 4 and
B, the eigenvalues of AB, BEA and AY2BAY? ¢tz all nave the same set of eigenvalies.

o

Proposition 1 Under Assumptions A-D and 3, i

ciounng probability limit exisis and

=)
7 ;. - - - . . ~ A1 /g er—1 - -
The matriz Q) is inveriible is given by Q = VY 3N /2 , where V = c:cag(J Vg, wvey Uy
and U1 > vy > - > 2/ > O are the eigenvalues o /_,A_,,-_/ 2p2y 12 , and T 45 ihe corresponding

7

ergenvector malriz such that

Y =1.

The proof is provided in the Appendix A. - assumptions A-G, we shall establish
asymptotic normality for tne principal componer #\Qympmtic theory for the
principal component estimator exists only toe ciassical framework, where one of the di-
mensions is fixed. For example, Anderson (2953 showed asymptotic normality of the ssti-
mated principal components for large 7" and fixed N. Classical factor analysis always starts
with the basic assumption that there exists a roct-7T rnsisten't and asymptotically normal
estimator for the underlying N x IV covariance matrixz of X, {(assuming NV ig fized). The
framework for classical factor analysiz does not exend to situations when neither dimension
of the data is fixed. This is because consisten: estimation of the covariance matrix of X;
is not a well defined problem when IV and T both zporoach infinity. Thus, our analysis is
necessarily different from the classical approacs.




3.1 Limiting Distribution of estimated factors

As noted earlier, 7 and A° are not separate.y icentiiable. However, they can be estimated
up t0 an invertinle « X r matrix transformation. As shown in the appendix, for the principal
component estirnator v , there exists an invertible matrix Ay (whose dependence on N, T
will be suppressed for notational simplicity) suca that F'is an estimator of F° I , and A is an
estimator of A°(H!)"". In addition, F'A’ is an estimator of FOAY. the cormmon components.
1t is clear that the common components are icentifiable. It is also shown in the appendix
that F' is estimating FPH, for some 7 x 7 invertible matriz H,. Likewise, A is es stimating
AP(HLY ™. ‘We also note that for many purposes, ing FPH, is as good as knowing F°.
For example7 in regression analysis, using I as t sor will give the same predicted
° fz/; span the same space, testing the

) (‘,m

value as using F°H, as the regressor. Because 7° and F
significance of F* in a regression model containing IC as regressors is the same a3 testing the
significance of FUH,. For the same reason, the portiolio-evaluation measurements of Connor
and Korajezyk (1986 will give valid results regardless of F or FYH; being used.

Theorem 1 Supposz ihat Assumptions A-G ho.d and that F'is defined in equation (9. For
eacn t, as N, T — co, we fgve

e P
(1) I vVN/T — 0, then

_ {
VN(F, ~HFY) = [~ = ew+2,01)
- TN =
— NG
where () 18 deﬁned 13 Proposition 1 anag U'; is cefined in FS.
(i) If VN /T — 7 > 0, possibly infinity, ther
T’F‘ HiFZ = 0,01,
Theorem 1 implies tue following result for by
Corollary 1 Under ihe assumptions of Theorem 1, we nave [(i;: If VN/T — 0, then

a4 £~ PRI RPN o~ o1 ~ B .. v INF
v NgFt HyFY)——= N0,V IQU.Q'V ™), where V is defined in Proposifion 1; (i) If VN /T —
7, then T{F, — HLFP) = O 0.

4 -

A number of comments are in order.

1. The convergence rate is min{~/N,7}. When the factor loadings N =1,2,.., N
are all known, I can be estimated by the cross-section least squares method and rate
of convergence will be v/N. The current rate of convergence reflects the fact that factor

loadings are unknown and are also estimated. Under stronger assumptions, however, root-N
ity iz achieved by the central limit

rate is still achievable {see Section 4). Asymptotic nor

A

theorem as N — co. Thus large N is required for tnis theorem.

o




2. While restrictions among N and 7 are n:e;e-;, the theorem is not a sequential limit-
ing result but & simultaneous one. In addition, taes theorem not only holds for a particular
relationship be‘b veen IV and T, it holds for meary combinations of N and 7. The restriction
\/_/T — U118 a weak one and is satisfied wher. V = “T for ¢ # 0, a constant. The result per-
mits simultaneous inference for large N and larze 7. For example, the porticlio-performance
measurement of Connor and Korajezyk (1986) can be analyzed without recoursing to sequen-
tial argumeno, See footnote 1.

. The rate ot convergence implied by this thecre
torecastlng equation involving estimated regreszors

m is useful in regression analysis or in
such as

3 ¢, pras L - - s
Yt*l“l - aF‘fL K lgvvi R E N L= 27 seey L ,7

where V; and W, are observable, but FP iz not. Fowever, #? can be replaced by F;
Elementary calculation shows that the estimation efect in £} can be ignored as long as
Ty = H{F? + 0,(T7/%) with Hy having a full *ank. This will be true if N/T — co by
Theorem 1 because the convergence rate is either vV or T. Thus if N is suffic iently large
reiative to 7', F} can be ireated as known. Stoc and Watson \1998 1999} considered such
a framework of for eca”ung Given the rate of convergence for F, it is easy to show ttht the
forecast Yryqr = Glfp + GWT is \/T-consistert for the conditional mean E(Yr 1| F2 Wy),
assuming the condition mean of ur,: ‘s zero. Fu urthermors, in constructing cenfidence in-
tervals for the forecast, the estimation effect of rT can aisc be ignored provided that IV is
large relative to T". If N/T — oo does not hoic, say N = T {c # 0), then the limiting dis-

3 dlcEI’lbUthH of Fr so the confidence
1 allows us to account for this effect

tribution of the forecast will also depend on the
interval must reflect this estimation effect. Trzcrem
when constructing confidence intervals.
4. The covariance matrix of the limiting cistrizution depends on the correlation structure
n the cross-section dimension. If e is indenencent across i, then

T 3 - ';1
Ty= lim =Y o200 (4}
Moo [N Lt 2
=1
If, in addition, o2 = 0% = o2 for all 4,7, we have I';, = o2%.. In Section 5. we discuss
’ ’ i ¢ t s 3 ¢ 3

consistent estimation of QT,Q)".

