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1 Introduction
The interest rate faced by a country in international …nancial markets is an im-
portant variable to understand its macroeconomic performance. It is a leading
indicator of its businss cycle and it is strongly correlated with the main macro-
economic variables during business cycles (see Neumeyer and Perri (2001)). It is
also an important determinant of capital accumulation and long term growth.
Obtaining historical time series of sovereign rates for emerging economies is
di¢cult becuase markets for emerging market debt are incomplete.

In this note we develope a simple method to estimate the yield of the zero-
coupon bond of emerging country sovereign debt using emerging country sov-
ereign coupon bond prices. To …x ideas, in this note we use Argentina as a
benchmark case. We use as an ingredient the US yield curve, so we estimate
yield spreads by maturity. Due to the small number of bonds relative to ma-
turities in each period, specially at the beginning of the sample, we use an
smoothing algorithm. We estimate the following: i) …xed e¤ects that shifts the
yield spread parallely across maturities each period, ii) …xed e¤ects by bond
type, that capture institutional di¤erences between bonds, such as liquidity and
degree of synchronicity in the quotes, iii) the average shape of the yield spreads
by maturity, and iv) slow moving changes in the shape of the yield spread curve
from period to period. Our algorithm consists in …nding a yield spread curve
parametrized so that it is a smooth function of time and maturities. We select
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the parameters of this function so that we minimize the square di¤erences be-
tween the price of the observed argentinean bond and a bond with the coupons
of the argentinean bond priced with the American term structure. We use
weighted least squares, where we weight the di¤erences by the duration of the
bonds, which can be interpreted, by analogy, to a correction for heteroskedas-
ticity. This problem can be potentially a high dimensional non-linear problem,
so we propose an approximate solution which can be implemented simply by
GLS estimation. The approximation provides an economic interpretation for
the coe¢cients.

1.1 Fitting a yield curve
In this section we set up the notation to describe the panel of argentinean bonds,
the US term structure and the problem we want to solve.

Let t = 1; :::; T denote time, and let j = 1; 2; :::; J denote the name of the
argentine coupon bond (for instance Bonex 1989). We use P (t; j ) for the price of
an argentine bond type j at time t. Let ¿ = 1; 2; : : : ; M denote maturity, and let
c (j; t; ¿) denote the coupon payments of an argentinean bond type j promised
to be paid at time t + ¿ (including the principal to be paid at maturity).

Let r (t; ¿ ) denote the annualized continuously compounded US yield on a
zero coupon bond at time t with maturity at t + ¿:

We start with data on the US term structure, i.e. fr (t; ¿)g for all t and ¿ ,
and with data on argentinean coupon bond prices, i.e. fP (t; j) ; c (j; t; ¿)g for
all t , j and ¿: We want to compute the yield spreads by maturity ±, i.e. for
each t we are looking for numbers ± (t; ¿) for all maturities ¿ such that:

P (t; j) =
MX

¿=1

c (j; t; ¿) e¡[r(t;¿ )+±(t;¿ )]¿ (1)

holds for all bonds j: Equivalently, we are looking for r (t;¿ ) + ± (t; ¿ ) ; the
continuously compounded yields of the zero coupon argentinean bonds.

Assuming lack of arbitrage opportunities, for each t one can compute as
many ± 0s as bonds j with di¤erent coupon structure that have been issued and
are yet to be paid at time t: Since for each t the number of bonds issued and
yet to be paid (i.e. those with strictly positive coupons remaining to be paid)
is much smaller than the number of maturities ¿ that we are interested, we are
force to use some interpolation technique. Next, we discuss the interpolation
method that we propose.

1.2 Parametrizing the yield spread curve
In this section we describe the notation for the parametrized yield spread curve
and the …tting problem it solves.

Let µ 2 £ a vector of parameters to be found. Let ± be a function of j; t and
¿ ; once parametrized by µ; i.e.

± : £ £ f1; 2; :::;Jg £ f1; 2; ::::; T g £ f1; 2; :::; Mg ! R
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or
(µ; j; t; ¿ ) ! ± (µ; j; t; ¿)

Let P (µ;t; j) be de…ned as follows,

P (µ; t; j) =
MX

¿=1

c (j; t;¿ ) e¡ [r(t;¿ )+± (µ;j;t;¿ )]¿ : (2)

We propose to estimate the µ 0s; and hence the ±0s; by solving the following
problem,

µ̂ 2 arg min
µ2£

TX

t=1

JX

j=1

½
1

d (t; j)
log

P (µ; t; j )
P (t; j)

¾2

; (3)

where d (t; j) is the modi…ed duration at time t of the argentinean bond j:
The idea behind (3) is that information of time periods di¤erent than t; will

be used to compute the yield spread curve at time t: In this way we combine
the richness of the maturity structure across periods. We specify ± to capture:
i) parallel shifts in the yield spreads curve for each period, i.e. shifts that are
constant across maturities, ii) the average shape of the yield spread curve across
maturities, i.e. the average shape across time, iii) slow moving, or medium
frequency, changes in the shape of the yield spread curve, and, for institutional
reasons, iv) a constant yield spread di¤erential for each bond type –constant
across time and maturities–.

