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Abstract 
 
We explore how the introduction of habit preferences into the simple intertemporal consumption-based 
capital asset pricing model "solves" the equity premium and risk-free rate puzzles. While agents with 
time-separable preferences care only about the overall volatility of consumption, we show that agents 
with habit preferences care not only about overall volatility, but also about the temporal distribution of 
that volatility.  Specifically, habit agents are much more averse to high-frequency fluctuations than to 
low-frequency fluctuations. In fact, the size of the equity premium in the habit model is determined by a 
relatively insignificant amount of high-frequency volatility in U.S. consumption.  Further, the model's 
premium and returns are very sensitive to changes in characteristics of the stochastic process for 
consumption, changes that have been dramatic during the 20th century.  The model also carries 
counterfactual implications for the equally dramatic changes in the equity premium and risk-free rate 
observed over the last 100 years. 
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I. Introduction  

Is consumption habit-forming?  If so, it might be possible to account simultaneously for the high 

equity premium and low risk-free rate of return observed in historical data for the U.S.  Mehra and 

Prescott (1985) argued that the observed premium of equity returns over bond returns was puzzling in the 

context of an economy populated by individuals with time-separable constant relative risk aversion 

preferences.  Constantinides (1990), in contrast, showed that if consumption levels in adjacent periods are 

complementary in agents’ preferences, these puzzles could be resolved.  Our aim in this paper is to 

explore the nature of this resolution. To do so, we employ spectral utility functions that help us examine 

an agent’s attitude toward the temporal distribution of consumption volatility. We then show that if the 

representative agent’s preferences exhibit intertemporal non-separabilities (such as habit), the asset-

pricing model has important implications for the equity premium and the risk-free rate of return.  

Spectral utility functions decompose agents' preferences for consumption smoothness into 

preferences for smoothness by frequency.  They are calculated by first decomposing consumption time 

series into orthogonal components that have all volatility concentrated in given frequency bands.  Then 

expected utility is calculated for each orthogonal component.  For time-separable preferences, spectral 

utility is flat because in such cases agents care only about overall volatility (and, of course, higher 

moments) in consumption and not about the temporal distribution of volatility.  But for habit preferences 

the spectral utility function is not flat: agents are less averse to low-frequency (persistent) fluctuations 

than to high-frequency (less persistent) fluctuations.  Moreover, as overall volatility increases, habit 

agents disproportionately eschew high-frequency fluctuations.  

The spectral utility calculations suggest that the risk premia demanded by habit agents to hold 

risky securities will depend on whether the securities’ payoffs have high- or low-frequency volatility.  

Indeed, we find that without changing overall volatility, making consumption volatility less persistent can 

lead to dramatic increases in the equity premium in the habit model.  For instance, such a shift, designed 

to be modest relative to historically observed changes in consumption, can lead to increases in the equity 

premium in excess of 1600 basis points.  

We also show that the size of the equity premium in the habit model is determined by a relatively 

insignificant amount of volatility over short time horizons. For instance, if high frequency volatility is 

held fixed, even an immodest tripling of overall consumption volatility may be accompanied by a decline 

in the equity premium so long as consumption is made more persistent.  

That the equity premium in the habit model is driven by high-frequency volatility poses a 

problem for the model, since the distinguishing characteristic of U.S. consumption is that it is exceedingly 

smooth, i.e., the consumption volatility is concentrated at low frequencies.  However, as we show, the 

habit model is extremely sensitive to changes in even the tiny amount of high-frequency consumption 
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volatility observed in U.S. data.  Moreover, this sensitivity of the habit model suggests that the model’s 

predictions might not be robust to historically observed changes in the properties of consumption growth. 

To investigate this, we estimate the observed changes in consumption growth moments using 40-year 

rolling samples, and find that volatility has declined by a factor of 4, while the first-order autocorrelation 

has increased from about –0.5 to 0.4.  Using preference parameters calibrated to reproduce the average 

equity premium and risk-free rate over the last 100 years together with the consumption growth moments 

from the 40-year rolling samples, we show that the habit model predicts a dramatic 2500-basis-point 

decline in the equity premium and a dramatic 1600-basis-point increase in the risk-free rate.  In stark 

contrast, the observed equity premium has risen by about 200 basis points, and the observed risk-free rate 

has declined by a similar amount.  

We produce the above results with a simple yet popular version of habit preferences where the 

habit stock is a linear function of just the previous period’s consumption. This version of habit is 

illustrative and makes the implications of the model transparent. Our main results, however, are robust to 

alternative specifications of habit.  We replicate our results for two other specifications: (i) a multiple lag 

internal habit formation similar to Heaton (1995) and an external habit formation similar to Campbell and 

Cochrane (1999).  

 

II. Models of the Equity Premium and Risk Free Return 

We utilize the Lucas (1978) “tree” model as our foundation for general equilibrium asset pricing.  

In this economy, there is a single tree that yields an exogenous stochastic flow of fruits, denoted by dt at 

time t.  The representative agent in this economy has preferences described by  

∑
∞

β
0=t

to )c(uE t  

where E0 denotes conditional expectation given information at time 0, u(⋅) denoted the period utility, ct 

denotes consumption at time t and β ∈ (0,1) is the discount factor.  There is a competitive market for 

trading claims to the tree's fruits.  The measure of agents and the measure of outstanding claims are each 

normalized to one, with the representative agent holding the single claim to the tree's fruits.  With pt 

denoting the price of one claim and st denoting the agent's shareholdings at time t, the agent's budget 

constraint is given by: 

ttt1ttt s)dp(spc +≤+ + . 

The agent's first-order conditions for choosing the optimal consumption and shareholding sequences are: 

(1)  )dp)(c('uEp)c('u 1t1t1tttt +++ +β= ,  t ≥ 0. 
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In equilibrium all of the fruits are consumed each period and there is no other source of the consumption 

good, so ct = dt for all t.  The equilibrium prices are then determined as stationary functions of the state: pt 

= p(ct).  This method can be used to price assets with different payoff structures as well.  For instance, the 

time-t price, f
tp , of a one-period bond that pays one unit of consumption in period t+1 must satisfy  

(2)  )c('uEp)c('u 1tt
f
tt +β= ,  t ≥ 0. 

Thus, the return on the risky asset is given by: 

(3)   
p

cp
R

t

1t1t
1t

++
+

+
=   

and the return on the riskless asset is given by: 

(4)  . 
p
1

R
f
t

f
1t =+  

The 'equity premium' is the difference between the two returns.  