Before ending this section, we provide furtier asymptotic results. Part (i1} of Theorem 1
does not address the limiting distribution of Ti\Fi—Hg F2). To devive its limiting distribution,
we need an additional assumption.

Assumption H. As N — oo, vy (s, ¢} — (s, and 3.7 |y(s, £)} < oo for each #.

Proposition 2 Suppose that Assumpiions A-H hold.
() IfFVN/T — co, ihen

> a N ~ 15
T(F, — H FH -S5O Fols,t).

-




(1) If /N T —

PUE = HF) =@ X (s, 8) + 771N (0, QTN

Note that the intinite series is well defined L2cause the coefficients v(s,t) are absolutely
summable and F| F,[I* < M for all s by assumpiion. The two random variables in the Hmit
of (ii) are independent when the idiosyncratic errors 55,‘5 are independent of factors F° for
all 7, 7, and s. Usefuiness of this result is the rate of ¢ nvergence as well as the 1mphcar1un
that (to be discussed further) serial correlation and L CLerusLedasLmJLy slow down the rate of

convergence.

3.2 Limiting Distribution of estimated factor loadings

The prewom section shows that Fis eCLhﬂcLLLuA FCH.. Now we show that A is estimating
AY(H{)"'. That is, A; is estimating H{*AY for every 4. Lehmann and Modest (1988) used
the estlmated loadings to consiruct various portrolios.

Theorem 2 Suppose ihai Assumptions A-G ~oid and that A s defined in (3). Then for
each i, as N, T — co, we have

PIfA 0, then

/

~ . 'FO'FD\*l 1 .
VTOu—HI'WN) = H{ = E Fle; +0,(1)

U Ao N=1F 11/ —1
et S '\O, E\Q V } @E\T/ Q} ),
where V' and ¢ are given i Proposition 1 ang $; in Fi.

Sy S 7 ~ -
(ii) If VT[N — ¢, where ¢ > 0, po 581bly o=y,
%y —20N oy 1Y
Vi\)\r‘; - ,1:[1 /.:'/ -— (/‘ﬂpk_i/‘.

Similar to Corollary 1, Theorem 2 implies the
Corollary 2 Under the assumpiions of Theorem 2, we have (3): If '\/TfN — 0, then
— .

VN(Q; — Hy 1Aﬂ%’/’z——>«_/\ff0 LJ' BT ) VTN = e then NOw — Hy 28 = 0,(1).

L = > EEER N 8 i ; \

i—ﬂ
U]

the convergence rate is min{+/T, N}. When

Some comments are appropriate o

the factors F} {t = 1,2,...,T) are all QDSPIY'CLUMJ, »? can be estimated by a time series
regression with the ¢** cross-section unit. In this case tze best rate is /7. The new raie is
due to the fact that F’s are not obs servable and are also estimated. Second, an analogous
result to Proposition 1 also holds for A;. The details are omitted. Third, if 7 and N are of
the same order, then v/ N/T — 0 and - Y/ T//\/ — 0. Tt follows from Theorems 1 and 2 that

both F} and A; are asymptotically normal.




3.3 Limiting distribution of estimated common components

The limit treory of estimated common com p- nents can be derived from the previous two

i

theorems. Tote that C = 7Y\ and C;, =

Theorem 3 Suppose Assumptions A-F hold. Az N, T — oo, we have

(1) If N/T — 0, ihen

VN{Cy —Ch — NI, Vi)
where Vi = A? ’Z**F E/x N and T4 and T ore defined earlier.

(1) If T/N — 0, then

V(G —CL = N0, W)

where Wy = FYSZ O35 F, and w and $; are defined earlier

(i1} If T/N — 7, then

'Thus the estimated common components are alwars asymptotically normal. The rate of
convergence is mml«/Nj v T}, which is the best rate possible. When F° is observable, the !
best rate for A; is v/T. When AP is observable, st rate for F is ~/N. It follows that
when both are estimated, the best rate for X ?V s the minimum of vV and V7.

4 Stationary Idiosyncratic Errors

- = . e ST oYy wr -
1c2 1or Fy is shown to be min{v/ N, T}, If T is

fixed, it implies that ]/i {or ﬁl 1s not consistent. The result seems to be in conflict with
that of Connor and Korajczyk (1986), wno showed that the estimator f’t is consistent under
fixed 7. This inquiry leads us to the <iscovery of a necessary and sufficient condition for
consistency under fixed 7. Connor ana Kora imposed the foillowing assumption:

N

1 5 5
S Lo s L s N L2 2 Foe Tt me N =Y
2 €i€is — U, TF 8, anc T g —oT jorawi, as N — oo. i)
i=1 S i=

We shall call the first condition asymptotic independence {or asymptotic uncorrelation)
and the second condition asymptotic nomoskedasticity. They established consistency under
assumption (5). This assumption appears to ne reasonable for assets returns and is commonly
used in the finance literature, e.g., Campbell, Lo, and Mackinlay (1997). For many economic
variables, violating one of the conditions seems to pe easy. We show that assumption (5) is
also necessary under fixed 7.

i
I




Theorem 4 Assume Assumptions A-G Loio. Under a Jized T', o necessary and sufficient
conditior. jor consisiency is asymptotic inderendence and asymptotic homoskedasticity.

‘The implication is that, for fixed T, consistent estimation is not possible in the presence
of serial correlation and heteroskedasticity. ‘n contrast, under large 7, we can still obtain
consistent estimation. This result highlights the importance of large model framework. In
addition, the allowance of serial correlation and heteroskedasticity is not only a more general
assumption, but also a significant contribution.

