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Abstract

This paper presents a revealed preference method for calculating a lower
bound on the virtual or reservation price of a new good and suggests a way
to improve these bounds by using budget expansion paths. This allows the
calculation of cost-of-living and price indices when the number of goods avail-
able changes between periods. We apply this technique to the UK National
Lottery and illustrate the effects of its inclusion in measures of inflation.
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1. Introduction

There has been much recent interest in the extent to which official price indices
may mis-measure the true rate of inflation. This has been particularly so for the
Consumer Price Index in the US, where a study of the possible sources of bias
was commissioned, with a report of the findings, the Boskin Report, published in
1996'. One of the major sources of bias identified in the Boskin Report was the
bias associated with the arrival of new goods.

New goods bias refers to the failure to incorporate properly into a cost-of-
living index the effect which the arrival of a new good has on economic welfare.
The arrival of a new good is potentially welfare-improving because it expands the
set, of choices available to the consumer. This means that some reference level of
utility may now be available at a lower cost than previously. It is well known that
the way to deal with new goods in a cost-of-living index which spans a period
before and after the introduction of a new good is to impute a price for the new
good in the period before it exists. This price should be the price which would
just have driven the consumer’s demand for the good to zero in that period, i.e.
the ‘virtual’ price? or the ‘reservation’ price.

The most common approach to calculating the virtual price of a new good
is the parametric estimation of, and extrapolation from, demand curves?. This
requires the imposition of a particular functional form for preferences, upon which
the results of the extrapolation will be heavily dependent. This paper presents
an alternative revealed preference method for calculating the virtual price of a
good. This method is consistent with the maximisation of a well-behaved utility
function which is stable over time, with no further restrictions on the exact form

of preferences necessary.

'Boskin, M. J. et al (1996).
>The term is due to Rothbarth (1941).
*For example, Hausman (1997a).



The plan of the paper is as follows. In section 2 we more formally state the
problem that new goods pose for the calculation of an individual consumer’s cost-
of-living index, and we review a simple framework for the valuation of new goods
at the individual level. The section ends with a discussion of how these individual
cost-of-living indices with individual-level virtual prices can be combined into an
aggregate cost-of-living measure. In section 3 we describe a revealed preference
method for calculating a lower bound on the virtual price using observable choice
outcomes generated by an individual consumer. We also describe a way of im-
proving this bound which requires knowledge of the consumer’s budget expansion
paths. Section 4 describes an empirical application to a time series of cross sec-
tion household level data on the UK National Lottery, which was introduced in
November 1994. In section 4.1 we discuss a framework for implementing these
ideas on microdata using Engel curves conditional on total expenditure and a
list of demographic variables. Because price data at the individual level are not
available for a comprehensive list of goods in the UK, we have to assume that
households observed at the same point in time face a common vector of prices.
Under this assumption, within-period Engel curves correspond to budget expan-
sion paths. In keeping with the nonparametric focus of the revealed preference
ideas we aim to estimate these Engel curves nonparametrically. However, reliable
multivariate nonparametric regression typically requires a very large number of
observations which we do not have, and we therefore opt for semi-parametric ex-
tended partially linear specification® in which the effects of changes in the total
budget are estimated nonparametrically, while household characteristics variables
are parametrised. We also discuss how we deal with the endogeneity of the total
available budget and the issue of selection on zero demands. Section 4.2 discusses
the problems caused by violations of GARP and we discuss how statistical tests
of revealed preference restrictions can be constructed from the estimated Engel

curves. In section 4.3 we describe the results. We calculate the virtual price of

‘Hirdle and Marron (1990), Blundell, Duncan and Pendakur (1998).



the UK National Lottery one year prior to its introduction and examine the effect
of including this new good in some measures of annual non-housing inflation rates

over the period. Section 5 concludes.
2. New goods and index numbers

In what follows we are interested in the case in which a single new good appears.
Our aim is to calculate a cost-of-living index which compares the cost to an
individual consumer of reaching some reference level of welfare in the period
before the introduction of the new good, with the cost of reaching the same level
of welfare in a period after its introduction. We are faced with two immediate
issues. Firstly, can we be sure that under these circumstances there exists a
cost function, consistent with a stable set of preferences, which will allow such
a comparison to be made? Secondly, what are the relevant price vectors? In
particular, how should we price the new good in the period before it first exists??

A new good is usually thought of as a special case of a rationed good: non-
existence is treated like a ration level of zero. Hicks (1940) and Rothbath (1941)
and more recently Neary and Roberts (1980) discuss the question of how to deal
with rationed goods in economic problems, and in particular how to price goods
when the consumer is free to purchase goods in some markets, but forced to pur-
chase certain levels of other goods in other markets. They show how the properties
of demands under these circumstances can be expressed in terms of unrationed
demands by allowing free choice over all goods but replacing the observed market
prices with a vector of ‘virtual’ prices or ‘support’ prices. These support prices are
such that this unrationed choice would generate exactly the same demand vector
as the one generated by the observed prices under the rationing constraint. Neary
and Roberts (1980) show that convexity, continuity and strict monotonicity of the

consumer’s preferences are sufficient to ensure that there always exists a set of

>Only in the case where the reference utility level is set equal to what the consumer’s actual
utility level was in the period before the new good was introduced is this not a problem. This is
because (assuming cost minimising behaviour) the minimum cost of reaching this reference level
of utility is the consumers observed total expenditure for that period.



strictly positive support prices consistent with any set of demands. They also
show that the virtual or support prices for the unrationed goods are identical
to their actual prices’. The term ‘virtual’ is therefore usually reserved for the
support prices of the rationed goods only.

To place the new goods problem in a simple rationing context we suppose
that there are T'+ 1 periods, t =0, ...,T, and K 4+ 1 goods, k =0, ...., K. The 0th
good is subject to a ration level of § in period ¢ = 0 but is freely available from
period 1 onwards. All other goods are freely available in every period. We denote
by qf and pX the (K x 1) vectors of quantities and prices of the k = 1,.., K

goods in period t. Consider the consumer’s problem

maxq, u(q;) subject to piqr < @y
and =7

where z; denotes the available budget in period t. The first order conditions are
u' (q9) pY + ko
1K = Ao K
u <QO ) Po

u' (at) = \epe

for period 0 and

for t # 0. The scalar Ay is the marginal utility of income and p is the shadow
value of the rationing constraint. This is positive or negative according to whether
the consumer would like to purchase more or less than the constrained level of
the rationed good. The vectors wg = [pg + %01, P& ] I for period 0 and 7y = p; for
t # 0 are the support price vectors. The vector of period 0 support prices is made
up of the virtual price of the rationed good (p8 + %) and the list of observed
prices for the other goods. The support price vectors for all the other periods are
simply the observed prices. The support prices are such that the outcome of the

rationed model is identical to the outcome of the unrationed choice generated by

rr(llaxu (q¢) subject to mq; < x4
t

®Neary and Roberts (1980), p.27-9.



The cost function associated with the unrationed choice is defined as
c(my,u) = néitn [mia : u(qe) > ul (2.1)

with the associated indirect utility function v (7, x), and the cost function when

the consumer is forced to set ¢f = g is defined as
¢(pt,u,q) = min [plar :u(ar) > ui qf =7 (2.2)

with the associated indirect utility function 7 (py, z,g). We note that while (2.1)
is defined for all u contained in the image of the consumption set, (2.2) is defined
only if demands qff can be found such that u (0, alf ) > u. Neary and Roberts
(1980) show that relationship between (2.1) and (2.2) is given by

¢ (po,u,q) = ¢ (mo,u) + <p8— [p8+§—EDG (2.3)

in period 0 and

¢(pt,u,q) = c(m, u)
for the unrationed periods t # 0. Differentiating (2.3) with respect to the ration
level gives (p8 — [pg + %D as an exact measure of the benefit to the consumer
of a change in the constraint . In the case of a new good the ration level is§ =0
and so (2.3) simplifies to

¢(po,u,q) = ¢(mo,u) (2.3)
The cost-of-living index linking the base period 0 (before the new good exists) with
period ¢ (after its introduction) can then be defined in terms of the cost function
associated with the unrationed problem with support prices as arguments.

c(me,u)
P (700,11 (2.4)

Thus the price of the new good in period 0 is the price which would just have
driven demand for the good to zero, i.e. the virtual price. This approach captures
the introduction of a new good by imagining that its price has reached its period
t value from a level in period 0 which was just above the maximum value of the

good to the consumer and no higher.



