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1 Introduction

Many organized financial markets rely on dealers to serve as intermediaries
between buyers and sellers. One of the most common arrangements is the
specialist system. In a specialist system each security is assigned a single
dealer, the specialist, who is responsible for maintaining a “fair and orderly
market” in that particular security. In return for this responsibility, special-
ists are granted the sole right by the stock exchange to make a market in
their securities and have full access to the limit order book.

While each listed security is assigned a single specialist, every specialist
is usually in charge of several securities. On the New York Stock Exchange
(NYSE), for example, approximately 40 specialist firms currently trade stocks
for almost 3,000 listed companies.! This raises the question of how new list-
ings are allocated to specialists. Corwin (1999) reports that besides specialist
performance? the characteristics of the new listing relative to those of the
other stocks traded by a specialist firm play an important role in the allo-
cation process on the NYSE. In particular, his analysis shows that a high
concentration of a specialist’s portfolio in the industry of the new listing
reduces his chances of receiving it.® It is not clear whether such a diversifi-
cation policy is optimal — neither from the specialist’s perspective nor from
the investor’s perspective.

In the early market microstructure literature the trading behavior of mar-
ket makers has traditionally been modeled as perfectly competitive. The
seminal papers by Kyle (1985), Glosten and Milgrom (1985), and Easley
and O’Hara (1987) focus on the market maker’s adverse selection problem
created by the presence of better informed traders. In these models, mar-
ket makers are assumed to provide liquidity at prices that earn them a zero
profit.* While this assumption greatly simplifies the game-theoretic analysis,
it is at odds with empirical observations. In many markets entry barriers to
potential dealers make the market-making activity more monopolistic than

! These facts are taken from Corwin (1999) and the NYSE website: www.nyse.com

2Corwin (1999) uses three different performance measures: percentage bid-ask spread,
one-day to five-day variance ratios, and frequency of order imbalance trading halts.

3Corwin (1999) uses a discrete-choice logit model to estimate the impact of the spe-
cialist’s industry concentration on the allocation decision. Although the effect is negative
for all samples considered, it is only statistically significant for non-U.S. securities.

4See Subrahmanyam (1991) for a rational expectations model with risk averse market
makers.



competitive. In fact, Hasbrouck and Sofianos (1993) report significantly pos-
itive trading profits of NYSE specialists.

Starting with Glosten (1989) there has been a growing interest in the
strategic behavior of market makers under adverse selection. In his paper,
Glosten investigates the effect of a monopolistic specialist as opposed to
competitive market makers on market liquidity and prices. Dupont (2000)
extends Glosten’s model by allowing the specialist to choose quantities as
well as prices. Seppi (1997) analyzes the liquidity provision of a strategic
specialist when facing competition from the limit order book.

All of the above, however, only consider the case of a single risky asset,
and thus do not shed any light on the question of how securities should be op-
timally allocated between specialists.® For example, a stock exchange could
decide to allocate all of its internet stocks to one dealer and all of its energy
stocks to another. Alternatively, it could also assign a relatively diverse and
uncorrelated set of stocks to each specialist. Each of the two scenarios has its
own welfare implications. In the first scenario, each market maker possesses
superior information about his own industry, and is therefore probably in
a good position to distinguish between informational and noninformational
trading. In the second scenario, the competition among market makers for
order flow in highly correlated securities makes prices more attractive to mar-
ket participants who trade for liquidity reasons. This example shows that
there is no trivial answer. In a multi-asset economy the correlation structure
of security payoffs affects both the specialist’s adverse selection problem as
well as his monopoly power.

Our paper studies this trade-off between monopoly power and information
precision in a static asymmetric information model. Investors are assumed
to have informational as well as noninformational motives for trade. Their
informational motive comes from the fact that they observe a noisy signal
about asset payoffs prior to trading. Their noninformational trading activity
is motivated by the fact that they receive a stochastic stock endowment.
Both specialists and investors are risk averse.

Our results show that specialists always prefer portfolios of highly corre-

50One of the few exceptions is Hagerty (1991). Hagerty models the specialist system as
a monopolistically competitive market. But in contrast to our model, she only focuses on
the role of asset substitutability in determining equilibrium prices. There is no adverse
selection problem and investors trade for liquidity reasons only. Moreover, specialists are
assumed to be risk neutral. Thus, in her model there is no trade-off between the specialist’s
information quality and his monopoly power.



lated assets, even though this increases their inventory costs (as a result of
higher payoff uncertainty). Surprisingly, investors might be better off in such
a scenario as well despite the fact that the specialists’ monopoly power is then
greater. If the investors’ expected endowment shocks are large enough, spe-
cialists are sufficiently risk averse, and the competition between specialists is
weak enough, then the positive effect of specialists having better information
(which allows them to quote more favorable prices to attract liquidity trades)
outweighs the negative effect of more monopoly power.

This paper is related to the work by Gervais and Spiegel (1995). Gervais
and Spiegel use a two-period screening model with two risky assets to com-
pare the welfare effects of a monopolistic and a duopolistic market-making
scenario. There are two pools of traders: “insiders” who possess perfect
information about security payoffs, and liquidity traders who trade for risk-
hedging purposes. The monopolistic market maker benefits from the fact
that traders from the same pool are assumed to trade in each period. Thus,
by observing both first-period order flows, the monopolistic market maker
can better asses the probability that his second-period trading partner will
be an insider. Gervais and Spiegel show that total welfare is higher with a
monopolistic market maker when the correlation of security payoffs is either
very low or very high. The latter effect is in stark contrast to our results.
The reason is that in their model even in the limiting case as security payofts
become perfectly correlated the monopolist still has an informational ad-
vantage, because he only trades with one type of traders (in both periods).
Another difference to our model is that by assuming that all traders are risk
neutral, Gervais and Spiegel ignore the fact that duopolistic market makers
benefit from better diversified portfolios. Moreover, in their model the trad-
ing volume is not endogenously determined in equilibrium but exogenously
given.

The remainder of this article is organized as follows. Section 2 presents the
model. Section 3 discusses the equilibrium concept and proves uniqueness for
two different market-making scenarios. Furthermore, equilibrium prices and
demands are derived in closed form. Section 4 compares these two scenarios
from the market makers’ and investors’ perspectives. We provide conditions
that characterize the optimal scenario and present numerical comparative
static results. Section 5 concludes.



2 The Model

The model analyzes a two-date exchange economy. Agents trade at date
0 and consume at date 1. There are two types of agents in the economy:
investors who possess private information about the state of the economy
and their own endowment, and market makers. All agents are risk averse.

2.1 Investment opportunities

There are five securities available for trading at date 0, which pay off in the
economy’s single consumption good. The first security is a riskless bond, the
price of which is set equal to 1 at dates 0 and 1.° We assume that the bond
is of perfectly elastic supply. The remaining four securities are risky stocks.
Shares of the stocks are infinitely divisible and are traded competitively in
the stock market. Each share of stock n pays a liquidation value of V,, at date
1, which is unknown at date 0. Let V' denote the vector of random payoffs
at date 1, and P the vector of equilibrium share prices at date 0.