Next, we show that previous results can also be strengthened under uncorrelation and
homoskedasticity in the time dimension.

Assumption I: E{eye;;) = 0ift £ s, Fe? = o?, and Eleyeny = 155, for all £, ¢, and 5. ‘
j it 5 it Cqt ) 5 3 J
R 1 N = - . - - ,
Let o7, = & 2,1 0/, which is a bounded secuence by Assumption C2. Let Vir be the

diagonal matrix consisting of the first » largest eizenvalues of the matrix —X X', arranged
in decreasing order. Lemma A.3 shows V,W——/»Y , a positive definite matrix. Definre Dyr =
17 T2 N ;T Fi » P R ) S i i vy
Vir — 505) Wi, then Dyr—=T,, as T and couverge to nfinity. Define s = H, Dyp.

Theorem 5 Under Assumpiions A-G and I, 25 , N — 0o, we have

VN(F, — HyFD S5 N0, 0TQ)

where T = plim(AYQAY /N and Q) = E{eel = (7.

NN

Note that cross-section correiation and hetercz-edas ticity are still allowed. Thus the result
is for approximate factor models. This theore does not require any vestriction between
N and T' except they both converge to mmii A gimilar result holds for F}. The rate of
convergence (N*/2) holds even for fixed T, b limiting distributicn is different.
lf cross-section independence and cross-se homoskedasticity are assumed, then The-
orem 2 part (i) holds without any restriction ~ctween N and 7. However, cross-secticn no-
moskedmmcmy is unduly restrictive. Assumpiion I does not improve the result of Theorent
, which already offers the best rate of convergence. Inspecting Proposition 2 and Theorem
5, we see that serial correlation and heteroskedzasticity are responsible for the non- normality
results of Proposition 2.

5 Estimating Covariance Matrices
In this section, we devise consistent estimators of the asymptotic variance-covariance matri-
ces appeared in Theorems 1-3.

(1). Covariance matriz of estimated faciors. This covariance matrix depends on the
cross-section correlation of the idiosyncratic errors. Because the order of cross-sectional
correlation is unknown, a HAC type estimator (see, Newey and West 1987)) is not feasible.

=




Thus we will assume cross-section md epencerce for ey (¢ = 1,2,...,N). The asymptotic

o~

covariance cof Fi is given by Il; = QI':(&, where T is defined in {4). That is,

.//

Iy = plim (

"This matrix invoives the product FPAY, which can be replaced by an estimate of (FO, A
Note that any of the thres estimators of (F° A"} will give a numerically identical product.
We choose F, A) A consistent estimator of the covariance matrix is then given by

N

o~ F_f/ ; e, F’"—u . 1
P = — \ :;}2 A A ' —_— v Az { \r
= () (&) () = (52 > BAT) 6
where &, = X;; — M\.F.. Note that 22 = J

-
3

(2\5. Covariance matriz of esizmaww jacior soadings. The asymptotic covariance matrix

of % is given by (see Theorem 2)

Let <I>; be a HAC estimator, as in Andrews anc _,iunah ar (1992), constructed with the series
{ }{t=1,2,..,7 . Decause F} estimates TLEY the TAC estimator @; is not directly
es t 1amng b, but a transformation of ;. Defire

\’\

O: =V, 25T,

Thi: eqtimator is consistent for ©;.

. Cowvariance malriz of estimated common components. Let
~ /‘x’/\ -1, \;N U AA ~
"N N e BT LA AT
F'F FRV R
W = ) )
; 7 i

as estimators of Vj; and W, 1especui*::1y,

vendence. As, T)N — oo,
. resveciively.

cled oS

Theorem 6 Assume Assumptions A-5 ond ¢
lé, O“ Vvt, and ﬂfqt are consistent for 11, ©.,

One major point of this theorem is tnat ail limiving covariances are easily estimable.

b
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6 Concluding Remarks

Thig paper studies factor models under a nonstandard setting: large cross section and large
time dimension. Such large-dimension factor models have received an increasing attention in
the recent economic literature. This paper considers estimat rg the model by the principal
component method, which is feasible and straightforward to implement. We derive some
inferential theory concerning the estimators, including the rats of convergence and limiting

distrioutions. In contrast with the classical tactor analysis, we are able to consistently
estimate botz “actors and factors loadings, not just factor loadings. In addition, our results
are obtained uncer very gemeral conditions, allowing for cross-section and time-dimension
correlations and neteroskedasticities. We also ldentify a necessary condition for consistency
under fixed 7.

Many issues remain to be investigated. Tt is interesting to investigate the efficiency of
the principal component estimator. This estimator is analogous to that of the least squares.
£ more efficient estimator is perhaps the counterpart of the generalized least squares. The
question will then involve properly setting up the generalized least squares method and
examining the properties of the estimator. These would include the convergence rate, lim-
ting distribution and asymptotic efficiency. These problems differ from classical regression
analysis because the factors and loadings are ncs observable.

Arnother broad area of research is empirical applications of the theoretical results derived
i this paper. These results have important implications for empirical work. It is not
necessary to divide a large sample into small subsamples in order to conform the fived T
requirement, as is done in the existing literature. In fact, a large time dimension delivers
consistent estimates even under heteroskedasticits and serial correlation. In contrast, under
small 7', consistent estimation is not guaranteed. Some interesting applications in economics
and finance have already been conducted, e.z., Dernanke and Boivin (2000) and Tong (2000).
Many other existing applications that employed “2ctor models can be reexamined with new
data sets and a enlarged T dimension. It wouid be inferesting to examine common cycles
anc comovements in the worid economy on the lines of Forni ab al. (2000b) and Gregory
wna lead (1999).

