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Abstract

The literature on optimal monetary policy under uncertainty typically makes
three major assumptions: 1) policymakers’ preferences are quadratic, 2) the
economy is linear, and 3) stochastic errors and policymakers’ prior beliefs
about unobserved variables are normally distributed. This paper relaxes
the third assumption and explores its implications for optimal policy. The
separation principle and certainty equivalence continue to hold in this frame-
work, but policymakers’ beliefs are no longer updated in a linear fashion. I
consider in particular a class of models in which policymakers’ priors about
the natural rate of unemployment are diffuse in a region around the mean.
When this is the case, it is optimal for policy to respond cautiously to small
surprises in the observed unemployment rate, but become increasingly more
aggressive at the margin. This model appears to match well statements by
Federal Reserve officials, and the historical behavior of the Fed, in the late
1990’s.
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1. Introduction

The literature on optimal monetary policy under uncertainty typically makes three major

assumptions: 1) policymakers’ preferences are well-approximated by a quadratic function,

2) the economy is well-approximated by a linear system of equations, and 3) stochastic er-

rors and policymakers’ priors about unobserved variables are normally distributed. While

these assumptions contribute much in the way of tractability and simplicity to the models

and their solutions, it is important to understand the effects of relaxing these constraints on

the prescriptions for optimal policy. In particular, I demonstrate that relaxing the assump-

tion of normality, in favor of a prior that is diffuse in a region around the mean, provides

a very simple and intuitive way of modeling statements by Federal Reserve officials, and

the Fed’s behavior, in the late 1990’s.

Consider, for example, statements by Governor Laurence Meyer of the Federal Re-

serve Board, in a speech made September 8, 1999 to the Philadelphia Council for Business

Economics:

There are, however, a couple of constructive policy responses in light of pre-
vailing uncertainties about the level of excess demand and the forecast. First,
policymakers could update their estimates of the NAIRU and the output gap
(assuming, in the first place, that they find these concepts useful, as I do) in
light of realizations of unemployment, output, inflation, and other variables. . .
Second, policymakers could attenuate the response of the real federal funds
rate to declines in the unemployment rate in a region around their estimate of
the NAIRU. But once the unemployment rate gets far enough below (or above)
the estimated NAIRU so that confidence returns that the labor market is ex-
periencing excess demand (or supply), then the more normal response of real
interest rates to incremental declines in the unemployment rate would again
become appropriate.

(Meyer (1999), emphasis added)

I demonstrate below that a diffuse-middled prior on the natural rate of unemployment, or

NAIRU, leads very naturally to the statements in this quotation.

The paper proceeds as follows. Section two presents an illustrative model of the

economy with which the policy problem can be studied. Section three works through the

univariate signal extraction problem when policymakers’ priors on the NAIRU are thin-

tailed. Section four works through the multivariate signal extraction problem that results
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when the model economy is slightly richer and considers an example calibrated to U. S.

data in the late 1990’s. Section five discusses the results and concludes.

2. A Simple Model

The main points of this paper are independent of the exact model under consideration.

For the purposes of clarity and illustration, it is therefore advantageous to work with a

model that is as simple as possible, while still conveying all of the relevant intuition. I

thus work with the following simple, two-equation, backward-looking model as a baseline

example:

(ut − u∗) = θ(ut−1 − u∗) + α(rt−1 − r∗) + εt (1a)

πt = πt−1 − β(ut−1 − u∗) + νt (1b)

where ut is the unemployment rate at time t, rt the real interest rate, πt the inflation rate,

u∗ the “natural” rate of unemployment consistent with long-run equilibirium (|θ| < 1),

and r∗ is the “natural” rate of interest.1 It is assumed for simplicity that policymakers

have direct control over the real interest rate rt. The random variables εt and νt denote

Gaussian mean-zero stochastic shocks to the system, and are orthogonal to all variables

dated t− 1 or earlier.2

Policymakers set interest rates so as to minimize a discounted sum of squared devi-

ations of unemployment and inflation from long-run target values:

min (1− δ) Et

∞∑
s=t

δs−t
[
(πs − π∗)2 + γ(us − u∗)2

]
(2)

where π∗ denotes policymakers’ long-run target for inflation, δ is policymakers’ discount

factor, and γ is the relative weight on unemployment stabilization. It is assumed that

policymakers’ target for unemployment is the long-run natural rate u∗.

The model is complicated somewhat by the fact that the natural rate of unemploy-

ment u∗ is never observed. Policymakers only observe their past choices for the policy

1One might describe equation (1a) as an “IS curve” and equation (1b) as a “Phillips curve.”
2One can also consider the effects of non-normally distributed error terms ε and ν. I maintain the

assumption of normality here so as to isolate the effects of non-normally distributed priors about u∗.
In fact, the results demonstrated below are all magnified if we consider error terms (ε and ν) that are
fat-tailed rather than Gaussian.
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instrument r, current and past values of the actual unemployment rate u, and current

and past values of the realized inflation rate π, which they can use to help them infer the

true value of u∗. This they do by Bayesian updating, taking into account observations of

unemployment and inflation as they come in. It is assumed for simplicity that the natural

rate of interest r∗ is known.

Policymakers’ problem is thus a straightforward discrete-time dynamic programming

problem with quadratic objective, linear constraints, and an unobserved state variable, the

solution of which is well known (Bertsekas (1987)):3

rt − r∗ = aEt(ut − u∗) + b (πt − π∗) (3)

where Et denotes the mathematical expectation conditional on all information It available

as of time t:

It ≡ {θ, α, β, γ, δ, σ2
ε, σ

2
ν , Fu∗|0(·), π∗, r∗, πt, ut, πs, rs, us | s < t} (4)

The constants a and b in (3) are determined by the parameters of the model and, along

with the form of equation (3), are independent of the variances of ε and ν—this is the

well-known property of certainty equivalence in linear-quadratic models. Fu∗|0(·) in (4)

denotes policymakers’ prior distribution on u∗ at time 0. Note that the parameters of the

model (θ, α, β, etc.) are assumed to be known with certainty.