 Mehra and Prescott (1985) studied whether this model is consistent with the observed equity 

premium in the U.S.  They assumed a specific functional form for u(⋅) and a specific stochastic process 

for consumption.  Period utility was of the constant relative risk aversion class, so preferences were given 

by: 

0.        ,
1
c

E
0=t

1
t

o >σ
σ−

β∑
∞ σ-

t  

(The σ = 1 case will be interpreted as logarithmic.)  Consumption growth was approximated by a two-

state Markov process with a symmetric transition matrix.  The three parameters of this process (the values 

of consumption growth in the 'good' state and the 'bad' state, and the probability of changing from one 

state to another) were chosen to match the mean, standard deviation and first-order autocorrelation of 

annual growth of real per-capita consumption of nondurables and services from 1889-1978.  The return 

on the risky asset was measured by the dividend-inclusive ex-post real return on the S&P500 and the 

return on the riskless asset was the ex-post real risk-free return on 3-month Treasury bills (relative to the 

consumption deflator for nondurables and services—see Shiller, 1989).  

Given values for β and σ, Mehra and Prescott showed that the price of the risky asset is 

proportional to consumption, with the constant of proportionality depending on the state.  They also 

derived closed-form solutions for the returns on the risky and the risk free assets.  For β ∈ (0,1) and σ ∈ 

(0,10], they found that the average equity premium implied by the model is too small relative to the data.  
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The equity premium 'puzzle' can be solved by using very large values of risk aversion (e.g., σ = 50), but 

this was regarded as implausible.  Moreover, as has been argued by Weil (1989), even with high degrees 

of risk aversion, it is not possible with time-separable preferences to account simultaneously for the large 

premium of stock returns over bond returns and the low return on essentially risk-free short-term Treasury 

securities.  Indeed, when we use consumption and return data from 1889-1992, β = 0.96 and σ = 2, the 

model implies an average equity premium of 0.25%, and a risk free rate of 7.44%, whereas their 

counterparts in the data are 6.87% and 0.90%. 

There have been many attempts in the literature to explain the risk-free rate and equity premium 

puzzles, but one of the most popular was advanced by Constantinides (1990). He argued that consumers 

are habitual, in that consumption values in adjacent periods are complementary.  1  That is, the preferences 

of consumers in a discrete-time version of his model are given by: 

(5)  ∑
∞ σ

σ−
δ+

β
0=t

1
t

o 1
](L))c[(1

E
-

t , 

where δ(L) is a polynomial in the lag operator L.  The interpretation of these preferences depends on the 

sign of the lag coefficients in the polynomial δ(L).  When the lag coefficients are all negative, the 

preferences exhibit habit-persistence.  If the coefficients are all positive, then the utility function is said to 

display durability.  When the coefficients in δ(L) are zero, the preferences are time-separable. 

With habit-persistence preferences, current utility depends on the level of consumption in the 

current period relative to the level of consumption in previous periods.  The central idea is that once the 

agent consumes at a certain level, he or she gets accustomed to that level of consumption.  With 

durability, the agent has a technology that permits the transformation of goods purchased in one period 

into a flow of consumption services in future periods. 

Using a relatively low 'risk aversion' parameter coupled with a particular habit function, 

Constantinides’ calculations suggested general consistency among the mean and standard deviation of 

consumption growth, mean risk-free rate, and mean equity premium observed over 1889-1978. In our 

version of these calculations, we initially utilize a simple one-lag habit polynomial (δ(L) = δL).  We 

calculate asset prices using the simulation method described in Judd (1998). The method requires 

specifying a parametric time series model of consumption, and then simulating the consumption process 

repeatedly to evaluate the expectation in equations (1) and (2). We estimate an AR(1) time series process 

for consumption growth using data from 1889-1992. Additional details on the price calculation can be 

                                                                 
1 Other explanations of the equity premium puzzle using time-non-separable preferences include: Abel (1990), 
Heaton (1995), Boldrin, Christiano and Fisher (1997), Campbell and Cochrane (1999), and Jermann (1998). Bansal 
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found in the Appendix.  Given one-lag habit and β = 0.955, we set δ = -0.615 and σ = 0.8; together with 

the consumption growth process, these values of δ and σ uniquely enable us to reproduce the average 

equity premium and risk free rate over the period 1889-1992.2 

 

III.  A Spectral View of Habit and Time-Separable Preferences 

How does the habit model deliver the observed equity premium and the risk fee rate with low σ?3 

There is one key feature of the habit model that accounts for this: agents with habit preferences care not 

only about the overall volatility of consumption but also about the temporal distribution of that volatility. 

The next question, then, is how does habit reflect preferences for the temporal nature of 

consumption fluctuations? A useful way to measure the temporal characteristics of consumption itself is 

the spectrum, which provides a frequency-by-frequency decomposition of the variance of a time series.  

To measure how agents feel about consumption fluctuations we use spectral utility functions, which 

measure expected utility frequency by frequency.  

 

III.1 Spectral Utility Functions 

Spectral Utility is the level of expected utility associated with a particular frequency of 

consumption volatility; it is a function that maps frequencies into real numbers. With time-separability 

and quadratic utility, expected utility can be represented in a two-dimensional plot of the mean and 

variance of the consumption time series.  But with time-non-separability, the frequency of variance 

matters and a third dimension is required.  We refer to that third dimension as spectral utility.  What the 

spectral utility function does is assign a number to the level of expected utility at each frequency of 

consumption volatility.  In the special quadratic case, spectral utility can be calculated analytically (see 

Whiteman, 1985, 1986, for derivations, and Taub, 1989, for applications).  Calculating spectral utility for 

more general cases, such as constant relative risk aversion or habit preferences, requires numerical 

approximation. We calculate spectral utility functions for preferences of the form in (5) by decomposing a 

time series for consumption into different frequency components, and then computing the expected utility 

of each frequency component.  

The decomposition of consumption is accomplished by applying band-pass filters to the time 

series. When a time series is put through such a filter, the filtered series will have all its fluctuations 

                                                                                                                                                                                                                 
and Coleman (1996) propose a monetary explanation that is based on time-separable preferences. Kocherlakota 
(1996) provides a survey of the literature.   
2 All of the computations in the paper were also done using the two-state Markov process of Mehra and Prescott. 
The results were qualitatively and quantitatively similar to those reported here. 
3 Unlike the case of time-separable preferences, it is misleading to think of σ as measuring risk aversion in the habit 
model since the utility over consumption gambles at any point in time depends on past consumption as well as 
current wealth.   
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concentrated in one frequency band.  In other words, the filtered time series will have a power spectrum 

(nearly) equal to zero outside of the desired frequency band.4 Different band-pass filters isolate different 

components of the time series.  

