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1 Introduction

A number of researchers have reported considerable differences across firms in terms of size, capital
intensity, productivity and profitability even within narrowly defined industries, and that these differences
are highly persistent over many years. In this study we examine the nature and evolution of these
persistent differences in performance. First, we examine to what extent various measures of performance
can be summarized and related through a model of firm behavior. We show that the non-transient
differences in sales, materials, labor, and capital across firms can largely be summarized by a single,
firm-specific, dynamic factor, which we label efficiency in light of a structural model. Our conclusion is
based on evidence from six manufacturing, high-tech industries over a period of 24 years.

Our second task is to understand the origin and evolution of persistent differences in efficiency in
light of two classes of models that allow for heterogeneity among firms. That is, we examine to what
extent firms are born with differences in efficiency that are intrinsic and time-invariant, as compared to
differences which slowly, but gradually, emerges as firms evolve, e.g. through stochastic, idiosyncratic (or
firm-specific) innovations. Models emphasizing intrinsic efficiency differences include Jovanovic (1982),
while Ericson and Pakes (1995) present a model of firm heterogeneity driven by stochastic, idiosyncratic
innovations emerging from the firms’ R&D-activities. We show that the intrinsic and time-invariant
differences in efficiency dominate among the firms born within the 24 years period we consider, as they
exceeds differences in cumulated innovations by a factor ranging between 1.2 and 2.6 across the six
industries.

A large literature on firm growth measure performance by firm size (sales or employment), e.g. Pakes
and Ericson (1998). Most recent studies of differences in firm performance have, however, focused on dif-
ferences in efficiency. In competitive environments we expect that differences in size and efficiency should
be closely related, as more efficient firms will tend to dominate or at least grow faster, as emphasized
by Demsetz (1973) and others. We present a structural model of imperfect competition emphasizing the
relationship between size and efficiency. This structural model recognizes that lasting differences in firm
size are caused by the fixity of capital, but differences in efficiency also matters. The model suggests how
we can summarize and interpret different observable indicators of firm performance such as size, capital
accumulation, productivity and profitability by a dynamic, latent factor which we call efficiency.

We use the term efficiency rather than productivity, as our structural model suggests that our measure
of efficiency is unrelated to labor productivity. The argument is simple. Consider firms in a competitive
industry with different levels of efficiency'. A firm with high efficiency will choose a high level of factor
input so that its marginal product is the same as for the other firms. With a Cobb-Douglas production
function, the marginal product is proportional to production per factor input, and, hence, all firms should
have the same level of production per factor input (apart from transient noise). We show in section 4
that similar arguments hold beyond the special case with a Cobb-Douglas production function and price

taking behavior, and the argument rises the question of how we should make inferences about differences

1 Assuming diminishing returns for profit-maximization to be well defined.



in efficiency from firm level data2.

Our econometric framework uses a state space-approach, in combination with the Kalman-filter and
-smoother, to decompose the multivariate observations of firm performance in terms of stochastic trends,
initial conditions, transient noise, and industry-wide fluctuations. The multivariate framework imposes
relatively few restrictions on the data generating process and allows us to consider the validity of the
restrictions imposed by our structural model. According to the time-series terminology; our structural
model of firm behavior requires that supply and factor inputs must be co-integrated with a heavily
constrained co-integrating vector, and we show that these constraints are largely satisfied in all industries.
The model is estimated by a partial likelihood function and we discuss the question of identification

emphasizing the fact that we do not explicitly model the firms’ exit decisions.

2 A first look at patterns of firm performance

Are the differences in performance across young firms as large as among older firms, or do firms grow
more unequal with age? A preliminary answer to this question is suggested in Figures 1-3, which are
based on a rather complete, unbalanced sample of firm level observations from six (two-digit NACE)
high-tech manufacturing industries. Details of the data are presented in Section 5. Figure 1 presents
the means and standard deviations of log sales as a function of firm age®. All observations are measured
relative to the industry-year mean. Not surprisingly, the graph shows that young firms are substantially
smaller than older firms and that firm growth on average decelerate with age. More interestingly, the
graph shows that relative differences in firm size are almost independent of firm age. Figure 2 shows
that the relative differences in firm size are highly persistent as the firms get older. That is, the upper
graph in Figure 2 displays the correlation coefficient between log sales in the firms’ first year and in their
subsequent years. The correlation coefficient between log sales in the two first years is 0.94. It declines
steadily to 0.76 when we correlate log sales in the first year and the 12’th year.

These patterns suggest that the differences across young firms are as large as among older firms and
that they are highly persistent, emphasizing the role of intrinsic differences. However, this conclusion is
preliminary as it leaves open a number of questions. Young firms have a high rate of exit; on average,
50 percent of a new cohort of firms have exited within 7 years in our sample. Since exiting firms
are systematically selected among the least successful firms, we expect the upward trend in Figure 1.
Such a systematic selection eliminating the least successful firms should, cet.par., tend to narrow down
the differences in firm size, but such narrowing is not visible in Figure 1. At least there must be an
offsetting force which tends to make firms grow more unequal with age. Such an offsetting force could be
idiosyncratic, cumulated shocks which also explains the declining correlation between a firm’s performance
in its first year and in its subsequent years.

Another question we discussed in the introduction is how to measure firm performance? Figure 3

presents means and standard deviations of (log) labor productivity as a function of firm age and the

2 A more extensive discussion of this issue is presented in Klette (2001). See also Bernard et al. (2000) and Klette and
Kortum (2001).
3@Graphs for the six individual industries show the same patterns.



patterns are rather different from that in Figure 1. There is no upward trend in labor productivity
and the standard deviations decline substantially with age. The differences between sales and labor
productivity as measures of firm performance is at least equally striking when we turn to Figure 2. The
lower graph in Figure 2 displays the correlation coefficient between labor productivity in the firms’ first
year and in their subsequent years. The low correlation coefficient between productivity in the two first
years suggests that almost half of the observed variance in labor productivity is temporary fluctuations or
noisy data. A low degree of persistence in differences in labor productivity is not restricted to the firm’s
early years. A comparison of the two graphs in Figure 2 rises the question of why differences in size is
considerably more persistent than differences in labor productivity. This comparison indicates that labor
productivity at best is a rather noisy measure of efficiency.

This preliminary look at the data suggests that we need an econometric framework that can address
a number of challenging methodological issues. The framework must account for the intrinsic differences
embedded in firms at birth and how the differences evolve over time, but it must also account for the
considerable noise in the data, self-selection, and yet, it should be flexible enough to let us examine

alternative measures of firm performance.

3 Decomposing differences in firm performance

This section presents our econometric framework for assessing the relative importance of intrinsic differ-
ences and cumulated innovations, while extracting industry wide changes, as well as transient fluctuations
and noise present in the data. We start by illustrating our approach in a simplified case before we present

our complete multivariate framework.

3.1 A simplified, univariate framework

Stochastic specification: In the simplified version of our empirical framework, we focus on a univariate
measure of firm performance; y;;. This could for instance be firm size, profits or some measure of
productivity. Furthermore, we assume that all firms are established in year ¢t = 1, and that the model

have the following structure:

yitzvi+ait+dt+eitv tzlv"'aTa (1)
where
0 t=1
= { Aq,t—1 + it t= 21 "7T7 (2)
and
vi ~IN(0,02), ny ~IN(0,07), ey ~IN(0,07). (3)

The first two terms on the right hand side of (1) can be interpreted in terms of the two classes of

models discussed in section 2: The term v; is a random effect corresponding to the intrinsic differences



in performance, while a;; is an idiosyncratic stochastic trend with innovations 7,,. The last two terms in
(1) represent sector-wide changes in performance, d;, and (white noise) temporary fluctuations, e;;.
Note that a;; can be expressed as: a;; = ZZ:Q 7,5, highlighting that it is cumulated sum of idiosyn-
cratic innovations that are uncorrelated across firms and over time. In this simple model the assumption
that E{n,,} = 0 is not restrictive, as any non-zero innovation mean will be absorbed into d;. Since v; has
mean zero, and a;; = 0, v; is the time-invariant (intrinsic) part of the deviation of y;; from the industry
mean d;. Our analysis of why firms differ focuses on the relative importance of the first two terms on the

right hand side of (1) in accounting for observed firm heterogeneity.

Measuring the importance of intrinsic differences and idiosyncratic innovations: To identify
the sources of heterogeneity between firms, we decompose the variance in performance in year T . From

equation (1)
Var (yir) = 02 + (T — 1)0?7 + 02,

(From this expression, a natural measure of the importance of the intrinsic differences relative to the

idiosyncratic innovations in explaining firm heterogeneity in year T is:

Var(v;) B o2

= v . 4
Var(v; +air) 0%+ (T —1)03 )

The ratio in (4) measures intrinsic differences as a fraction of the total variance in the non-transient

performance in a given year. A closely related measure, which we label as the (unconditional) variance

ratio, V, is:
_ Var(y) o?
V= Var(a;r) (T —1)02 5)

— i.e. the ratio between the variance in intrinsic performance and the variance in cumulated innovations.