Policymakers enter period t with prior beliefs about u∗, the expected value of which

is Et−1u
∗. Based on this prior, and observations of lagged variables, policymakers have

prior forecasts for the variables ut and πt (derived from equations (1)), namely:

Et−1ut = (1− θ)Et−1u
∗ + θut−1 + α(rt−1 − r∗) (4a)

Et−1πt = πt−1 − β(ut−1 − Et−1u
∗) (4b)

If the realized values of ut and πt come in close to these prior forecasts, then policymakers

will see little reason to revise their beliefs, and Etu
∗ will be very close to Et−1u

∗. In

contrast, if ut and πt contain substantial “surprises” relative to policymakers’ prior expec-

tations of these variables, then policymakers may be prompted to revise their beliefs about

u∗ more substantially. Sections 3 and 4 below consider this problem in detail.

3Note that this solution does not require normality of any of ε, ν, or u∗.
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2.1 Separation of Estimation and Control

Policymakers’ problem (minimizing (2) subject to (1)) has the well-known property of

separability of estimation and control. Policymakers’ problem thus can be separated into

two stages: first, the unemployment gap (ut −u∗) is estimated on the basis of all available

information in period t, and second, the interest rate rt is set based on this estimate, as

in (3). Note that this is a general property of the linearity in model (1), and holds for

priors and error terms with completely general distributions.4

The division of policymakers’ problem into estimation and control stages can be

thought of in terms of the following figure:

2 3 4 6 7 8
ut

-3

-2

-1

1

2

3

Et �ut � u
��

Figure 2.1a: Estimation

-3 -2 -1 1 2 3
Et �ut � u

��

-3

-2

-1

1

2

3
rt � r

�

Figure 2.1b: Control

Note that the figure abstracts away from inflation equation (1b) for graphical simplicity, so

that policymakers’ estimation and control stages are each functions of only one variable, the

unemployment rate in Figure 2.1a, and the estimated unemployment gap in Figure 2.1b.

Figure 2.1a depicts the estimated unemployment gap as a linear function of the

observed value of ut. This is the case, for example, when policymakers’ priors about u∗

and εt are independently normally distributed, resulting in the standard updating equation

Et(ut − u∗) = Et−1(ut − u∗) + (Vart−1εt/Vart−1ut)(ut − Et−1ut), where Vart−1 denotes

policymakers’ prior variance on the given variable conditional on information available at

time t− 1.

Figure 2.1b depicts the policy instrument as a linear function of the estimated un-

employment gap, Et(ut − u∗). This is the case for linear-quadratic models in general, and

4Doubting readers are referred to Bertsekas (1987), pp. 102–6, 292–3.
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holds specifically for the optimal policy given in equation (3).5 Combining the left and

right panels of Figure 2.1 yields policymakers’ reduced-form response to the unemploy-

ment rate ut. Under the usual assumption that both panels of Figure 2.1 are linear, this

reduced-form reaction function is also linear in ut.

2.2 Two Motivations for Nonlinear Policy

One can go beyond the linear reduced-form response implied by Figure 2.1 by introducing

nonlinearities into either the left-hand or right-hand panel of that figure. For example,

Orphanides and Wieland (2000) do the latter, considering a model with a nonlinear Phillips

curve, with a concave-to-convex shape (i.e., a shape similar to y = x3) that is like the one

estimated by Filardo (1998). This approach yields an optimal nonlinear policy response to

unemployment even in a world of perfect certainty, as well as a world in which disturbances

and policymakers’ priors are all normally distributed.6

While this approach has its merits, the quotation by Governor Meyer given earlier

seems to indicate policymakers in the 1990’s were concerned primarily with uncertainty

about their estimates of NAIRU or full capacity, rather than important nonlinearities in the

economy or non-quadratic preferences. A modification of the left-hand panel of Figure 2.1

(the estimation stage of policymakers’ problem) thus seems more appropriate for modeling

recent monetary policy behavior in the U. S.

3. Univariate Signal Extraction with a Non-Normal Prior

Policymakers’ problem of estimating u∗ is inherently one of signal extraction. To see

this, note that policymakers never observe the true value of u∗, but only receive noisy

observations of u∗ through realizations of ut and πt.7 Policymakers use these observations

to update their beliefs about the true value of u∗.

5Of course, equation (3) is a function of both unemployment and inflation, the latter of which has been
abstracted away from in Figure 2.1.

6Orphanides and Wieland (2000) also consider a case where policymakers’ preferences are non-quad-
ratic, in particular by introducing a “zone of indifference” for inflation rates between 0 and 2 percent
(motivated, for example, by many inflation-targeting central banks’ official charters). This leads to a very
similar nonlinearity in the right-hand panel of Figure 2.1.

7To emphasize the signal extraction properties of equations (1), u∗ could be shifted from the left-hand
side to the right-hand side of equation (1a).
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I begin by illustrating this process in detail when policymakers only have to perform

univariate signal extraction. While multivariate signal extraction is not unduly difficult,

the figures are much simpler for the univariate case, and little intuition is lost by the

simplification. The more general multivariate signal extraction problem will be considered

in the following section. Until then, I abstract away from the inflation equation (1b).

When policymakers’ priors about u∗ and εt are both normally distributed, one gets

the standard result that the optimal estimate Et(ut − u∗) is a linear function of the ob-

served variable ut, as discussed in the previous section. When policymakers’ priors about

u∗ are not normally distributed, however, this linearity fails to obtain. For example, sup-

pose policymakers’ priors on u∗ were distributed uniformly over the interval [4, 6], as in

Figure 3.1a below:

3 4 5 6 7 8
u�

0.1

0.2

0.3

0.4

0.5

ft�1�u
��

Figure 3.1a

Intuitively, in this figure policymakers’ point estimate of the NAIRU is equal to 5, but this

estimate is uncertain enough that any point in the interval [4, 6] is deemed equally likely

to be the true value. Policymakers’ uncertainty drops off rapidly as one moves outside of

the interval [4, 6]—in this idealized example, policymakers are certain that the NAIRU lies

neither above 6 nor below 4.