To calculate spectral utility, we begin by calculating band-pass filters for a complete set of 

narrow frequency bands.  For example, we split the interval [0,π] into 32 equal bands, and let the 

associated band-pass filters bj(L) be such that bj(ω) = 1 for ω ∈ [jπ/32,(j+1)π/32] for j = 0,1,…31 and 

zero otherwise. After calculating the filters, the procedure for calculating spectral utility is a three-step 

process: first, simulate a time series realization of consumption; second, apply the 32 band-pass filters to 

the realization to isolate the consumption fluctuations by frequency band; third, calculate realized utility 

in each frequency band as the utility of the consumption time series associated with that frequency band.  

Expected utility in each frequency band is the mean of realized utility in the frequency band across a large 

number of replications of the three steps. 

 For example, consider an iid time series realization of consumption. A band-pass filter for the 16-

period cycle gives us a particular component of the iid time series. We evaluate the utility associated with 

this component. We can evaluate similar utilities associated with other components derived from band-

pass filters for other frequency bands. This gives us realized utilities, frequency by frequency, for a 

particular drawing of consumption. To calculate expected utility frequency by frequency, we need many 

realized utilities in each frequency band. We achieve this by repeating the above procedure for many 

simulated drawings from the consumption process.5 If we denote simulation n (of N) of the consumption 

time series of length T by {cn,t} T
1t= , realized utility for frequency band j is approximated by  

(6)  )c)L(b(u)j(U t,nj

T

1t

t
n ∑

=

β= . 

Expected utility for frequency band j is thus given by  

(7)  ∑
=

=
N

1n
n )j(U

N
1

)j(EU . 

Note that the band-pass filtered consumption series constitute an additive decomposition of overall 

consumption. Spectral utility does not share this property unless agents are risk neutral; that is, spectral 

utility is not an additive decomposition of overall expected utility. Of course, the decomposition need not 

be additive to help us understand the properties of temporally dependent preferences. Furthermore, 

spectral utility is not the same as the spectrum of realized utility. The former is the expected utility 

associated with consumption fluctuations at specific frequencies, whereas the latter is an orthogonal 

decomposition of the second moment of the utility process.  While the mean of realized utility, expected  

                                                                 
4 See Baxter and King (1999) and Christiano and Fitzgerald (1999) for more details on band-pass filtering. 
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utility, is the object of usual economic interest, the second moment of the utility process has no apparent 

economic interpretation.6  

Figure 1 displays spectral utility for serially uncorrelated lognormal consumption for two cases: 

the time-separable case and a “habit” case with δ = -0.615.  In both cases, β = 0.955, σ = 0.8. (For the 

“durability” case, e.g., δ = 0.5, spectral utility slopes upward.) An agent with time-separable preferences 

is indifferent to various temporal distributions of volatility as long as the overall volatility remains the 

same.  In this case, spectral utility is flat: two different consumption processes, one with all its volatility 

concentrated at low frequencies and another with the same volatility concentrated at high frequencies, 

yield the same expected utility.  The figure also illustrates an important feature of the spectral utility 

associated with habit preferences.  As Orwell might have put it, some variances are more equal than 

others: for habit preferences, spectral utility slopes downward (see Figure 1b).  The two consumption 

processes yield different expected utilities for an agent with habit preferences:  the agent would prefer the 

consumption process with volatility concentrated at low frequencies to the less persistent, high-frequency 

volatility consumption process. 7  

Figure 1: Spectral Utility Functions 

a: Time-Separable

0 0.1 0.2 0.3 0.4 0.5
1/period

b: Habit

0 0.1 0.2 0.3 0.4 0.5
1/period

 

A second feature is that some variances are disproportionately more equal than others. This is 

illustrated in panels a and b of Figure 2. These panels display expected utility by frequency for several 

different values of overall consumption variance, where volatility at each frequency is increased by the 

                                                                                                                                                                                                                 
5  Additional details of these computations can be found in Otrok (2001).   

6 The utility process is the sequence ∑
∞

=
+β

0k
kt

k )c(u  for t = 1, 2, … ∞. The mean of this process is expected utility. 

The spectrum associated with the sequence is a decomposition of the variance of the utility process. 
7 For a serially correlated consumption process, the variance will not be distributed equally across all frequencies, so 
the interaction between the consumption spectrum and preference nonseparabilities will produce more complicated 
spectral shapes than those in Figure 1. 
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same percentage.  Panels c and d show expected utility as a function of consumption variance for two 

frequencies, a “long-run” frequency corresponding to 50-period cycles, and a “short-run” frequency 

corresponding to 2-period cycles. For time-separable preferences, the drop in expected utility is the same 

for both frequencies whereas for habit preferences, high-frequency spectral utility drops more rapidly than 

low-frequency spectral utility (panel d). 

Figure 2: Spectral Utility Functions for Different Consumption Volatilities 

a: Time-Separable

0 0.2 0.4
1/period

Variance=0.0052

2*Variance
3*Variance

4*Variance
8*Variance

b: Habit

0 0.1 0.2 0.3 0.4 0.5
1/period

Variance=0.0052
2*Variance
3*Variance
4*Variance
8*Variance

 

c: Time Separable: Two Frequencies

0 0.0002 0.0004 0.0006 0.0008 0 .001 0.0012 0.0014

Consumption Variance

High Freq
Low Freq

d: Habit: Two Frequencies

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Consumption Variance

High Freq
Low Freq

 

As is evident from Figure 2b, this habit agent is indifferent to an eight-fold increase in volatility when the 

volatility is shifted from a high frequency (1/period = 0.5) to a low frequency (1/period = 0.05).  That is, 

faced with increasing variance, the habit consumer wants it concentrated more and more at lower 

frequencies; when it is not, he or she would demand a higher premium to bear the associated risk. 

It is clear from Figures 1 and 2 that consumption processes with different spectral characteristics 

will have differing effects on the compensating risk-premia demanded by individuals with habit 

preferences.  The quantitative implications of this feature are illustrated in the next subsection.  
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III.2  Implications for the Equity Premium 

 The calculation of the equity premium and risk-free rate in Section II requires a consumption 

growth process.  We first consider three processes for the level of consumption that have the same overall 

volatility but different temporal distributions of volatility. In Figure 3, we have plotted three spectra for 

log consumption where the autocorrelation of consumption growth is 0.3, 0, and -0.3.  (Throughout, we 

hold the mean consumption growth rates fixed across the three specifications at the 1889-1992 sample 

average of 1.7 percent. This is accomplished by adjusting the constant term in the autoregression.)  