So far we have considered a single consumer. Suppose that we have a pop-
ulation of consumers with identical preferences but different incomes. It is well
known that homotheticity of the consumers’ preferences is sufficient for there to

exist a unique cost-of-living index’. For the virtual price of the rationed good

to be independent of income requires % = 0 where ug = %’a’w’q) and
_ 09(po,x,@) g Olug/Mo]l — () implies 2Ho — 0o Mo iy s :
Ao = 5o Since == = 0 implies 5 = %X Ny it is therefore sufficient

for either \g or y to be independent of x and so homotheticity is also sufficient
for there to be a unique virtual price for the new good. However, even from the
very earliest studies of household spending patterns there has been strong em-
pirical evidence against homotheticity®. With a population consisting of many
heterogeneous individuals, we would expect them each to have a different virtual
price for the new good not least because of income variation, but also due to
differences in tastes. Households which value it highly will have relatively high
virtual prices compared to those who do not. It is possible that for some house-
holds the new good is something that they would never want to buy at any price.
For these households the virtual price will be zero.

In this paper we assume that consumers have common, probably nonhomo-
thetic preferences, and that differences in tastes are due to differences in their
characteristics. In order to calculate a group cost-of-living index based on in-
dividual specific virtual prices and individual specific cost-of-living indices we
require some scheme for aggregating these data into a group cost-of-living in-
dex. In accordance with most of the literature®, and the current practice in the
calculation of the UK Retail Prices Index!” and many other country’s consumer

price indices!!

, we use a weighted arithmetic mean of the individual cost-of-living
indices in our applied work. These weights are the individual’s share out of total

expenditure (known as plutocratic weights). However we note that there are a

"Deaton and Muellbauer (1980).

®See Engel (1895) for a very early example and Banks et al (1996) for more recent evidence.
Prais (1959), Pollak (1981).

0Baxter, (ed) (1998).

" Ruiz-Castillo et al (1999).



number of other schemes which have been suggested including the unweighted
arithmetic mean'? (known as democratic weights) and also geometric versions of
these two schemes'3.

Returning to the problem of the single consumer, the remaining issue is one
of missing data. All of the support prices are observable, except for the element
Ty = [pg + ’;—g] which is unknown. In order to construct the individual’s cost-of-
living index, which can then be combined with those of others to form a group
cost-of-living index, we need a way of calculating the individual’s virtual price.

The most usual approach to calculating the virtual price of a new good has
been the parametric estimation of demand curves. A particular functional form
for demand is assumed which is consistent with maximisation of a particular
form for the utility function which is assumed to be common to all consumers. A
system of demand equations is then estimated using data from periods in which
all goods are available, and this is used to predict 7] = [pg + %] i.e. the lowest
price which would result in zero demand for good 0 in period 0 either for a
representative consumer when aggregate data is used, or for each individual in a
micro-level dataset. A recent example of this sort of technique is Hausman (1997a)
who estimates the welfare gains associated with the launch of new varieties of
breakfast cereals.

One possible problem associated with this approach is that the estimate of the
virtual price will be heavily dependent on the maintained hypothesis concerning
functional form as parametric methods are reliant upon (possibly suspect) out-
of-sample predictions of the demand curve to solve for 7). This is because it
is usually necessary to extrapolate the demand curve across regions over which
relative price variations have never been observed in the data (i.e. to a very high
relative price for the new good). A second problem is that parametric models

usually require a good deal of observed relative price variation in order to capture

price effects accurately and this may not always be available.

12Prais (1959) and Muellbauer (1974).
3 Diewert (1984).



3. A revealed preference approach

In this paper we propose using a revealed preference technique. The first attrac-
tion of revealed preference conditions is that they apply to any well behaved utility
function and, beyond this, they require no additional restrictions on the precise
form of preferences underlying consumer demands. This property is set out in
Afriat’s Theorem!'* which shows that, if consumers’ observed choices, given the
prices they face, satisfy the Generalised Axiom of Revealed Preference (GARP)
(defined below), then these choices could have been generated by the maximisa-
tion of any well behaved utility function. The second attraction of the revealed
preference approach which we are proposing is that it is computationally very sim-
ple. Finally, as we show, it can make effective use of very few post-introduction
price observations.

Following Varian (1982) we set out the following definitions of revealed pref-

erence conditions;

Definition 1. q; is directly revealed preferred to q, written q; R'q, if wiq; > m,q.
Definition 2. q; is strictly directly revealed preferred to q, written q;P%q, if
miqe > Q.

Definition 3. q; is revealed preferred to q, written q:Rq, if wq: > m,qs,
Qs > ToQpye.., T, Qm > 7,.q, for some sequence of observations (q¢, qs, .., Qm)-
In0 this case, we say that the relation R is the transitive closure of the relation
R”.

Definition 4. q is strictly revealed preferred to q, written q;Pq, if there exist
observations q, and qy, such that q;Rqs, qsP°Qm, qmRq.

Definition 5. Data can be said to satisfy GARP if qtRqs = m,qs < 7,q;.
Equivalently, the data satisfy GARP if q;Rq, implies not qsP°q;.

Our aim is to use the restrictions imposed by revealed preference theory to
place a lower bound on the virtual price of the new good in period 0 in the
following way. We have data on prices and demands in period 0, (79, qp), with
the missing price 7], and data on prices and demands after the introduction of
the new good,(7,qt), t # 0, with no missing variables. If a post-introduction
demand bundle, qs say, is revealed preferred to qg, then (if these choices have

been generated by the maximisation of a stable, well-behaved utility function) qg

M Afriat (1965) and (1973). Varian (1982) provides a proof.



cannot be strictly preferred to qs, and this gives us a restriction on the value that
the price of good 0 in period 0 can take.

Since, in placing a bound on 7)), we exploit the assumption that the data were
generated by stable preferences, our first step should be to test this hypothesis for
the data from the post-introduction period (7, q¢), t # 0. By Afriat’s Theorem,
we can do this by testing whether the data (7, q¢), t # 0 satisfy GARP. If the
subset of data (7, q¢) for t # 0 satisfy GARP, then we can go on to use it to place
restrictions on the set of possible values that 7§ can take as described above. If
this subset of data was not internally consistent with GARP, then there exists no
value of 73 which can rationalise the data.