In order to keep the model tractable, we make the following simplifying
assumptions about security payoffs. Each firm issuing shares belongs to
one of two industries, A or B, whose branches of business are unrelated.
Specifically, we assume that the payoff vector of the first two stocks, V4 =
(Va1, Vaz), is stochastically independent of that of the remaining two stocks,
Ve = (VB1, Vp2). On the other hand, profits of firms operating in the same
industry are correlated. For simplicity, we assume Corr(Vyy, Via) = p €
(—1,1) for k € {A, B}.

2.2 Investors and market makers

Our economy is populated by two types of traders. The first type, which we
call investors, receives (a vector of) signals S about the liquidation values V/
before trading at date O:

S=V+e

where the error term e in the signal is independent of V. This gives rise
to their informational trading. In addition, investors also have a noninfor-
mational motive for trade. They experience an endowment shock at date 0

6This is simply a normalization, since all consumption takes place at date 1.



that induces them to rebalance their portfolios.” For simplicity, we assume
that all investors have identical endowment shocks, denoted by the vector z.8
We further assume that investors behave competitively. They take equilib-
rium prices as given even though their aggregate trades affect market prices.
Such behavior can be justified by assuming that investors are individually
infinitesimal, so that no single trader can influence the price. More precisely,
we assume that there is a continuum of identical investors whose set I has
measure one.” Their aggregate demand schedule is denoted by X (P).

The second type of traders are market makers. For simplicity, we will
only consider the case of two competing market makers. Each market maker
m € {1,2} is assigned a set of stocks H,,, for which he observes the in-
vestors’ aggregate demand and sets prices. The market makers’ only source
of information is the investors’ aggregate demand schedule X (P). They nei-
ther observe the signal S nor the endowment shock z directly. Also, each
market maker only has access to the limit order books of his own stocks (i.e.,
he cannot observe X (P) for any k ¢ H,,). Since specialists typically do not
know the investors’ demand at the time they set their prices, they cannot
instantly hedge their portfolios against demand shocks by taking on positions
in other assets. To incorporate this constraint into our one-period model, we
restrict the specialists’ trading activities at date 0 to their own stocks. They
are not allowed to simultaneously set their prices and compensate shocks
to their inventories through trades in other securities.'® This admittedly re-
strictive assumption may bias the optimal security allocation between market
makers in favor of better diversified specialist portfolios. This bias should
be recognized, but removing it would not alter our basic results. It would
merely enlarge the set of environments in which specialist portfolios of highly
correlated assets are found to be optimal.

The endowments of all traders (before the shock Z is realized) are nor-

" Alternatively, we could interpret this noninformational trading as being caused by
hedging needs, when we assume that investors receive a nontradable stochastic income at
date 1 that is correlated with the security payoffs V.

8 A more general distribution of stock endowments can be easily incorporated into the
model, but as long as the aggregate endowment shock is nonzero with positive probability,
our basic conclusions remain unchanged.

9Normalizing the measure to one is without loss of generality in our model, since having
one investor with risk aversion parameter ~y; is equivalent to having N investors with risk
aversion parameter .

10As will become clear in section 3.2, in our model specialists have no incentive to
rebalance their portfolios before they observe the investors’ demand.



malized to zero, which is assumed to be common knowledge.

Both groups of traders have mean-variance preferences defined as follows.
Let vector x, denote agent a’s portfolio of risky assets and b, be the number
of bonds he has. Then, based on his date-0 information set F,, agent a
maximizes his expected utility from date-1 consumption, E [W, |F,], subject
to his budget constraint, where W, is given by

Wa:ba—l—fo—%xaTC’axa (1)

and C, denotes agent a’s “utility cost” of holding a risky portfolio. The
agents’ risk aversion is captured by setting C, = v, Var [V |F,]. For simplic-
ity, we assume all investors (specialists) have the same risk-aversion coeffi-
cient of 7; > 0 (s > 0).}! Note that as long as 1 V' is normally distributed
conditional on F,, maximizing the expected value of W, leads to the same
portfolio decision as assuming a negative exponential utility function with
risk-aversion coefficient v, (i.e., maximizing E[—e~e®at2d V)| £,]). In par-
ticular, these preferences exhibit constant absolute risk aversion (CARA)
implying that the agent’s demand for risky assets is unaffected by changes
in his initial wealth. The reason why we chose these mean-variance prefer-
ences over the commonly used CARA utility function is that we are not only
interested in the investor’s optimal portfolio choice, but also in his ex-ante
expected utility before S and T have been realized. As will become clear in
section 4, this would require to evaluate expressions of the form E[—eyTQy]
in case of the exponential utility function, where y is a vector of normally
distributed random variables and () is a symmetric matrix. Unfortunately,
this expected value does not exist for all ). Specifically, for our model it
can be shown that the ex-ante expected utility goes to minus infinity as the
correlation between asset payoffs becomes sufficiently large.

2.3 Distributional assumptions

For mathematical tractability, we assume that the random vectors V', ¢, and
Z are independently normally distributed with zero means. This implies that
the investors’ signals S are unbiased forecasts of V. We further assume that

. ) . : d
the forecast errors ¢ are i.i.d. with variance o2 (i.e., ¢ = N(0,02 1), where

I, is the 4 x 4 identity matrix). Similar assumptions are made about the

'While y7 has to be strictly positive to ensure that the investors’ demand is finite, all
results in sections 3 and 4 remain valid in case market makers are risk neutral (ys = 0).



distribution of the endowment shocks: Z < A (0,0214). A more general
correlation structure for the stock endowments can be easily incorporated
into the model, but it leads qualitatively to the same results.

As specified above, the liquidation values V4 and Vy are independent. In
order to keep the model simple, we assume that V4 and Vp have the same
covariance matrix given by!?

2.4 Timing of events

The timing of events in our model is as follows. First, investors observe
their private signals S and endowment shocks Z. Based on their private in-
formation, investors then submit their demand schedules (“generalized limit
orders”!®) to the specialists. These specialists, in turn, simultaneously set
prices based on whatever information they can extract from the observed
limit order books. Finally, trading takes place, liquidation values are re-
vealed, and profits are realized.

3 Equilibrium Trades and Prices

In this section, we solve for the equilibrium of the economy defined above.
We assume that competition between market makers is of the Cournot type.
This means that market makers independently decide on the quantities they
are willing to trade. Since agents also have private information, the formal
equilibrium concept we use is that of a Bayesian Nash equilibrium (BNE) .

It may seem a little odd at first to model the market makers’ behavior as
a Cournot game, since one normally associates market makers with quoting
prices. We chose this framework for two reasons. The first is mathematical
tractability. Although most results in section 4 are qualitatively the same in

12Note that normalizing the variance of V}, oy, to unity is without loss of generality,
since only the relationships between oy and o, and between oy and o, matter.