Fecently, Granger 2001 and others called “or large-model analysis to be one of the
forefront items on the econometrics research agenda. It is our view that targe-model analysis
wiit become an important modelling paradizgm as time progresses. For one thing, data-rich
environments will be more pervasive as data collection, sf . and dissemination become
more efficient and less costly. For a furtzer exampie, the increasing interconnectediiess in the
woria economy means that variables across different countries may have tighter linkage than
ever before. All these, in combination with maodern computing power, make large-model
analysis more pertinent and feasible. We hope “hat the research of this paper will shed light

—o

jaV]

on further development in tne analysis of large mode’s.
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APPENDIX

Appendix A: Proof of Theorem 1

H-j\
oy
[} .
'f/\;
P
o
(92
(@)

As in Bai and Ng (7

AN

9), we use the identity _
let Viyr be the v x = diagonal matrix of eigenvaiues of ~2 X ¥ in
Lh

refined in the main text,
lecreasing order. By the

CDm

deﬁni‘tion of sigenvectors and eigenvalues, ﬁ‘ eft hand side is simply

. Thus we obtain tmmediately another identity linking Fard T that is, F = FVNT7 or
T = VyrF, [ d=1,%..,1". N

Let I, = (AYAY/NY(FYF/T) be a r X r mairiz and Cyy = miny/T,VN). Theorem 1
is based on the identity, alsc sce Bai and Ng (1639’ J

T T T
B =17 Fopl(s, 6+ TS Fu+T Y Foe

s=1 s5="1 s=1

(A.2)

Prool: see Thecrem - of Bai and Ng (1299,

Let Hy = H, T/“ Note that Viyy converges to a positiw definite matrix (see Lemma A.3
below). Because ﬁ,ﬁ = /NTE or Ft =V

fo wf Lewrmna ALl leads to the following:

Corollary A.1 Under Assumpiions A-D. we hoye

YL
{J_]\']T .

From FVF/T = I and Assumptions A and B, i follows that | H1]] = O,(1). Because Viyr

= O,(1). In addition, Lemma A.3

has a positive definite matrix as its limit, we have
implies both H, and Hs are of full rank.

e




Lemma A.2 Under Assumpiions A-F, we have

IS S A S S O S
H > . YL K = A e
(0’/' < Lvg=1 LsYNISE, %) PN T
/ ) —3 V-\Eﬂ . f I H S
\b/ T Loss=1 ‘FS WSt T MBI NCn S
) / 1 N
"Dl\ 7/t;
PAN
o~ T \
o, i
L 3

Proof: Consider part {a}. By adding and subtracting terms, we have

i NN 3N 1— 1 - s 0
TN Fowls,t) = TN (I, - HyF )y (s, 1)
s=1 g=1
] - jene ! ’ \ 7 ’E,_\ = i -
c=1 s=1

] < (max, F||F?|

3

Now & 52T FOyn(s, i) = O,

Lss=1

MY by Assumptions A and pi Consu:’ler the vt § serm:

1//./8]

5 |

4

! T 1 o\ V2 1 g EU A\ 1/2
TN F - B s ) < (5 lyifﬂf’u) = (Nt )

s=1 s=1 ' s=1

which is O”’\Cy ) V by Corsilary A1 and Assumption B1.
T

Consider part (b)

o HYT 1_\“_‘:1?(06;

For the first term,

losl

I77 N - PGl £ (= NDIR - R

Furthermore,

T

Thus the first term i

DS (s ] <




Consider part (¢

0,(1) Thus, (¢} is Op( 5.

o
T Fs-’gsi’ =
s=1

Consider the first term

2l —

v]“e AP = 2o ) FE = 0,(1),
\/—‘:T’ o \/NTL o TR TR |

by Assumption F2. Thus, N 177157 HIFCelACFY = O, ) an

The proof of Lemma A.2 is complete. | |

By the definition of eigenvalues and eigenvectors, we have == XX'F = F'Vyy. From !
F'F)T =1, we further have T 1‘ XX'F =Vyr




Lemma A3 Assume 453umpizons A-D hoins As, TN — oo,

;

(i) T—11 Y LT‘\f;\":f Vyr—=V
(1 F:“‘" AR S Py

where V' is ihe diagenal moiriz consisting of - cgenvalues of LaXp.

This lemmea is implicitly proved by Stock and Watson (19991, The details are omitted.
cfinite, the lemma sz-s that - ;F ank for all large T" and
“mz A.3(i1) shows tnan a quadratic form of
F;F itself has a unigue limit uniess
vector matrix of W refers to the matris

Y column corres DOHdS

Because V' is positive d
N and thus is invertible. We also note that L=
Fo'ﬁ

has a unique limit. Bub tris does not zua
Absumptmn G is made. In what follows, an
whose columns are the eigenvectors of W w*h wnit length and the ¢
o the 7" largest eigenvalue.

Proof of Proposition 1: Let Vyr be as stated carlier, then TN_/X X'F=FV, nr. Multiplying
this identity on both sides by 7 (442 /KJC) 2EY e have

AYAS I XX~ cAYAS 12 Y R
Ca) TG FE ) ()

A 20 S v B S A
Expanding X X' with X = FF9AY — ¢ we can rewrite 2hove as
(AYAS 12 OO A AYAON SFOE AYAON12  FOR ,
) { ) ( ) { i = ( = } (% ﬂ/NT \Ag)
N _/W\]’ / iY T “ ]V VRN T " fv 7 N T .
T \ 1/2 f>,'ﬁ, . e~ . . ~ 3 .
where dyp = | ADA’JAO b - o )Ao’e FHTN 4+ - FYeACFY T + ,,,"/“,.Fg‘ee’,F/Ti = o0,(1}.
The 0,{1) is 1mphpa by Iwmca A2, Let
~ , _/\O’AO)U 2 FVYRON fAVAD 12
N !
cnr=iTyo) Ty )k N/
and
AYAS 2 O
iNT = 1\ N /' !\\ T ’/!7 (A4)

then we can rewrite {A.3) as

envector of the matrix [Byr
Tzonal elements of B yr.
a unit length, and we have

Thus each columu fyp, though not u
dNTR;%F} Let Vip be a dzagonai matrix consistl
Denote Tyr = REyrVi- ~% 50 that each colurn of T

l[BNT -+ LJNTRNT_] Ty = T yr Vi,

, : 17w ;o= N
Thus T e is the eigenvector matrix of [ Byr - dwrF-]. WNote that Byr+dyr R converges

to B = VZE 2 / by Assumptions A and B and dyr = 0,(1). Because the eigenvalues of B




are distinct by Assumption G, the eigenvalues EBNT -+ dNTRNT will also be distinct for large
N and large T by the continuity of eigenvalics. This implies that the elgenvector matrix of
- 1s unique except that each column can be 1ep1a‘ ed by the negative of itself.