This nonnormality of policymakers’ beliefs will be reflected in their posterior esti-

mates of u∗ and the unemployment gap ũt ≡ ut − u∗, after observing ut. These estimates,

which would have been linear in ut had we assumed policymakers’ priors to be normally

distributed, now have the following functional forms with respect to ut:8

8 It is assumed in these figures that ut−1 and rt−1 are such that policymakers’ prior forecast Et−1ut

equals 5 (and the expected unemployment gap Et−1ũt is zero). The graphs look exactly the same (up to
a translation) for different prior forecasts of ut, since it is only the unemployment surprise that enters into
policymakers’ updating equation. The standard deviation of the shock to the unemployment gap (εt) in
this figure and those that follow is set equal to 0.4. This number comes from the calibration (to annual
data) in Section 4, below.
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Figure 3.1b
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Figure 3.1c

Intuitively, because policymakers are so uncertain about the NAIRU within the interval

[4, 6], they are very willing to revise their estimate of u∗ for observations of ut that are

well inside this interval, as is evident in Figure 3.1b. As observed unemployment moves

farther away from policymakers’ prior point estimate of 5, however, policymakers assign

an increasingly smaller fraction of each increment of unemployment to u∗, this fraction

approaching zero as ut becomes more and more extreme relative to policymakers’ priors.

Correspondingly, the fraction of each increment of unemployment assigned to the unem-

ployment gap, ũt, is close to 0 near the middle of Figure 3.1c, and approaches 1 as ut

moves out toward the edges of that figure.

Policymakers are thus very willing to revise their estimate of u∗ (and set rt cautiously)

for small surprises in the observed unemployment rate. Note that this result accentuates

the signal extraction-based motivation for policy attenuation discussed in Swanson (2000)

and Svensson and Woodford (2000).9 The optimal marginal response of policy increases

substantially, however, as the surprise in unemployment becomes larger, approaching the

marginal certainty-equivalent response in the limit. This matches very well the monetary

policy prescription given by Governor Meyer in the quotation presented earlier.

3.1 Other Diffuse-Middled Distributions on the NAIRU

The increasingly aggressive marginal response of policy to observed unemployment ut above

is not specific to the uniform distribution in Figure 3.1a, but rather holds more generally

9Sack and Wieland (2000) survey the literature on optimal policy attenuation. The motivation given
by Swanson (2000) and Svensson and Woodford (2000) is based on signal extraction, as in the present
paper. The diffuse-middled priors in this paper accentuate the attenuation effect by increasing the variance
of policymakers’ priors without making the tails implausibly large. Note also that, unlike the present
paper, Swanson (2000) takes the signal extraction problem one level deeper by assuming the estimated
unemployment gap Et(ut −u∗) is itself an indicator for an underlying variable of interest, such as “excess
demand” or “inflationary pressures.”
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for any prior distribution on u∗ that is diffuse in a region around the mean. Intuitively,

the diffuse center of the distribution makes policymakers very willing to revise their beliefs

about u∗ for small surprises in observed unemployment ut. This flexibility fades as the

surprises move out toward the tails of policymakers’ prior distribution.10 A more rigorous

treatment of this point is provided in the Appendix.

For example, policymakers’ priors might be distributed less like the uniform distri-

bution and more along the lines of e−
1
2 (x−5)4 , as in the solid line in Figure 3.2a below

(dashed lines depict uniform and normal distributions for comparison):11
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Figure 3.2a

Bayesian updating for this intermediate distribution leads to the following estimates of u∗

and ũt ≡ ut − u∗ as functions of observed unemployment ut:
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Figure 3.2b
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Figure 3.2c

10 In addition, the tails of policymakers’ prior influence the optimal marginal policy response for large

surprises. If the distribution is thin-tailed (i.e., f(x)e
1
2 x2

vanishes as |x| → ∞), then policymakers’ optimal
marginal response approaches the certainty-equivalent marginal response for large surprises. If the tails are
asymptotically Gaussian, then the optimal marginal response approaches a line with slope Var(ũt)/Var(ut),
the signal-to-noise ratio associated with the sum of independent normal random variables.

11The exact formula for the solid-lined density is ke−
1
2 ((x−5)/.8)4 , where the normalization constant

k = 1/((.8) 25/4 Γ(5/4)). The (short-dashed line) normal density is distributed N(5, .16). Although the
non-uniform densities in Figure 3.2a appear to have compact support, this is an artifact of the graph’s
resolution—the densities are in fact strictly positive over the entire real line. The integration required in
going from the solid line in Figure 3.2a to Figures 3.2b and 3.2c is performed over the entire real line.
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As in the case of the uniform distribution, policymakers are very willing to revise their

estimate of u∗ for small surprises in ut. Optimal policy calls for an increasingly aggres-

sive response at the margin, however, as ut moves farther away from policymakers’ prior

forecast, again approaching the certainty-equivalent marginal response in the limit.12

3.2 Structural Change as a Motivation for Diffuse-Middled Priors

The question naturally arises as to how policymakers might have arrived at such a diffuse-

middled prior on u∗ to begin with. The examples above are essentially static in nature,

and do not address this issue.

A reasonable answer to this question is provided by a model of structural change.

Suppose that the usual state of the world is one in which policymakers’ priors about

u∗ are close to normally distributed, but that policymakers know there is a very small

probability p each period of a structural shift occurring—i.e., a very significant shock

to u∗. Policymakers do not observe such a shock to u∗ directly, but would begin to infer

it as observations of the data roll in.

Some evidence that this story may have been important in the Fed’s thinking can be

found in remarks by Federal Reserve Board Vice Chairman Roger Ferguson in the June

2000 issue of The Region, published by the Federal Reserve Bank of Minneapolis:

I am comfortable with the idea that demand and supply imbalances affect
prices and inflation in the short run. What we may have seen recently is that
the point at which that trade-off starts to come into play might have moved
from an unemployment rate that was up to 6 percent to an unemployment rate
that is maybe somewhat lower. Some people argue that the so-called NAIRU,
which is an element of the Phillips curve, may have moved down to 5 percent
or even lower.