 

Figure 3: Log Consumption Spectra: Constant Level Variance 

All Frequencies

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3 0.4 0.5
1/period

AR = -0.3
AR = 0.0
AR = 0.3

 

These spectra are derived by starting with an AR(1) process for consumption growth and then 

applying the (1-L)-1 filter to the consumption growth spectrum; i.e., dividing the growth spectrum by 

1-e-iω except at ω = 0.  The level variance is held constant by adjusting the innovation variances in the 

AR(1) growth processes. In all three spectra in Figure 3, the standard deviation of the log level of 

consumption is 0.0690.8 The resulting equity premia and the risk-free rates for habit preferences with δ = 

-0.615, β = 0.955 and σ = 0.8 are given in Table 1. 

 

                                                                 
8 This standard deviation of the log level of consumption arises from an iid consumption growth process (as in 
Constantinides, 1990) with standard deviation 0.03, a historically reasonable value.  The standard deviation of the 
log level was calculated as the square root of twice the spectrum integrated over the range [0.02π,π] (a range 
corresponding to periodicities of up to 100 years) involving 1024 ordinates. 
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Table 1: Habit Model Asset Returns with Constant Consumption Variance 

Cons. Growth Auto. Corr. 0.3 0.0 -0.3
Equity Premium (%) 0.67 3.76 16.8
Risk Free Rate (%) 5.71 3.31 -6.24
Cons. Growth Std. Dev. 0.0227 0.03 0.0397

 

 

 

It is clear that the equity premium is very sensitive to changes in the temporal distribution of consumption 

volatility—when the autocorrelation of consumption growth changes from 0.3 to -0.3, the equity premium 

increases by more than 1600 basis points. This is despite the fact that the three level spectra in Figure 3 do 

not appear to be very different (though of course the growth rate spectra are).   

To examine further the role of the temporal distribution of volatility, consider three consumption 

processes where the high-frequency volatility  is the same.  Specifically, we construct three consumption 

level processes as explained earlier, but instead of holding the overall level variance constant, we hold 

constant the variance in the 2 to 3 year range (1/period = 0.5 to 0.33). Despite a reduction of 60% in the 

log consumption standard deviation (0.1209 to 0.0411) in moving from growth autocorrelation of 0.3 to 

-0.3, the equity premium actually rises because high-frequency volatility has become relatively more 

important (see Table 2).  This suggests that the differences between the three processes at low frequencies 

have very little impact on the equity premium for the habit model—the sensitivity of equity premium in 

Table 1 is the result of (visually indistinguishable) differences in the high frequency part of the spectra in 

Figure 3.  

 

Table 2: Habit Model Asset Returns with Constant High Frequency Consumption 

Variance 

Cons. Growth Auto. Corr. 0.3 0.0 -0.3
Equity Premium (%) 3.19 3.76 3.90
Risk Free Rate (%) 3.72 3.31 3.20
Overall Cons. Level Std. Dev. 0.1209 0.0690 0.0411
Cons. Growth Std. Dev. 0.0372 0.03 0.0263

 

 

To complete the description of how volatility at different frequencies affects the equity premium, we 

consider three consumption processes where the low-frequency volatility  is the same. The resulting equity 

premia and risk-free rates are now given in Table 3.  
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Table 3: Habit Model Asset Returns with Constant Low Frequency Consumption Variance 

Cons. Growth Auto. Corr. 0.3 0.0 -0.3
Equity Premium (%) 0.71 3.76 18.89
Risk Free Rate (%) 5.66 3.31 -7.91
Overall Cons. Level Std. Dev. 0.0686 0.0690 0.0699
Cons. Growth Std. Dev. 0.0225 0.03 0.0405

 

 

 

Even though the overall level volatility is almost the same, the equity premium increases by more than 

1800 basis points when the consumption growth autocorrelation falls from 0.3 to -0.3.   

 These calculations illustrate that the temporal nature of consumption volatility is at least as 

important as the magnitude of consumption volatility. Huge increases in the equity premium can be 

obtained (as in Table 1) by relocating volatility from low to high frequencies. Moreover, once high-

frequency volatility is held fixed (Table 2), a tripling of overall variance does not increase the equity 

premium, while tiny changes (Table 3) in overall variance concentrated at the high frequencies produce 

enormous changes in the equity premium.  This is parametric sensitivity on a grand scale. 

 Figure 4 illustrates just how grand the scale really is. The figure depicts two deterministic time 

series associated with the “AR = -0.3” and “AR = 0.3” cases, constructed from a constant-low-frequency-

consumption-variance experiment like that underlying Table 3. These time series are weighted sums of 

sine waves at various frequencies, with weights given by the square roots of the heights of the spectra. An 

agent would demand a greater premium to compensate for the fluctuations about mean consumption 

represented by the (slightly) more volatile “AR = -0.3” consumption process than to compensate for the 

“AR = 0.3” process despite the fact that the two consumption processes (the two “High+Low Frequency 

Components”) are almost the same.  As indicated in Table 3, the equity premium demanded by the habit 

agent to hold the “AR = -0.3” consumption process is more than 1800 basis points higher than the one 

demanded to hold the “AR = 0.3” consumption process, and the reason is the difference between the high 

frequency components that are each practically invisible.  
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Figure 4: Components of Consumption Time Series 

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

time

AR = -0.3
AR = 0.3

High + Low 
Frequency 
Components

High Frequency 
Components 
Only

 

In the next section, we use the two models (habit and time-separable) together with observed 

changes in the consumption process to calculate the equity premium and risk-free rate. We then examine 

whether the calculated values are consistent with their empirical counterparts.  

 

IV.   Confronting the Changing Characteristics of the Equity Premium and Risk-Free Rate 

IV.1  Changes in Consumption Growth in the U.S. 

The changing nature of the consumption growth process over time is reflected in the consumption 

growth moments in the pre-war (1889-1929) and post-war depicted in Figure 5. To emphasize how the 

estimates of the moments evolve through time, the figures are calculated using 40-year rolling samples.  In 

each case, the date on the horizontal axis corresponds to the ending period of the sample.  Each of the 

three panels in the Figure reflects remarkable secular movements in consumption growth moments over 

the past 100 years. (See also Golob (1992) for evidence on the changes in the consumption process.) 
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Figure 5: Evolution of Consumption Growth Moments  
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c: Autocorrelation 
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Figure 5a, for example, reflects the enormous effect the Great Depression had on average 

consumption growth in the U.S.  In the 40-year sample ending just prior to the Depression’s onset, mean 

consumption growth was nearly 2% per year; in all of the ensuing 40-year samples that include it, mean 

consumption growth is nearly a third smaller.  Moreover, in the later samples that do not include the 

Depression, mean consumption growth is much higher.   