13We assume that investors can submit orders conditional on the price vector P. That
is, limit orders in our model are defined in a more general way than in reality, allowing
investors to specify their demand for security &k as a function of all four stock prices.



a Bertrand game'* (in which market makers compete in prices), the fact that
strategies are defined by the amount of traded shares considerably facilitates
the comparison of different market-making scenarios.'®> The second reason
is that by optimally choosing quantities, market makers have more control
over the risk they are willing to take. While in a Cournot game specialists
can decide not to trade at all if the payoff uncertainty is too high, in a
Bertrand game they cannot eliminate the risk that they may end up with a
highly undesirable portfolio. Even in the limiting case as specialists become
infinitely risk averse, they cannot choose prices that prevent any trading
activity for sure. This is a consequence of our “generalized limit orders”.
We therefore believe that in our model a Cournot game more adequately
describes the market-making process in reality, where specialists can not only
protect themselves against better informed traders by widening the bid-ask
spread, but also by restricting the trading volume.%

The problem is considerably simplified by noting that investors take equi-
librium prices as given. This assumption immediately implies that investor ¢
does not care about the other investors’ decisions when choosing his optimal
trading strategy X‘(P). Moreover, since all investors have the same pref-
erences, information, and endowment, their trading strategies are identical.
We will therefore drop the superscript ¢ and let X (P) denote each investor’s
optimal demand function.!” As we will see in section 3.1, the Jacobian of
X (-) is negative definite. Thus, the inverse of X(-) exists. The problem of
the two market makers is therefore reduced to that of simultaneously pick-
ing quantities on the investors’ aggregate inverse demand schedule, which
we denote by X (). To distinguish between demand functions and traded
quantities, let xy denote the set of quantities market maker m wants to
sell, and let xy__ be its complement (i.e., vy = {xy : k ¢ H,,}). Using
this notation, we can now formally define an equilibrium as follows.

14The reason why the equilibrium outcome of the Cournot game is different from that
of the Bertrand game is that with p # 0 the elasticity of the inverse demand is not equal
to the inverse of the demand elasticity.

5More precisely, with Bertrand competition the conditions in theorem 1 cannot be
represented as explicit restrictions on model parameters.

16Mann and Seijas (1991) even note that market makers on the NYSE have more control
over the depth than over the spread.

17As will become clear in section 3.1, investors do not find it optimal to play mixed
strategies. We will therefore use the terms “trading strategy” and “demand function”
synonymously.



Definition 1 An equilibrium is a demand function X(P) and a vector of
quantities & = (Tp,, )m—12 Such that

(a) X (P) mazimizes each investor’s expected utility based on his informa-
tion Fr, and

(b) given X(P) and Ty_,, Ty, mazimizes market maker m’s expected util-
ity based on his information F,,.

Equilibrium prices are given by P = X~1(z).

The first condition of our definition simply states that each investor
chooses his demand for risky securities optimally. The second condition en-
sures that the quantities chosen by each market maker are a best response
to the investors’” demand and the other market maker’s strategy.

3.1 The investors’ problem

At date 0, every investor ¢ € I faces the following optimization problem:
max (z+2) EVI|F]—a"P -3y (@+2) Var[VI|F](z+2) (2)

where we substituted the investor’s budget constraint b + (z + z)? P = zT P
into equation (1). Maximizing this quadratic objective function yields

X(P)=LVar[V|F] " (E[V|F]-P)-17 (3)

Note that X (P) is a global maximum, since the second derivative of (2)
with respect to x is equal to the matrix —v,Var [V |F;], which is negative
definite.!8

Before calculating the conditional moments of V', let us elaborate a little
more on the investor’s information set F; = {S,z, P}. First, recall that V
and = are assumed to be independent. Second, since market makers do not
have any private information, equilibrium prices cannot reveal any additional
information about V. Thus, conditioning on JF7 is equivalent to conditioning
just on S. Using the fact that V and S are jointly normally distributed and
applying the multivariate projection theorem'?, we then have

E|V|F] = EV|S| = Var[V] (Var[V] + 02 I,) ' § = U (4)

18This rules out the case that investors might play mixed strategies in equilibrium.
19Gee e.g. Anderson (1984), chapter 2.
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and
VarlVIF)] = VarlV|s] = VarlV] (L= (Var[V] + o* 1) ' Var[V])
= (VCLT[V]_l +o.? 14)71 (5)

Equations (4) and (5) show the well-known result that for two jointly
normally distributed random variables V' and S, the conditional expectation
of V, which we denote by U, is a linear function of (the realization of) .S and

the conditional variance is constant and does not depend on S.

Now define
2 (1-p*+0?)o?

Tvis = (14022 —p2° (6)

2

PO
pvis = m; (7)

and
L p
2 V]S
Yyis = Oys < s 1' > .

The conditional variance of V' can then be expressed as follows:

by 0
Var|V|F;| = < ‘6'5 s >

This result is not surprising given that the security payoffs V, and Vg
and the error terms €4 and ep are independent, but has the important im-
plication that the investor’s demand for stocks of industries A and B is also
independent.

Substituting the expressions for the conditional moments of V' into equa-
tion (3) and defining

Zp=Ug — ')’]EV\S Ty, forke {A,B}, (8)
lets us rewrite the investor’s demand function more conveniently as

Xi(P) = - %75 (Zx — By), for k€ {A,B}. (9)

I

The right-hand side of this equation shows the familiar result that CARA
preferences under normal distributions of payoffs and signals lead to linear
optimal demand functions.

11



After having found the optimal demand function for each investor i € I,
we are now able to calculate the aggregate demand function. This is straight-
forward, since the set I has measure one. Thus, the aggregate demand is
equal to each investor’s individual demand and the aggregate inverse demand
function is given by

XY 2) =2 — i Syisay, for k€ {A, B}. (10)

3.2 The market makers’ problem

The main goal of our paper is to compare the welfare effects of two different
market-making scenarios. In the first scenario, each market maker is in
charge of two stocks of the same industry. Since investors’ security demands
X4(P) and Xp(P) are independent, there is no competition for order flow
in this situation. Hence, each market maker acts as a monopolist. We will
therefore call this case the monopolistic market-making scenario. In the
second scenario, which we will call the duopolistic market-making scenario,
each market maker is assigned one stock from each of the two industries. In
this case, market makers will compete — more or less intensely, depending on
the correlation coefficient p — for order flow, making prices more attractive
to investors.

In the next two sections, we will show that for both market-making sce-
narios there exists a unique equilibrium in which prices are linear functions
of Z, the market makers’ noisy observation of the the investors’ signals S.