It is tempting to pursue the idea of variance decomposition — as in (4) — to quantify the relative
importance of cumulated innovations and intrinsic heterogeneity. However, the idea of variance decom-
position is not useful when v; and a;; are correlated. Even if v; and a; are uncorrelated in our basic
model (1), endogenous exit may cause v; and a;; to be correlated when we condition on survival. Indeed,
our empirical results reveal that v; and a; are megatively correlated among the surviving firms, as we
discuss in section 7.3 .

These considerations have led us to focus on a modified version of (5): Let Mz be the set of firms

that operate in year T. We define the conditional variance ratio, C'V, as

Var (v;]e € M-
oy = Var(vili € Mr) 6)
Var (ai| i € My)
CV takes the endogeneity of firm exit into account. The computation of this measure in non-trivial as
neither v; or a;; are observable. We will return to the computational issues in Section 6, where we also

elaborate our discussion of the self-selection problem and other econometric issues.



Preliminary remarks on identification: ;jFrom the covariance-matrix for y;; all parameters are

identified from the cross sectional variation in the data, provided the sample covers at least two time

periods:
02+ 02 [min(t,s) —1] t#s
Cov (Yit; Yis) = { 0-12) + Ug(t -1+ (J'g t=s (7)
2

As will be explained below, o ,(7727 and o2 are three parameters of primary interest, and (7) shows that

v
these parameters are identified from the covariance matrix for y;; with a sample covering at least two
years.

Although identification of the model (1)-(3) appears almost trivial, the situation is complicated by the
fact that we do not observe the firm over a fixed time period [1,T], but from ¢t = 7; until ¢ = T}, where
7; > 11is firm ¢’s birth date, and T; < T is the last observation year: the exit time of firm ¢ or the end of
the survey period, T' (whichever comes first). The stopping time 7T; is an endogenous stochastic variable

when survival is related to performance, y;;. This means that the operating firms are self-selected into

the sample at any fixed ¢, which complicates identification and estimation as discussed in section 6.1.

3.2 Our multivariate econometric model

The multivariate model we estimate generalizes (1)-(3) by allowing the observable and unobservable
variables to be vectors and it also introduces capital accumulation. Let y.;; = (83, Mz, iz, kit)/, where s,
mg, and U, are (log) sales, material inputs, and labor, respectively, and k;; is log of the capital stock at

the end of year t. The econometric model is:

Yit = Vi +ag +Ypkii—1 +di ey, T <t <T, (8)

where

0 t:Ti
H = { ai:t_1+'r’it t:Ti+1a"'1T (9)

and v;,n;, and e; have independent, multivariate normal distributions:
v ~IN(0,%,), m; ~IN(0,%,), ex ~IN(0,%,). (10)

Firm i is observed from year 7, > 1 until T; < T', where the birth dates 7, have an exogenous distribution,
while the exit dates T; may be endogenous (as specified in section 6.1).

In (8), v; and a;; are 4-dimensional vectors of latent variables; «y,, is a 4 x 1 vector of capital coefficients
corresponding to k; ;1 (the capital stock at the beginning of year t); and e;; is a 4 x 1 vector of white
noise errors. Notice that from (9)-(10), we obtain Var(a;) = (t — 74)%,.

Since firms have varying birth dates, 7;, any non-zero — and possibly non-constant — innovation mean
will, in principle, be identifiable from the data. Thus; although we have assumed a priori that n,, are
i.i.d. with zero mean throughout the life-time of a firm, these constraints are not necessarily satisfied

in the (cross section of) conditional distributions of n,, (and a;), given the observed variables on firm



1. The conditional distributions of the latent variables, which in fact are posterior distributions, to use
Bayesian terminology, are the distributions of main interest in the empirical part of this paper. It is
well known from Bayesian statistics that inferences based on posterior distributions are generally robust
with respect to moderate alternations of the prior distribution. Our analysis is in line with the empirical
Bayes approach to modelling stochastic trends, which is well established in the time series literature (see
for example Kitagawa (1996)).

An important aspect of the multivariate model is to account for the role of capital accumulation in
the process of firm growth. As we shall see in section 4, a restricted version of the multivariate model
can be given a structural interpretation in terms of an explicit model of firm behavior. According to the
analysis in section 4, the capital variable plays a crucial role by allowing us to interpret the v; and a;; as

differences in efficiency.

Variance decomposition in the multivariate case: We want to interpret the cross-sectional het-
erogeneity of firms in year T, similar to our analysis in section 3.1 . This can be done by multivariate
variance decomposition using the trace of the variance-covariance matrices as a measure of multivariate

variance. In the general rank-r case, we obtain
tr Var{y;r} =tr 2, + (T — ;) tr 5, + tr &,

Let T denote the average age of firms operating in year T: T = E{T — 7;|i € Mr}. Hence, the natural
extensions of our univariate measures of the importance of intrinsic differences relative to idiosyncratic

Inovations are:

tr X,

V==e————N
T tr 3,

and

oV — tr Var (vz|z € My) .
tr Var (aiT|2 S ]\/[T)

One or more latent components? In the multivariate model, an interesting question is: What is
the number of independent stochastic components in v; and a;;, respectively? The answer is determined
by the rank of the covariance matrices 3, and 3,. For example, if the rank of ¥, is 1, all components of

1, are determined by a single latent factor, say n,,:
Nt = unnita

where u,_ is a vector of fixed coefficients. Thus, a;; = u

n a;, where a;; = ngt 7;s- In fact, our empirical

n
results show that a one-factor model accounts for more than 90% of the variation in a;; in all the industries
we consider.

In the general case, the rank of 3, is » (r < 4), and we can represent the innovations 7,; through an

orthogonal factor decomposition (see Anderson, 1984):

Mie = Wy (1)t (1) T -+ Wy ()it () (11)



where u, ) is the eigenvector of 3, corresponding to the j’th eigenvalue 0'7271(].), with Huny(j) | =1 and
(7727,(1) >..> (7727’(” > 0. In (11), the 7, (;) are latent variables with:
E{m‘t,(j)} =0
o2 .. j=k
am. = n,(4) 12
Cov{nzt,(J)anzt,(k)} { ] 7& k. ( )
Hence, %, = 2521 u, W, o ’Uf%(j). We will refer to the vector u, 0, () a8 the loadings on the j’th
factor of X,. Note that
Air = Wy (1)@, (1) T o0 T Wy () Tit () 5
where a;; ;) = ngt Nis,j) for j=1,..,7.
A similar analysis can be done with respect to v;:
V; = uv,(l)vi](l) + + uv,(r)viy(,,),
where
E{viyt = 0
(712) N J=k
Cov{@iy(j),vij(k)} = { é(ﬁ) Pk (13)

Consequently, the loadings on the j’th factor of 3J, is given by the vector u,, ()0, (j)- In the next section
a structural interpretation of this model will be presented which puts restrictions on the rank r of ¥,

and X, and on the corresponding factor loadings.

4 A structural interpretation of our multivariate model

The multivariate framework presented in section 3.2 can be given a structural interpretation, based on a
model of firm behavior expressing supply and factor demand as explicit functions of efficiency, demand,
capital, and factor prices. This section shows how efficiency and demand differences across firms affect
supply and factor demand, imposing strong restrictions on the parameters in the multivariate model

presented in section 3.2.

Supply and factor demand: Consider the production function
Qit = AuK7, | F (M, Lit) (14)

where Q;¢, Aix and K; ;1 denote the firm’s output, efficiency and capital, while F(M;;, L;;) is a function
aggregating materials and labor inputs. F(M;, L;;) is homogenous of degree ¢. Given factor prices for
labor and materials common across firms, w! and w}", and treating K. i,t—1 as pre-determined, it follows
that the short-run cost-function has the following form:

1/e
C(w™, wh, Qi Aig, K1) = G(w)™, wh) (#) . (15)
g t—1



The factor demand for materials and labor is then

1
InM; = In oc _ —(InQir —InA;) — i InK;; 1 +InGim (16)
owr € € ’ ’
1
mL, = wm2¢ 1 (In Qi —InAy) — LInKiy y +1InGyy (17)
owr ¢ € ’ ’

where Gy, = 0G(wi™, wl) /Ow™ and Gy = OG(wi™, wl)/Ow!. Each firm faces a demand function

Qit = Dy Py °, (18)

K2

where D;; denotes the level of demand, and each firm charges a price which is a markup, u;; (g > 1),

times marginal costs:

oC

Py = Hitgo.

(19)

We now want to derive factor demand and supply as a function of the capital, technological level and
the markup. We do not observe supply in terms of output, but instead in terms of sales, S;; = Py Q.
Combining this expression with (15), (16), (17), (18) and (19), the set of supply and (short-run) factor

demand equations can then be stated

111 Sit e—1 €
InMy | =— (1A, +1vyInk;; 1 — (1- 1/6)_1 Inpg o+ gwy", wy) (20)
InL, | °fte—e (1-1/e)"

where 1 =[1,1,1) and A}, = Dilt/(e_l)Ait. The last term on the right hand side is a vector common
across firms which may vary over time as it depends (only) on the common factor prices. A; and Dy
enter this system of equations symmetrically, and we are consequently not be able to distinguish between
technology and demand shocks in the empirical analysis where they both are unobservable?.