Figures 5b and c indicate that consumption growth has become more predictable during the 20th 

century. Figure 5b, for example, shows that the standard deviation of consumption growth has declined 

over time, indicating that consumption growth has become more predictable in the sense that it has 

become more concentrated around its mean. Figure 5c documents that autocorrelation in consumption 

growth has risen during the 20th century. This also means that consumption growth has become more 
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predictable—consumption growth one year ahead has become increasingly similar to current 

consumption growth.9  

 

IV.2 Evolution of the Equity Premium and the Risk-Free Rate: Data vs. Theory 

The implications of the changing consumption growth moments for the time-separable model 

with β = 0.96 and σ = 2.0 are illustrated in Figure 6.  Panels a and b of Figure 6 display the mean equity 

premium and the mean risk-free rate produced by the time-separable model (thin curve, “TS”) using the 

corresponding consumption growth moments estimated for the appropriate sub-sample; the panels also 

display the observed mean equity premium and risk-free rate (thick curve). The calculations proceed as if 

at each date, agents treat the current “rolling” estimates of the consumption growth moments as true 

values, though the calculations do not admit the possibility that agents take into account the apparently 

changing nature of the consumption process. The figures are best viewed as indicating what the average 

equity premium and risk free-rates were historically (using rolling 40-year samples) compared to what the 

model generates as the mean equity premium and risk-free rate using the then-prevailing estimates of the 

parameters of the consumption growth process. 

For example, consider the time-separable model’s prediction and the data in Figure 6 for the end 

date 1930. The mean, standard deviation and autocorrelation of consumption growth for the 40-year 

subsample from 1890 to 1930 are 1.96 percent, 4.26 percent and -0.46 respectively (as illustrated in 

Figure 5 for the end date 1930). The representative agent in the time-separable model uses these 

consumption growth moments to decide on consumption and asset-holdings. These decisions, in 

equilibrium, imply a mean equity premium of 0.19 percent and a mean risk-free rate of 6.05 percent. For 

the period 1890-1930, the mean equity premium is 5.67 percent and the mean risk-free rate is 2.79 

percent. These numbers –– the model’s implications and the data on mean equity premium and risk-free 

rate –– are illustrated in Figure 6 for the end date 1930. 

It is clear from Figure 6 that the considerable changes in the characteristics of consumption 

growth do not produce noticeable changes in the mean equity premium and risk-free rate produced by the 

time-separable model.  In fact, there is much more “action” in the equity premium and risk-free rate in the 

                                                                 
9 The interpretation of these facts adopted in the next subsection is that they do represent changes in the evolution of 
U.S. consumption. An alternative interpretation is that the data are riddled with measurement error that has declined 
in severity over time. For example, the standard deviation and autocorrelation estimates in Figure 5 are consistent 
with actual consumption being a random walk, and measured consumption being actual consumption plus a white 
noise whose variance has declined over time. If agents observe actual consumption, with unchanging stochastic 
properties, the model does not predict the dramatic changes in the mean equity premium and risk-free rate of the 
next section. Of course, such a separation of the information sets of agents and researchers studying them would 
require reinterpretation of other empirical results involving the equity premium, and indeed the puzzles themselves.   
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data than in the model.  More importantly, in all subsamples, the model produces a mean equity premium 

that is far too low, and a risk-free rate that is far too high. 

 

Figure 6: Equity Premium and Risk Free Rate Over Time: Data vs. the Time-Separable 

Model 
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Panels a and b of Figure 7 illustrate similar calculations for the habit model with δ = -0.615, β = 

0.955 and σ = 0.8.  (Recall from Section II that these parameter values permit the habit model to match 

the mean equity premium and risk-free rate for the 1889-1992 sample.) The habit model is quite sensitive 

to changes in the characteristics of consumption.  For example, using the parameters that enable a perfect 

match for the full sample, Figure 7a shows that the model overstates the equity premium by more than 

2000 basis points (for a sample ending during the Great Depression), and understates it by nearly 1000 

basis points (for a 40-year sample ending in the early 1970’s.).  Figure 7b shows that the model is about 

1400 basis points too low for the risk-free rate in a sample ending in the early 1930’s, and 800 basis 

points too high for a sample ending in the early 1970’s.  The figure makes it clear that the temporal 

changes in the mean equity premium and the mean risk-free rate predicted by the habit model, in contrast 

to the time-separable case, are much more dramatic than in the data. 
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Figure 7: Equity Premium and Risk Free Rate Over Time: Data vs. the Habit Model 
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The dramatically counterfactual predictions of the habit model are robust along several 

dimensions.  First, the nature of the results in this section does not change if, instead of the rolling 

samples, we use expanding samples with a fixed start date or ever shrinking samples with a fixed end 

point.10 Second, when we relax the assumption that consumption growth equals dividend growth and 

allow consumption growth and dividend growth to be parameterized separately, the results are nearly 

identical to those obtained in this section. Finally, as we will see in section V, using more general forms 

of habit formation does not significantly change the results in Figure 7.  

 

IV.3  Mechanics of the Time-separable and Habit models 

The behavior of the equity premium and risk-free rate in the time-separable and habit models in 

Figures 6 and 7 can be understood with the help of the consumption growth moments in Figure 5 and the 

spectral utility diagrams in Figures 1 and 2.  Figures 8 and 9 record the effects of changes in the standard 

deviation and autocorrelation of consumption growth. Risk aversion implies that as the standard deviation 

of consumption growth falls over time, the premium demanded to hold risky equity will fall and the risk-

free rate will rise.  This occurs in both models (Figures 8a-b and 9a-b), though the effect in the time-

separable model is miniscule compared to that in the habit model. 