3.2.1 Monopolistic market making

In this section, we consider the scenario in which each market maker sets
prices for both securities of one of the two industries. Note that in this case it
makes no difference whether market makers choose prices or quantities, since
there is no strategic interaction between market makers. We will therefore
state the specialist’s problem in terms of prices. Since both industries are
ex-ante identical, we will focus only on one of them and from now on drop
the industry subscript (that is, X (P) now stands for the demand schedule
(X1(P), X2(P)) and the price vector is defined as P = (P, P,)).
The market maker’s date-1 utility is given by

W, =X(P)'(P-V)-1iX(P)'C,X(P)

12



where the investors’ demand function is given by equation (9). When choos-
ing prices that maximize his expected utility, the market maker can condition
on the observed demand schedule X (P). Thus, W,,|F,, is normally dis-
tributed and the utility maximizing prices are found by solving the following
optimization problem:

max X(P)" (P = E[V|Fn]) — 575 X(P)' Var[V|Fn] X(P) (11)

Note that observing X (P) is informationally equivalent to observing Z
(as defined in (8)), as long as the matrix ¥y s has full rank (i.e., as long
as |p| < 1). Moreover, since V and Z are jointly normally distributed, the
conditional moments of V' follow immediately from the projection theorem:

EV|Ful=E[VI|Z]=%uX,'Z
Var [V|Ful=Var[V|Z] =Sy — Sy, Sy =: Syyz

where X is the covariance matrix of U, the investors’ conditional expectation
of V., and X is the covariance matrix of Z, the linear combination of U and
Z observed by the market maker. Both matrices are functions of o, p, and
— in the case of ¥; — of v; and o,.%

From the first-order condition, the optimal price function is found to be
linear in Z and, hence, in U and z:

PM = M7 (12)

where
Vs - s
(SM = (2 IQ + 7ZVZZ;15> <ZU221 + IZ + ,Y_ZV|ZZ‘_/|IS>
T 1

and I, is the 2 x 2 identity matrix. It is easily verified that P™ is the
unique maximum, since the second derivative of (11) is equal to the ma-
trix —%Z‘j‘ls (2 I+ A;—fZV‘ZZ;‘ls» which is negative definite. This in fact
establishes the following proposition.

Proposition 1 (Monopolistic market-making equilibrium) Suppose
H, = {Al, A2} and Hy = {B1, B2}. Then the unique equilibrium is given
by demand functions defined by (9) and prices defined by (12).

20For an expression of ¥y and Xz in terms of 1, 0., 0, and p, please refer to appendix
A.

13



Note that the matrix 6™ is symmetric. This is not surprising, since the
two securities are identical with respect to their payoff, signal, and endow-
ment distributions.

3.2.2 Duopolistic market making

When each market maker is in charge of one stock of each industry, market
makers compete for order flow, since securities are now (imperfect) substi-
tutes for each other (given p > 0). Thus, a low price of stock 2 reduces the
demand for stock 1, and vice versa. When making their portfolio decision,
market makers therefore have to take into account that prices are also affected
by the rival’s strategy. Again, since X,(P) and Xg(P) are independent, we
will only consider one industry (and drop industry subscripts).

In this market-making scenario, market maker 1’s optimal quantity of
traded shares, say 21, must solve the following problem:

max 7, E[X;Y(z) -V |F] - s 22 Var[Vy|Fi] (13)
1

Note that market maker 1’s information set, Fi, is now different from
that of the monopoly case. Since she only observes the demand schedule for
security 1, X;(P), she cannot infer Z; and Z, separately, but only a weighted
sum of these variables. To see this, we rewrite the investors’ demand for
security 1, given by equation (9), as follows:

Xi((P) =k (21— P — pvis(Zy — Py))

where & = (v/(1 — pi,|s) 071s) "' Thus, observing X;(P) only reveals Z; —
pv|s Z2, which we denote by Y;. Clearly, when p # 0, Y} is less informa-
tive about V] than the vector (Z;, Z,), because Z; and Z, are not perfectly
correlated.

Since Y] is the sum of normally distributed random variables, it is also
normally distributed. Moreover, it is easily verified that the joint distribution
of Vi and Y is normal as well. Thus, we can again apply the projection
theorem to calculate the conditional expectation and the conditional variance
of Vi:

o
EVi|A] = EVi|Yi] = —- ) (14)
Y
2
Ovy 9
Var[Vi|Fi] = Var[Vi|Y1] =1 — 5 = oy (15)
Y

14



where the variance of Y, 0%, and the covariance of V; and Y7, ovy, are given
by equations (22) and (23) in appendix B.

To get a more convenient representation of the market maker’s problem,
we rewrite the investors’ inverse demand function for security 1 given by
equation (10) as

X;l(x) = Zl — I 0‘2/‘5(351 -+ pv|5 332). (16)

Since Z; and Y; have a joint normal distribution, the conditional expectation
of X7 !(+) is a linear function of Y}, o1, and E[z, |Y1], the expected quantity
traded by market maker 2:

E[Xfl(a:) |-,F1] = UUZ;/ Yi—r 012/|5 (331 + pvis E[xg |Y1])
Y
where 0y denotes the covariance between Z; and Y; (see equation (23) in
appendix B).
Using this expression and substituting (14) and (15) into (13), we derive
the first-order condition for a maximum of market maker 1’s expected utility
with respect to x; as

P 0y (02 — ovy) Yi = 71 pyis 03 s Elws V1] an
L=
291075 + Vs Ovyy

The second-order condition for a maximum is also satisfied: the second
derivative of (13) with respect to x1, which is equal to —2~; 0‘2/‘5 — s 0‘2/‘},,
is negative. Indeed, since the second derivative is negative for all possible
values of z1, (17) is the unique maximum of (13).

Analogous calculations show that the optimal amount of shares sold by
market maker 2 is given by

oy? (a2y —ovy) Yo = v pyis oy s Bl |Ya]

271075+ Vs Oy

where Yy = Z, — py (s Z1.

Equations (17) and (18) provide the best replies of market makers 1 and 2
to the expected strategy of the opponent. In order to solve for a BNE, we have
to find the intersection of the expected best replies. The following proposition
shows that there exists a unique equilibrium and that the equilibrium prices
PP and PP are linear in Z; and Z,, respectively.
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Proposition 2 (Duopolistic market-making equilibrium) Let H, =
{Al, B1} and Hy = {A2, B2}. Then there exists a unique equilibrium with
demand functions defined by (9) and prices defined as follows:

PP =62, forke{A B} (19)
where
A0
D _
*=(0 1)
with a > ot )
— ooglozy —0
N 271 2Pv\s vis\YzY V,Y2 . (20)
VM 015(20% + pyvis OvLyz) + Vs Oy Oy
and
oy1yz = Cov[Y1,Ya] = (1 + pys) pz — 2 pvis) 0 (21)
Proof: See appendix B. O

4 Optimal Allocation of New Security List-
ings

After having solved for the equilibrium prices under both market-making sce-
narios, we are now ready to tackle the central question of this paper, namely
of how the allocation of securities affects the welfare of investors and spe-
cialists. Investors and specialists are obviously affected in different ways by
the security allocation. From the specialist’s perspective, the advantage of
the monopolistic scenario is that she faces no competition and a less severe
adverse selection problem. In the duopolistic scenario, on the other hand,
she benefits from a better diversified portfolio. To quantify the relative im-
portance of these two effects, we calculate the specialists’ expected utility
under both scenarios.