I must say that anyone who has focused on the NAIRU recognizes that
you can’t get a point estimate that is immutable over time because the nature
of the economy does change. Even now as we talk about imbalances, there is an
implicit short-run Phillips curve concept embedded in the discussion without
necessarily saying that the unemployment rate at which inflation starts to pick

12As noted briefly in footnote 2, one can also consider the effects of fat-tailed shocks ε on the results.
Extending the model in this direction strengthens the nonlinearities depicted in the main body of the
paper. Intuitively, for small surprises in ut, policymakers divide the surprise relatively evenly between ε
and u∗, while for large surprises in ut, policymakers assign the preponderance of the surprise at the margin
to ε, because it is fat-tailed.
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up is exactly 4.5 percent, or 4.9 percent, or 5.2 percent or 5.5 percent. So I’m a
bit of, how can I describe myself, in the middle in believing that there is a short-
term trade-off between resource utilization and inflation, but not necessarily
being wed to a specific point estimate on the short-run Phillips curve where
inflation is likely to accelerate.

(Ferguson (2000))

These statements seem to imply that structural change and diffuse-middled distribu-

tions of the type considered earlier are indeed very relevant for thinking about the recent

behavior of U. S. monetary policy.

We can incorporate structural change more concretely into our earlier framework as

follows. Suppose that with large probability 1−p the NAIRU u∗ is constant from one period

to the next,13 and that policymakers’ priors about the true value of u∗, conditional on no

structural change, are normally distributed, with a mean of 6 and standard deviation 0.25.

In addition, suppose that, conditonal on the occurrence of structural change, policymakers’

priors are normally distributed with the same mean 6, but with a standard deviation

of 1.0.14 Figure 3.3a below depicts this prior distribution for p = .02:
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u�
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��

Figure 3.3a

Note that it is very nearly Gaussian, as the probability of structural change is fairly small.

Starting from this prior, an anomalous value for ut causes policymakers to seriously

consider the possibility that a structural break has in fact occurred. For example, starting

13One can allow u∗ to drift from period to period by some small disturbance ξt without altering the
story being told here.

14The implicit assumption here is that policymakers have no prior reason to believe any potential shift
in u∗ would be downward rather than upward. In fact, one might argue that observed technological
innovations in computers and communications equipment did give policymakers a reason to believe u∗
might move down rather than up. The model in the main body of the paper could easily be adjusted to
describe such an asymmetric prior (e.g., by letting the mean, conditional on structural change, equal 5).
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from the prior above, an observed value for ut that comes in substantially below policy-

makers’ prior expectation of 6,15 leads to a diffuse-middled or even “two-regime” posterior

distribution on u∗, as in Figure 3.3b below, which depicts policymakers’ posterior after an

observed unemployment rate of 4.3:
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Figure 3.3b

This posterior clearly exhibits “New Economy” and “Old Economy” regimes: the

former is centered around a value for u∗ of about 4.5, and the latter around a value of

about 5.5.16 If a structural break has in fact occurred, the true value of u∗ is likely to lie

around 4.5. Alternatively, if a structural break has not occurred, the true u∗ is likely to lie

around 5.5. Policymakers are implicitly taking both of these possibilities into consideration

in Figure 3.3b.

The two-regime posterior in Figure 3.3b possesses the same “diffuse-middled” prop-

erty as the prior distributions considered earlier (see the Appendix). Subsequent obser-

vations of unemployment ut+1 that lie between the point estimate of u∗ for each regime

considered separately (here 4.5 and 5.5) will cause policymakers to significantly revise their

beliefs about which regime they are in; policymakers’ best estimate of u∗ is thus highly

responsive to changes in the observed unemployment rate in this region. Outside of this

range, policymakers’ marginal inference and policy responses return quickly to the usual

linear function of observed unemployment. This is apparent in Figures 3.3c and d be-

low, which depict the optimal subsequent estimates of u∗ and the unemployment gap as

15 In this simple one-equation version of the model, it is easily seen that optimizing policymakers will
always have set rt−1 so that their prior expection Et−1ut = 6.

16This clear division into two distinct regimes results from the idealized structure and simplicity of the
model. More generally, the process of structural change might be modeled as taking place more gradually,
with the model itself having more parameters and dimensions of uncertainty, leading to a less sharp
distinction between regimes, as well as a more gradual updating process.
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functions of observed next-period unemployment ut+1:17
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Figure 3.3c
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Figure 3.3d

Note that there is an asymmetry in these figures resulting from the asymmetric distribution

in Figure 3.3b.

4. Multivariate Signal Extraction with a Non-Normal Prior

The above discussion highlights the basic point that diffuse-middled priors on the NAIRU

make it optimal for policymakers to set interest rates cautiously in response to small

unemployment surprises, but to become increasingly more aggressive on the margin as the

size of the unemployment surprise increases. This observation continues to hold in more

realistic, multi-equation models of the economy, though it is complicated somewhat by the

need to perform multivariate signal extraction.

In this section, I reinstate the inflation equation of the model (1b), and let poli-

cymakers update their beliefs about the NAIRU in response to observations of both un-

employment and inflation. For this more general case, policymakers’ optimal inference

and response functions are no longer functions simply of ut, but now also depend on the

inflation rate πt. This results in graphs that look something like the following figures:

17The dashed lines in Figures 3.3c and d have slopes that are less than unity, corresponding to the
signal-to-noise ratios associated with the sum of independent normal random variables. Although u∗ is
not normally distributed, the two tails of its density in Figure 3.3b closely approximate those of a normal
random variable asymptotically, leading policymakers’ optimal estimate of u∗ and the unemployment gap
(ut+1−u∗) to approach a line with slope corresponding to the signal-to-noise ratio. Were the tails to
converge to zero more quickly than normal, as in the figures considered earlier, the asymptotic slope in
Figure 3.3d would be 1 (and that in Figure 3.3c would be 0) as in those earlier figures.
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where ũt denotes the unemployment gap (ut−u∗). Cross-sections of these surfaces for

a given value of πt generate graphs that are analogous to the figures in section 3.18 In

the presentation of the results below, I will tend to focus on representative cross-sections

rather than the full three-dimensional graphs, as the former present the results somewhat

more clearly. However, the three-dimensional nature of the underlying optimal response

graphs should be kept in mind.