We will refer to AJ; as a firm’s efficiency, and this index embodies both product and process innovations
cumulated from the firm’s past. (20) suggests that differences in labor productivity, i.e. value added per
labor input (S;+ — M;t) /Ly, are independent of differences in firm efficiency, A%, . We notice, however,
that firm level differences in markups will show up as differences in labor productivity®.

According to this model, differences in firm size, conditional on their different capital stocks, are
informative about differences in firm efficiency®. This relationship between size and efficiency on the one
hand and the absence of a similar relationship between labor productivity and efficiency on the other,
may explain why differences in sales are much more persistent than the differences in labor productivity,
as we saw in Figure 2. Furthermore, it can at least partly explain why average size trends upward among

the surviving firms, while no similar trend is visible in labor productivity, as shown in Figures 1 and 3.

4This is also pointed out by Levinsohn and Melitz (2001).

5That is, In[(Sit — Mit) /Lit] = In p;, ignoring terms related to g(w™, wl). We notice that differences in labor produc-
tivity and efficiency may be correlated if differences in efficiency are correlated with differences in markups.

6This is even more transparent in with the case perfect competition, i.e. with ti; = 1 and e — oo, where (20) simplifies
to

lnSit 1
an\/fit = 1— (1 lnAit +’yl anit)-
lnLit -

ignoring the common term lime oo g(w}?, wé)



Monopolistic competition In the rest of this section, we will focus on industries with monopolistic
competition, where p;, = (1 — 1/e)~! for all firms 4. In this case, the last two terms on the right hand

side of (20) do not vary across firms, and short-run profits can be expressed in terms of A} and K; ;1
I (Af, Kip—1) = Sit — My — Ly =y [ArtKi,tfl](871)/(5+8785) )

where 7, is a factor common across firms (which may vary across years and industries). According to this
expression there is an increasing, one-to-one relationship between the differences in profits not accounted

for by capital, and the differences in efficiency.

Capital stock dynamics: Consider now the capital stock dynamics derived from each firm’s invest-
ment behavior. Let I(Kit,Kijt_l) denote the costs of changing the firm’s capital stock from K;,_; at
the end of in period t — 1 to K;; at the end of period ¢. This investment function is convex in K;_; and
decreasing in K;. In Appendix C, we examine the firm’s investment problem, which can be formulated

in terms of dynamic programming
VI(AG, Kip1) = max {1 (A%, Kig 1) = (K, Kig1) + BE [V(AG 0, Kin) | AT, Kiga] } (21)

where V (A}, K;;—1) is the value function and E [-|A%,, K; +—1] is the expectation conditional on A}, and
K +—1. Appendix C shows that a log-linear approximation to the policy function corresponding to (21),
is

InKiy = +asmAj,  +arln Ky . (22)

where o, is a positive parameter, oy, is a parameter between zero and one, and «; captures changes in

factor prices and other industry-wide variables alternating over time.

The structural model of firm growth: Combining (20) and (22)

Vit =0, In A} + 0, In (A5 /AS) + 0, In (K;4—1) + 6;. (23)
where
yi = [InSy ImMy; WLy WK |
A N
b — [, 2=l ey o, (24)

while 8; = [ g'(w}", wl), o ] .

The model (23)-(24) suggests that the differences across firms in the endogenous variables y;; are due
to differences in efficiency 6, In (A},) and capital accumulation, 8y In (K;,_1). Capital accumulation is,
according to (23), driven by cumulated changes in efficiency and independent stochastic shocks. In (23)
differences in efficiency are decomposed into two components: intrinsic differences introduced already
when the firms are born, 8, In A%, and differences in the cumulated changes in (relative) efficiency,

0o In (A7 /A7)

10



The model of firm behavior presented in this section is highly constrained as it assumes that efficiency
changes affect all the components of y;; through a single factor. And not only is the model limited to
one latent factor, — the three first loading-components on this latent factor are equal, which is a strong
restriction on the multivariate model presented in section 3.2. That is, in the multivariate, descriptive
model there are no a priori constraints on the covariance matrices X, and ¥, (apart from positive semi-
definiteness), while, according to the structural model presented in this section, these two matrices are

rank 1 and can be factorized as:

Y, = 6,0, Var(InAf)
Y, = 040, Var[ln(A7/A7)]. (25)

In the time series terminology, our structural model imposes a co-integration relationship between the
three first components of y;;, with a highly constrained co-integration vector. Below we will examine
the empirical validity of these constraints. Notice that 8,V ar (In A;‘l)]E and 0, Var [In (A} /A;‘l)}% are the
factor loadings in the rank-1 decomposition of ¥, and X, respectively.

(From equations (23)-(24), we see that none of the structural parameters in the production or the
demand function is identified without additional restrictions. Nevertheless, the structural model imposes
a lot of constraints on the covariance matrix and auto-correlation structure in the observed data’. This
is true even if we assume perfect competition.

Industry wide changes in efficiency and demand are absorbed in the @;-term. Transient deviations
from this model of firm behavior and noise in the data correspond to the e;-term in the multivariate
model in section 3.2 .

To summarize, this section has shown that the multivariate model presented in section 3.2 has a
structural interpretation when the number of latent factors are reduced to one and the factor loadings
satisfy the constraints presented above. According to this model, differences in observed performance,
yit, are driven by differences in efficiency across firms and by differences in their capital stocks. The
econometric framework presented in section 3.2 extracts transient shocks and industry wide changes
in firms’ performance, and allow us to focus on the evolution of the persistent differences in efficiency
across firms. The structural model decomposes these differences in efficiency into intrinsic differences
and differences which are cumulated as the firms evolve. Differences in capital accumulation are at least

partly driven by efficiency differences across firms.

5 Data and variable construction

We rely on raw data from Statistics Norway’s Annual Manufacturing Census, which provide annual
observations on sales, intermediates, wage costs, gross investment and other variables for all Norwegian
manufacturing establishments for the period 1973-1996. Separate estimates are presented for 6 different

industry groups corresponding to the 2-digit NACE codes; see Appendix D.

"Notice that 84, and consequently 7, is not identified, because we do not observe the (variance of) In Aj.
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Following Caves’ (1998) survey of empirical findings on firm growth and turnover, we have not stressed
the distinction between a firm and an establishment®. The unit of observation in our data is an establish-
ments in a given year. For convenience, we have labelled the unit a firm rather than an establishment,
which is not misleading in a large majority of cases, since only 10-20 per cent of the establishments
belongs to multi-establishment firms in the sectors we consider”.

All costs and revenues are measured in nominal prices, and incorporate taxes and subsidies. We have
not deflated the variables with the available industry-wide deflators as the econometric model contains an
industry-wide time varying intercept vector. The model contains four variables, which are measured on
log-scale: sales, labor costs, materials, and capital. Sales is adjusted for inventory changes. Labor costs
incorporate salaries and wages in cash and kind, social security and other costs incurred by the employer.
The capital variable is constructed on the basis of annual fire insurance values and gross investment
(including repairs).

Initially all firms in a sector which were operating during 1973-95 were included in the sample, and
observed until 7' = 1995. However, the sample of interest consist only of the firms born within the 24 year
period. For the other firms separate (nuisance) parameters were estimated for the distribution of v;'°.
The reason is that for these firms, v; is composed of both intrinsic differences and cumulated innovations
(up until 1973) and therfore has a different meaning than for firms in the interest sample, i.e. it is
not a time-invariant variable. For this reason, when we later analyse firm heterogeneity, establishments
entering the industry before 1973 were excluded from the analysis. Of all plants operating in 1995, 75-85
percent were established after 1972, and thus included in the interest sample. These firms account for a
similar share of total sales in 1995 (measured on log-scale for each firm).

Some ”cleaning” of the data was also performed: A firm was excluded from the sample if either; (i)
the value of an endogenous variable is missing for two subsequent years or more; (ii) the firm disappears
from the raw data file and then reappears; or (iii) the firm is observed for less than 2 years. These
trimming procedures reduced the data set by 15-20 percent. In addition we removed firms with extreme
variation!! in the endogenous variables, which eliminated an additional 4-8 percent of the observations.

Some summary statistics are presented in Table 1. Table 1 reveals considerable heterogeneity within
industries in terms of the variation in sales. The size distribution is highly skewed within each sector;

mean-sales is much higher than median-sales.

8Caves (1998) points out that most of the results on firm growth and turnover have been insensitive to the establishment-
firm distinction.

9This is not to deny that the distinction between firms (or lines-of-business) and establishments raises interesting ques-
tions for our analysis. For instance, are there strong correlation between efficiency levels across establishments within a
firm? Do new establishments from an existing firm have the same efficiency as new firms? We will investigate these and
related questions in future research.