Assuming for the moment that (7, q;) for ¢ # 0 satisfy GARP, the bound
we choose for ) will be smallest value of 7§ such that the entire data set, i.e.
now including (o, qo) with ¢j = 0, satisfies GARP. This will give the smallest
value for m) which makes the choice of ¢ = 0 consistent with the unrationed
maximisation of a stable utility function, i.e. precisely the virtual price of the
new good in period 0 that we wish to calculate. If the subset of data, (7, qy)
for t # 0, did not satisfy GARP, then, of course, there could not exist a 73 which
would rationalise (7, q). We first set out the general idea in more detail and then

discuss a way of improving the bound by means of expansion paths.
3.1. Bounding the virtual price

We observe the support prices 7 (equal to the actual prices p;) for all goods
from period 1 onwards, and for all goods in the Oth period except good 0 (71']8 =
pk for k # 0). If the data from periods t # 0 satisfy GARP, then we can
calculate the lower limit on 7 in the following way. We require the entire dataset
(m,q),t =0,...,T to be consistent with non-violation of GARP. Denote the set
of consumption bundles which are revealed preferred to qo by RP (qp). With
K+1>1and T+1 > 1, and (7m,q;) for ¢t # 0 satisfying GARP, then for
non-violation of GARP for the entire data set (7, q), we cannot have qoP’q; for

qs € RP (qp). For each qs € RP (qp), this requirement implies:
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THds > 7o

= 73 (a0 — af) = =t (aff —aff)

= 7>k (qé( — qf) (¢0) " if ¢ >0
Note that if the consumer chooses not to buy any of the new good after the
introduction either then ¢¥ = 0 for all s implies (qg —¢}) = 0. Non-violation
of GARP requires w{f’qlf > w{’qff which does not depend on the new good
and so is testable. If GARP is not violated for the other goods then there is
implies 7§ x 0 > w{’ (qé( —qk ) where the right hand side is negative. Assuming
away the possibility of negative prices then for such a consumer the lower bound
is zero. Of course if GARP is violated (7&'6{’ qff < wl'qff ) then the right hand
side is positive and no value of 7) can be found which is consistent with utility
maximisation.

As each qs € RP (qp) gives a lower bound on 7 — call this set 7J(qs). The

highest value in this set encompasses all the other lower bounds and is the lower

limit on 7§ given the data. This is proved below. Denote max {7}(qs)} by 7.

Proposition 3.1. Any 7} <7 violates GARP for (m,q).

Proof.

(1) Denote 7y = (ﬁg,wé, ...,7‘('6()

(2) 7 is such that 7,q, = T)qo = o where q, € RP (qo)

(3) Suppose 7§ < 7, where o = <18,7T(1), ...,7T6<>

(4) Then from (2) and (3) &Hq, < g, = Tyqo = Thqo (since ¢ = 0) = qo P’
ich is a violation of GARP.

A two good, two period case is illustrated in figure 3.1. The budget line in
period 1 is given by 71, the period 1 bundle by q; and the corner solution in period
0 by qo. Clearly, g1 P%qo. As a result, any period 0 price () shallower than the
line connecting qp and q; would violate GARP for the data set (7o, 71;q0,q1)-

So 78/} must be greater than or equal to the gradient of the qo to qi line.

11



Figure 3.1: A two-period, two-good example

good 1

Qo ¢

One problem with using the bundles observed in actual data is that!'®, because
movements of the budget line between periods are generally large and relative
price changes are typically small, budget lines seldom cross. As a result, data
may lack power either to reject, or to usefully invoke GARP. This means that,
when applying revealed preference restrictions to observed bundles, it is possible
that the lower bounds we can recover are not particularly enlightening. For
example, if the bundle q; contains more of both commodities than qg, then since
qi lies in the interior of the RP (qg) set by monotonicity of preferences, the data
contain no additional information on the shape of the indifference curve through
qo and any non-negative value for 79 can rationalise the data (giving 73 = 0 as
the lower bound).

The second problem with this approach is that, unlike parametric models, we
cannot use data for periods when q; ¢ RP (qp). This is because these periods do

not provide any revealed preference restrictions at all on 7.

3.2. Improving the bounds

Both the problems just mentioned occur either because the budget constraint

for period t lies a long way out from qg or because qg lies outside the period ¢

15 As pointed out by, amongst others, Varian (1982) and Blundell et al (2000).
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budget constraint. It is intuitively obvious from this that, in order to use the data
from periods 1, ..., T to provide a tighter bound on 7}, we would like to move the
budget planes closer to qg. We would like to find the smallest value of period ¢
expenditure, pjq¢, which still yields a q; that is revealed preferred to qg. That
is, we would like to pass the period ¢ budget constraint through the period 0
consumption bundle. The use of the consumer’s expansion path is illustrated for
the two good, two period case in figure 3.2. The curve E (q;|x) is the consumer’s

expansion path through the bundle chosen in period 1 (q;). This shows how

demands change with the consumer’s total budget holding prices constant at 7ry.
Figure 3.2: A two-period, two-good example with an expansion path

good 1

E(au| M)

o

good 0

Revealed preference restrictions applied to qop and q; would simply revealed
the bound 7 = 0. However, the dashed line shows the budget constraint which
makes qg just affordable at period 1’s prices, and the bundle which would be
chosen under these circumstances, q, is given by the intersection of the con-
sumer’s expansion path with this budget constraint. As q;Rqp, the line through
q1 and qq gives the lowest value for 79 consistent with GARP for the data set
(0, 71;0,q1). As is evident from the illustration, in the two good case, the
lower bound obtained for 7§ is simply that the price of good 0 relative to good 1
must be greater than or equal to the period 1 relative price. Therefore, with only

two goods, the lower bound for 7 is the highest relative price at which we have
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since observed it being bought — which is not particularly insightful. However,
for more than two goods, the lower bound on the period 0 relative price for good
0 is equal to the highest subsequent observed relative price for good 0 only if
there is no relative price movement in the other k = 1, .., K goods between period
0 and period t.

By shifting the budget constraint inwards in this manner, we improve the
upper bound on the indifference curve passing through qg. In addition, we can
now use information from all periods in which the full price vector is observed
rather than just the subset of these periods which are revealed preferred to qo.
That is, we can move budget lines out as well as in. We apply this procedure to
all periods in which the full vector of prices is observed thereby defining a K-
dimensional convex set representing the boundary of the RP (qq) set (of which all
q: are members). As we know that ¢q;R%qo (since by construction, m,q; = m,qo,
and so q; was chosen when qp was affordable), we can use the set q; € RP (qp)
where t = 1,...,T bundles to compute an improved lower bound on 7 by the
same argument as before. That is, for non-violation of GARP, q; Rqg implies not

qoP"qy, and so

THaA: > 70
= 3@ —af) = =t (aff —aff)
0 k(K _ ~K -1 e~
= 7y > T (qo —qt)(qt) if ¢ > 0.

As discussed in section 3.1 there is no restriction if g = 0 for all ¢ # 0. Thus,

each q; € RP (qqp) gives a lower bound on 7] — call this set 7J(q;). As with the

m9(qs) set, this will contain a highest value (max {73 (g;)} =79), and it is this

value which should be taken as the lower limit on 718.

Proposition 3.2. Any 7} <7 violates GARP for (m,q).

Proof.
The proof is analogous with that for Proposition 1.

14



The lower bound obtained by this method of using expansion paths is always

an improvement over the bound obtained from raw data (unless {q:} = {qs} ).

Proposition 3.3. max {7 (q;)} > max {7} (qs)}.

Proof. _ B
(1) 7T{s:qs > ﬂ'lqu = Trlsqs = QSRqs v gs € RP(qO)

Suppose that 7§ (gs) < 73 (gs)

Since 7§ = 7k V k # 0 steps (2), (4) and (5) imply that Fpqs < x0 = Foqs =
qsP°qs, but this is a violation of GARP, from (1)

(7) 70 (@s) = 74 (gs) Vs = max{mg(q)} > max {7 (qs)}

() Since {qs} C {@:}, max {7) (G;)} > max {7 (¢s)} = max {7 (¢)} > max {7 (gs)}

)
)
) The bound 7§ (¢s) comes from setting whqs = wHqo = o
)
)

The improved RP (qo) set that comes from using expansion paths to calculate

q: such that 71'; a = 71'; qo V t # 0 may not give the tightest upper bound
on the indifference curve through gy that we can obtain. This can be seen by
considering the following. Amongst the RP (qg) set, we may be able to find
one or more members q; for which there exists some q; € RP (qo), j # ¢, such
that aiPoﬁj, ie. ﬂ;ai > ﬂ;aj. In this case, we can use expansion paths to
find a q; for each q; such that TF;(AIZ = ﬂ;aj, ie. q;R°q;. Since q;R%qy and
(AliRoﬁj this implies that q;Rqg. In addition ﬂ;ﬁi > 71';~j = ﬂ;ai tells us that
qiPq;. Hence q;P°q;Rqp, which implies that q; tightens the boundary on the
indifference curve passing through qg as compared to q;. It may be possible
to iterate this procedure several times as each improvement may introduce new
q;PYq; relationships, where q; and g; are members of the current best RP (qq)
0

set. It might seem that this would allow us to further improve the bound on 7.