The results of this section are presented in terms of a calibrated example, describing

roughly the situation facing Fed policymakers in the late 1990’s.

4.1 A Calibrated Example: The U.S. in the Late 1990’s

The parameters of model (1) can be calibrated using annual U. S. data from 1960 to 1998.

This yields the following values: θ = 0.75, α = 0.15, β = 0.4, and r∗ = 2.5. In addition,

the standard deviations of εt and νt are estimated to be 0.8 and 1.2, respectively.19 These

values correspond closely to those used by Reifschneider and Williams (1999) for a very

similar model.

I have chosen to calibrate the model to annual rather than quarterly data for the fol-

lowing reasons. First, the story being told here is one of policymakers’ beliefs, surprises in

the data, and Bayesian inference. If the data are serially correlated, policymakers’ revision

18One could also present cross-sections along the other dimension of Figures 4.1a and b—i.e., for a given
realization of the unemployment rate. This would yield graphs analogous to the figures of section 3 that
present policymakers’ optimal responses along the inflation dimension. I will present some graphs along
these lines below.

19 I assume for the time being (counterfactually) that εt and νt are uncorrelated, and relax this assump-
tion later. Note also that the estimated standard deviations differ substantially across time periods. I will
discuss some implications of this, and plausible values for these variance-covariance parameters, below.
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process may be very gradual, and may be more naturally modeled as an annual rather than

a quarterly frequency process. Second, policymakers update their priors based on “sur-

prises” in the observed data. If the signal-to-noise ratio is substantially higher in annual

than in quarterly data, then policymakers should be more willing to revise their beliefs in

the face of surprises in annual data than they are to surprises in quarterly data. Thus,

the nonlinearities demonstrated in the previous section may be more naturally thought of

in terms of an annual model. Conceptually, however, the same exercise performed in this

section could be undertaken using quarterly data.

For simplicity, I assume that policymakers’ prior distribution on u∗ is uniform,

namely:

3 4 5 6 7 8
u�
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Figure 4.2

I choose to work with the uniform prior for a number of reasons. First, Bayesian updating

is much easier computationally for a distribution with compact support, because integra-

tion does not need to be performed over the region where policymakers’ priors have zero

density. Second, it was shown in the previous section that diffuse-middled distributions

other than the uniform yielded results that were qualitatively very similar to those for

the uniform distribution, so the results here should be representative of those for diffuse-

middled distributions more generally. Finally, the stylized appearance of the uniform prior

helps to emphasize the fact that these Bayesian updating examples are by their very nature

illustrative rather than definitive, and thus should not be taken too literally.

The U. S. economy in 1999 consisted of an inflation rate (PCE inflation) that was

about 2.0 percent, an unemployment rate of about 4.2 percent, and a real federal funds rate

of about 3.0 percent (these are annual averages). Taking the simple model (equations (1))

literally, this implies prior forecasts for unemployment ut in 2000 of (.25)(5)+ (.75)(4.2)+

(.15)(3.0− 2.5) ≈ 4.5 and 2000 inflation (πt) of (2.0)− (0.4)(−0.8) ≈ 2.3 percent.
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When data on unemployment and inflation for all of 2000 come in, policymakers will

want to revise their beliefs on the basis of these observations. For example, if PCE inflation

comes in at 2.3 percent as expected, but unemployment comes in at a value different

from their prior forecast of 4.5, policymakers will revise their expectation of u∗ and the

unemployment gap ũt accordingly. These revisions are depicted in the following graphs as

functions of the realized value of the unemployment rate, holding realized inflation constant

at 2.3 percent:20
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Figure 4.3b

Note that these graphs are essentially linear, so that a nonlinear response of interest rates

would not be warranted.21 This result hinges crucially on the fact that the estimated vari-

ances of the shocks to the simple model are quite large over the period 1960 to 1998 (stan-

dard deviations of 0.8 and 1.2 for surprises to unemployment and inflation, respectively).

Because policymakers in the model know that this variance is so large, an unemployment

realization of, say, 4.0 percent is not enough for them to significantly revise their beliefs

(indeed, it is within one standard deviation of their prior forecast), and thus they revise

their NAIRU estimate downward only very slightly, from 5.0 percent to 4.9. The effects

on policymakers’ beliefs are so small quantitatively that there is little reason for the types

of nonlinear policy responses described earlier.

The variances estimated above, however, may not be the most appropriate values for

use in the model. For example, the estimated shocks to this simple model in the 1970’s

20The line in Figure 4.3a intersects the horizontal axis at the point (4.475, 5.0). This intersection point
states that, at realized inflation of 2.32 and unemployment of 4.475 (which were exactly policymakers’
prior forecasts for these variables), policymakers’ posterior expectation of u∗ is exactly equal to their prior
of 5.0. The line in Figure 4.3b intersects the horizontal axis at the point (4.475,−0.525). This states
that, at realized inflation of 2.32 and unemployment of 4.475, policymakers’ posterior expectation of the
unemployment gap is 4.475 − 5.0 = −0.525.