10T hat is, v ~ N (fiy, So)

HExtreme variation means that the differenced variables (on log-scale) have a maximum absolute value which is more
than 4 standard deviations away from the (sector specific) mean maximum absolute values.
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6 Econometric issues

Our econometric model, presented in section 3, raises a set of econometric issues which we address in
this section. These issues are: (i) identification in the presence of self-selection when we do not explicitly
model the exit-process, (ii) estimation of the structural parameters of the model, and (iii) calculation
of the conditional variance ratio for the latent variables. Parts of the discussion are quite technical and

some readers may, at first, want to proceed to the next section presenting the empirical results.

6.1 Selection and identification

We presented a preliminary discussion of how the model is identified in section 3.1 focusing on a uni-
variate version of the model. In this section, we return to a discussion of identification issues in relation
to the uni-variate model (1)-(3). The generalization to the multivariate raises no new issues.

The results of Cox ? and Little and Rubin (1987), shown that a partial likelihood — that is, the (pseudo)
likelihood function obtained by treating the stopping times 7T; as if they were fixed or independent og
y;¢+ when setting up the likelihood function — provide consistent estimators in the presence of systematic
selection, if the stochastic process, y;;, satisfies the so-called missing at random (MAR) condition!2. The

version of the MAR condition needed in our case is:

f(yi,t+1|1(t < ﬂ)vyilv o5 Yit; /8) - f(yi,t—‘,—l'yila o5 Yit; /B)a t= 17 7T and i = 11 L) N7 (26)

where f(:|-) is generic notation for conditional probability density, I(t < 7;) is the indicator variable
which is 1 if the firm will operate also in year ¢ + 1, and 0 otherwise, and 3 is the model parameters.
Equation (26) says that information about survival up until time ¢ should not help prediction of y; ;11
given y;1, ..., yiz. The important property is that the observation of I(¢ < T;) cannot be used to improve
predictions about next years’ performance, ¥; 1, given the history of the y;-process up until ¢ BA
situation where MAR fails is, say, if the firm knows at the end of year ¢ what the sales will be in year
t + 1, and chooses to exit if the (potential) sales is below some threshold. In this case, the value of
I(t < T;) gives information about y; ¢11 not being contained in y;1, ...,y The MAR assumption is the
most general self-selection mechanism which allows identification based on the partial likelihood.

Identification of 3 based on the partial likelihood function are achieved provided (26) holds and 3
is identified in the model without attrition. This result holds even if exit depends on (3, as discussed
in Raknerud (2001a). We will hereafter use the term likelihood when, in fact, we consider a partial (or
pseudo) likelihood.

Notice that, in the presence of self-selection, the MAR assumption is substantially more general than

the assumptions required for consistency of widely-used panel data estimators based on the (generalized)

123ee Raknerud (2001a) for a more in-depth discussion of firm exit and the MAR-condition. Moffitt et al. (1999) refer to
the MAR condition as selection on observables.

13When a firm exits in year ¢t + 1, sit4+1, denotes the sales the firm could have obtained in that year if it hadn’t exited.
Notice that the MAR assumption does not exclude firms from having private information which affect their exit decisions,
e.g. information about scrap values.
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method of moments!?.

6.2 Estimation

The main tool in the estimation of the parameters is a generalization of the EM (Expectation Maximiza-
tion) algorithm called the ECM (Expectation Conditional Maximization) algorithm (Meng, 1993). The
parameters, 3, to be estimated are (X,,X,,Xe,y;,d), where d denotes the time dummies (di,...,dr).
The EM algorithm was originally developed by Dempster et al. (1977) as a tool for estimating models
with incomplete or missing data when the likelihood of the complete data has a simple explicit form. In
our case, y; is the observed (incomplete) data, while (v;’,a; ;. ', ...,a; 1, ) is missing, and the likelihood

of the complete data is determined by the distribution of Z’f\il(ﬂ —7;+ 1) ii.d. terms e;.

The state space representation: Using a Helmert-type orthogonal transformation of the variables,
we show that v; can be ”integrated out” of the likelihood function, as originally proposed in Raknerud
(2001b). This transformation substantially reduces the number of latent variables, which is important to
obtain rapid convergence of the estimation algorithm. Moreover, the resulting concentrated likelihood can
be expressed on a state space form, where the state vector is a;s = (a; 4417, Zi:ﬁ a; ;') fort=1;,..,T;.

To obtain a state space form of the model (8)-(10) which is useful for estimation purposes, we start

by defining
R =v;+eu.

We use a tilda, e.g. ﬁit, to indicate the following Helmert-type transformation:

S s—1
R. = \ S_H(Riﬁﬁs - %Zv:o Riritv) s=1.T,—7; on
%Zf};(l)Ri,’r,t-f—v s:ﬂ _Ti_i'_l.

Note that index s is the age of firm ¢ at time t: s = t — 7; + 1. The transformation also applies to

sequences of variables that are not firm-specific. For example

s s—1
d Viir(drgs =1 X0 0dre)  s=10T -7
lZf;é dr; 4o s=T;,—1;+1.

S

It is easy to verify that

E{R;;} = 0, s=1,..T,—7;+1
= _ Ee SZl,..,Tif’Ti
Var{Ri:} = {Ev+31§]e s=T;—1;+1 (28)
E{ﬁisﬁit/} = 0, s#t.

The state space form of the model with state vector ays becomes (see Raknerud (2001b) for a more
detailed account):

?is = Gis0s + ais + 7kEis + ﬁis

=1,.,T,—71,+1 2
Qis = [ Qo1+ Wis ST hiT Tt (29)

14The reason for this is that the covariance structure (7) cannot be estimated from sample analogues: If exit is endogenous,
Cov(s;t, sis| max(s,t) < T;) will not in general be given by (7) (even if MAR holds). Hence the sample covariance matrix
ceases to provide consistent estimators for the model parameters.
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where

(I is the identity matrix of order r). Note that the w;s, from (10), are uncorrelated with mean zero and

singular covariance matrix:

Flw;w),} = [ OZ" (()) ] ,s=1,...T;,—7;+ 1. (30)

and that w;s and ﬁit are independently distributed for all s and t.

The outline of the ECM algorithm: Given the state space representation (29), it is straightforward
to apply the ECM algorithm to maximize the likelihood function. We here present a general outline of
the algorithm, while computational details are deferred to Appendix E.

For random vectors y and a, let y denote the observed (”incomplete”) data and « the ”"missing”
data. Furthermore, let g(y, a; 3) be their joint density (i.e. the ”complete” data density), and g(ca|y; 3)
the conditional density of « given y. The ML estimator, B, is the maximum of the log-likelihood L(3)

of the observed data, where

L(B) =1Ing(y; B). (31)
Since
g _ 90,5 8)
98) = y(aly; B
(31) can be rewritten as
L(B) =Ing(y,a; 8) — Ing(aly; B). (32)

Taking the expectation on both sides in (32) with respect to g(c|y; 3'), where 3 is an arbitrary parameter

value, gives:
L(B) = M(B|#") — H(B| B"), (33)

where
M(BIB)) = / lng(y, a: 8) g(el y; ) do
H(BIB)) = / n g(ely: 8) g(el y; @) der.

It is shown in Wu (1983) that the following EM algorithm will converge to a stationary point on the

likelihood function under quite general conditions:
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Let 5(1) be given. For m =1,2, ...

(i) E-step: Compute M (8| 3™).

(ii) M-step: Set 3D = argmax M(3|8™).
B

(11i) Set m =m+ 1, and go to (i)

Since by Kullback’s inequality H(,B|,8(m)) < H(B(m)|,8(m)) for all 3, it is easy to verify that {L(B(m))}
is an increasing sequence of likelihood values.

It will be more convenient for us to replace the maximization in the M-step by a conditional mazimiza-
tion (CM) step: We partition the parameters in two blocks, 8; and (3, as specified in Appendix E, and
replace the M-step by two partial maximizations. That is, we first maximize M (3| ,B(m)) with respect to
B keeping 3, fixed at its current estimate. Then we maximize with respect to 35, with 3, fixed at its new,
updated value. This partial maximization procedure guarantees that M (,8(’”+1)|,3(m)) > M (B(m)|,8(m))
and retains the main convergence properties of the EM algorithm (see Meng and Rubin (1993)).

The EM (ECM) algorithm does not require calculation of the log-likelihood L(3) — only the function
M(3| B(m)). Another important property of the algorithm is that

oL(B"™) _ oM(B|B"™)

a3 93 (34)

p=p,
which follows from (33) and the fact that 3™ is the maximizer of H(8|3™), and hence a stationary
point. The Hessian of L(3) at B can therefore be obtained by numerical differentiation of M{ag'@

p=p
This result is important, because it yields a computationally simple estimator of the covariance matrix

of B
6.3 Calculation of the conditional variance ratio

The conditional variance ratio (CV), defined in (6), is the ratio of the variances for the unobservables,
i.e. Var(v;|i € My) and Var(ay|i € My), and must consequently be estimated, given estimates of the
parameters 3. This section explains how Var(v;|i € Mr) and Var(a;|i € Mr) are estimated.