However, this proves not to be the case as the following proposition shows.

Proposition 3.4. None of these further boundary improvements on the original

improved RP (qg) set will enable us to tighten the lower bound on 7.

Proof.
(1) Take q; , g; € RP (qp) where q;P'q;

15



2) Then 3 a q; € RP(qo) s.t. m,q; > m,q; = 77;61@, ie. qP ﬁzRoquqo
3) Denote the bound on 7§ from setting moq; = 7r0q0 =z by 710 (q;)
4) Let mo; be the price Vector for period 0 when 7r0 is set to ) (qy)
) Denote the bound on 7§ from setting 71'och = 7r0qo = x0 by 7r0 (i)
) Let o; be the prlce Vector for period 0 when 7 is set to 7§ (q;)
) Suppose that 710 (q;) <79 (d:)
8) Since 7k, = 7T0J V k # 0 steps (3), (5) and (7) imply that m(,;q; < m(,q; =
To = 7r0Jq0 = qoP'q;, which is a violation of GARP

(
(
(
(5
(6
(7
(

(9) Hence 7§ (q;) > 7 (@), so improving the boundary point from g; to g; cannot

give a higher lower bound on 7 than can already be obtained from q;
[ |

In this section we have described how revealed preference restrictions can be
used to bound the virtual price of a new good. This is shown to be the lowest
price consistent with the assumption that the data have been generated by a well-
behaved utility function. We have also shown how knowledge of the consumer’s
budget expansion paths can improve the bound and how the levels at which

budget planes should be set to give the tightest bound.
4. An empirical application

The problem of new goods is a much-studied one empirically — see for exam-
ple the papers collected in Bresnahan and Gordon (1997) and references therein.
To be able to solve the empirical problem successfully ideally requires data with
the following characteristics. Firstly, the data should reflect the introduction of
the new good in a timely manner. Many new goods are not separately iden-
tified in datasets on consumer expenditure until some time after their launch;
usually not until they have proved themselves sufficiently important. Take for
example a classic and frequently examined new good: the personal computer.
Purchases of computers by households were not recorded in the US Consumer
Expenditure Survey until the first quarter of 1982, and they did not appear in
the UK Family Expenditure Survey until January 1985. Commercial data sources
are usually better but even these suffer lags. An example is Hausman (1997b)
where his data on US cellular phones begin in 1985, two years after the cellular

phone became a commercial reality. Secondly, in order that preferences might
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be correctly identified, a period of post-introduction stability is desirable. Much
post-introduction quality change or much learning about the good by consumers,
for example, complicates the task of estimating stable preferences. Many hi-tech
goods are probably subject to both rapid learning by consumers and rapid quality
improvement quickly after their initial appearance.

Because it satisfies most of these requirements, the particular example of a
new good which we have chosen to examine is the UK National Lottery. Spending
on the Lottery appeared as a separately identified expenditure category in our
data source, the UK Family Expenditure survey (FES), immediately upon com-
mencement in November 1994. This is comparatively rare since spending data on
most new goods are usually allocated to residual categories of miscellaneous ex-
penditures. The National Lottery, however, was recognised as interesting enough
at the time of its launch (November 1994) for it to warrant separate recording
immediately. This makes the effects of its introduction much cleaner in the data.
Secondly, unlike many new goods, particularly technological goods, in the time
period covered by our dataset the Lottery has not been subject to much change
in quality since its introduction'® — its characteristics have remained largely un-
altered (but see the qualification regarding variations in expected value below).

Finally, and probably most importantly, studies of new goods should be in-
teresting. We think the National Lottery is interesting partly because it is not
currently included in the Retail Prices Index, and partly because the average bud-
get share for the lottery is significant at around 1%. This budget share is bigger
than other categories of consumer expenditure which are more often the subject
of new good studies: audio-visual equipment and breakfast cereals are 0.7% and
0.5% respectively. This means that allowing for the welfare effects of its intro-
duction on a cost-of-living index is potentially empirically more important for the
lottery than for, say, a new breakfast cereal.

The FES is an annual random sample of around 7,000 households. The Na-

Y There are now two weekly draws which may have affected the demand for the initial Saturday
only draws, however our data ends before these were introduced.
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tional Lottery was launched in the middle of November 1994 so, as we do not
have a full month’s observations, we drop November 1994 from the sample. Note
also that, rather unfortunately, in April 1995 the FES stopped distinguishing
purchases of National Lottery tickets from other similar products (in particular
scratchcards sold by the same organisation that runs the Lottery). This means
that we cannot use data past March 1995. This gives us only four months during
which the full set of goods, including the Lottery, were available (December 94
to March 95).

There is no household or regional variation in our price data — nor is any
reliable price data published at such a level in the UK. The monthly prices for
the goods in our data are given by sub-indices of the UK Retail Prices Index
(RPI). The construction of the price data for the National Lottery requires some
discussion. The expected value of a lottery ticket depends upon the size of the
jackpot, the number of tickets sold, the probability that a ticket matches the
balls drawn (6 out of 49 draw without replacement); and the size of the jackpot
depends on the amount of accumulated undistributed prize money “rolled-over”
from the previous week, the proportion of sales revenue used as prize money and
the number of tickets sold (see Farrell and Walker (1999) for a description of
the Lottery design). Taking all of these factors into account, the expected value
of a UK National Lottery ticket is usually around £0.45. Assuming individuals
are risk averse or risk neutral, we would not expect people to take part in the
National Lottery since it is an unfair bet (£1 for a ticket with expected value of
less than £1). But it seems reasonable to assume that participating in the lottery
generates some entertainment value that individuals are prepared to pay for. If
we assume, following Farrell and Walker (1999), that individuals are locally risk
neutral, then the price of the Lottery is the difference between the price of a ticket
and its expected value. The assumption of local risk neutrality is plausible for
the Lottery since the expected value is so small compared to most incomes. In

the four month time period we are looking at, there were thirteen non-roll-over
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draws, with sufficient sales to make every expected value close to £0.45 (they vary
between £0.442 and £0.447). We have four roll-over weeks, with expected values
ranging between £0.474 and £0.591. We take the monthly price of the Lottery
to be the (sales-weighted) average of the weekly prices over the month!”. We
treat each draw as being in the month in which the Saturday of the draw falls,
although of course, not every single purchase of a ticket will occur in that month,
particularly for draws at the very beginning of a month.

We take December 1993 as our Oth period, and calculate the reservation price
of the National Lottery just under one year before its introduction. We allocate
the RPI definition of total non-housing household spending to 23 commodity
groups including spending on the National Lottery and we use the published
item price indices and weights for the RPI to compute price indices (using RPI
construction methodology) for the 22 RPI groups. Details of the components of

the groups and summary statistics are provided in the appendix.
4.1. Estimation issues

We assume that households have common, probably nonhomothetic preferences,
and that differences in tastes are due to differences in their characteristics. The
approach that we propose, therefore, has to be adopted at the level of each in-
dividual household to recover household-specific virtual prices. In order to apply
the approach we need to observe household demands in the base period, and
also to be able to either observe or estimate the budget expansion paths (de-
mands conditional on the household’s budget , given prices and characteristics)
for each of the post-introduction periods. In sympathy with the nonparametric
focus of the revealed preference ideas we would wish to estimate these paths non-
parametrically. Our aim is to be able to answer the counterfactual: how will a
household’s expenditure share patterns change for some ceteris paribus change in
total expenditure?