Ca

Byt + dyr i
In addition, the kth column of fiyr (see (A4 depends on Foonis v through the kth column

o S \ " . . i —1/2
of ' (k=1,2,...,7). Thus the sign of each colurn iz Fpr and thus in Tyr = Ryr Vi 1/

is implicitly determined by the sign of each colwmn in F. Thus, given the column sign of
F, 'L yr is uniquely determined. By the eigenvector perturbation theory {which requires the

distinctness of eigenvalues, see Franklin (1968) ), there exists & unique eigenvector matrix T
—~ 13
1/2 2 N Tomgen i PN . ;7(]/‘;_7 Qs ‘/‘/ " . - 2
of B =% / Yp/_ﬂ sich that | Tyr — Tl = 0,1}, From &8 = (AN—A) o Visp %, we

T 7

Z, Yipyse by Assumption B and & Viip—V in view of Lemma A.3(ii).

Proof of Theglfem 1:
Case 1: vV N/T — 0. By Lemma A.2, we nave:

1 1 . 1

= ] / i N ~ \ 3 Ny N
Fr= Wy 8y = Op(—me—) 4+ Opl =) + Op(—=) + O =),
vV T\/ NT VNG NT v N \/_/V Nt

The limiting distribution is determined by the third term of the right hand side of (A1)

because it is the dominating term. Using the definition of

- K
ENTEe 7 L 1 N {0 ’
VN(F, - HiFYY = T 'N (R /V’Y Xes + 0,(1).
v pa—y / £
Now /—— L/: Me, /N(O I';) by Assumption 73, Together with Proposition 1, we have

VN(F, - HIF,)-~ HVa\D,QFi.Cj") as statec.
Case 2: /N/T — 7. If 7 = oo, thei the £zt term of (A1) is the cominating term. We

It 0 <7 < oo, then the first
s case the third term is also
wof T/VVN — 1/7.

7. we have vN(E HLFYY =
rom 1 neorem 1 and Vyp — V' by

Tas HAY ’/ﬂ‘ N
have T(F, - H{FY) = TO,(rl—) = 0,(1) =

and the third terms have the same ordez of ma
O, (%) because T(F; — HIF? = Op(1)y + O,(T//
Proof of Corollary 1. I'rom }: = Vj\?}ﬁt arc A ;
V' N(F, — H{F®. The corollary follows immecatery |
Lemma A.3.

To prove Proposition 1, we need ‘iz “oliowing lemma.

Lemma A.4 Unaer Assumpiions A-7,

mex ||, — HIFY|| = O (T7H* = 0,/ TINYP.

1/i-<

Proof: We consider each term on the right hanc side of {A.1). For the first term,

~ < Y Z
maz 1™ HEF{)’N(S,@ 1n?\<27,5,\23 : (A.5)

s=1 s=1 s=1

3%}

1/

<7 O R

.l




The above is O, (T2 foilows from 715 __ {|F,||” = Op(1) and S°7_ yn(s, 1)2 < M; for
some ff; < co unif o*"*nly in ¢. The remaining three terms of (A.1) are each O (fT/N\]P)
uniformiy in 7. To see this, let v, = T7¢ Z,;:: B Cs- It surfices to show max ||p]|? =
Op(T'/N. Trut Bel and Ng (1999) proved that S ) = C,{T/N) (they used notation
b, instead of |[2;1*). Bai and Ng also obtained the same result for the th_c" and the fourth
terms.

Remark: This lemma gives an upper bound cn

LoE
[

factors to the true ones (up to a transiormamuzj, lw mouud s not *he sh 1pcst pObblble
because we essentially use the argument that max, | S < > WF— HIFPY. Note

which is acbucvﬂ

3

~. /v._

that if N > ¢T?, for some ¢ > 0, then the maximum deviation is O, ( T"i/
a very strong result.

Corollary A.2 Under Assumpiions A-E, we have

max || F} — Il = 0T 4 O, (T /N2,

1<i<T

Proof of Proposition 2. First we prove that Lemma A2 (a) can be strengthened to

T Feyn{s,t) =T H, T Flyn(s, ) 4 O, (T2, A6
s=1 s:i
] o, . . L= 1 =
From the proof of Lemma A.2 (a), it is sufiiciens to show that 2 5. (#, — H; Zﬂ?\’y/q[u? i) =
O (a3, Corollary A.2 implies mast: <, |1 £, — H = O, (7Y% since /N /T — 7. Now
- -
1= w7 50 N - ) "‘ & "
N7y (F, — HiFDyy(s,t)] < 775 max — HF, H( el 1) }

1<s<F

= T 0T YH0(1) = 0,(T™ 3/2>

o

Case 1: VN/T — co. In this case, the first term of (A1) is the dominating term. We
have T(F; — HIFY) = Hy S, ff 7\8 G+oyly = VTOXL 32, Foy(s, 1), by (A6),
Assumption H, and by H) — V1 QY = Q7. The last equality follows from thu definition

of ¢J.