We see that equations (8)-(9) can readily be written on a state space form:

yvie = [T T]xi+ypkier+ditei, t=15..,T;

o e
Vi

Xit—1+ [ n(;t } t=71;+1,...,T

where x;; = (a;;/,v;’)’, while 0 and I denote zero and identity matrices (of approperiate dimension),
respectively. The Kalman filter and -smoother provide the mean, X;77, and covariance matrix, ViT‘T,

for the state vector x;; given y; .7 = (¥ir;,...,yir) (see e.g. Harvey (1989)):

‘A’mT = Var(xir|ys,—71) and X;pp = E(xirlyi,—7).
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However, to calculate CV we need an expression for
Var (BXZ'T|Z' S MT) =BVar (XiT|i S MT) B’

foorB=[TI 0]andB=]0 I] (bothO andTI areof dimension 4 x 4).
It follows from the MAR assumption that:

f(xir|i € M7,y 1) = f(XiT|yi,—T). (35)
By the rule of iterated expectation, and (35):
Var{xir|i € Mr} = E{Virr|i € My} + Var{Xypili € My},

Both E{{fiT|T|i € Mr} and Var{X;pr|li € Mr} can be estimated from the cross section of firms
operating in year T', by the empirical mean and variance of \A/'iT‘T and ﬁiT|T, respectively. For example
~ ] 1 ~
E{Virrli € Mr} ~ Ny Z Virr

1EM

where Nt is the number of firms in the set M.

7 Empirical results

This section presents our empirical results, which focus on the heterogeneity in performance among
firms within six manufacturing industries in 1995. The results can be divided into two parts. First, we
argue that our structural model presented in section 4 accounts for the empirical patterns in most of the
industries we consider. With reference to the structural model, we can construct an estimate of each
firm’s efficiency every year. The second part of our results examine the differences in efficiency and how
they evolve over time. In all the industries we consider, intrinsic differences are larger than the differences
generated by cumulated, firm-specific innovations. Young firms are, on average, more innovative than
older firms and they have a much larger variance in their innovations. Comparing the results across
different industries, we find that the largest intrinsic differences are found in the industries that also have
the largest differences in the idiosyncratic innovations. Finally, we examine how selection systematically

eliminates firms with low efficiency.

7.1 A single factor model with a structural interpretation

The results in Table 2 and 3 support our simple, structural model presented in section 4, in most of the
industries. Table 2 presents the estimated eigenvalues from the factor decompositions described in section
3.2. The second column presents the four eigenvalues, (77277( ) of the covariance matrix for the idiosyncratic
innovations, 3,. In all the industries, the largest eigenvalue is at least an order of magnitude larger than
the second. The same pattern is present in the third column, presenting the four eigenvalues U?}j( 5) of the
covariance matrix of the intrinsic differences, ¥,,. The largest eigenvalue is an order of magnitude larger

than the second largest eigenvalue in all industries also for X,,.
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The last columns of Table 2 and 3 presents a pseudo R?-measure:

tr Var(&;)

tr ﬁ“(yz‘t - azt)

R*=1- ,
where €;; = yir — E(v; + ai| all the data on firm i) — 7, k; 11 — Ht (the expectation is evaluated at
the estimated parameters and @() denote the sample variance). R? varies between .94 — .95 in the
one-factor model; and between .97 — .98 in the four factor model, underlining the excellent fit of the
model with one latent factor.

These patterns of eigenvalues show that the persistent differences in performance can be summarized
by the first latent factors v; 1) and a;; (1), accounting for at least 90 percent of the variation in v; and
a;;, respectively. We conclude that a single latent time-invariant component and a single latent random
walk component, is largely adequate as a summary of firm performance'®.

Table 3 presents the estimated factor loadings from a model estimated with only a single latent factor.
In all but two industries, the parameter estimates are consistent with the restrictions on the factor loadings
imposed by our structural model. That is, the structural model in section 4 suggests that the three first
components of the loading vector should be the same; both for the idiosyncratic innovations and for the
intrinsic differences. These constraints on the factor loadings are satisfied in most industries.

In two industries, Plastics and Transport equipments, our estimates show that the labor variable
responds less to idiosyncratic innovations than sales and materials, contrary to the prediction by the
model in section 4. The deviation in these two industries may be interpreted as evidence for innovations
that are labor-saving or that the technology is non-homothetic (with, roughly speaking, some scale
economies for labor). Another explanation could be adjustment costs, but recall that the results in Table
3 refer to persistent changes in efficiency!6.

The fourth factor loading in column 2 and 3, i.e. corresponding to the capital variable equation, is
small and suggests that the link between innovations and investment is, perhaps surprisingly, weak. Such
a weak link may reflect a more complicated capital adjustment pattern than considered in section 4, due
to e.g. non-convex adjustment costs. The capital coefficient for each of the four equations in our system,
(23), are presented in the fourth column in Table 3. We notice that in two industries discussed above,
Plastics and Transport equipments, the capital coefficient in the labor equation is smaller than the capital
coefficients in the equations for sales and materials. The fourth coefficient is close to one, suggesting that
the capital process is almost an independent random walk.

The last column in Table 2 depicts the four eigenvalues from a decomposition of X, the covariance
matrix associated with transient shocks. The results show that the transient shocks are not dominated
by a single, common latent factor, i.e. transient fluctuations are not common across the four endogenous

variables. We notice that the variance generated by the transient variance component is of the same

15 A single factor model is an essential, maintained assumption in most empirical studies of firm performance, including
Marschak and Andrews (1944) and Olley and Pakes (1996).

16Griliches and Hausman (1986) find an elasticity of labor to changes in output which is close to one when transitory
changes in output were eliminated, while Biorn and Klette (1999) present lower estimates.
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magnitude as the variance of the innovation component, i.e.
tr(Ze) = tr(%,).

The transient fluctuations account for some of the mean reversion in the dynamic process for the observ-

able variables!?.

7.2 Differences in efficiency across firms

7.2.1 Intrinsic differences are larger than the subsequent innovations

Table 4 presents various measures of the intrinsic differences relative to the differences in cumulated
innovations within each of the six industries. Column 2 suggests that in all industries, the variance of
the intrinsic efficiency differences accounts for the larger fraction of the non-transient firm heterogeneity.
The fractions of the variance accounted for by the intrinsic differences vary from 53 percent in Radio/TV
equipment (NACE 32) to 69 percent in Medical instruments (NACE 33). Our estimates of the variance
accounted for by the cumulated, idiosyncratic innovations are based on the average firm age (T') in each
industry, which vary between 6.7 and 8.5 years (see Table 5).

Another way to express the same pattern is presented by the unconditional variance ratios in column
3, showing that the variance in intrinsic differences is between 1.2 and 2.3 times as large as the variance
in the cumulated, idiosyncratic innovations.

However, these results do not provide a satisfactory measure of the importance of intrinsic differences
in explaining the observed variation in firm performance since they neglect the issue of exit and self-
selection. We argued in section 3 that a better measure is provided by the conditional variance ratio,
which presents the variance ratio for the surviving firms. The conditional variance ratios for each industry
in 1995 are presented in column 5. The pattern from columns 3 and 4 remains, i.e. that the variance
of the intrinsic differences is larger than the variance in the cumulated, idiosyncratic innovations in all
industries. The conditional variance ratios vary from 1.2 in Electrical instruments (NACE 31) to 2.6 in
Medical instruments (NACE 33) and Transport equipment (NACE 35). In all industries, we find that
the conditional variance ratio is at least as large as the unconditional variance ratio. We conclude that
the intrinsic differences in efficiency are larger than the differences in the cumulated innovations in all six
industries.

Table 4 shows that both intrinsic differences and differences in cumulated, idiosyncratic innovations

are essential in all industries.

7.3 Younger firms are more innovative

Several studies have suggested that younger firms are more innovative than older firms, even when
controlling for selection-bias; see Caves (1998). Our results is consistent with this evidence, as seen in the

upper chart in Figure 4 presenting the mean value of the innovations as a function of firm age together

Friedman (1993) has emphasized that noise and temporary fluctuations in the data often mislead researchers to infer
convergence across the units of observations when there is non-convergence in the underlying, un-contaminated processes
of interest. See also Quah (1993).
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with 95 percent point-wise confidence intervals'®. Both graphs in Figure 4 presents the average pattern
across industries'?. From the upper chart in Figure 4, we see that for one year old firms the innovation
mean is about 0.3, gradually decreasing to 0 after four to five years, and then stabilizing around —0.1
after about eight years. The negative trend in the mean value of the innovations is clearly significant
during — at least — the first five years of a firm’s life time.

The second chart in Figure 4 shows that the variance of the innovations also declines with age. The
innovation variance is 1.5 for the youngest firms and then steadily decreases, eventually stabilizing around
1 after ten years.