The first issue to note is that our dataset is not a panel. Rather it is a time

1"We are very grateful to Lisa Farrell and Ian Walker for providing us with their data.
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series of cross sections and we must use data on different households in different
periods to estimate budget expansion paths from which we then predict demands
for base period households given their observed characteristics and total budget
in each of the post-introduction price regimes. The second issue to note is that
in the post-introduction period, on average, one third of the sample does not
buy the new good during the two week diary period. We would not expect all
of the base period sample to have positive demands after the introduction of the
new good and, as discussed in sections 2 and 3, there is no GARP restriction on
the virtual price for these households. We therefore need to take account of the
possibility of zeros. The final important factor is that we have 2818 observations
in all (between 577 and 540 in each period) and this limits the flexibility we have
in modelling demands nonparametrically.

In this section we discuss the estimation issues. We begin with a brief outline
of the general method which is the estimation period-by-period budget share
systems conditional on the log budget by means of kernel regression. We then
discuss how to allow for household characteristics bearing in mind the constraints
imposed by the data and the constraints which different approaches place on
preferences. We also discuss allowing for zero demand for the new good and for

the endogeneity of the total budget in such a system.

4.1.1. Nonparametric estimation of the budget share system

The general framework is as follows. Let {(Inz*,w?)}}\; represents a sequence
of N household observations on the log of total expenditure In ! and on the jth
budget share wj—, for each household ¢ facing the same relative prices. For each
commodity j, budget shares and total outlay are related by the stochastic Engel
curve

wj- = g;j(Inz") + s;- (4.1)

where we assume that, for each household 7, the unobservable term 5§- satisfies

E(s§-|lnx) = Oand Var(s§-|lnx) = (r?(lnx) V goods j =1,..n (4.2)
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so that the nonparametric regression of budget shares on log total expenditure
estimates g;(Inz). We use the following unrestricted Nadaraya-Watson kernel

regression estimator for the j’th budget share

) = 280 _ g 43)
nr)=-=—"———=w;Inx .
9j Fi(nz) J
in which
1N
~h
ri(lnz) = N ;Kh (Inz — Inx;) wyy, (4.4)
and
1 XN
f(Inz) = N ZKh (Inx —Inzy), (4.5)
=1

where h is the bandwidth and Kj(-) = h~1K(-/h) for some symmetric kernel
weight function K(.) which integrates to one. We assume the bandwidth A sat-
isfies h — 0 and Nh — oo as N — oo. Under standard conditions the estimator
(4.3) is consistent and asymptotically normal'®. Provided the same bandwidth is
used to estimate each g;(Inz), adding-up across the share equations will be au-
tomatically satisfied for each Inz and there is no efficiency gain from combining
equations. To compute the demand by household ¢ for commodity j some given
total expenditure level from the Engel curve, we utilise our common price regime

assumption (dropping the bandwidth )

~i i ~ N
q; = E(qj|lnx ,7Tj) = gj(Ina") (—) .

Ty
4.1.2. Demographic composition and semiparametric estimation

Household expenditures typically display a high degree of variation with respect
to demographic composition and we wish to take account of this. Let z’ represent
a (D x 1) vector of household composition variables relating to household 7. A
general specification of the within-period Engel curve which took account of this
would be

wh = Gj(lna’,z") + € (4.6)

1%See Hirdle (1990) and Hirdle and Linton (1994).
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with

E(sz-]zi,lnxi) = 0and Var(f:;-]zi,ln z') = 03( z' Inx'). (4.7)

There are a number of approaches to estimating (4.6). We might wish to estimate
a multivariate nonparametric regression. However, the estimation of multivariate
densities requires a huge amount of data!” and the curse of dimensionality rules
this out here (recall that we have no more than 577 observations in any period)?.
One simple alternative is to stratify by each distinct outcome of z‘ and estimate
separate Engel curves for different groups (we are already doing a version of this
by estimating separate within-period/price regime Engel curves). However, the
success of this clearly depends on the number of possible outcomes of z and the
number of observations in our dataset. In our case, many of the variables we wish
to take account of are continuous (age, years of education etc.) and splitting the
sample on grouped versions of these variables would leave cell sizes which are too
small for within-group nonparametric regression to be successful.

Placing a simple additive structure on the model we could estimate.

D
W = Zgyz-d <ZZ1> + 97 (ln :1:’) + &5 (4.8)

d=1
This greatly reduces the amount of data required because univariate smoothers
can be used to estimate the 954 functions and gj thereby avoiding the curse

of dimensionality?'. A particularly simple version of this model is the popular

Robinson (1988) partially linear specification
wi = gj(Ina’) +z'y; +ey (4.9)

in which w;; is the within-period budget share for the jth commodity in the
ith household «y; represents a finite parameter vector of household composition

effects for commodity j and g;(Inz") is some unknown function as in (4.1). The

Y98ilverman (1986) , chapter 4.

20 An important implication of this, for estimators based on local averaging procedures, is that
in high dimensions “local” neighbourhoods are, almost surely, empty and neighbourhood which
are not empty are almost surely not “local”, see Simonoff (1996).

*Hastie and Tibshirani (1990), Linton and Nielsen (1995).
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benefit of this partially linear additive approach is that it allows us to condition on
demographics and keep the mean response conditional on the total budget flexible
(recall that our procedure which recovers the virtual price for a household involves
predicting how its demands vary as the total household budget changes, holding
the household’s characteristics fixed). Assuming that the additive structure is
correct (if it isn’t then the estimator zﬁ; need not even be consistent) then this
may be quite attractive. However, this model has been shown to be consistent
with utility maximisation only if either the effects of demographics on budget
shares are restricted, or if preferences are Piglog and hence budget shares are
linear in Inz for all goods (Blundell, Browning and Crawford (2000), proposition
6).

One generalisation which has been suggested is the extended partially linear

model

wij = gj (Inz; — p(ziax)) + zi7v; + €ij (4.10)

in which ¢(z,a) is some known function of a finite set of parameters a and
can be interpreted as the log of a general equivalence scale for household ¢ (see
Blundell, Duncan and Pendakur (1998) and Pendakur (1998)). This extended
partially linear model is the shape invariance specification considered in the work
on pooling nonparametric regression curves in Hérdle and Marron (1990), Pinske
and Robinson (1995) and Pendakur (1998). Blundell, Duncan and Pendakur
(1998) estimate (4.10) with ¢ set to be the unit function by means of a grid search
algorithm over c. In their application they estimate Engel curves for a sub-sample
of couples with either one or two children and the only demographic variation is
the number of children. They are therefore searching over one parameter and z is
a dummy. In our application we allow for many household characteristics, some
discrete, some continuous and we were unable to apply their grid search approach
successfully to a multi-dimensional problem. As an alternative we implement

the following. We first estimate within-period quadratic almost ideal demand
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(QuAIDS) models
wij = zyo; + B (Inx; —Ina (z;)) + \j[Inx;/a (z:)]% + eij (4.11)

where??

Ina(z;) = o + zeyj

to get starting values for ¢(z,a). We then conduct a grid search to estimate the
term ¢ given the single index z;ax as well as estimating g; and 'yj.23 The benefit
of the extended partially linear model is that it provides a preference-consistent
method for estimating Engel nonparametric curves, but does not imposed the
strong, and probably unreasonable, restrictions on preferences implicit in the par-
tially linear model (4.9). As a check on sensitivity we have carried out, but do not
present, the empirical analysis using the parametric model (4.11), within-groups
nonparametric regression stratified on a rather rough partition of z (essentially
a within-groups version of (4.1), the partially linear model (4.9) as well as the
extended partially linear model (4.10). Both the median and mean values for the
reservation price were hardly different from those reported below under any of
the approaches. Compared to the results reported here, the standard errors were
rather wider in the stratified bivariate Engel curve model, and less wide in the
fully parametric QuAIDS model.