Case 2: VN/T - r. The first and the third terms of (A1 are of the same order of

magnitude. We have

o —_— P B N
o~ ; . e N N
atan H{ 7 ; o ; N I ;- — 07 N a0 Y \
T‘FJ— fFG\:}]r 1“"077"45 A 0 '——\/ [_IJH Ae,) —"ﬂ (lj
e it/ 2 5 y v, = St ed g —_— s i
1+ s \ / A T e Y /\/ /_‘ 2 J

g=1 - =" =1




Appendix B: Proof of Theorem 2

To prove Theorem Z, we need some preliminars resiiis

) PSS TN

Lemma B.1 Under Assumptions A-F, T—'F — F°H, Ve, = Oy(z—)-
NT
Proof: From the identity [A.1), we have
T T - T T
~2N T g0 —2 E L e AN
TN R =HFeyw = T2 N Fonleten + T2 N Fien +
Py e A ——— A T —
i=1 =1 s=1 t=1 s=1
T - T T
-9 = _ BT Y W
72NN Fonges: 1T 2N > FEe:
- A~
=1 s=> =1 s=1

= [+ II--7T17T+1V.

¢ begin with [, which can be rewritten as

».-“.JL_./\

I=17" sz = HyF )y e + T2, Y

=1 s=1 i=1 s=1

The first term is bounded by

. A R T~

R —~ N 1/2 e —
TSN R = m e  (rS N =T 0, (Cri0,01),

g=1 t=1 s=1

T

3=

where the O, (1) follows from Fe? < M and T7 5

v (s, 87 < A4 by Lemma 1(3)

ot Bai and Ng (1999). The expected value of t- m of I is bounded by (ignore Hs)

T T T T
N o 9\ /9 5 . i - . - R
F,v-w/ e N/ E 012N1/2 2N1/2 A=l Neatat ! / 7 -\
2D bl BB ER) N < T (T NN s, 1)) = O(T )
t=1 s=1 =2 g=:
by Assumption C2. Thus 7 is O,{T 1. For [T, vz rewrite it as
o= FTEN N e

i
term is Oy Wit

[N

m/

The second

ond term can be written

ag \/jj\]_T;i—i \:? . eia with z L By Fl, Ehszz < M.

Thus Ellzies]] < (B)|Z4]12E ze: = Op(1). For the first
term, we have

Y e R TEYS RN NN
H - Y‘KF - l—r{,F“ r(.-SLV“ < \’ :/:H 2 *’Fl‘i - }]QFL - ) {? L ( Il L Cszezt) )

i=1 s=1 T s=t g e s=1 i=1 -




But

N,

s sy —1/2
e T B i\eksekt)]) €5 = Op]\:\/ / }

! Fal Lo - ~ ¢ 1 ~ 7Ty - \ N
< g L — —— - —_—
o the first term is Oplaym, - Ualgz) = Op =) Thus JT = Oy ‘\me/ﬁf’"
For I'TI, we rewrite it as

IIr=7" ‘T Y‘{F — HF e =8 V‘ S F e
i=1 5_1 =3 5=l

The first term is bounded by

1.,
H XA

Cnr’ 7N

- T AN \ e e e .
because = ¥ 1 nNyes = . Ar€rs jes, which is O, N ~/2Y The second
T Lai=1 iseiL =1 T RE 3 FEIN ¥
term of /77 can be written as
4 T . T N i
N ity - NN ACiii | (B IS
AR T . s s 5L e A T A L
< Lt JUTN P J
s5=1 i=i k=1

which is O,/ NT)"V2) if cross-section mdepc:m nce L:l'is tor the ¢’s. Under weak cross-

: ‘ Omr(NT\‘l/E) + O,(N~-}. This
- We have = ST T‘/J: Thit] <
In samz_udly, Il is Optﬁﬁ: OINTH).

Of JIT. Ths I+ 11+ ITT+1V = Oy(5) + Oz +

sectional dependence as in

Lemma B.2 Under Assumptions A-F, the © > = matriz T-HF — FOH,) F? = Op(—)-

Proof: Using the identity {A.1}, we have

o T T i
TN B - HF)FY = 1NN R e+ 7NN R R, -
paa— hd e i - AN v [

s of [ of Lemma B.1. Next,

Term [ is O,(T1). The proof is

>3 - ;\ it [RSENCN e J—1 ; ~ ;\ !
IT=T2N N (F, — HF P, TN N oL FORY . ‘
i=1 s=1 i=1 g==%




The ﬁrst term is O?(TN;_\/T) following argume -alogous to Lemma B.1. The second term

VETZ mequahty Thus, IT =0,/ \/_).

AWl

“NT
- Zt 1 E~—1 HLF)F' 75 Now

= )M)O(/ﬁ)

is Op(—= /‘/ by Assumption F'1 and the Cauchy

Next, note that 77/ =725, . 754@1?
T—Q ZT p \_j; H; FOFzglﬁsz HI( Zmzl

F—
t=L L

by Assumption F2. Consider

[N}

1 £ 1 i
INCNTE g 0y g0, P e
T2 N - B < (F 3000
" RN E o/ I s —_ . L )

The second term can be rewritten as

o . . T T N .
1 4\;/2 i [r'i | ]_ —a - LN 1/2

v :ﬁ\ FQI F /\ by _ _Y "FG!‘—Y Y I3 \

- kt ! - = R y A /

(\Ti x/\/T""_‘/ Z . .\//1\/T(~\T-;§ VNT = y

e —~Z T 8] [ I T A ~ 1
which is O, ) by F2. Thuefm , T 4212: P \F —HFOFIn,. =0, (o) Onlim)-
Thus, 111 = Opt\{ =7 Oy /W/ -+ OT—W/ = Jy /TT} ‘T'he proof for [V is simiiar to that

of I11. Thus [ + 11 4111+ 1V = Oy{=) + O](,, Mf, F Oy 1/N*~"/’_C)”9‘/c§,h>°

Lemma B.3 Under Assumptions A-F,

B O ;
P 1 o~ - o~ " 0 ~ -~ \
(FF> Fe g; = ( — ) H}_:Y,Fseis_g_b’?\ ~g -
AN / L A (\//:/ﬁ
s=1 -

Proof:

PR

Lemma B.4 Under Assumptions A-F, F'F 7 F R0~ FHIAD = Op (-

2
Proof:
(FE) RO — FHTDN = (FE 1 (F = FUH, 4 FOH,) (FO — FHYA
= (F'FNF — PO Y(F — FHTHA?
RV HY(F — FHTOAL.




Thus

. -
TN =1 S o B orr— o1 f F\‘ - ,vr,—f‘ { N )
[(EE) P = FH M < H(TJ IR I’Fz HUF| ) IH 28
.jﬂ—ﬁ;}—\\\A:" : ) FCI(FOH o
+1|( = -l RPN

L

The first term is O,

Proof of Theorem 2. The estimator »; has an alternative ex
where X, = FOA +e,. That is, /\; is OLS estimator of 7 using F as the regressor and -

4

as the dependent variable. Using this representation sim

:1ies the proof significantly. Thus

N o= (FETF FHM 44 (F“—Fﬂl‘l)/\?J

e

—1\0 PPN TUEN-L G0 D=0
= HyDS+ (PR e+ (PR F(F — FH= )0,

Thus

By Lemmas B.3 and B.4,

‘B9

(B.2)
- ﬁvl*’,‘\- _ ‘f—E{FO"FO _3 N s orr—1 OIFO - T FOIFO Or A G FOIﬁ -1
Note l\ T > lH’ = o7 } e (1) anc - (FT:] = ( T )(ANA )( T )] —

(Zp2aQ) ™", which iz equal to (Q) V‘_' see Proposition 1. To
the desired limiting cisiribution is obtalned

ther with Assumption F4,

Vs

Case 2 VT /N — ¢ with ¢ > 0. The first term on the right hanc sice of (B.2) is O (T2,
and the second term is Op(N**) in view of N << T and thus C%, = O(N). Thus

NQu—HT02 = OUNANT 4+ 0.(1) = 0,(1)

because N/vT > 1/c¢

Proof of Lorollarv 2. The matheme®ical identity A = AVyr can be shown to hold That
i, & = Vyras. From Hy = H\Vit, or HIY = VypHT*, we have v/T(A; — Hy'\0) =

=

NT\/T()\Z- — H7'A2Y, The corollary foliows immediately from Theorem 2 and Vyr — V.

2/




From Cf = F'.F and Gy = FI'A;, we have
- A0 ! "\f —1

By Theorem I,

VN(E -~ HFY) = (—)—

L T 0 O/ AT, LRV AT. _ N
- (1f )(A Aoy I PR
TSN N YN VIV ’ N

by the definition of H,;. Therefore,

T 5
: -~ L oATAD - T
MHDTYNF, - HIFY) = ) N ol o1
N [l A ? A ] f—N / 5 AN
o ’ v B=1

(i) If £ — 0 then “5 — 0. By Theorem 2,

Y 07 ¢ 170 720 10 —
- U?‘\L‘ - F»:‘ (\F F S

N0, FET T @

(i) If /T —

VN(Cyp — C8) = /N(F, — H FP A5 NITYPNTE( — Hi ).

it/ T - T/

Gence of Fy and X #;. Combining the results

Asstmptions A-F imply t

from cases 1 and 2 and noting © ‘mptotic indepenaence, we have
TS S \
vV IN (bi; — P, T ; (O sz T ng)




Appendix D: Proof of Theorems 4 and 5

To prove Theorem 4, we need the following lem-ma. In *he fol. swing, I), denotes the k x &
wcentity matrix.

Lemma D.1 Let A be a T x 7 matriz (T > = with rank(A) =7, and let Q be ¢ S’TﬂipOSiL’" we

definite mairiz of T % T. If jor every A, z’zew ezist v eigenvectors of AA + noted by I

(I 1y, such that T' = AC for some r X r inveriisle matriz C', then ) = c¢l+ for some ¢ > 0.

l

be .
£2,

Mote that if 2 = clp for some ¢, then the r & genvectors COl‘l‘SQI“vQPdillr" to the first ~ largest

eigenvalues are of the form AC. ‘This is becatize AA and AA = clr have the same set of

eigenvectors, and the first r eigenvectors of A4 is of the form AC. Thus () = ¢/ is &
necessary and sufficient condition for ﬁb to oe the eigenvectors of AA" + Q) for every A.

Proot: We consider two cases, r = 1 and » >

Tcnsider 7 = 1. Let 1; be the T x 1 vector witn the 7th element being 1 and 0 elsewhere.
For example, 1 = {1,0,...,0). Let 4 = r1. emma’s assumption implies that o is an
eigenvector of AA" + Q ThaL is, for some sc a (it can be shown that a > 0),

f\)

4 i SRS
\\?71771 -+ 4 ")’,\',1 = MG

The =z>ove implies m + & = ma, where §; is the first column of 2. This in twrn implies
that all elements, with possible exception for the frst element, of (O zre zero. Apply the
same reaso 11*13" with A = n; (¢ = 1,2,...,7). vz conclude ) is a diagonal matrix such
Next we argue tnz constants ¢; must be the same. Let A =
mma’s assumptics : es that I' = fi/\/j, J/\/Z 0,...,0) is an

A+ Q) =1'd for some scalar d implies
iilar 1eason1ng shows ail cons : are the same.

Next Con?;ﬁcr r . Let & be an arbitrary - orthogonal matrix. Consider A = (G OV,
The assumption unphes that I' = ((GC‘W 0) i 2 T x r mairix of eigeniactors of AA'
1§ gonal matrix. Partition 2 conformably 1nt0

From I'D = [, we see that (7 iteelf is an or'n
rix of blo Cks with the first row o and {25, the second row blocks are €9,
ral matriz of v X r, we have

f,ng. From fAAf Q\f ]—\E

@ T (D.1)

This implies {2s: = 0 and by s £ iz a block ciagonal matriz.