We get a clear impression from Figure 4 that new firms have more volatile and turbulent dynamics
than older firms. On average, younger firms have better innovations than older firms, but younger firms
are also more likely to experience less favorable innovations (large negative 7),,-values). Section 2 discussed
how learning effects and depreciation can determine the distribution of innovations. The results in chart
1 suggests that young firms on average learn faster. According to our model, the high mean for the

innovations shows that differences in performance tend be reinforced for young firms.

7.4 Systematic selection

The first chart of Figure 5 plots the estimated cohort-specific means of the intrinsic differences for all
sectors combined, together with confidence intervals?®. There is no systematic pattern suggesting e.g.
that younger cohorts have particularly favorable intrinsic efficiency levels. On the other hand, in the
second chart of Figure 5, we have plotted the mean of the intrinsic efficiency levels by the total life-time
for each firm?!. We overall find that firms with short life times (i.e. shorter than 5 years) have adverse
intrinsic efficiency levels compared to firms with long life-times (i.e. more than 15 years). We interpret
this as a mere self-selection effect: Intrinsic efficiency levels are positively correlated with survival. Hence,
as T; — 7; increases we obtain an increasingly self-selected sample of firms.

The last column in Table 4 shows that among the surviving firms, there is a strong, negative correlation
between the intrinsic efficiency levels v; and the subsequent innovations, a;r. Recall that, according to
our model, the intrinsic differences and the cumulated innovations are uncorrelated in the population, i.e.
in the absence of sample selection. Our interpretation of this negative correlation is that a firm with a
low intrinsic efficiency level must have a high growth in efficiency its subsequent years in order to survive
and vice versa. That is, selection is based on the firm’s overall efficiency which is the combination of the
intrinsic efficiency levels and the innovations.

Figure 6 compares the actual variance, accounting for selection, with the predicted variance in the

absence of selection across all the industries. The actual variance is considerably smaller than the pre-

18Recall that, given the MAR-condition, our estimation procedure is not biased by self-selection.

19The innovations from different industries have been rescaled with each industry’s variance of the innovations, to highlight
the (common) shape of the age profile. The details of the estimation procedure is presented in Appendix E.

20 As in Figure 2, we have rescaled the initial conditions from different industries by each industry’s variance for the
initial conditions to highlight the (common) shape of the age profile. The details of the estimation procedure is presented
in Appendix E.

21This graph is obviously contaminated by the problem that the life-time distribution of firms is right censored, but the
pattern is still highly suggestive.
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dicted variance. This shows that selection reduces differences in efficiency by systematically eliminating
firms with low efficiency. Similar findings have been presented in a number of studies, as surveyed by

Foster et al. (2001)?2. However, our measurement of efficiency differs from the previous studies.

8 Conclusions

How do firms differ, and why do they differ even within narrowly defined industries? We show that the
non-transient differences in sales, materials, labor costs and capital across firms can largely be summarized
by a single, firm-specific, dynamic factor, which we label efficiency in light of a structural model. The
structural model suggests that this measure is tightly linked to profitability and sales, but unrelated
to labor productivity. Our second task has been to explain the origin and evolution of the persistent
differences in efficiency. We find that among firms born within a period of 24 years, intrinsic (time-
invariant) efficiency differences dominate differences generated by firm-specific, cumulated innovations.
Our results also confirm previous findings suggesting that young firms are more innovative and have
more volatile and turbulent dynamics than older firms. Finally, we show that selection systematically
eliminates low-performing firms.

Our results highlight the rigidity of organizations, and suggests that competition does not eliminate
inefficiencies within firms, but rather that competition promote efficiency by eliminating inefficiencient
firms. Similar observations have recently been made by Geroski (2000): ”[T]he rise and fall of organi-
zations is likely to be driven by selection pressures rather than by adaption...[O]rganizations are rather
rigid and do not change easily to market forces.” This is not a new perspective??, but it is steadily
reinforced as new evidence based on newly available firm level data is accumulated. However, our paper
has emphasized that much of this research should pay further attention to the problem of measuring
efficiency and performance at the micro level. We have presented a somewhat new approach, and we will
elaborate the relationship between our performance measure, traditional measures of productivity and

other, outside evidence of innovation and efficiency in future research.
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Appendix A: Some theoretical ideas on firm heterogeneity

We decompose the persistent differences in firm performance into (i) intrinsic differences that are estab-
lished already when the firm enters an industry, and (ii) differences that are generated through subsequent,
idiosyncratic innovations that accumulate through the firms’ life-time?*. The time-invariant part will be
referred to as the intrinsic differences, while the cumulated part will be labelled as idiosyncratic, cumu-
lated innovations (or just cumulated innovations). In this appendix, we briefly review the main ideas in
the theoretical literature emphasizing efficiency differences intrinsic to the firms and differences evolving
through innovations that are cumulated, respectively

The importance of intrinsic differences in efficiency: How can we explain large intrinsic differ-
ences across firms that are introduced already when the firms enter the industry? An old idea is the
so-called putty-clay model, emphasizing the irreversible nature of a firm’s choice of technology. The clas-
sical contribution is Johansen (1959)25. The putty-clay literature emphasizes that choices of technology
are embodied in the capital, which makes adjustment costly as it requires that the existing capital must
be replaced.

Recent case studies of the life cycle of firms suggest that organizational capital can be as difficult
and costly to adjust as physical capital; see e.g. Holbrook et al. (2000), Carroll and Hannan (2000),
Jovanovic (2001) and Jovanovic and Rousseau (2001). For instance, Holbrook et al. document the
development of four of the dominating firms in the early history of the semiconductor industry. Their
analysis explains how these firms had a hard time adjusting to the new circumstances as the industry
evolved, and eventually all the firms failed and were closed down.

Large costs associated with adjustment of the organizational capital has also been a recurrent theme in
studies of the productivity effects of new information technology. Milgrom and Roberts (1990) emphasize
that implementing new, IT-based just-in-time production requires simultaneous and costly adjustments
in a number of distinct and complementary technological and organizational components in order to be
productive. Similar findings have emerged in a number of recent firm level studies examining the (often
small) productivity gains from IT-investments; see the survey by Brynjolfsson and Hitt (2000).

That re-adjustments of organizational capital are costly and difficult to implement successfully is not
surprising in the light of recent advances in the theory of incentives in firms and organizations. This
research has revealed how firms are operated through a complicated system of explicit, formal contracts
and informal, relational contracts, and why such a system is costly to adjust and renegotiate; see Gibbons
(2000).

Finally, we should mention the study by Jovanovic (1982). His study links differences in firm produc-
tivity to differences in the skills of the firms’ entrepreneur. The simple and basic idea is that more efficient
entrepreneurs command larger firms. This model of firm heterogeneity was introduced by Lucas (1978).
It was extended by Jovanovic who introduced entrepreneurial uncertainty about their relative efficiency
which is gradually resolved as the entrepreneur learns from the performance of his firm. Jovanovic’s
model has had considerable empirical success, as it provides an explanation for the high degree of tur-
bulence and high exit rate among young firms. The basic idea that efficiency differences are permanent
characteristics embedded in the firms as they are established, is in line with the ideas discussed in this
section.

The present study does not aim at discriminating among these various theories which all emphasize
the important role of intrinsic efficiency differences across firms. Instead, this brief survey is provided to
remind the reader why differences that are introduced when the firms are born may in principle have a
considerable influence on subsequent firm performance.

24In his review of models of firm growth and heterogeneity, Sutton (1997) emphasizes essentially the same distinction,
i.e. between models where firm heterogeneity is driven either by ”intrinsic efficiency differences” or by "random outcomes
emanting from R&D programs”. The distinction between intrinsic differences and innovations has also been prominent in
labor economics, where the two components are referred to as heterogeneity and state dependence, respectively. See e.g.
Heckman (1991).

25See Forsund and Hjalmarsson (1987), Lambson (1992) and Jovanovic and Rousseau (2001) for further references to
subsequent research.
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Firm growth through cumulated innovations: Another line of research has focused on differences
in firm performance driven by idiosyncratic and cumulated innovations. The basic idea is that firm
performance is driven by firm specific learning, R&D, and innovation, involving significant randomness.
This line of ideas emphasizes that a firm’s relative efficiency and market share slowly, but gradually
changes over time.

Early research on firm heterogeneity was stimulated by Gibrat’s analysis of the skewed size-distribution
of firms, and how such skewed size-distributions can be generated from independent firm growth processes.
These growth processes are characterized, according to the so-called Gibrat’s law, by firm growth rates
that are independent of firm size. Simon and his co-authors developed this line of research in the 1960s
and 1970s, by exploring firm evolution through formal modelling of the stochastic processes; see Ijiri and
Simon (1977). While this early work paid little attention to optimizing behavior and interactions between
firms, Hopenhayn (1992) presents a related study of an industry equilibrium generated by interacting and
optimizing firms. Firm growth is driven by exogenous stochastic processes, with exit as an endogenous
decision?S.