Lemma 1 (Specialists’ ex-ante expected utility) In the monopolistic
market-making scenario, the specialists’ ex-ante expected utility before the

16



investors’ demand is observed is given byt

1 .
EUM(p) = it [ZZ(IQ—éM)ZV‘lS
1

<’)’]((5M — EU 221) — %’)/5 EV|Z E‘_/|15(12 — 5M))i| s

where tr[A] denotes the trace of matriz A. In the duopolistic market-making
scenario, the specialists’ ex-ante expected utility is equal to

1—A
EUZ (p) = 7 (L= E5) 005 (2()\ Ozy —Ovy) —
1—A 9 o
Vs 1= p%/|s) 0‘2/‘5 Ov|y 0y>.
Proof: See appendix C. O

The following proposition shows that in the monopolistic situation the
positive effect from the absence of competition and the better information
always dominates the negative effect of the lack of diversification. In other
words, specialists always prefer the monopolistic market-making scenario.

Proposition 3 Specialists strictly prefer the monopolistic market-making
scenario (except for the case of uncorrelated security payoffs in which they
are indifferent). That is, EU (p) > EUL (p) for all p # 0 and EUY(0) =
EUDP(0).

Proof: See appendix C. O

Investors, on the other hand, may end up prefering either scenario. Since
they are the ones who ultimately bear the adverse selection costs, they ben-
efit from the monopolist’s ability to better distinguish informational from
noninformational trading, but suffer from the lack of competition. Obvi-
ously, the relative importance of these two effects depends on the correlation
between the securities’ liquidation values. To identify parameter values for
which one or the other scenario is preferred, we will compare the investors’
ex-ante expected utility, i.e., their expected utility before they learn their
endowment shocks and signals. The following lemma shows how the ex-ante
expected utility is calculated in terms of the matrix J.

21'We write the expected utility as a function of p to emphasize its dependence on the
correlation coefficient.
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Lemma 2 (Investors’ ex-ante expected utility) The expected utility of
the investors before S and T are realized is equal to

1
EU,(p) = 7—’5I YuXis — 22 (2L - 6) X550,
1

where tr[A]| denotes the trace of matriz A.
Proof: See appendix C. O

If security payoffs are uncorrelated, there is no informational advantage
for the monopolist, but also no disadvantage in terms of competition for
the duopolist. Thus the investors’ expected utility is the same under both
market-making scenarios. ?* As the correlation increases, the duopolist faces
stronger competition and the quality of her information deteriorates com-
pared to that of the monopolist. In the limiting case as p goes to one, both
the monopolist and the duopolist have the same information. Thus the com-
petition effect dominates, making the duopolistic scenario more appealing to
investors. The following proposition formalizes these results.

Proposition 4 If p = 0, investors are indifferent between the monopolistic
and the duopolistic market-making scenario, i.e., EUM(0) = EUP(0). Fur-
thermore, there exists a correlation coefficient p € [0,1) such that EUM (p) =

EUP(5) ( = EUM(~p) = EUP(~p) and EUM(p) < EUP(p) for all
Proof: See appendix C. O

With investors being indifferent between the two market-making scenar-
ios when p is zero and favoring the duopolistic scenario as p converges to
unity, one might wonder whether investors ever prefer a monopolistic market
maker. The answer is yes. Intuitively, this is the case if the competition
between duopolistic market makers is sufficiently weak and the monopolist’s
informational advantage is sufficiently big. Formal conditions under which
the investors’ expected utility in the monopolistic scenario is higher are pro-
vided by the following theorem.

Theorem 1 Suppose at least one of the following conditions is satisfied.

22This also follows from lemma 3 in appendix C, which proves that in this case prices
are identical under both market-making scenarios.
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14+4/1+1242 62

(a) Vs > 371 02

(b) oc <1 and o, < ¥ 1‘;’3
V1 0¢
Then there exists a correlation coefficient p* € (0,1) such that EUM (p*) =
EUP(p") (= BUM(=p*) = BEUP(=p*)) and EUM(p) > EUF (p) for all
p € (—=p",0)U(0,p").

Proof: See appendix C. O

There are two reasons why investors might be worse off in the duopolistic
market-making scenario. First, due to the duopolist’s less precise informa-
tion, prices contain more “noise” in the duopolistic scenario, i.e., they are
more closely related to the payoff-irrelevant shocks z. Especially when the
signal quality is high, market makers follow their signals closely, since the
chance of getting bad signals is negligible in this situation. Second, because
of the higher payoff uncertainty, the duopolist tries to keep a lower inventory.
This, too, makes her prices more strongly (negatively) correlated with the in-
vestors’ endowment shocks — at least when the competition between market
makers is weak. Both effects impose additional utility costs on the investors
compared to the monopolistic scenario.?® The conditions stated above make
sure that this additional cost is sufficiently high to outweigh the competition
effect for a low enough correlation coefficient p.

Condition (a) requires market makers to be sufficiently risk averse, forc-
ing them to cut back on their inventory by quoting less favorable prices. The
effect is more pronounced for the duopolist though, since he faces a higher
payoff uncertainty. Surprisingly, even when market makers are risk neutral,
the higher cost in the duopolistic scenario can outweigh the competition ef-
fect, if the noise in the market makers’ signals is sufficiently small, that is, if
o, and o, are low enough (condition (b)). In this situation, specialists know
that their information about security payoffs is very precise, which allows
them to trade more aggressively on their signals. This ensures that the addi-
tional cost resulting from a stronger negative correlation between prices and
endowment shocks in the duopolistic scenario is sufficiently high to eliminate
the investors’ benefit from having specialists compete for order flow. Note

23This becomes obvious when we express the investors’ ex-ante expected utility in terms

of equilibrium prices: EU;(p) = ﬁ tr [Z;‘ls VarlU — 15]] +FE [inD]
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that condition (a) can be rewritten as yg > 0 and o, > ,/%. Stated
S

in this way, it has the interpretation of ensuring that the expected endow-
ment shocks are large enough (in absolute values?*) to make the stronger
correlation between endowments and duopolistic prices sufficiently costly for
investors.

Although common intuition — and all numerical examples we consid-
ered — suggest that p* = p, we could only prove this result for the special
case of risk neutral market makers because of the complexity of the expres-
sions involved.?®

Proposition 5 Let vs = 0 and suppose condition (b) of theorem 1 is sat-
isfied. Then p* = p, which implies that EUM(p) > EUP(p) for all p €

Proof: See appendix C. U

Unfortunately, we cannot obtain a closed-form solution for the critical
correlation coefficient p*, since it is given by the root of a polynomial of
degree 10. We therefore have to rely on numerical examples when analyzing
the influence that ~;, v, o, and o, have on p*. Unless otherwise stated, all
comparative static results are based on the following parameter values.

Parameter | Value
O, 2
o 3
VI D
Vs D

2 Note that E[|Zx|] = /2/7 0.

25 Even though for the case of risk averse market makers we cannot prove that EUM (p) <
EUP(p) for all p € (p*,1), it can be shown that there is at most one more interval
of correlation coefficients for which the monopolistic market-making scenario is strictly
preferred. The argument goes as follows. From the proof of theorem 1, we know that the
critical correlation coefficients for which the investors’ ex-ante expected utility is the same
under both market-making scenarios are given by the roots of a polynomial of degree 10
in p, say fr(p), which has at most four changes of signs in the sequence of its coefficients.
Hence, by Descartes’ rule of sign, there are at most four positive roots. If at least one of
the conditions of theorem 1 is satisfied, we also know that f;'(0) < 0. Moreover, it follows
from proposition 4 that f;(0) = 0 and f;(1) > 0. Thus, f;(p) has at most three roots in
the interval (0,1).