1.2.1 Duration weighted least squares

In this section we review the concept of duration and convexity for future ref-
erence and explain why we weight the deviations by the duration of the bonds
in our …tting problem (3).

Let P ¤ (t; j; ¾)be the price a time t of a bond with the coupons of the ar-
gentinean bond j; i.e. fc (j; t; ¿)g discounted using the US yields fr (t; ¿ )g plus
a parallel shift ¾: Speci…cally de…ne P ¤ as,

P ¤ (t; j; ¾) =
MX

¿=1

c (j; t; ¿) e¡[r (t;¿ )+¾ ]¿ : (4)

When ¾ = 0; we simply denote the price of the bond as P ¤ (t; j ) : We compute
the derivatives of the price P ¤ with respect to a parallel change in the term
structure as

@iP ¤ (t; j; ¾)
@¾i j¾=0 =

MX

¿=1

¿ ic (j; t; ¿) e¡r (t;¿ )¿ :

These derivatives de…ne concepts widely used in the analysis of …xed income
securities. The …rst derivative, normalized by P ¤ de…nes the modi…ed duration
of this bond, denoted by d (t; j),

d (t; j ) =
@P ¤(t;j;¾)

@¾ j¾=0

P ¤ (t; j; 0)
=

MX

¿=1

¿

"
c (j; t;¿ ) e¡r(t;¿ )¿

PM
¿ 0=1 c (j; t; ¿ 0) e¡[r(t;¿ 0)]¿ 0

#
(5)
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The modi…ed duration measures the percentage change in the value of the bond
price after a small parallel shift in the yield curve. The second derivative, de…nes
the modi…ed convexity

@2P ¤(t;j;¾)
@ ¾2 j¾=0

P ¤ (t; j; 0)
=

MX

¿=1

¿ 2

"
c (j; t; ¿) e¡r(t ;¿ )¿

PM
¿ 0=1 c (j; t;¿ 0) e¡[r (t;¿ 0)]¿ 0

#

which measures the change in duration, and is used to better measure the impact
on the price of the bond of a shift in the yield curve, if the shift is not very small.

We use

f (t;¿ ; j) =
c (j; t; ¿) e¡r(t;¿ )¿

PM
¿ 0=1 c (j; t; ¿ 0) e¡r (t;¿ 0)¿ 0 (6)

to denote the fraction of the value of the bond with coupons fc (j; t; ¿)g repre-
sented by the coupon ¿ ; using the US yield curve. Notice that the f 0s add up
to one, and are non-negative, hence we can write the modi…ed duration as a
weighted average of ¿ 0s

d (t; j) =
MX

¿=1

¿ f (t; ¿ ; j) :

Notice that this duration d (t; j) does not, in general, coincide with the modi…ed
duration computed using the argentinean zero coupon yield curve, d0 (t; j) which
equals

d0 (t; j) =
MX

¿=1

¿

"
c (j; t; ¿) e¡[r(t;¿ )+±(µ;j;t;¿)]¿

PM
¿ 0=1 c (j; t; ¿ 0) e¡ [r(t;¿ 0)+±(µ;j;t;¿ 0)]¿ 0

#
:

One special case where d0 (t; j) = d (t; j) is when both ± (t; ¿) and r (t; ¿) do not
depend on ¿; i.e. when both the yield spread curve and the US yield curve are
‡at.

The reason we weight the di¤erences on log P (µ;t;j)
P (t;j) by the duration 1

d(t;j) in
our …tting problem (3) is that we are interested in the di¤erences in annualized
compounded yields –which are comparable across bonds–, as opposed to prices
–which are not. To understand it better, consider the case of an argentinean
zero coupon bond at t that matures at t + ¿: In this case d (t; j) = ¿ and

log
P (µ; t; j)
P (t; j)

= log

Ã
e

¡[r(t;¿)+±(µ;j;t;¿ )]¿

e¡r(t;¿ )¿

!
= ¡± (µ; j; t; ¿) ¿

and since we are interested in ± (µ; j; t; ¿) we divide log P (µ;t;j)
P (t;j) by d (t; j) : We

use d (t; j ) for the all the bond, i.e. even if they are not zero coupon bonds, by
analogy of the modi…ed duration with the maturity.
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1.2.2 Speci…cation of the ± function

In this section we describe our parametrization of the function ±: We decompose
the vector µ of parameters in three vectors,

µ = (a; p; b) ;

where a is a vector of parameters that captures the shape of the yield spread
curve, p is a vector of time period dummies, and b is a vector of bond type
dummies.