There remains the issue of unobserved heterogeneity in the cross-section data.
In particular we are interested in the effects which unobserved heterogeneity will
have on the expected welfare effects of price changes. The model in (4.10) is
supposed to give the expected budget shares conditional on the budget and de-
mographics, given the current price vector. We re-introduce the dependence on
prices and let u be the vector of heterogeneity terms with Efu|lnx,z,Iln7| = 0).

Blundell, Browning and Crawford (2000) show that a necessary condition for

*2See Banks, Blundell and Lewbel (1997) fo a description of the QuAIDS model, and Blundell
and Robin (1998) for a discussion of estimation methods.

*3See Blundell, Duncan and Pendakur (1998) and Pinkse and Robinson (1995) for further
details.
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the expected budget shares recovered by a cross-section analysis of the gen-
eral type discussed above to be equal to average budget shares is that w; =
Fj(Inz,z,Inm) + k; (Inz,z,In7) u. Given this combination of functional form
restrictions and distributional assumptions, our nonparametric analysis recovers
Fi(Inz,z,In7). This allows for different tastes across agents. In particular, the
first-order income responses for agents can vary in any way as can the price re-
sponses. Thus a good may be a luxury for one household and a necessity for
another. Letting ¢ = ¢ (7, u, z) be the cost function, we can show that the effect
of a nonmarginal price change Aln7; on expected welfare can be given as

Alnc 1 ([ OF; OF; 1 Ok;
E =w;+ = . LF; | Alnm;+-=——LV,r;Alnm; (4.12
lAInwj] Wit 2 (81n7rj i Olnz J) T 281n:L‘V riflnmg (4.12)

where E [uu/|m,x, 2] = V,. The third term indicates the bias and from this we
can see that this heterogeneity structure gives an exact first order welfare effect
and also gives a correct second order effect if the either V,, is zero, or if the
heterogeneity term «; is independent of the total budget. These conditions are

sufficient, weaker ones would allow these terms to cancel, or for them to be small.

4.1.3. Zero demands

As discussed in section 3 and at the beginning of this section, not all households
buy the new good after it’s introduction and GARP gives us no restrictions on
the virtual price for these sorts of households. Any positive price for the new
good will support observed behaviour giving a lower bound of zero. As we will
only observe demands for households whose reservation prices in greater than
the actual price, we have a standard selection bias problem. We need to take
account of this in our applied work. In our data 673 households out of 2241
in the post introduction period do not buy the new good. We would expect a
roughly similar proportion of our pre-introduction sample of 577 households not
to buy tickets after the new good becomes available (typically we might think
that this is because the price is too high). To account for this we adopt a two

step strategy which is a semiparametric analogue of Heckman (1979). We first
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estimate a simple parametric linear index probability model in which we define
a binary indicator (5’) to be one if the household has a positive expenditure on

the Lottery, zero otherwise. We assume
Pr[o' = 1] = Pr[¢/'h + ¢ > 0] (4.13)

where h* = [Ina’, z" ,mi]/ is a vector made up of the log total budget and the
household level characteristics included in the Engel curve (4.10) plus the addi-
tional variable m® which embodies our identification restriction. In this case we
use years of education.

Under normality the parameters /0. (where o, is the standard deviation of
the error term e) can be estimated consistently by the standard probit maximum
likelihood estimator. The two step procedure amounts to the substitution of
the sample selection correction term (I* = ¢ (¢'h*/o.) /@ (¢'h'/0o¢)) computed
from the probit, into equation (4.10) as an additional regressor by means of the
Robinson (1988) method described above. For discussion of this estimator and

an example of this approach see Blundell and Windmeijer (2000).

4.1.4. Endogeneity of the total budget

To adjust for endogeneity we adapt the control function or augmented regression
technique (see Holly and Sargan (1982), for example) to our semiparametric Engel
curve framework. To avoid cluttered notation we drop the demographic variables

in the following discussion. Suppose In x is endogenous:
E(s;] lnxi) %0 or E(w;| lnmi) #+ gj(ln:vi). (4.14)

In this case the nonparametric estimator will not be consistent for the function
of interest. In the application below we take the log of disposable income as the
excluded instrumental variable for log total expenditure, and assume that this

instrumental variable ¢? is such that

Inzt = 77,<i + v; with E(UZKz) =0. (4'15)
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We make the following key assumption

Ewj|ina’,¢;) = E(wj|na’,v) (4.16)

= gj(Ina") +vip; V j. (4.17)
This implies the augmented regression model along the lines of (4.10)
w§ = gj(Inz") + vip; + sé- vV (4.18)

with
E(eh|lna') =0V j. (4.19)

Note that the unobservable error component v in (4.18) is unknown. In esti-

mation v is replaced with the first stage reduced form residuals
0; = Ina’ — /¢, (4.20)

where 7) is the least squares estimator of 7. This is a semi-parametric version of

the idea proposed in Newey, Powell and Vella (1999).

4.2. Violations of GARP and inference

To estimate the reservation price 7j) we are invoking revealed preference conditions

to fill in the missing price observation in the household level dataset (7, ?12) .
We are exploiting the maintained assumption that the data were generated by a
stable, well-behaved utility function. This assumption is the key to identifying
the bound we are interested in. It is, of course, untestable because of the missing
price (Varian (1982)). However, the idea that the post introduction period is
consistent with the existence of stable preferences is testable because all of the
data is available for these periods. And if the household-level dataset (m¢,q})
where t # 0, did not itself satisfy GARP then the validity of the whole exercise
is in question and indeed, no virtual price exists which can rationalise the data

{me,m0; G}, @b} where t # 0.
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Constructing the test requires that we check that the data contains no cases
where g P q! and G:Rq% where s, # 0. GARP tests, in experimental con-
texts (see Sippel (1997)) typically have a yes/no type of character. In a non-
experimental setting subject to sampling variation, as here, we need a stochastic
structure which will allow us to assess whether rejections of GARP are statisti-
cally significant. We use the idea proposed by Blundell, Browning and Crawford
(2000) who use nonparametric predictions of demands at the household level to
test for violations of GARP. They use the fact that the nonparametric Engel
curve has a pointwise asymptotic standard error so we can evaluate the distribu-
tion of each g;j(Inz) (dropping the demographics etc for ease of notaiton) at any
point. Briefly, for bandwidth choice h and sample size IV the variance can be well
approximated at the point In x for large samples by

o? i(Inz)ek

var(gp(Inx)) ~ m

where cg is a known constant and g, (Inx) is an (estimate) of the density of Inx

and

lnx -1 Z ( 1[;; ;I;:(lnlnj(lng )) (w —gi(lnx))%

Since we can easily compute the pointwise covariance matrix of g (Inz) at any
comparison point we choose, we can test the significance of GARP violations by
formulating GARP conditions in terms of weighted sums of kernel regressions.
Note further that we can also use the pointwise covariance matrix to calculate
asymptotic standard errors for the reservation price.