Gibrat’s legacy has recently had a revival, not least due to the work by Sutton (1997, 1998). Sutton
shows how persistent differences in firm size and a concentrated market structure tend to emerge in
models imposing only mild assumptions on the innovation activities in large versus small firms. His work
recognizes the essential role of innovation and R&D in explaining large and persistent differences e.g. in
firm sizes, but his model deliberately contains little structure, as he searches for robust patterns which
are independent of the detailed model structure. A somewhat more structured model of firm growth
through learning and innovation is provided by Ericson and Pakes (1995).

Other recent studies of firm growth emphasizing endogenous learning and innovation, have imposed
tight structures on their models in terms of the role of R&D and the nature of the innovation process;
see Klepper (1996), Klette and Griliches (2000) and Klette and Kortum (2001). These studies confront
stylized facts that have emerged from a large number of empirical studies of R&D, innovation and firm
growth.

The common theme across all these models is that firm growth can be considered as stochastic
processes, with idiosyncratic innovations, and a high degree of persistence.

In the rest of this study we examine the relative, quantitative importance of intrinsic differences on
the one hand and cumulated innovations on the other, as sources of persistent firm heterogeneity. Clearly,
this is only a first step and subsequent research will aim at discriminating among the theories within each
of these line of research.

Appendix B: Initial conditions and non-stationary

We assume that a;; is a random walk. However, from an econometric point of view, it might be desirable
to generalize the latent process; for example by assuming that

*
Sit = a; +dp + et

where

o =) i t=1
” Pai, g +ny t>1
Hence v; is the intrinsic efficiency level whereas
ai = aly — v;
is the change in efficiency relative to the intrinsic level v;. As before, we obtain the model
Sit = Vi + ag +di + eit,

but the dynamics is different. Our assumption that ¢ = 1 serves two purposes in our analysis. It is
consistent with Gibrat’s law, which has received some support in the empirical literature??. But perhaps

26 Hopenhayn’s model accounts for differences in initial conditions, as well as idiosyncratic innovations during the firms’
life cycles. Our empirical framework is in large parts consistent with his model of firm evolution.

27The empirical literature suggest that Gibrat’s law is valid, when the inference doesn’t condition on survival. See Hall
(1987) and Klette and Kortum (2001) for a longer discussion and further references.
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more importantly, it contributes to the identification of the model. The cost is that we fundamentally
restrict the dynamics of the s;-process. Some evidence, presented in Blundell and Bond (2000) indicate
that s;; may be close to a unit root process, but that ¢ is still significantly lower than 1.

Our econometric procedure does not critically depend on the exact value of ¢, and none of our results
presented in section 7 would be seriously affected if ¢ is, in fact, slightly smaller than one. One reason for
this is related to the role of the distribution of a;; in (2) as a smoothness-prior (see Kitagawa (1996) for a
discussion of the role of the prior distribution of a stochastic trend in time series analysis). Moreover, we
will argue that many of the empirical implications that can be deduced from ¢ < 1 are consistent with
¢ = 1 in the presence of self-selection. For example, negative correlation between a;; and v; is implied
by ¢ < 1. But when ¢ = 1, we would still expect that Cov(a;,v;) < 0 conditional upon survival, as
argued in Section 7.4. Indeed, this negative relation is strongly confirmed by our data: The estimated
correlation between a;r and v; (T corresponds to 1995) is on average —0.4, although the unconditional
correlation, according to our model, is 0. Based on this and similar considerations, we claim that the
models with ¢ = 1 and ¢ near 1 may have more or less identical empirical implications, and therefore
cannot meaningfully be distinguished based on these implications.

Appendix B: A simple model of capital accumulation
As stated above, the firm’s investment problem can be formulated in terms of dynamic programming

V(A:, Kt—l) = H}?,X {H(Az(, Kt—l) — I(Kt, Kt—l) + ﬂE [V(A:+1, Kt)|Az(j| }

where V (A}, K;_1) is the value function and E [-|A}] is the expectation conditional on A}. A} follows a
Markov process. Following Stokey and Lucas (1989), ch. 10.4, assume that the investment costs are such
that

I(Ky K1) = Ky o(Ky /K1)

where the function ¢(K;/K;_1) is zero when its argument is 1 — ¢ or smaller, and continuously differen-
tiable, increasing and strictly convex when its argument (strictly) exceeds 1 — §. 8 corresponds to the
rate of depreciation, which is less than one. If K;_; is sufficiently large, the optimal level of investment
is zero, and K; = (1 — §) K;—1. The threshold level for K; ; for which this occurs, K, is an increasing
function of the state variable A7. On the other hand, if K; 1 < K (A), the optimal level of capital
accumulation is determined from the first order condition

U Ki) = 5 BE [V (A, K0)147]. (36)

This equation gives a relationship between the optimal level of K; conditional on K;_; and A}, i.e. the
policy function Ky = g(Ky_1, A7).

Lemma 9.5 in Stokey and Lucas (1989) states that since II( A}, K1) — (K, K;—1) is strictly concave
in K;—1 and increasing in A}, E [V(A},,, K;)|A;] is strictly concave in K; and increasing in Aj. It
follows that the policy function is increasing in both arguments. Furthermore, it is concave in its first
argument, which can be verified as follows. Define k; = dK; /Ky, it follows from (36) that

ky R

7 /"o
kt—l C m

which is positive and below one since ¢’ > 0 and m is negative:

82

=K
=K

BE [V( :+17Kt)‘A:‘,k] <0.

Hence, we have that

[ =8 Koy i Koy > K(47)
ET 9(Kmr, A) otherwise
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where g(K; 1, A}) is increasing in both arguments and concave in its first argument. A log-linear ap-
proximation to this policy function is

InKj =ar+agnAf; + arInK; ;4. (37)
where « is positive while ay, is between zero and one. We have added a firm-subscript, . The constant

term has a time-subscript to capture that the capital accumulation will be affected by prices which can
vary over time.

Appendix D: NACE sector codes

25 Manufacture of rubber and plastic products

29 Manufacture of machinery and equipment n.e.c.

31 Manufacture of electrical machinery and apparatus n.e.c.

32 Manufacture of radio, television and communication equipment and apparatus
33 Manufacture of medical, precision and optical instruments, watches and clocks

35 Manufacture of other transport equipment

Appendix E: The ECM algorithm
The following factorization will be useful:
S, =T,I, (38)

where I';, is a Cholesky-type 4 x r matrix with zeros above the diagonal and positive diagonal elements.
If r =4, I')) is the unique Cholesky factor of ¥,,. In general, I'; is a unique rank-r decomposition of 3,
We can now work with the following equivalent form of the state space representation (29):

yis = FnGisais + ais + 'Ykz;is + ﬁis

1, Ty —71i+ 1,
Qs = Fai,sfl + wis § T it (39)

where the state vector a;s has been standardized and no longer depends on unknown parameters:

aio—o
I. 0
i
wzsNN(OaQ)
where
I. 0
o[ o)

All other variables and parameters are defined in section 6.3.
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The E-step: The E-step of the ECM algorithm now consists in evaluating
1ot
(m)y_ _2 =
M(B|B™) =5 (2] + (40)

E { (?is IG5 — d;s — vk%is)/Egl (?is IG5 — d;s — 'Yk%is) 1YY B(m)}> )
(41)
where
= _ ) e s=1,..,1; —1;
“5_{ Sp+s 8. s=T,—1;+1

(see equation (28)) and the expectation is with respect to as given Y = {¥1, ..., Vi 7y—rs 41}
Because (41) is the expectation of a function which is quadratic in (a1, ..., 0, 1,—7,41), to evaluate
this expectations we only need to calculate the conditional moments:

As|Ti—ri+1 Eos |Yi§5(m)}
Vis |T—mi+1 E{(as — ais\T,-,—'ri-i-l)(aiS - ais‘T,j—'r,j—i-l)/ | Yi%/@(m)}' (42)

The state space form (39) can be used to derive (42) by means of the Kalman-filter and -smoother. By
modifying the exposition in Fahrmeir and Tutz (1994), p. 264, the filtering recursions can be described
by the following algorithm:

Kalman filtering;:

Fori=1,...,N:
agjo =0
Voo =

Ajsls—1 = F A s—1)s—1
Visjs—1 = F Vis_1s-1F +Q
=I,Gys

Z,,=yis— ais - ’Yk%is

Kis = Vigae1 GG Vig a1 G + B!
Ais)s = Ays)s—1 + Kis(Z;, — Glyai505-1)
Visjs = Vigs—1 — KisGis Vigjs—1,

where all parameters are evaluated at 8 = ,B(m). The required conditional expectations L O and

variances V. Ty 41 A€ obtained in subsequent backward smoothing recursions (see Fahrmeir and Tutz
k3 k2

(1994), p. 265):