                                                                 
10 With expanding samples and a fixed start date, there is a kind of myopic learning going on—in effect, the 
representative agent is running a time series regression on the dividend (consumption) process, and at each date, 
uses the most recent estimates of the process parameters to calculate the expected present value of future dividends 
that determines current consumption behavior. As indicated above, this learning is myopic in the sense that the agent 
does not consider the possibility that the consumption process is changing, and merely believes himself or herself to 
be getting better estimates of fixed but unknown parameters.   
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Figure 8: Consumption Growth Moments and Asset Returns: Time-Separable Model 
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The two models behave quite differently in response to changes in consumption growth 

autocorrelation. In the time-separable model, any predictability (positive or negative autocorrelation) 

raises the equity premium and decreases the risk-free rate—though again the magnitudes of the effects are 

very small (Figures 8c and 8d).  In the habit model, in contrast, the rising autocorrelation of consumption 

growth implies that the consumption spectrum is becoming more peaked and concentrated at lower 

frequencies. Together with the aversion that habit agents display toward high frequency fluctuations, this 

migration of fluctuations to the lower frequencies causes the equity premium to fall.  

The equity premia produced by the habit model (Figure 7a) thus reflect complementary 

consequences of the reduced standard deviation and increased autocorrelation of consumption growth 

observed in the sample.  Each of these effects works to reduce the equity premium in the model.  But 

from Figure 7a, the unfortunate fact is that the observed equity premium rises.  
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Figure 9: Consumption Growth Moments and Asset Returns: Habit Model 
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Understanding how the habit model’s risk-free rate changes over the sample requires knowledge 

not just of the changing second moments of consumption growth, but of the mean as well.  From Figure 

9, the rising autocorrelation in consumption growth first drives the risk-free rate down as the 

autocorrelation rises toward zero, and thereafter drives it up as the autocorrelation becomes more positive.  

Meanwhile, the falling standard deviation should drive it up.  Thus the effects work together except at the 

beginning of the sample period, when the consumption growth autocorrelation is negative and rising.  But 

the reduction in mean consumption growth early in the sample clearly dominates, driving the risk-free 

rate down.  From about the 1940-sample on, increasing mean and autocorrelation together with falling 

standard deviation all work together to push the model risk-free rate up (Figure 7b).  

The dramatically counterfactual predictions of the habit model (Figure 7) in response to the 

changing consumption growth moments in the data naturally lead to the question of whether alternative 

parameterizations of the model could improve its performance. The answer is no, since given the 

consumption moments in the data, any fixed parameterization of the model will predict, counterfactually, 

a declining equity premium and rising risk-free rate (as in Figures 7a and 7b). For instance, β = 0.96, δ = 
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-0.72 and σ = 0.53 match the equity premium and risk-free rate for the 1889-1978 sample used by Mehra-

Prescott and Constantinides. Holding this parameterization fixed, the model makes counterfactual 

predictions for the evolution of the equity premium and risk-free rate similar to those in Figure 7. In fact, 

for two-thirds of the 40-year subsamples, it is possible to find apparently reasonable (δ, σ) combinations 

(holding β = 0.96) that will produce the observed equity premium and risk-free rate.11 Choosing any one 

of these parameter combinations yields results that are qualitatively and quantitatively similar to Figure 7.  

Figure 10 provides some intuition about what is “apparently reasonable.” 

The remarkable feature of the habit model revealed by Figure 10 is that small values of σ, 

combined with moderate values of δ, can produce enormous values of the equity premium and small risk-

free rates.  In addition, for fixed δ around -0.5, very small increases in σ lead to huge increases in the 

equity premium and reductions in the risk-free rate.  The figure thus reveals another dimension along 

which the habit model is extraordinarily sensitive to its parameterization. (Note that the time-separable 

model, i.e., δ = 0.0, does not share this sensitivity to changes in σ.)  

Figure 10: Equity Premium and Risk-Free Rate for Different Preference Parameters  
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V. More General Forms of Habit Formation 

In this section, we show that our results are robust to significant alterations in the asset-pricing 

model. In section V.1 below, we use the preferences described in (5), but allow for more than 1 lag in 

consumption to affect the utility in a given period. In V.2, we examine a model with external habit 

preferences.  

 

                                                                 
11 If one uses post-WWII quarterly U.S. data, the values of δ and σ that reproduce the equity premium and risk-free 
rate are β = 0.98, δ = -0.63 and σ = 6.3; this parameterization makes the model extremely sensitive to even the small 
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V.1 Multi-lag habit 

 While the 1-lag version of habit has enjoyed widespread use, a number of studies using habit 

formation preferences have included more than 1 lag of consumption in the habit stock. To capture 

consumption complementarities at longer horizons we use a geometrically decreasing lag structure for 

habit that was proposed and analyzed in Heaton (1995).12 This version allows for a potentially infinite 

number of lags of past consumption to enter the current period utility function, and can be written as: 

(8)  ∑
∞ σ

σ−
δ+

β
0=t

1
t

o 1
](L))c[(1

E
-

t  where δ(L) = -[|δ|L1 + |δ|2L2 + |δ|3L3 + …]. 

Using the asset pricing procedure described in the previous section along with the estimated consumption 

growth process, we find that parameters δ = 0.41, σ = 0.7 and β = 0.975 match the equity premium and 

risk free rate from 1889-1992. 

Figure 11 displays the spectral utility function for this preference form. As with the one-lag habit 

model, the spectral utility function is downward sloping, indicating an aversion to high frequency 

volatility. The reason the spectral utility functions are similar is that with the geometrically decreasing 

polynomial the agent now has a greater dislike of lower frequency volatility, but the dislike of high 

frequency volatility remains.13  

As suggested by the shape of the spectral utility function, the asset pricing implications we found 

in section III.2 hold as well. Holding overall volatility constant, as in Table 1, the consumption growth 

process with an autocorrelation of -0.3 yields an equity premium of 18.13% and the consumption growth 

process with autocorrelation 0.3 yields an equity premium of 2.59%—a 1550 basis point difference. 

Holding constant consumption volatility with cycles between 2 and 3 years results in a higher equity 

premium for the consumption growth process with serial correlation of 0.3. The equity premium is 2.66% 

with the negatively autocorrelated consumption growth process and 12.32% with the positively 

autocorrelated consumption growth process. This is due to two factors: first, overall consumption 

volatility has increased by a factor of 3 in making consumption more persistent; second, the geometric 

habit agent has much greater aversion for the now more pronounced 3-6 year fluctuations (compare the 

spectral utility in Figure 11 to the 1-lag habit spectral utility in Figure 1). If we hold constant the volatility 

between 2 and 6 years, the equity premium in the positively correlated consumption growth process case 

is only 130 basis points higher than that in the negatively autocorrelated consumption growth case. The 

result is very striking because the volatility between 2 and 6 years is only 2.4 percent of the overall 

                                                                                                                                                                                                                 
changes in the consumption process observed in the data for this period.  As a result, the post-WWII version of 
Figure 7 is equally dramatic. 
12 Heaton also allows for durability. 
13 Otrok (2001) provides a more thorough explanation and illustration of the interaction between the lag polynomial 
in the utility function and the dislike of different types of consumption volatility. 
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volatility. Holding low frequency volatility constant, as in Table 3, the negatively autocorrelated 

consumption growth process yields an equity premium that is 1750 basis points greater. Clearly, the 

multi-lag habit specification is unlikely to alter the results on rolling subsamples in section IV.2 in a 

significant way. 