Consider the GARP comparison between consumption bundles g, and g:.
This can be written as a comparison of price-weighted sums of kernel regressions.
For example, writing the predictions from the Engel curves for household ¢ in
period t as w(In ), the GARP comparison w.,q} > w.q: which implies q%P'q;
can be written more conveniently (for the purpose of constructing a test) in terms

of budget shares as



where the total expenditure levels 2% /% can be chosen by the investigator and
where m4(1/m;) are known weights. Thus each part of the GARP condition

i / .
can be tested using a one-sided test against the null % = [71'37%] w(lnzy). If
t

we reject this null in favour of % > {WS%],W(IH 7t) and we cannot reject the
null %;L = [mﬂ%]/v?r(ln 2%) in favour of %;L < [ﬂ'tﬂ%]/\?v(ln 2%) then we conclude
that ¢ P’q¢ and q¢R°Q% and that we have a violation of GARP for some size
of test (this is a similar procedure to the approaches used in the literature on
tests of distributional dominance, see for example, Beach and Davidson (1983)
and Bishop, Formby and Smith (1991)). To check transitivity, we follow Varian
(1982) and use these tests to fill in a (7" x T') matrix where a one in the tth row
and the sth column indicates that m,q; > m},q’ with a zero otherwise. Varian
(1982) shows that transitivity can be checked inexpensively using this matrix by
means of Warshall’s algorithm, and we apply this approach here.

If rejections of GARP for the t # 0 periods are insignificant for some ac-
ceptable size of test, we can proceed with the ideas outlined in above. If there
is a significant rejection then we cannot and drop that household. While it is
obvious that, given violations in the ¢ # 0 periods, there cannot exist values
for the reservation price m) which can rationalise the whole dataset exactly, the
reservation price we calculate will not introduce any further violations on top of
the statistically insignificant ones that already exist, and so will be consistent
with the idea that the data do not statistically reject GARP. To see this imagine
that the dataset (ﬂ't,?ﬁ) where t # 0, contained instances of GARP violations,
but none which were statistically significant. We then compute the virtual price
7 as described in section 3.2. Can the dataset (mo,m:;q), ?12) contain any sig-
nificant violations of GARP? By propositions 3.1 and 3.2 we know that even if
two bundles q: and g’ violate GARP when compared to each other, the virtual
price 7] is chosen such that gf, cannot violate GARP in a direct comparison with

either ¢ or ', or any other of the demand bundles (even without allowing for

sampling variation in the comparison). It is also the case that g, cannot violate
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GARP when indirectly (transitively) compared to any other bundle either. To
see this suppose that we have gL R g} and g P’ @ which is a violation of GARP
in our dataset. Suppose that 7 is derived by setting w)q} = 7)q’ which implies
gy R’q.. We already have by construction g’ Rql. We therefore have gf,R°G. R
q; which implies g)R q¢, and we also have q:P'q’ R’q}, which implies q:P g.
However the strict, but indirectly revealed, preference for q: over @} is not a vio-
lation of GARP. GARP is only violated if q: is directly revealed strictly preferred

to qj.
4.3. Results

To recap the estimation procedure. In order to apply the ideas outline in section
3 we need to estimate household demands, conditional on household characteris-
tics, at levels of the total budget chosen to give the tightest revealed preference
bounds, for each post-introduction set of prices. We estimate Engel curves using
the extended partially linear specification, conditional on household character-
istics and the log total budget, for the sub-sample of households with positive
expenditure on the Lottery, separately within each of the four post-introduction
periods, taking account of the endogeneity of the budget and the sample selection.
Using the probit model we predict which of our base-period households will buy
the new good after its introduction. For households predicted not to consume
the new good after its introduction, in the absence of GARP restrictions, we set
the lower bound on their virtual price at zero. For the rest of the households
we use the semiparametric Engel curves to predict their demands, holding their
other characteristics constant, given the set of prices in each period with their
total budget in each period set such that they could just afford their base demand
bundle (so that all bundles are directly revealed preferred to the base bundle).
We then test GARP for each household using the post introduction data. If these
data reject GARP at the 95% confidence level then we conclude that no virtual
price exists which would support their predicted demands and these households

are dropped. For the remaining households (if there are any) we then compute
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their individual virtual price for the new good as described in section 3.2.

To conserve space we have placed tables, in pdf downloadable format, giv-
ing results from the probit (4.13), the reduced form equations (4.15), and the
extended partially linear model (4.10) (by period) on the worldwide web at

http://www.ifs.org.uk/staff/ian_c¢/newgoods.shtml.

Table 4.1 lists the variables used in (4.13), (4.15) and (4.10) and tables A.1
and A.2 in the appendix gives descriptive statistics of the budget shares and

explanatory variables by period.

Table 4.1: Variable definitions.

Variable

Inaz' | Log total household budget.

mean age of adults, mean age of adults squared,

mean age of children, number of adults, number of children,
head of household employee (dummy),

head of household retired (dummy), owner-occupier (dummy)
m® | Years of education (head of household)

Log household income.

The base period is December 1993, one year before our first post-introduction
period. We have also investigated the use of other base periods, specifically De-
cember 1992 (two years beforehand), and October 1994 (one month before the
introduction). For both of these alternatives the mean of the virtual prices recov-
ered was not statistically different from those presented below, nor were the effects
of including versus excluding the new good in inflation measures qualitatively dif-
ferent. We also investigated different groupings of goods. In particular we looked
at whether the results were sensitive to grouping goods into fewer categories of
expenditure. Again we found no significant effect on the mean virtual price, at
least amongst households for which a virtual price could be found. However, we
did find that the number of households whose demands rejected GARP increased

as we grouped commodities together. Testing GARP, then grouping goods and
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re-testing provides a tests of (weak) separability iff the price and quantity in-
dices of the new groups satisfy Afriat inequalities (Varian (1983) provides an
algorithm). One way to investigate this further would therefore be to attempt to
compute Afriat numbers for the new groups (if such numbers exist then this means
that there exists a sub-utility function which can rationalise demands and prices
within the group). We did investigate a couple of groups in this way (grouping fu-
els together and foods together) but rejected the existence of separable sub-utility
functions for these goods.

For our base period sample of households (577 in all), we predict that 183
households will have zero demands after the introduction of the Lottery. For
these households we set 7 = 0. For the remaining 394 households we set their
budgets in each of the post introduction periods such that they could just afford
their base-period bundle and predict their demands given their characteristics. we
then use these data to test GARP for each household. There were 49 statistically
significant violations of GARP at the 95% confidence level among these house-
holds (12% of the sample). These households were then dropped — there existing
no virtual price which could rationalise their demands. For the remaining 345
households we calculate their individual virtual price for the Lottery each with
an individual standard error. Table 4.2 shows the basic descriptive statistics for
the distribution of virtual prices (normalised so that the price of the Lottery in
March 1995 is one). The first column is for all households (including those with
zero demands, excluding those which reject GARP), and the second concentrates
on those expected to have a positive demand. Recall that the means and standard

errors are plutocratically weight averages.

Taking all households the average virtual price is 1.334 (i.e. roughly a third
higher than the price in March 1995 and also — because there was little change in
the price of the lottery — roughly one third higher than the price on introduction)
with a standard error of 0.462. The bottom 35% of this distribution all have a
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Table 4.2: Virtual price, descriptive statistics, 03/95=1.

7y (03/95=1) All households (n = 528) Non-zero demands (n = 345)
Mean (Std Error) 1.334 (0.462) 1.660 (0.576)

5th percentile 0.000 0.994

50th percentile 1.123 1.305

95th percentile 1.886 2.167

Figure 4.1: The density of the virtual price distribution, non zero values only.
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virtual price of zero because they are not expected to buy the new good, however,
taking this into account the median for the sample is 1.123 and the 95th percentile
is 1.886. Dropping the zeros results in the figures given in the right-hand column.
the mean virtual price for households expected to buy the new good is 1.66 (two
thirds higher than the introduction price, with a median of 1.305 and 90% of the
distribution taking values between 0.994 and 2.167.

Figure 4.1 shows an estimate of the probability density for 7{) for the non-zero
part of the distribution. This shows a relatively long right-hand-side tail, which
is partly due to households with bigger total budgets. Some evidence for this can
been seen in figure 4.2 which shows a contour map of the bivariate distribution
of virtual prices and (base period) total expenditure, also for the consuming

households. This indicates that households with bigger total budgets tend, on
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Figure 4.2: The density of the bivariate distribution of the virtual prices and the
total budget, non-zero values only.
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average, to be predicted to have higher virtual prices.