Kalman smoothing:
Fori=1,...,N:
dofors=T; —7m;+1,...,2:
& s 1|Ti—7i4+1 = A5 1)s—1 + Bis(qis|7,—r,+1 — Ays|s—1)
Vis—1Ti—ri+1 = Vis—1]s—1 + Bis(Visi—ri41 — Vis|s—1)Bis,

where

B = Vi,sfl|sle/V‘71

is|s—1°
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The CM-step: In the m’th CM-step, after a;,1,_r,4+1 and Vig7,_;, 41 have been evaluated in the

preceding E-step, we update 3 to obtain 3", However, maximization of M (,@|5(m)) requires iter-
ative methods. To simplify the calculations, we partition 8. Let 8, = (I';,v,d), By = (£4,%.), and
M (B4, B,]8) = M(B|8). The CM-step consists of the conditional maximizations:

BT = argmax M(8,, 8™ (8™)) (43)

1

By = argmax M(B{", 8,|8™). (44)

2

Conditional maximization w.r.t. 3y in (43) is equivalent to minimization of the quadratic function

N Tb'f‘l'rr}»l

~ ~ =\ -1/~ ~ ~ \/
a(By) = Z Z (yis — Ty Gisaggr, r1 — dis — ’Ykkis) s (yis —TyGisagr, r 1 — dis — ’Ykkis)
=1 s=1
N TifTri+1
+3° Y 0 EM G Vi 1 G,
=1 s=1

By setting the derivative of ¢(3;) equal to zero, we get linear 1. order conditions. The updating of 3, in
(43) is therefore trivial.
Maximization with respect to 3, in (44) is equivalent to minimization of

N Tb'f‘l'rr}»l
7’(52) = Z Z (h’l ‘Es‘ +tr 5;1 (Sissis/ + F?]GiSViS|Ti—T,i+1GiS /Fn /)) (45)
=1 s=1

where

Sis = s;is - FWGiSais|Tif‘ri+1 —d;s — 7kkis

Note that r(85) depends on B, = (2,,3,) only through =Z;. Rather than expressing Z; as functions of
(34, Xe), it is useful to write

Ee - FeFe !
Sy r,r,’ (46)

where T, is the 4 x 4 lower triangular Cholesky factor of 3., and T';, is a Cholesky-type 4 X  matrix with
zeros above the diagonal and positive diagonal elements.

Through the reparametrizations (46), we assure that the estimates of the covariance matrices are pos-
itive semi-definite and that the estimate of X, has rank r. Unfortunately there is no closed-form solution
to the problem of minimizing r(3,) with respect to the (unique) Cholesky (-type) factors (I'e,I';,). How-
ever, analytic expressions for the derivatives of the objective function (45) with respect to the components
of I, and T, are available (see Lutkepohl (1996)), and in our experience this optimization problem is
easily solved numerically, by using an efficient quasi-Newton algorithm.

Appendix F: Estimating the distribution of age and cohort pro-
files

This appendix presents some details concerning the estimation of the graphs in Figures 2 and 3. Starting
with Figure 2, let 03, = n; (1) /0,1y be the standardized innovations in the one-factor model, where i,(1)
and o, (1) are defined in (11)-(12), and define 77, = E(n; . ,,) — the expected innovation of a firm of age
s. Then 7, should decrease as s increases.

Consider the a posteriori distribution of the innovations of firms with age s, i.e. 1, ... That is, the
distribution of 7, .., . conditional on all the observations on firm i (evaluated at the parameter estimate
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o~

B). Let 7, be the Kalman-smoothed estimate of nf: 7,;, = E(n¥all the data on firm ¢). Then we can
estimate 7], using the sample analogy method:

_ 1 ~
Ns =~ n_s § Niyritss
1EN,

where Ny = {i : 7; + s < T;} and ng are the number of firms in this set.

For fixed s, Var(n; ;. 1s) = Var(@; ;,4+s) +E(Var(n; ., ;). Hence, the variance of 0} . , . as a fanction
of the age s, can be estimated from the cross section of the 7, ., . and Var(, ., ), which are outputs
from the Kalman-smoother (cf. section 6.2).

The relation between intrinsic differences and selection in section 7.3 is studied from the smoothed
innovations v; = E(v;|all the data on firm 7). Since X, can be well approximated by a rank one matrix,
it is enough to study the standardized univariate innovation v} = v; (1y/0; (1), where v; (1) and o; (1) are
defined in the factor decomposition (13).
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Table 1: Descriptive statistics

Sector NACE | #Firms # Firms in 95 Mean sales (Std.) Median sales Lab.prod. (Std)
Plastics 25 242 99 1.77 (2.6) 74 1.39 (.82)
Machinery 29 1410 514 1.71 (6.3) 40 1.37 (.92)
Electrical inst. 31 377 162 3.30 (11.8) 61 1.18 (.81)
Radio/ TV eq 32 249 86 4.57 (9.9) 76 1.04 (.64)
Medical inst. 33 129 73 2.08 (3.9) 75 1.51 (.81)
Transp. eq. 35 818 286 7.03 (23.7) 99 1.30 (.68)

Table 2: Estimates of eigenvalues in model with four latent factors

Eigenvalues of ¥, Eigenvalues of ¥, Eigenvalues of ¥, Psuedo R?

Sector (NACE) (Idiosyncratic innov.)  (Intrinsic differences) (Noise)

Plastics (25) (.18,.02,.00,.00) (3.38,.26,.01,.00) (.19,.08,.04,.02) 0.97
Machinery (29) (.24,.02, .00, .00) (2.00, .20, .00, .00) (.17,.07,.04,.02) 0.98
Electrical inst. (31) (.24,.01,.00,.00) (2.17,.23,.01,.00) (.15,.07,.02,.02) 0.98
Radio/ TV eq. (32) (.35,.03,.00,.00) (3.27,.22,.00, .00) (.27,.07,.04,.02) 0.97
Medical inst. (33) (.28,.02, .00, .00) (4.07, .15, .01, .00) (.15,.07,.02,.01) 0.97
Transp. eq. (35) (.32,.03,.00,.00) (5.96, .38, .01, .00) (.20,.10,.04,.03) 0.98

Table 3: Estimates of factor loadings in model with one latent factor. St.dev.s are approximately
.03, .05, and .06 for the three first components in column 2, 3, and 4, respectively.

Sector (NACE) | Idiosyn. innov. Intrinsic differences Capital coef. (vy,) Psuedo R?
Plastics (25) (.25,.30,.11,.01) (.90, .78,.92, .03) (.45, .56,.32, .98) 0.94
Machinery (29) (.26,.26, .25, .00) (.71,.73,.79,.02) (.58,.62, .50, .99) 0.93
Electrical Inst. (31) | (.27,.27,.25,.00) (.81, .81,.70,.01) (.66, .66, .64, .99) 0.96
Radio/ TV Eq. (32) | (.33,.35,.30,.02)  (1.04,1.05,1.01,.06) (.22,.25,.19, .93) 0.94
Medical Inst. (33) | (.28,.30,.25,.02)  (1.08,1.08,1.06,.04) (.31,.36, .26, .99) 0.94
Transp. Eq. (35) | (28,.37,.14,.01)  (1.20,1.00,1.35,.07) (.45,.53, .38, .98) 0.95
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Table 4: Importance of cumulative shocks vs. inital conditions and their correlation

Sector (NACE) af,-ﬁgT ;’;IZ)T % Corr(ai,vi|i € M)
Plastics (25) 66 20 2.3 —27
Machinery (29) 54 1.2 1.7 .39
Electrical inst. (31) .54 1.2 1.2 —.55
Radio/ TV eq. (32) | 53 1.2 2.0 — 44
Medical inst. (33) .69 2.3 2.6 —.50
Transp. eq. (35) .68 2.1 2.6 —-.34

Table 5: Average firm age, and the variances of cumulative innovations and intrinsic differ-
ences

Sector (NACE) Avg. age (7?7 o2 T*= Z—;
Plastics (25) 7.1 0.16 2.27 14.2
Machinery (29) 6.9 0.20 1.66 8.3
Electrical inst. (31) 7.2 0.20 1.80 9.0
Radio/ TV eq. (32) 8.5 0.32 3.20 10.0
Medical inst. (33) 6.7 023 346  15.0
Transp. eq. (35) 8.5 0.24 4.25 17.7
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Figure 1: Differences in log sales as a function of firm age. Circles indicate the means and whiskers
show the standard errors.

——o—1InS —a—InLP

Correlation coef.

Firm age

Figure 2: The correlation between relative performance in a firm’s first year and in its
subsequent years. The circles correspond to the correlation coefficents for (log) sales while the triangles
refer to (log) labor productivity.
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Figure 3: Differences in log labor productivity as a function of firm age. Circles indicate the
means and whiskers show the standard errors.
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Figure 4: The mean (upper chart) and variance (lower chart) of the innovations decrease
with the age of the firms. Standard deviations indicated by dotted lines.
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Figure 5: No systematic differences across cohorts in initial conditions (upper chart). Firms
with higher initial productivity live longer (lower chart). Standard deviations indicated by dotted

lines.
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Figure 6: Observed efficiency differences much smaller than predicted efficiency differences
in the absence of selection. Variances of the observed efficiency differences on the vertical axis and
predicted efficiency differences in the absence of selection on the horizontal axis. 45-degree line also
presented. Numbers refer to NACE codes for the individual industries (see Appendix C).
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