20



0.0002

0.0001

Ey, D - EYUM

-0.0001

0 0.2 0.4 0.6 0.8 1
o)

Figure 1: Ex-ante expected utility of investors as a function of the correlation
coefficient p

In this base-case scenario p* is about .69. Figure 1 shows the investors’
ex-ante expected utility as a function of the correlation coefficient p.?8

A higher risk aversion coefficient v, makes the monopolistic market-
making scenario more appealing to investors for two reasons. First, as in-
vestors become more risk averse, they trade less aggressively on their pri-
vate information, but mainly try to compensate their endowment shocks.
This makes the higher correlation between duopolistic prices and endow-
ments more costly for them. Second, since a higher ~; also reduces the price
elasticity of the investors’” demand, specialists compete less intensely for or-
der flow in the duopolistic scenario. Hence, the critical correlation coefficient
p* increases with 7 (see figure 2).

The same effect is achieved by increasing s (see figure 3). The reasons are
the same that make a monopolistic market maker more desirable to investors
in the first place. Because of the higher payoff uncertainty, duopolistic mar-
ket makers optimally reduce their traded quantity by a larger amount than
monopolistic market makers as 7g increases. As a consequence, duopolistic
prices become more highly correlated with endowment shocks, making in-
vestors prefer a monopolistic market maker even at higher values of p. It

%6Since the function EUP (p) — EUM (p) is symmetric around the y-axis, we only plot
it in the interval [0, 1].
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Figure 2: Investors’ preferred market-making scenario as a function of their
risk aversion

is interesting to note that the market makers’ risk-aversion coefficient has a
much stronger impact on p* than the investors’ risk-aversion coefficient. This
in fact appears to be robust to many different sets of parameters.

A larger expected endowment shock (i.e., a higher o,) makes it more
costly for investors to rebalance their portfolios. But since endowment shocks
are less highly correlated with monopolistic prices, it increases the investors’
cost in the monopolistic scenario by a smaller amount than in the duopolis-
tic scenario. Thus, the monopolistic market-making scenario becomes more
attractive to investors even at higher levels of p. In other words, p* is an
increasing function of o, (see figure 4).

The effect of the signal noise on p* goes in the opposite direction. A
higher variance of the signal noise reduces the gap between the monopolist’s
and the duopolist’s information precision and makes specialists trade less
aggressively. Thus, it is not surprising that a lower correlation coefficient
suffices to make the competition effect outweigh the negative impact of a
higher correlation between prices and demands in the duopolistic scenario
(see figure 5).
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Figure 3: Investors’ preferred market-making scenario as a function of spe-
cialists’ risk aversion
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Figure 5: Investors’ preferred market-making scenario as a function of signal
precision

5 Conclusion

This paper develops an adverse selection model of market microstructure
with risk averse market makers which enables us to tackle the question of
how securities with correlated payoffs should be optimally allocated between
specialists. In particular, we model and compare two market-making sce-
narios. In the first scenario, each market maker is in charge of two stocks
belonging to the same industry. Since industries are assumed to be indepen-
dent, there is no competition for order flow in this situation (“monopolistic
scenario”). In the second scenario, each market maker is responsible for one
stock of each industry (“duopolistic scenario”). We show that in both scenar-
ios there exists a unique Bayesian Nash equilibrium and solve for equilibrium
prices in closed form.

From the specialist’s perspective, there exists a trade-off between a less
severe adverse selection problem and no competition in the monopolistic
scenario and a better diversified portfolio in the duopolistic scenario. We
demonstrate that the former effect always dominates the latter, implying
that specialists prefer portfolios of highly correlated assets.

Investors benefit from the specialist’s ability to better distinguish informa-
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tional from noninformational trading in the monopolistic scenario, but suffer
from the lack of competition in this situation. We provide conditions un-
der which investors are strictly better off with a monopolistic market maker.
Intuitively, this is the case if their expected endowment shocks are large
enough, specialists are sufficiently risk averse, and the competition between
specialists is weak.

In this paper, we have assumed that traders do not learn anything from
market prices. An interesting extension would be to include uninformed
traders who rationally infer some of the insiders’ private information from
observed prices. As long as informed traders and/or market makers have
informational as well as noninformational motives for trade, prices are only
partially revealing. In such an environment, market makers have to take into
account that the prices they set affect the amount of information they release
to the market.

6 Appendix

Appendix A: Covariance matrices of U and Z

The covariance matrix of U = (Uy, Us) is given by

Yo =3y (Sv+02L) " By

Let 2 2 2
sz L=+ U+p)o;
v (1+02)% = p?
and
p(l—p*+207)
Pu

T2+ 1+

Then the variance of U can be expressed as

ZUZO%(/}U p1U>'

The covariance matrix of Z = (7, Z3) is given by

Yz =Yy +9io> 22V|S
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which can be written as
L p
_ 9 z

0z =0y +71 (14 pis) ovis 0,

with

and 2 2 4 2
PU ot + 271 Pyis Oy|s O

TRt 72 ) 0y 02

Pz =

where oy|s and pys are defined by equations (6) and (7), respectively.

Appendix B: Duopolistic market-making equilibrium
Variance and covariance of V', Z, and V

The variance of Y, = Z, — py|s Z, (or Yy = Zy — py|s Z1) is given by
oy = (1=2pyis pz + Piys) 07 (22)
The covariance of V] and Y] (or V; and Y3) is equal to
ovy = (1= pyis pv) op, (23)

and the covariance of Z; and Y] (or Z, and Y5) is equal to
ozy = (1—pyis pz) 0. (24)

Proof of proposition 2

Since investors are price takers, their optimal demand functions are indepen-
dent of the market makers’ strategies and given by equation (9). Thus, it
suffices to show that there exists a unique BNE & = (&, Z2) of the Cournot
duopoly game and that the prices defined by equation (19) are implied by
these equilibrium strategies and the investors’ inverse demand function (i.e.,
PP = X~1(&)).

First, we show that there exists a linear BNE. Suppose

T, =0¢Y;, fori=1,2.
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Since Y] and Y5 are jointly normally distributed, the conditional expectation
of Z5 given Y] is then equal to
0y1,Y2

2
Oy

E [j2|Y1] =¢

Y]

where the covariance of Y7 and Y5, oy y9, is given by (21), and the variance
of Y1, 0%, is given by (22). Substituting this expression into the first-order
condition given by equation (17), we have

~

2
Ozy —Ovy — kel PV|S Oy s OY1,Y2
T =

(27 012/\5 +7s 012/|Y) oy

Y1 (25)

Equating the coefficient of Y in (25) to ¢ and solving the resulting equation
for ¢ yields

Ozy —Ovy
2 2 2 2 -
I 0V|5(2 oy + pvis oy1yz) + Vs Iy Oy

o=

This proves that market maker 1’s optimal strategy is in fact linear in Y; given
that market maker 2’s strategy is linear in Y5. Analogous calculations show
that 2, = ¢ Y, is market maker 2’s best response to the expected strategy of
market maker 1. Thus, the strategy profile £ = (¢ Y1, ¢ Y5) is a BNE.