Fuarthermore, multipiying I'" on |

P iFaiial - ¥ 7
I+70G Vil = U

or equivalently, C'G'$1;1GC = D — 1. This implies that §2y; is diagonalizable by an arbitrary
orthogonal matrix GC. This is true 7 md only 1f €y = ¢l,. T = 7, then the desired
result follows. If 7' > ¢, let A = (', G, 0'), wrere the first 0 is a I x 7 vector (G is shifted




downward by only one row). Partition (I intc 2 & % 3 block matrix, and denote the resulting
blocks by {15, Using the same reasonmg, we zet {5y = cof, and all off-diagonal blocks are
ZEeros. BeCcLUuL r > 1, £;- and 23, have at | one overlapping diagonal element. Thus
¢ = ¢p. Continue this argument until A is of +rc Torm (0, G"Y and (O = cly is proved at the
same time. 1

Proof of Theorem 4. In this proof, all limi enas N — co. Let ¥ = piim,, ., N7'ee’ =

Y N 3 N
plimN7™= > " . e;e;. That is, the (£, 8)% entry of T i3 rhe 11m1 £ 57> enes hv»JT
TNYXX = T (AY AT/ PO ’__“FD:_."x_‘:"e"_"'_/\fjj T*lge_/x@_,fz\f)ﬁff ST e I,
TNX}\ 3B with B = = FCE Y = 20 because the two middle terms converge to

zero. We shall argue that consist w~ncy of F for seme transtormation of F° mﬂpues U =%l w
That is, equation {5) holds. Let 12 > iy > -+ > n he ke elzenvalues of I with 1. >y .
Thus, it is assumed that the fir St ¢ eigenvalues are weli seperated with the remaining ones. !
‘Without this assumption, it can be shown izt cons istency is not possible. Let T' bhe the

1" > r matrix of eigenvectors corresponding ize 7 largest eigenvaiues of B. Because

=X X232 B, it follows that | Pz—Prl| = || FF —fT{[——HC) This follows from the continnity
property of an invariance space when the € a3s0 envalues are separated with the rest

of eigenvalues, see, e.g., Bhatia (1997). I7 Fisc 'f; for some transformation of F°, that
s, || — F* D — G with [ being a v x r ir atrix, then ||FPs — Proll — 0, where
P = FOFYFOTIRY Since the limit of Fs ue, we have Pr = Pro. This implies
that I' = F°C for some r x 7 invertible matrix . Since co onsistency requires this be true for
every FV, not just a particular #°, we see the exist ence of r eigenvectors of B in the form of
FOC for all F°. Apply Lemma D.1 with 4 = FCZ ?and Q=T "W, e optain ¥ = ¢/y for

ome ¢, which implies condition (&

Proof of Theorem 5.
By the definition of 7 and } Vier, we have =X X B = fVNT Since W and W + ¢ have the
same set of eigenvectors for an arbitrary matriz 1V, we have

;o1 o ~

{\NT}L_X' — T_:C__‘;Z,*,ZT) }T‘ — F‘(\_/A/‘r'f — ’_LS,?,»];;”
Right multiply Dyr = (Vyr — 77551 " Viyr oo both w36 F' = I'Vyp, we obtain |
x N—T}{\ — T 41~ |FDyr = F ;

Expanding X X' and note that zyee’ —

T
Eﬁ - /—]:Fbs = Z)NTTH1 s F;Q -

A

Equation (D.2) is similar to (A1), But the =
ana each of the remaining three terms s '

4 term on the left side of {A.1) disappears




of Op(N7"/% and each of the other two terrs s O,(N~ Y2051 by Lemma A.2. The rest of
proof is the same as that f case 1 of Theorern 1, except no rest riction beLWe««n N and T is
needed. in addition, I'; = I' = lim MNY Blesey = Em = AYQA

Appendix E: Proof of Theorem 6

First we show [1. is consistent for ;. A detaned proo 1*,\, i
1 N . 1N. fi L ]
ﬁ :Z*‘ t';\q /‘ - O? %\1/’7 (\li/ 2‘7 ZZ:
_ N H Q7 1 N [ ~ 07
-\ ;t/\?/\a _ 2 5\7 GE \? e

N oLsi=1

N /1
Cr'z;,w.i}7 LL

'Ite frst two steps implyv that

7

€5 can be replaced by €2 and ;
(i) can be given, but the details a

A rigorous proof for (i} and
avaiiable from the author).
N = Hy '\ + O, (CRY), which
are the consequences of Theorcn 3 and Corolary 2; respectively. The result of {iii) is a
special case of 'White (1980}, and :1 is proved below. Combining these results together
with (4}, we obtain = N T’i E:t:{T\ — QO =11,

Next, we prove O is consistent for ©;. Beczuse [ is esti imating HLFY, the HAC estimator
[5'®. HY. where Y is the limit of Hy. The
tre ar glmem of Arcrews and Monahan
— V*iO +. The latter matrix is
. This in turn implies

)*ﬂ

3; based on Fie., (t=1,2,...,T) is estlmat‘:f
consistency of CL for HY'®; HO can be provea - £
{1992). Now i1om Hi = Vi bHL = Vil F T A
equal to Q' (Q:ﬂe FfOpOo]EIOD 1). Thus &: -
that Viid, Vil = V0 Q0 V-t =8, °
Next, we argue /V\' iz consistent for \
assumed because Vj; involves I'y. We also

. note that cross-section »*1dependence is

Vi is simply the dmit o

ATAS -

h;‘.'L -

cal value will be obtained when
X mvermble matriz. The consistency of Vi

for all j), where A is a -~

,

now fowdows rom the consistency of /\ for H -

Fma]ly, we zrzue the consistency of W, ;g = f L. for Wi The consistency of ®; for
Q' ;7 is already Qroved Now, F! is estir FPHy but Hy — Q7Y Thus Wi, is

consistent for FY'C Q,QQTF =W terause @TFQ = 33! (see Proposition 1).

This completes the proof of Theorer 5.
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