Figure 11: Spectral Utility Function for Multi-lag Internal Habit 
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V.2 External habit 

Campbell and Cochrane (1999, henceforth CC) develop an external version of habit formation 

commonly referred to as ‘catching up with the Joneses’.14 With this sort of habit formation the 

representative agent cares about his consumption relative to that of others. The preferences in Heaton 

(1995) and in CC both have the property that past consumption (potentially infinitely many periods in the 

past) affects the current habit stock. That is, habit evolves slowly. However, in CC (1999), since the habit 

stock is external, the representative agent does not take into account the effect of his consumption choice 

on the evolution of the habit stock.   

The preference specification that CC employ is a non-linear function designed to match not only 

the mean equity premium, but also other moments of asset returns. We follow Ljungqvist and Uhlig 

(2000) and work with a linearized version of CC’s preferences. Specifically, we use the linearized version 

presented in equation 2.3 of Campbell and Cochrane (1995). In what follows the linearization is not 

important.15  

 The period utility is given by: 

                                                                 
14 See also Abel (1990, 1999). 
15 The nonlinearity in the CC preferences is not needed to match the mean risk free rate and equity premium. 
Furthermore, the linearized version retains the important property that the habit stock adjusts slowly to changes in 
consumption. 
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(9)  
σ−

− σ−

1
)Xc( 1

tt , 

where Xt denotes the external habit stock.  As in CC (1995) the habit stock evolves according to: 

(10)  )Cln()1()Xln(a)Xln( 1t1tt −− φ−+φ+= , 

where C denotes aggregate consumption. In equilibrium, c = C. With φ  = 0.83, a = -0.06, σ = 1.4 and β = 

0.99, we are able to match the mean risk free rate and equity premium. 

Figure 12 depicts the spectral utility function for the external habit formation model. This agent, 

like the agent with internal habit formation, has a relative preference for low frequency volatility over 

high frequency volatility. Also, Figure 13 shows that the external habit model retains the property that 

increasing the variance of consumption volatility equally at all frequencies has a disproportionate effect at 

higher frequencies. However, in contrast to Figure 2b, Figure 13 shows that the relative dislike of high 

frequency volatility is spread over a larger range of frequencies.  

 

       Figure 12: Spectral Utility Function   Figure 13: Spectral Utility Function for  

                 for External Habit       Different Consumption Volatilities 
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As with the one-lag habit model of Section III.2, the implications of changing the spectral 

characteristics of consumption for equity premium are dramatic. For instance, holding constant the overall 

volatility in consumption growth, in moving from growth autocorrelation 0.3 to –0.3, the equity premium 

rises by more than 750 basis points. Holding constant the volatility at higher frequencies (here defined as 

2-7 period cycles), the equity premium rises, but only by 50 basis points. Note that as we allow the habit 

stock to include more of the history of consumption we include cycles of longer length (cycles of length 

2-3 years for 1-lag internal habit formation and cycles of length 2-6 years for multi-lag internal habit 
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formation). However it is important to note that the volatility in the range of 2-7 period cycles represents 

only 6 percent of the overall volatility.  

Figure 14 below shows that the external habit model, like the internal habit model, is sensitive to 

the changes in consumption growth moments over time. The equity premium and risk free rate in the 

external habit model moves in a fashion qualitatively similar to the case of the 1-lag internal habit model 

(Figure 7). Quantitatively the model is not quite as sensitive, but the movements remain dramatic: 

comparing the early subsamples (ending in 1932 or 1933) with the latest ones, the equity premium 

exhibits a 1600 basis-point decline with the external habit model; the decline in the internal habit model 

was over 2500 basis points. 

Figure 14: The Equity premium and Risk Free Rate Over Time 
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VI. Conclusion 

Agents with habit preferences care not only about the volatility of the consumption process they 

face, but also about the temporal distribution of the variance. This phenomenon was illustrated using 

spectral utility functions, which decompose preferences for volatility by frequency (Figures 1, 2, 11, 12, 

and 13). Given overall volatility, the habit agents prefer more serial correlation to less. One can thus 

derive "habit indifference" curves depicting how these agents are indifferent between high overall 

volatility concentrated at low frequencies and low overall volatility concentrated at high frequencies. That 

is, the habit agents can maintain the same expected utility while taking on greater volatility, provided the 

volatility comes at lower frequencies. This illustrates how the conventional intuition based on mean-

variance tradeoffs must be modified in a world with time nonseparabilities. 

Our spectral utility functions are also useful for understanding the role of time-non-separable 

preferences in explaining other stylized facts.  For example, in the business cycle literature Kydland and 
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Prescott (1982) argue that non-separabilities in preferences are necessary to explain the smoothness of 

wages relative to hours worked. Barro and King (1984) develop a model with time non-separable 

preferences that can rationalize the observed procyclicality of hours.  Backus, Gregory and Telmer (1993) 

use habit preferences to try to explain the predictable returns from exchange rate speculation. 

We have used spectral utility here to help isolate the route through which the habit model 'solves' 

the equity premium puzzle: it is founded on the heightened aversion habit agents have to high-frequency 

consumption fluctuations. Indeed, the habit model delivers the equity premium by exhibiting 

extraordinary sensitivity to high-frequency fluctuations. Because of this sensitivity, as the volatility and 

serial correlation properties of U.S. consumption have changed during the last 100 years, the model 

makes dramatically counterfactual predictions of the time path of the equity premium and the risk-free 

rate. Whether habit, as usually formulated, constitutes a resolution of the equity premium puzzle is 

therefore in question.  
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Appendix:  Calculating the Equity Premium and the Risk Free Rate 

This Appendix provides details on calculating asset prices for the three forms of preferences we use in the 

paper. Section A.1 describes a general algorithm for calculating prices. Section A.2 provides details on 

the intertemporal marginal rates of substitution for the preference forms used in the paper.  