To prove that # is the unique BNE, we use a result of Vives (2000).%"
Vives showed that the class of linear-quadratic oligopoly models with nor-
mally distributed “types” yields linear and unique Bayesian equilibria. More
formally, he considered the following general quadratic payoff function for
player ¢ in an n-player game:

T = 04(9,) + (/‘f + wﬁi — )\QE,) <Z $j> + (ﬂ + ’791‘ — (533,) X (26)
J#i

where § > 0, —9/(n—1) < A < 4, a(+) is a function, ; is a random parameter,
and z; is player +’s strategy. In our model, market maker 1’s utility is given
by

Wi = (Z1 = Vi) oy — (i oy + 375 Oy ) &1 — V1 pvis Oyps 142 (27)
27See chapter 8.1.2 in Vives (2000).
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where we substituted the investors’ inverse demand function given by (16)
into her utility function (1). Since market maker 1 can only condition on Y]
when choosing x; and since Vj, Z;, and Y; have a joint normal distribution,
maximizing the conditional expectation of (27) leads to the same optimal
strategy @ as maximizing F[W;|Y7] with
Wi = % Yiay = (n 0\2/|S + %75 0\2/\1/) a1 = Pv|s 0%/|s Ty Z3-
This formulation shows that our model is a special case of the general for-
mulation (26) with o(-) = 0, K = 0, w = 0, A = Y py|s 0‘2/‘5, B =0
v=(0zy —ovy)/o}, and & = 71 0, + 575 04y Moreover, all parameter
restrictions are satisfied. Hence, it follows that the linear strategy profile
(¢ Y1, ¢Ys) is the unique BNE in our duopolistic market-making scenario.
The equilibrium prices PP follow immediately from the market makers’
equilibrium strategies and the investors’ inverse demand function:
PP = X7'(@)

= Zi =m0t ¢ (Yi+ pyis Yo)

= (L= =pys)opsd) Z

- )\Zl

where ) is defined by equation (20). Analogous calculations show that PP =
A Zy. This concludes the proof of proposition 2. [l

Appendix C: Comparison of the monopolistic and the
duopolistic market-making scenario
Lemma 3 Suppose p = 0. Then PM = PP.
Proof: If p = 0, the correlation coefficients py s, py, and pz are zero as well
and Yyz becomes the diagonal matrix 0‘2/|Z12, where 0‘2/‘2 = Var|Vi|Z,] =
Var[Vs|Zs]. Thus, the equilibrium prices in the monopolistic market-making
scenario are given by

PM =)\ Z;, fori=1,2
with

1 + O'U + s UV\Z

I UV‘S

2+’757‘\2/\Z

I UV\S
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2 2 2 2 2 2
V1 0vs07 +71‘7V\s oy +750V‘Z oy
2 2 2 2

29104507 T V5 0y, 0%
2 2 2
T10ys (0% — 7))

B 2 2 2 2"
2910450z T Vs 0y 02

=1

Moreover, since Y; = Z;, we have o4y = Cov[Z,,Y1] = Var[Z] = 0% and
oyy = Cou[V1,Y1] = Cov[Vi, Z] = of. Substituting these expressions into
equation (20) shows that the price coefficient A of the duopolistic scenario

collapses to Ag as well. Thus, PM — PD ip this situation. U

Proof of lemma 1

In the monopolistic market-making scenario, the specialists’ ex-ante expected
utility before X (P) and, hence, Z are observed is equal to

EUY (p) = B [X(PM)T (PM = E[V]Z]) = § 75 X(PY) Sy17 X(PY)] .

Substituting the investors’ demand function into this expression and replac-
ing the equilibrium prices PM by 6" Z yields

1
BUYG) = E[L 276 0 - s0m 2-

27—:;2 7T (Iy — 0nr) 2‘;‘15 Yv|z 2‘;‘15 (I — 6p) Z]
I

1 .
= St [Tl - M)z
1

(’)’]((5M — EU 221) — %’)/5 EV|Z E‘_/|15(12 — 5M)):| s

where we used the fact that E[ZZ1] = 2.

For the duopolistic market-making scenario, recall from the proof of
proposition 2 that the equilibrium demand for security 1 can be written
as &1 = X1(PP) = ¢ Y; with

Ozy —Ovy
V1 0‘2/‘5(2 o + Pv|s Oyiy2) + s 0‘2/|y 0%
1—A

(- P%/|s) 0\2/\5.

o =
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Since the demand for the two ex-ante identical assets Al and B1 (or A2 and
B2) is independent, the specialists’ ex-ante expected utility from trading
these two assets is two times the utility from trading asset Al (or A2):

EUE(p) = 2B [X((PP) B[P - VilYi] - bys Xa(PP)? o, |
= E[20Yi(A\E[ZV1] - EVi|Y1]) — s 6° Y 07y ]

Recall that V}, Z;, and Y] are jointly normally distributed with zero means.
Thus,

g g
EUP(p) = ¢ (2 <)\ . %) - 75¢0\2/|Y> B[Y?]
Y Y

1— A

= 2(Vozy —ovy) —
7 (1= p%/\s) U%/|s (

Vs oviy Oy |-
7 (1= p%/|s) U%/|s o

Proof of proposition 3

The difference between the specialists’ expected utility in the duopolistic and
the monopolistic market-making scenario, EUZ (p)— EUX (p), can be written
as fs(p)/gs(p), where both fs(p) and gs(p) are polynomials of degree 8 in
p. The denominator polynomial gg(p) is equal t0*®

gs(p) = ((1+02)?—p?)
(273020t + 27 + s + 77 vs 02 02) (L + p+0?))
(27020t + (291 + s + s 02 o?) (1 — p+0?))
(293020t (1= p? +02) +

2
(291 + 75 + 7 5 0207) (1 + 02 = p2) =1 p* 02
Since |p| < 1, all four terms of gg(p) are strictly positive and, hence, gs(p) >
0. The numerator polynomial fs(p) can be written as
fs(p) =i 050l p*(do + da p* + dy p* + dg p°), (28)

28 All expressions were derived with the help of MATHEMATICA 4.0. The MATHEMATICA
notebooks can be obtained from the author upon request.
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where the coefficients d, . . ., dg are functions of 77, vs, 0, and o,. Obviously,
f5(0) = 0, which proves that EUY (0) = EUZ(0). Note that this also follows
from lemma 3, since if p = 0, not only prices are identical under both market-
making scenario, but also the specialists’ portfolios. It can be shown that the
term in parentheses on the right-hand side of (28) is strictly negative for all
p € (=1,1).2Y Thus, fs(p) < 0 for all p # 0, which implies that the difference
EUP(p) — EUY (p) is strictly negative for all p # 0. O

Proof of lemma 2

Since industries A and B are independent and ex-ante identical, the investors’
ex-ante expected utility from trading shares of both industries is equal to two
times the ex-ante expected utility from trading shares of only one industry:

EUi(p) = 2E [(X(P) v2) EBVIS] - X(P)! P

Ly, (X(P) + x)T Syis (X(P) + x)]

~

= E [2X(15)T (U—-P) - (X(Jf’) +:E)TZV|5 (X(P) +ar)] ;

where we used the fact that x and S are stochastically independent. Substi-
tuting the investors” demand function into this expression and replacing the
equilibrium prices P by 67, we get
1
EU/(p) = — B [2 ZV(Ly — 8) Syl (U = 62) — (U — 62)" Sy (U — 52)} .
Since Z = U — 7 Xy |5 T and since U and Z are independent, this expression
can be further simplified to

1
BU(p) = -8 V'S U = 272 1 = 0) Byl 7]
1

= S0yl -T2 26 - 8) Tyl6) .