We next use these virtual prices to measure inflation in the year to December
1994. We present the three indices, the Paasche, the Laspeyres and the Térnqvist
calculated inclusive and exclusive of the virtual price of the new good?*. Note
that these are calculated at the household level using household-specific weights
from the Engel curves and household-specific virtual prices. Table 4.3 reports the
(plutocratically weighted) mean rate of inflation in the year to December 1994 for
each of the three measures?® (each household is weighted by their share out of total

expenditure). The Laspeyres, as it is base-weighted and hence gives the fall from

21Bounds on true cost-of-living indices can be derived nonparametrically (see for example
Varian (1983)). Blundell, Browing and Crawford (2000) show how to derive tightest bounds
using revealed preference restrictions and nonparametric expansion paths. In the present case,
the upper bound is available and this corresponds to the Laspeyres index (we are grateful to
a referee for pointing this out). A lower bound cannot be derived by their method because an
upper bound on the virtual price is not available. Blundell, Browning and Crawford (2000) set
out the data requirements for the two-sided bounds. They also note that inflation measures
based on the Térnqgvist index perform the best out of a range of price indices formulae studied
(in the sense that it stays between their nonparametric bounds).

25 The official non-housing inflation rate in the year to December 1994 was 2.3%. Our measure
differs because the RPI for that period was based on average weights from the period July 1992
to June 1993 (i.e. the RPI is not a true Laspeyres index) and the RPI uses weight data from a
number of sources other than the FES (see Baxter (1997))
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the reservation price to the observed end-period price zero weight, is unaffected
by the inclusion of the lottery. This is one of the major criticisms of a cost-of-
living index interpretation of the Laspeyres-type indices like the UK’s RPI. The
Paasche, which uses end-period weights, shows a 0.44 percentage point effect.
The Térnqvist, which is based on a preferred model of household behaviour?%
which allows for non-homotheticity of preferences and commodity substitution

shows an upward bias of 0.156 percentage points caused by excluding the new

good.

Table 4.3: Inflation in the year to 12/94, descriptive statistics.

Mean rate of inflation (Std Err)
Year to 12/94 Including Excluding
Laspeyres 1.997 (0.063)  1.997 (0.063)
Tornqvist 1.826 (0.047)  1.982 (0.045)
Paasche 1.523 (0.082)  1.967 (0.066)

Figure 4.3 shows the probability density functions for the three prices indices:
the Paasche (solid line, to the left), the Laspeyres (sold line, to the right) and the
Tornqvist index (dashed line, centre). Figure 4.4 concentrates on the Tornqvist
index and shows evidence of non-homotheticity of preferences by illustrating the
contours of the bivariate density of the Tornqvist index and total expenditure.
This indicates that lower inflation rates were associated with households with
higher total expenditures. This is partly to do with the general pattern of relative
price changes over the period and the changing pattern of budget shares as the
total budget changes, but it is also to do with the cross-sectional variation in the
virtual price. That households with higher total expenditure tend to have a higher
virtual price was shown in figure 4.2 hence the price fall for the new good over
the period is greater for these households, and the inflation rate correspondingly

lower. This is further reinforced by the fact that the Engel curve for the Lottery is

*6See Deiwert (1976).
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Figure 4.3: The densities of the distributions of the Paasche, Laspeyres and
Tornqvist price indices; all households
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Figure 4.4: The bivariate density of the total budget and the Tornqvist price
index; all households.
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upward sloping so the weight attached to this price fall is greatest for households
with larger total budgets.

5. Conclusions

This paper presents a revealed preference method of calculating the lower bound
on the reservation price of a new good for a period prior to the one in which
it first exists. This bound is chosen such that the data are consistent with the
Generalised Axiom of Revealed Preference and, therefore, it is also consistent
with the maximisation of a well-behaved utility function. As a result this bound
encompasses all parametric solutions which arise from the estimation of integrable
demand systems from the same data. We also present a method for improving the
bounds recoverable by predicting household demands conditional on household
characteristics, at particular levels of total expenditure given the set of prices
in each of the post-introduction period. We argue that this approach has three
principal merits compared to parametric estimation. First, it does not require
a maintained assumption regarding the form of the utility function. Second, it
is computationally simple. Thirdly it can make efficient use of very few post-
introduction price observations. We illustrate our technique with UK Family
Expenditure Survey data on the National Lottery and compute its reservation
price, one year before its introduction. We describe the distribution of the virtual
price and provide evidence that the welfare increases associated with the arrival
of the Lottery were higher for better-off households. We also show how measures
of inflation over this period are affected by the inclusion of the new good and
describe how the distributional effects of inflation were more strongly pro-rich

when the new good is allowed for.
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Appendices

A. Summary statistics

Table A.1: Descriptive statistics, budget shares, by period.

Month/Year

Commodity Group 12/93 12/94 1/95 2/95 3/95
National Lottery 0.0000 0.0083 0.0113 0.0108 0.0118
Wheat 0.0326 0.0325 0.0324 0.0347 0.0351
Meat 0.0531 0.0542 0.0519 0.0543 0.0579
Dairy 0.0323 0.0340 0.0379 0.0373 0.0399
Fruit & Veg 0.0340 0.0353 0.0417 0.0426 0.0430
Other Foods 0.0544 0.0465 0.0463 0.0481 0.0477
Food Out 0.0484 0.0501 0.0586 0.0595 0.0559
Beer 0.0321 0.0354 0.0339 0.0318 0.0327
Wines & Spirits 0.0322 0.0311 0.0167 0.0190 0.0191
Tobacco 0.0313 0.0318 0.0342 0.0378 0.0325
Electricity 0.0379 0.0391 0.0460 0.0474 0.0458
Gas 0.0264 0.0259 0.0343 0.0353 0.0397
Other Fuels 0.0098 0.0041 0.0086 0.0078 0.0070
H’hold Goods 0.1069 0.0966 0.0989 0.0921 0.0924
H’hold Services 0.0611 0.0621 0.0724 0.0650 0.0716
Men’s Clothes 0.0193 0.0196 0.0095 0.0065 0.0074
Women’s Clothes 0.0254 0.0263 0.0186 0.0174 0.0164
Other Clothes and Shoes 0.0420 0.0411 0.0314 0.0266 0.0294
Personal Goods and Services | 0.0576 0.0579 0.0447 0.0493 0.0501
Motoring 0.1121 0.1201 0.1304 0.1390 0.1290
Fares and Travel 0.0243 0.0244 0.0324 0.0269 0.0258
Leisure Goods 0.0749 0.0716 0.0481 0.0543 0.0556
Leisure Services 0.0520 0.0520 0.0595 0.0563 0.0541
n | 577 577 564 560 540
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Table A.2: Descriptive statistics, explanatory variables, by period.

Month/Year

Commodity Group | 12/93 12/94 1/95 2/95 3/95

In(Income) 5.3766  5.4495  5.4603  5.4920  5.4177
In(Total Spending) 5.2406  5.2997  5.0738  5.1130  5.1147
Mean age, adults 48.2915 47.1672 45.7382 46.5186 49.2125
Mean age, children 2.6727  2.6527  2.5859  2.3250  2.7287
No. of adults 1.8059  1.8943  1.7996  1.8732  1.8037
No. of children 0.6742 0.5633 0.6294  0.5875  0.6556
Head employed== 0.4454  0.4818 0.5035 0.4536  0.4481
Head retired==1 0.0849  0.0728 0.0745 0.0857  0.0704
Owner-occupier==1 0.6620  0.6759  0.6188  0.6429  0.7148
Years education>16 0.4454 0.4818 0.5035 0.4536  0.4666
n | 577 577 564 560 540
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