21As in section 3, the dashed line in Figure 4.3b is a 45-degree line corresponding to the certainty-
equivalent case where policymakers know, or act as if they know, with certainty that u∗ = 5.0.
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and early 1980’s are very large; re-estimating the shock variances for the more recent

period from 1983 to 1997 yields standard deviations of 0.6 and 0.7 for the unemployment

and inflation surprises, respectively. Furthermore, shocks to the equations have tended

to be substantially greater coming in and out of recessions than during normal times;

given that we are not currently in a recession or coming out of one, the appropriate

standard deviations for the surprises may be smaller still—0.4 and 0.6 for unemployment

and inflation, respectively. If we take these last numbers as the appropriate values, then

policymakers take a low realized value of unemployment much more seriously than they did

in the previous example, and will tend to revise their beliefs about u∗ more substantially,

from 5.0 to 4.8 in Figure 4.4a below:22
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Figure 4.4b

Just as in the univariate examples of the previous section, policymakers here are very

willing to revise their estimate of u∗ for small surprises in ut. As the size of the surprise

gets larger, however, policymakers become increasingly more reluctant to make incremental

revisions to this estimate, and the optimal marginal response of policy approaches the

certainty-equivalent marginal response.

One can see similar effects looking along the inflation dimension. For example, if the

unemployment rate in 2000 were to come in at the prior forecast of 4.5 percent, but inflation

were to come in at a value different from policymakers’ prior forecast of 2.3 percent, then

22 Inflation is again assumed to come in at the expected value of 2.32 in these figures. Note that, while
the standard deviation of the unemployment surprises in Figure 4.4b is the same as that in the figures of
section 3 (namely, 0.4), the graph does not have the same degree of curvature that was present in those
earlier figures. This is because Figures 4.4 assume a zero inflation surprise, so that the “joint surprise” in
inflation and unemployment in Figures 4.4 is somewhat less than the univariate surprises that correspond
to the horizontal axis in the figures of section 3.



17

policymakers would want to revise their estimates of u∗ and the unemployment gap ũt as

in the following figure:23
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Figure 4.4d

Note that the estimated unemployment gap in Figure 4.4d is downward-sloping and does

not grow without bound as in Figure 4.4b.24 This follows from the fact that in Figure 4.4d,

the observed unemployment rate is fixed at 4.5 percent and only the estimate of u∗ is

changing, in contrast to Figure 4.4b, in which both the observed unemployment rate and

policymakers’ estimate of u∗ are changing.

It should be kept in mind that, as noted earlier, these graphs are intended to serve

as representative cross-sections of the underlying three-dimensonal surfaces. Thus, poli-

cymakers’ optimal estimates of u∗ and ũt in the previous two figures can be represented

more generally as functions of unemployment and inflation both:
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Figure 4.4f

23The points of intersection of the graphs with the horizontal axes are (2.32, 5.0) in Figure 4.4c and
(2.32,−0.525) in Figure 4.4d. The reasons are the same as in footnote 20.

24 Instead, it approaches horizontal asymptotes at 0.475 and −1.525, respectively.
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In Figures 4.4a through d, we considered a surprise in only one variable in each figure. In

Figures 4.4e and f, we can consider simultaneous surprises in unemployment and inflation

of any magnitudes.

4.2 Correlation Between Surprises in Unemployment and Inflation

It was assumed for simplicity and clarity in the examples above that shocks to the un-

employment rate and inflation (εt and νt) were uncorrelated. In fact, this assumption is

both theoretically and empirically suspect. Theoretically, if the simple model in (1) omits

important variables from the right-hand side that cause the error terms for unemployment

(εt) and inflation (νt) to move in related ways, then policymakers will expect the surprises

in the model to be correspondingly correlated. In addition, empirically, the estimated

correlation of the error terms in model (1) is −0.4 over the full sample (1960 to 1998), and

−0.6 over the period 1983 to 1997.

Taken at face value, these correlations imply that the situation facing policymakers in

the late 1990’s of low unemployment and low inflation both was even more surprising than

the examples above would indicate, because historically unemployment and inflation have

tended to surprise in opposite directions. This increase in the extent to which policymakers

are surprised should lead them to revise their beliefs about u∗ more substantially, and also

lead them to become more averse to making incremental revisions in their estimate of u∗, so

that the curvature that was characteristic of the figures above becomes more pronounced.

This is demonstrated in Figures 4.5a and b, below:
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Note that these figures assume a realized inflation rate of 1.8 percent, in line with the sit-

uation faced by policymakers in 1999, and a correlation between the error terms of −0.6.
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This downward surprise in inflation causes policymakers’ estimate Etu
∗ to be shifted down-

ward for every value of ut relative to Figure 4.4a—in fact, it takes an upward surprise in

unemployment of 4.8 − 4.5 = 0.3 to offset the downward surprise in inflation of 0.5, and

lead to no net change in policymakers’ estimate of u∗.

The full, three-dimensional plots of policymakers’ estimates of u∗ and ũt, as functions

of unemployment and inflation both, are as follows:
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It can be seen in the figures that, for a given downward surprise in unemployment, it

takes a greater upward surprise in inflation for policymakers’ estimate of u∗ to remain

unchanged. This is because some degree of negative correlation between the two surprises

is already expected by policymakers a priori.

5. Discussion

The analysis and examples above clearly demonstrate a case for optimal nonlinear policy,

as a function of observable variables, when policymakers’ priors on unobserved variables of

the system are non-normally distributed. In particular, if policymakers’ priors are diffuse

in a region around the mean, then it is optimal for policy to respond cautiously to small

surprises in the observed unemployment rate, but become increasingly more aggressive at

the margin as the size of the surprise gets larger. This matches very well the intuition

presented in statements by Federal Reserve officials in 1999 and 2000.

Does it match the actual behavior of the Fed in the late 1990’s? A strong case

can be made that it does. For example, in a recent speech before the Joint Conference
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of the Federal Reserve Bank of San Francisco and the Stanford Institute for Economic

Policy Research, Governor Meyer described the behavior of recent U. S. monetary policy

as follows:

In the fall of 1998, monetary policy responded both to the financial mar-
ket distress and to the abrupt change in the forecast for growth. . .Once it
became apparent that the U.S. economy was maintaining its momentum de-
spite weaker foreign growth and that financial markets had returned toward
normal, the growing uncertainty about the output gap—reflecting the continu-
ing contradiction of declining inflation and rising output gaps—made monetary
policymakers cautious. . .