To capture the shape of the yield spread curve, we use a polynomial in ¿
of I . We let the parameters of the yield spread curve to be functions of time,
which we specify as a polynomial of order K: Hence a has K £I parameters.

To capture parallel shifts we use time and bond dummies. Since p are time
dummies, there are T of them. Since b are bond type dummies, there are J ¡ 1
of them (so that they are not colinear with the time-period dummies).

Speci…cally we use

± (µ; j; t; ¿) =
IX

i=1

ai (t) ¿ i +
TX

t0=1

It;t0pt +
JX

j0=2

Ij;j0bj;

where It;t0 is an indicator that t0 = t; Ij;j0 is an indicator that j = j0; and ai (t)
are smooth functions of time. For ai (t) we use polynomials of the type

ai (t) =
KX

k=1

ai;k tk¡1;

so that

± (µ; j; t; ¿) =
IX

i=1

KX

k=1

tk¡1¿ iai;k +
TX

t0=1

It;t0pt +
JX

j0=2

Ij;j0bj;

We index the elements of µ by µs for s = 1; :::; S; where S = (K £ I)+T +J ¡1:
For future reference we mention two properties of our parametrized version

of ± : …rst, it is linear in µ; so its derivatives, denoted by ¢s; are a function of
at most (j; t; ¿ ), i.e.

@± (µ; j; t; ¿ )
@µs

= ¢s (j; t; ¿ ) :

Second, when µ = 0; the yield spreads ± (0; j; t; ¿) = 0 for any j; t; ¿ :

1.2.3 Linearization of the bond price

Notice that the problem (3), even though ± was chosen to be linear in µ; is a non-
linear least squares problem. Furthermore, if T and J are large, this problem has
a high dimensionality, and has functions that are potentially costly to evaluate1 .

1 Specially if one ones to recompute it frequently, as new data becomes available.

5



To provide an e¢cient and simple algorithm to …nd the yield spreads, and to get
insights in the interpretation of the coe¢cients µ; we solve the following related
problem. Consider a …rst order approximation of log P (µ; t; j) ; as a function
of µ; around µ = 0; and replace log P (µ; t; j) by this approximation in (3). In
this way we obtain a problem where the coe¢cients µ can be computed by GLS.
Denoting the linear approximation by log P̂ (µ; t; j) ; we have

log P (µ; t; j) ' log P̂ (µ; t; j ) ´ log
MX

¿=1

c (j; t; ¿) e¡r(t;¿ )¿ + (7)

+
MX

¿=1

"
¿

c (j; t;¿ ) e¡r(t;¿ )¿

PM
¿ 0=1 c (j; t; ¿ 0) e¡r(t;¿ 0)¿ 0

SX

s=1

¢s (j; t; ¿) µs

#

= log
MX

¿=1

c (j; t; ¿) e¡r (t;¿ )¿ +

MX

¿=1

"
¿ f (j; t; ¿)

SX

s=1

¢s (j; t; ¿) µs

#
:

Notice that, by the linearity of ±, the expression for (7) is linear in µ. Replacing
P (µ; t; j ) by its log-linear approximation P̂ (µ; t; j ) as calculated in (3), we de…ne
the following problem:

µ̂ 2 arg min
µ2£

TX

t=1

JX

j=1

(
1

d (t; j)
log

P̂ (µ; t; j )
P (t; j)

)2

(8)

This is the problem we proposed to solve.

1.2.4 Implementation and interpretation of the coe¢cients

In this section we set up the solution of the problem (8) as a least squares
problem and give an economic interpretation to the coe¢cients µ 0s:

Recall that P ¤ (t; j) is the price of the j bond at t using the US yield curve.
Then we can see that

1
d (t; j)

log
P̂ (µ; t; j)
P (t; j)

=
1

d (t; j )
log

P ¤ (t; j)
P (t; j)

+
SX

s=1

MX

¿=1

¿ f (j; t; ¿ )
d (t; j)

¢s (j; t; ¿ ) µs ;

and hence the following regression can be used to compute the coe¢cients µs :

1
d (t; j)

log
P (t; j)
P ¤ (t; j )