29A detailed proof of this claim can be obtained from the author.
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Proof of proposition 4

First, note that the investors’ indifference between the two market-making
scenarios when p = 0 follows immediately from lemma 3.

Next, let us define h;(p) to be the utility difference EUP (p) — EUM (p).
Note that this difference can be expressed as the quotient of two polynomials
of degree 10 in p, f1(p)/g1(p). It can be shown that g;(p) is strictly positive
for all p € (—1,1).3% Thus, h;(p) is continuous in the interval (—1,1). Fur-
thermore, all coefficients of uneven powers of f;(p) and g,(p) are equal to zero
(i.e., fi(p) can be expressed as f1(p) = qo+qa p* +qa p* +5 p°+qs p* +q10 p*°,
where the coefficients qo, ..., qo are functions of vy, vs, o, and o,). This
implies that h;(p) is symmetric around p = 0, i.e., h;(p) = hy(—p). Hence, in
order to prove the existence of a correlation coefficient p with the properties
defined in proposition 4, it suffices to show that lim,_,1h;(p) > 0.

The limit of h;(p) as p goes to unity is equal to

ViotaS(2+ 02 +iolol)
(2+02) 2730204 + (29 + 75 + 72 v50202) (2 + 02))
Ayiolot +2ys(1+720202) (24 02) +7(7T+402)
(273 0204 + vs(1 + 77 0202) (2 + 02) + 71(3 + 2 02))?

hr(1) =

(29)

The right-hand side of (29) is clearly positive. Thus, there exists a correlation
coefficient p such that EUM (p) = EUP(p) = EUM(—p) = EUP(—p) and
BUM(p) < BUP(p) for all p € (~1,—p) U (p, 1). O

Proof of theorem 1

From the proof of proposition 4 we know that the utility difference h;(p) =
EUP(p) — EUM(p) is a continuous function of p with h;(0) = 0 and h;(1) >
0. Furthermore, since all coefficients of uneven powers of the numerator
polynomial f;(p) and the denominator polynomial g;(p) are zero, the first
derivative of h;(p) at p = 0 is zero. Hence, in order to prove that there
exists a correlation coefficient p* € (0,1) such that EUM (p*) = EUP (p*) =
EUM(—p*) = EUP(—p*) and EUM(p) > EUP(p) for all p € (—p*,0) U
(0, p*), it suffices to show that the second derivative of hy(p) at p = 0 is
negative.

30Since the expressions involved are rather complex, we do not present a formal proof
of this claim here. A detailed proof can be obtained from the author upon request.
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Recall form the proof of proposition 4 that g;(p) is strictly positive for all
p € (—1,1). Thus, the denominator of the second derivative h7(0) is strictly
positive. The numerator of A(0) can be written as follows:

’II,N(O) = ko0l + kg0 + kool + ka0l + kol + kg ol

with
ke = —2970,(2v +7s)?
kg = —47?0;1(2714'75)(71+75+7%7502)
ko = =270y (V8 +77 (0147075 + 77 (4 +7507) +T75) — 4))
ko = —2797103 (0067175 — 477 + 877 Vs 02 (v +7s) + 575) —
471—275)
i = =277 08 (vs o2 (372 + 7175 9) + T7s) — 871 — 47s)

ke = 2v;'c (71(4 375 0%) +27s)

Obviously, kg and kg are always negative. The coefficient of the highest
power, kg, is negative if and only if 7 > 0 and

4y +2
092[: > V1 2’)’5
3175

1+ /14129702

37102

or, equivalently, if

Vs >

As is easily verified, this condition is sufficient for kg, k12, and k4 to be
negative as well. Thus, if this condition is satisfied, A7 5(0) and, hence,
h7(0) are negative.

In order to derive the second condition that guarantees the existence of
p*, we rewrite the numerator of h7/(0) as a polynomial in 7g:

hin(0) =1lo+livs + 1o Ve

with
lo = 8770,0{(vjoso; + 0! +1)(ﬁ0206+04 1)
I, = 440} : od(o? +1)(*ylaa+1)(a 0—4)+1)—0?—2)
l = —2%030%0? +1)(violo? +1)° ( jorol+02+1)
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Clearly, ls < 0. The coefficient [y is negative if and only if o, < 1 and

4
€

2 6 °
fYIO—e

9y 1—-0

o, <

The condition o, < 1 is also sufficient for /; to be negative. This proves that
h7(0) is negative, if these two conditions are satisfied. O

Proof of proposition 5

If v5 = 0, the numerator of the utility difference h;(p) = EUP (p) — EUM (p)
becomes a polynomial of degree 8 in p. From the proof of proposition 4,
we know that h;(0) = 0 and that all coefficients of uneven powers of the
numerator polynomial f;(p) are zero. Hence, by Descarte’s rule of sign,
there are at most three positive roots.

Moreover, we have already shown that h;(1) > 0 and that A7(0) < 0, if
condition (b) of theorem 1 is satisfied. This implies that h;(p) and, hence,
fi1(p) cannot have two roots in the interval (0,1). Thus, in order to prove
that p* = p, it suffices to rule out the case that f;(p) has three roots in (0, 1).

Let fi(p) = fr(p)/p*. Note that f;(p) and f;(p) have identical roots in
the interval (0,1). The polynomial f;(p) can only have three roots in (0, 1) if
f1(1) > 0and f'(1) > 0. Otherwise, f;(p) would have to have three inflection
points in (0, 1), which is impossible since the polynomial f7(p) is of degree 4
and has at most two changes of sign in the sequence of its coefficients.

The first and the second derivative of f;(p) at p = 1 are equal to

fi(1) = =277 0,0 (602 + 507 +7j0; 0l (T+0:(134+8170207)) —9)
and

1) = —29f0to® (ol (502 + 47 02 (0! (13 + 89 0202 — 2))

1302 +16) —2) — 1307 + 48).
It can be shown that the two inequalities f7(1) > 0 and f'(1) > 0 contradict
each other. Specifically, f7(1) is only positive if o, is sufficiently low, whereas

f7(1) > 0 is only positive if o, is sufficiently high. This proves that hz(p)
has at most three positive roots and thus that p* = p. 0l
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