Beginning in mid-1999, with the estimated output gap increasing further
and growth shifting to a still-higher gear, policymakers became more concerned
about the possibility of overheating and, hence, the risks of higher inflation [and
subsequently tightened policy significantly]. . .

Why did policymakers tolerate for a while further increases in the output
gap, and why did they subsequently become more concerned about the infla-
tion risks from further increases in the output gap? I think the change can
be rationalized in terms of my discussion of the case for a nonlinear policy re-
sponse under uncertainty. As the unemployment rate fell farther below the best
estimates of the NAIRU and the risk of overheating increased, policymakers
became less tolerant of continued above-trend growth.

(Meyer (2000), emphasis added)

The models of this paper thus may help us to better understand the motivations

and performance of monetary policy, especially in light of the recent uncertainties about

trend productivity growth and sustainable rates of labor and capacity utilization that U. S.

monetary policymakers have faced.

5.1 More General Models

The results of this paper also apply more broadly than to just the simple illustrative

model (1) considered throughout the main text. It is clear that the same ideas of signal

extraction and updating with a non-normal prior apply to models with a greater number

of indicator variables, with results that will have the same qualitative features as those

discussed in the text—in this context, the “size of the surprise” referred to throughout the

paper must be redefined as the overall size of the multivariate surprise, as in section 4.
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It is also true that the results of this paper generalize very easily to any model

that exhibits separation of estimation and control, including forward-looking models that

possess this property.25 The story being told in sections 3 and 4 of this paper is essentially

one of estimation, so that as long as the control stage of the problem is separate from that

of estimation, the same types of diagrams presented earlier will remain very relevant for

thinking about the problem, and the same intuition applies.

5.2 Some Caveats

A few final caveats about the implementation and importance of such a nonlinear policy

prescription are in order.

The examples above clearly illustrate the point that a quantity of primary importance

for policymakers is the size of the surprise in observed variables that they face, relative

to their prior standard deviation on that surprise. Correlations between the shocks in

the model are also important in determining the magnitude of the overall surprise. Small

surprises will tend to lead policymakers to a cautious response to observed unemployment

in this framework, while larger surprises will tend to lead to an increasingly aggressive

response of policy to unemployment at the margin.

This naturally raises the question as to what exactly constitutes a “small” or a

“large” surprise. On the basis of the examples considered above, it appears that if the

surprise is one of roughly 1 standard deviation, then it is not “large,” yielding revisions

and interest rate responses that are very well approximated by a linear (though possibly

somewhat attenuated) function. However, if the surprise is instead taken to be one of

roughly 2 standard deviations or more, then the nonlinearities in policymakers’ optimal

response become more pronounced. Thus, a guideline of roughly 2 standard deviations

may serve as a starting rule of thumb for determining whether a surprise is “large” or

“small,” though it obviously should be taken with a substantial grain of salt.

In addition, it is clear that the baseline model (1) used in the examples above is

extremely simple, and not representative of the full range of variables with which poli-

cymakers are actually concerned. A model more representative of that actually used by

25Pearlman, Currie, and Levine (1986) and Svensson and Woodford (2000) show that the forward-looking
linear-quadratic model possesses this property.
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policymakers (either formally or informally) would likely involve additional variables such

as the prices of oil, commodities, exchange rates, assets, and a term structure of interest

rates, to name just a few. Incorporating additional variables such as these into the model

would explain correspondingly more variation in unemployment and inflation, and lead to

a very different set of surprises in these equations than result from the very simple model

specified in equations (1), plus lead to a whole new set of surprises in these other variables

under consideration. Thus, again, it becomes very unclear what variances should be used

when evaluating the relative magnitude of the surprise facing policymakers in practice.

6. Conclusions

Can optimal nonlinear policy describe the behavior of the Federal Reserve in the 1990s?

The answer appears to be “yes,” for a class of models in which policymakers’ priors about

the natural rate of unemployment are diffuse in a region around the mean. Optimal

policy in this case is characterized by a cautious response to small surprises in observed

unemployment and inflation, but an increasingly aggressive response to surprises in these

variables at the margin. These features appear to match very well statements by Federal

Reserve officials, and the historical behavior of the Fed, in the late 1990s.

Whether this nonlinearity is quantitatively significant in practice depends on the size

of the overall “surprise” contained in the realized values of the observable variables, with

two standard deviations not being an unreasonable benchmark for quantitative significance.

Note that a “large” surprise in the examples above warranted both a large revision in

policymakers’ beliefs, and a more aggressive policy response at the margin.

Finally, it should be emphasized that the results demonstrated in this paper are not

specific to models incorporating a Phillips curve type of relationship, but rather apply more

generally to any signal extraction problem with non-normal priors on a key unobserved

variable of the model. Since much of policymakers’ current uncertainty about the state of

the economy involves updating priors about unobserved variables through signal extraction,

the effects in this paper should be regarded as being applicable to a fairly wide variety of

situations.
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Appendix: Mathematical Derivations

Assume policymakers’ prior (time t−1) distribution on u∗ is given by the density function

f(u∗). The mean of this distribution is assumed to exist, and without loss of generality,

equals 0. The variance is assumed to exist and equals σ∗2. Given u∗, the (observable)

unemployment rate ut is distributed N(u∗, σ2), with density denoted by φ(ut − u∗). I

consider in this appendix what qualities of the density f lead to the prescriptions for

policy given in the text.

I restrict attention to the case of one observable variable, ut, for clarity. The analysis

for multiple observable variables is essentially identical—one need only calculate the size

of the joint surprise to determine the extent of updating of policymakers’ priors that takes

place.