=
SX

s=1

"
MX

¿=1

¿ f (j; t; ¿)
d (t; j)

¢s (j; t; ¿)

#
µs + " (t; j) :

In the case where ¢s (j; t; ¿) = 1; as it is for the case of the time period dummies,
then

MX

¿=1

¿ f (j; t; ¿ )
d (t; j)

¢s (j; t; ¿) =
MX

¿=1

¿ f (j; t;¿ )
d (t; j )

= 1 ;
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so they are, indeed, time dummies for the yield spread curve. Then the regres-
sion can be written as:

1
d (t; j )

log
P (t; j)
P ¤ (t; j)

=
TX

t0=1

It;t0 pt0 +
JX

j0=2

Ij;j0bj0

+
IX

i=1

"
MX

¿=1

¿ i ¿f (j; t; ¿ )
d (t; j)

#
ai (t) + " (t; j )

1
d (t; j )

log
P (t; j)
P ¤ (t; j)

=
TX

t0=1

It;t0 pt0 +
JX

j0=2

Ij;j0bj0 (9)

+
KX

k=1

IX

i=1

"
MX

¿=1

tk¡1¿ i ¿f (j; t; ¿)
d (t;j )

#
ai;k + " (t; j)

where It;t0 is and indicator that of t = t0 and It;t0 is and indicator that j = j0:
Equivalently, it can be stated as the GLS regression

log
P (t; j )
P ¤ (t; j )

=
TX

t0=1

d (t; j ) It;t0pt0 +
JX

j0=2

d (t; j) Ij;j0bj0 (10)

+
KX

k=1

IX

i=1

"
MX

¿=1

¿ i+1f (j; t; ¿ )

#
tk¡1ai;k + d (t;j ) " (t; j )

We can interpret the coe¢cient of this regression as follows. Take an ar-
gentinean bond of type j at time t: Then, relative to the price of the bond
discounted with US yield cure, P ¤ (t; j), we should add up the following: i) the
…xed e¤ect of the period t; measured by pt times its duration, ii) the …xed e¤ect
of bond type j; measured by bj times its duration, iii) the e¤ect of the modi…ed
convexity of the bond j at time t; measured by a1 (t) ; and iv) the e¤ect of the
other K ¡ 1 higher order bond sensitivities.

1.2.5 Inference and measurement error

We can interpret (10) as de…ning " (t; j) to be measurement error in the price
of the argentinean bonds (in the “left hand side variable”). This measurement
error can be attributed to lack of simultaneity in the quotes for the prices of
the argentinean bonds or some other corrections2 . Notice that the regressors
are functions of the coupon structure of the argentinean bonds and the US yield
curve, which are presumably measured more accurately than the argentinean
coupon bond prices.

We plan to use a further heteroskedasticity correction, for each type of bond.
Our correction is based on the previously stated interpretation of the "0s as

2 For instance, some bonds are callable, so that we use a simple correction based on a
binomial tree, to create the price of a non-callable bond that does not include the embedded
options.
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measurement error. Our correction is a bond speci…c correction in the variance
of " 0s due to the di¤erent liquidity that di¤erent bonds may have. We think
that if a bond type j is traded less frequently, the deviations of log P (t; j) from
log P ¤ (t; j ) would, in average be bigger, since the price of this bond more likely
corresponds to a di¤erent time period than the one in log P ¤ (t; j) : We use a
two stage GLS correction, in particular we plan to estimate,

log
P (t; j )
P ¤ (t; j )

=
TX

t0=1

d (t; j ) It;t0pt0 +
JX

j0=2

d (t; j) Ij;j0bj0

+
KX

k=1

IX

i=1

"
MX

¿=1

¿ i+1f (j; t; ¿ )

#
tk¡1ai;k +

1
¾̂ (j )

d (t;j ) " (t; j )

where ¾̂2 (j) is a consistent …rst stage estimator of the variance of the errors for
type j bond.

For some bond types (the consolidated banking debt, or GRA) we only have
monthly average weekly data, as opposed to data at the end of the month. In
this case we further include a correction of the type 1

¾̂(j) £ 1p
4

for this type of
bonds.

1.2.6 Kalman Filtering and Smoothing

Based on unreported preliminary results, and with the aim of having a time
independent stationary framework, we plan to change the parametrization of
the shape of the term structure embedded in the function ± . The current para-
metrization of the function ± is simply a function of time, so that we estimate
a polynomial in ¿ and calendar time t: We plan to replace this parametrization
by a speci…cation of an unobservable component model of the shape of the term
structure. Then we will use Kalman …ltering and smoothing to have an esti-
mate of this shape for each period, under the assumption that it moves slowly
through time.
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