 

A.1  General Procedure for Calculating Asset Prices 

We follow the method described in Judd (1998, pp. 574-576) to calculate asset prices. A minor 

technical difference between our computations and Judd’s is that Judd uses consumption levels, while we 

work with consumption growth rates. However, the algorithm and motivation are very similar. We start 

with the agent's first-order conditions for choosing the optimal consumption and shareholding sequences: 

(A1)  )dp)(c('uEp)c('u 1t1t1tttt +++ +β= ,  t ≥ 0. 

Divide through by u’(ct) to obtain: 

(A2)   )cp(
)c('u
)c('u

Ep 1t1t
t

1t
tt ++

+ +β= . 

Note that we have substituted in the equilibrium condition that consumption equals dividends. Since 

prices are homogenous of degree one in consumption we can write pt = wtct, where wt is the ‘stationary’ 

price. Substituting in for pt we get: 
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Next, divide through by ct to obtain: 

(A4)  1t1t1ttt c)1w)(c(mEw +++ ∂+∂β= , 

where ∂ct+1 is the gross growth rate of consumption and m(∂ct+1) denotes that the agent’s intertemporal 

marginal rate of substitution (IMRS) is written using consumption growth rates rather than consumption 

levels. Section A.2 of this appendix provides details on the IMRSs for the 3 types of preferences that we 

use. We also have similar expressions for wt+1, wt+2, etc. By recursively substituting in for wt+1, wt+2, …, 

in (A4) we obtain: 
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Since β is less than one the last term goes to 0. Returns are given by: 
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To calculate the expectation in (A5) we use a simulation procedure. First we assume that consumption 

growth follows an AR(1) process: 

(A7)  tt1t cc ε+∆ρ+α=∂ + , where ε t is N(0, 2
εσ ). 

We estimate the parameters α, ρ and 2
εσ  with OLS. The procedure for calculating wt is as follows: 

1) Create a discrete grid of values for ∂ct+1. (In our simulations we use 30 grid points that cover 

a range from 3.5 standard deviations above and to 3.5 standard deviations below the mean of 

consumption growth.) 

2) Simulate a long time series for ∂ct+j, j = 2,3,… using the estimated parameters of the 

consumption growth process and using the first grid point for ∂ct+1 as an initial condition. (In 

our simulations we use a time series of length 200.) 

3) With the consumption growth time series from 2) and a parametric form for utility evaluate 

equation (A5). 

4) Repeat step 3) many times, and the average of the simulations is the price of the risky asset 

when consumption growth takes on the value of the 1st grid point. (In our simulations we 

draw 1500 time series.) 

5) Repeat Steps 2)-4) for each of the grid points. 

6) To get a pricing function project the vector of asset prices (wt) from step 5 onto the 

consumption growth grid points and a constant.  

7) To calculate a return time series, simulate a long time series for consumption growth. (Again, 

our simulations are of length 200.) 

8) Using the regression coefficients from step 6) calculate a time series of prices. Next, using 

realized consumption growth and the price time series calculate the return time series using 

equation (A6). 

9) Repeat steps 7) and 8) many times and average to calculate expected returns. (We use 1500 

simulations.) 

Judd (1998) provides details on the issues involved with this calculation. One important issue is the length 

of the time series used to approximate the infinite sum in (A5). Given our value of β, a time series of 

length 200 provides a good approximation since 0.955^200 is close to zero. That is, additional terms have 

practically no impact on the sum in (A5). A second issue is the number of simulations used to calculate 

the expectation. We experimented with increasing the number of simulations to 3000, and the results were 

unchanged. A third issue is whether or not a linear function provides a good approximation to the true 

pricing function. We plotted the simulated prices for each grid point, along with the fitted values from the 

regression in step 6) and the pricing function in the time separable case is well approximated by a linear 
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function. In the habit case the simulated values appear to have a small degree of non-linearity, though the 

fitted values appear close.  

 

A.2 Intertemporal Marginal Rates of Substitution 

 This section provides details on calculating the IMRS for the models that we study.  

 

Time-separable preferences 

The first is CRRA time-separable preferences of the form: 
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The corresponding IMRS, written in terms of consumption growth rates is: 

(A9)  σ−
+σ

σ
+

+ ∂β=β=∂ )c(E 
c

c 
E)c(m 1tt-

t

-
1t

t1t . 

 

1-lag habit 

 Our first version of habit-formation preferences, which contains 1 lag of consumption, is of the 

form: 
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The corresponding IMRS is 
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which can be written in terms of current and future consumption growth rates as follows 
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Multi-lag habit 

 The second version of habit that we use allows for an infinite number of lags of past consumption 

to enter the period utility function: 
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t  where δ(L) = -[|δ|L1 + |δ|2L2 + |δ|3L3 + …]. 

 The geometrically decreasing lag structure for habit was proposed and analyzed in Heaton (1995). The 

IMRS for these preferences is: 
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or in terms of growth rates: βEt(num/den) where: 
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 In the computations we approximate the infinite sums by truncating the summation at 10 lags. 

Given our estimates of β and δ, after about 10 lags the additional items in the sequence are very close to 

0. Additionally, while we use the same time series of length 200 for asset pricing, we simulate a longer 

time series so that we have sufficient leads and lags to have an asset price for each of the 200 periods. 

  The simulation procedure decribed in A.1 will not work with the Heaton type preferences since 

lagged consumption growth enters the IMRS along with current and future consumption growth. For 

these preferences a slower procedure was used. First, a consumption time series is drawn. Second, at each 

date consumption is simulated forward many times to evaluate the expectation and to get a price for that 

date. With the price time series and consumption growth (dividend growth), one realization of the  return 

time series can be calculated. Third, to calculate expected returns we have to repeat steps 1 and 2 many 

times. 

 

External habit 

 The agents IMRS is given by: 
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In order to obtain an expression for the IMRS in terms past and future growth rates of consumption 

(which is useful for computing asset prices), first re-write (A14) as: 
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We now have an IMRS in terms of the consumption growth rate and the ratio of the habit stock to 

consumption. To get an expression for the habit/consumption ratio as a function of consumption growth, 

subtract ln(ct+1) from both sides of (10) and collect terms to get: 
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Repeatedly substituting for the lagged habit/consumption ratio yields: 
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With this expression we can evaluate (A15). 

 To calculate the price of the two assets we follow the procedure described above for multi-lag 

internal habit preferences.  There is one additional issue: as the level of consumption falls to the level of 

the habit stock there is potential for habit to exceed consumption, in which case the utility function is no 

longer well defined. We follow CC (1999) and impose an upper bound (0.95) on the ratio of habit to 

consumption (Xt/Ct). As in the simulations reported by CC, this limit rarely binds. 