The formula for policymakers’ posterior on u∗, Etu
∗ ≡ E[u∗|ut], is the usual:

E[u∗|ut] =
∫
u∗φ(ut−u∗)f(u∗)du∗∫
φ(ut−u∗)f(u∗)du∗ (A1)

Policymakers set interest rates rt based on the estimated unemployment gap, ut −
E[u∗|ut]. The marginal responsiveness of policy to observed unemployment ut is therefore

given (up to a minus sign) by:

1− ∂E[u∗|ut]
∂ut

= 1− 1
σ2

Var[u∗|ut] (A2)

where the equality in (A2) follows from (A1) by differentiation through the integral. Note

that for f normally distributed, Var[u∗|ut] is independent of ut, so that the marginal

responsivenss of policy is constant.

The concavity or convexity of the optimal policy response is given by:

− ∂2E[u∗|ut]
∂u2

t

= − 1
σ4

Skew[u∗|ut] (A3)

The text emphasizes two features of optimal nonlinear policy that are thought to be

particularly relevant: 1) the responsiveness of policy is attenuated (i.e., cautious), relative

to normal, for small surprises (ut ≈ 0), and 2) the marginal responsiveness of policy

increases in the size of the surprise (ut).
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By equation (A2), property 1) above is equivalent to Var[u∗|ut] being larger than

normal when evaluated at ut = 0.26 I begin with the assumption that f is Gaussian, and

consider what perturbations increase the conditional variance in (A2). This is essentially

a calculus of variations problem. The following diagram serves as a useful illustration:
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Figure A1

where the solid line in the figure depicts the density f , the short-dashed line φ, and the

long-dashed line the function y = x2. The quantity Var[u∗|ut = 0] is (up to a constant

factor) the integral of the product of these three functions:

Var[u∗|ut=0] =
∫
u∗2φ(−u∗)f(u∗)du∗∫
φ(−u∗)f(u∗)du∗ (A4)

Holding the denominator constant, we can think of increasing the value of this quantity by

reducing f where the product u∗2φ(u∗) is small, and increasing f where the same product

is large. Thus, we reduce f near 0, and increase f for intermediate values of u∗. Such an

f will satisfy property 1) (attenuation near 0), as desired.

Analytically, we can prove these assertions via a variational argument on f . Consider

perturbing the function f by an amount δ over the interval [ξ−h, ξ+h], and call this new

function fδ. Note that we need not renormalize fδ to have unit mass, as the denominator

of (A4) makes this renormalization irrelevant. We have:

∂

∂δ

∫
u∗2φ(u∗)fδ(u∗)du∗ =

1
δ

∫ ξ+h

ξ−h

u∗2φ(u∗)δdu∗ (A5)

≈ 2hξ2φ(ξ)

26There is actually nothing that prevents (A2) from being negative (as in the two-regime model in the
text). In this case, I am interpreting a further decrease in (A2) (toward minus infinity) as the desired
policy attenuation.
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Similarly,

∂

∂δ

∫
φ(u∗)fδ(u∗)du∗ =

1
δ

∫ ξ+h

ξ−h

φ(u∗)δdu∗ (A6)

≈ 2hφ(ξ)

The derivative of (A4) with respect to the δ-perturbation is then:

2hξ2φ(ξ)
∫

φ(u∗)f(u∗)du∗ − 2hφ(ξ)
∫

u∗2φ(u∗)f(u∗)du∗

(∫
φ(u∗)f(u∗)du∗

)2
(A7)

This quantity is less than 0 for ξ = 0. It is actually greater than 0 as |ξ| tends toward

infinity, though the effect is very small (because φ(ξ) is so small). More specifically, it

is negative for ξ2 < E[u∗2|ut = 0] and positive for ξ2 > E[u∗2|ut = 0]. Thus, perturbing

f downward at 0, and pushing it upward for intermediate and large values of |ξ|, leads
optimal policy to have property 1) emphasized in the text, as was to be shown.27

We can use the same technique to determine what distributions f possess property 2)

(an increasingly aggressive response to unemployment at the margin). We know from

equation (A3) that this is equivalent to Skew[u∗|ut] having sign opposite that of ut—i.e.,

policymakers’ posterior distribution on u∗ must be skewed toward 0.

Begin again with a density f that is Gaussian with variance σ∗2, and consider the

perturbation fδ, which equals f except over the interval [ξ − h, ξ + h], where it is greater

by an amount δ. A straightforward calculation yields:

∂

∂δ
Skew[u∗|ut] ≈

2hφ(ut−ξ)∫
φ(u∗)f(u∗)du∗

[
ξ3 − 3ξ2µ− 3ξE[u∗2|ut] + 3µVar[u∗|ut] + 6µ2 − µ3

]
(A8)

where µ ≡ E[u∗|ut]. Note that the operators E and Var in (A8) are taken with respect

to the base Gaussian density f . Since Skew[u∗|ut] = 0 for all ut when δ = 0, we wish to

know for what values of ξ the quantity (A8) is negative for all values of ut in which we are

interested. This requires an analysis of the cubic polynomial in ξ on the right-hand side

of (A8).

27Note that equation (A7) holds for f non-Gaussian as well, so that the variational argument is valid
for f significantly different from a normal distribution, as well as locally.
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Since we are starting from a Gaussian base density f , we know that µ =
σ∗2

σ2 + σ∗2 ut

and Var[u∗|ut] =
σ2σ∗2

σ2 + σ∗2 . For values of the surprise ut that are not exceedingly large

(much greater than 6, relative to its mean of 0), the constant (in ξ) term 3µVar[u∗|ut] +

6µ2 − µ3 is necessarily positive. This implies that (A8) evaluated at 0 is postiive.

The limit of (A8) as ξ tends to infinity is also positive. Examination of signs of the

coefficients of the ξ polynomial reveals that there are exactly two positive roots. Thus the

ξ polynomial begins above 0, trends smoothly down into the negatives, and then trends

smoothly back up into the positives, where it asymptotes to ξ3.

To attain Skew[u∗|ut] < 0, it follows from this analysis that we want to perturb f

downward near 0, downward at the tails, and upward for intermediate values of ξ. These

are again exactly the diffuse-middled types of distributions described in the text. Note

that in contrast to property 1), for property 2) the presence of thin tails in policymakers’

prior distribution helps to generate the desired effect.
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