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I. Introduction

Traditional theology wrestles with the inconsistency of three propositions that are mutually

inconsistent: (A) God is all powerful; (B) God is all good; (C) evil is real. A logically consistent

theology must qualify at least one of these propositions. Consumption theory poses a significantly

less important conundrum with the same logical structure. Currently, we suspect there are many

economists thinking about consumption who would like to maintain simultaneously that (A) con-

sumption and labor are additively separable in an additively time-separable utility function, (B)

the elasticity of intertemporal substitution for consumption is relatively low—well below 1, and (C)

labor supply is not totally inelastic (that is, income and substitution effects are not both zero), but

income and substitution effects on labor supply cancel, so that a permanent increase in the real

wage will have little effect on the labor supply of a household that relies entirely on labor income.

To see the logical inconsistency, assume additive separability of consumption and labor from

each other and additive separability across time. For much of consumption theory this has long

been the default assumption. Usually additive separability between consumption and labor is an

implicit assumption made by omitting labor from the analysis as anything other than a source of

income. Given (A) the assumption of additive separability between consumption and labor and

across time, (B) empirical estimates of the elasticity of intertemporal substitution have repeatedly

found quite low values. To be specific, as recommended by Hall (1988), consider the IV estimation

of the equation

∆ ln(Ct) = s(rt − ρ) + εt + θεt−1 (1)

using as instruments appropriately lagged variables that should be uncorrelated with the time-

averaged rational expectations error εt + θεt−1. C is consumption, r is the real interest rate, ρ

is the utility discount rate. The parameter s is the elasticity of intertemporal substitution for

consumption. Hall (1988) gets point estimates of s equal to .1 or .2 that are not significantly

different from zero statistically. With the same maintained assumptions of additive separability,

but identifying s by asking respondents to choose among hypothetical consumption paths rather

than by observed responses to actual interest rate fluctuations, Barsky, Kimball, Juster and Shapiro

(1995) find a value for the elasticity of intertemporal substitution s in the same range as Hall (1988).

Let us take these results at face value and choose s = .2, which on the high end of what can be

justified by either Hall (1988) or Barsky, Kimball, Juster and Shapiro (1995). With s = .2, and the

maintained assumption of additive separability between consumption and labor, the implied period
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utility function would be of the form u(C,N) = − 1
4C4 − v(N), where v(N) is a convex function of

N . The implied real consumption wage is W
PC

= −uN (C,N)
uC(C,N) = C5v′(N). Per capita consumption

C has roughly doubled in the 35 years since 1960 (a growth rate of approximately 2% per year).

The average number of work hours per person N has stayed fairly constant—or if anything has

slightly increased over that period (which in interaction with the convexity of v(N) would slightly

increase v′(N)). Thus, this functional form implies, counterfactually, that the real consumption

wage should have increased by a factor of 25 = 32 over that time period! Even if s were as high

as .333, this kind of exercise would imply an eight-fold increase in the real wage.

An alternative way to state the same problem is that with consumption and the real wage both

roughly doubling over this time period, the swift decline in the marginal utility of consumption

implied by s = .2 should have led to a marked reduction in work hours as households satisfied the

most pressing consumption needs and then turned to additional leisure when it became difficult

to find additional attractive consumption opportunities. Such an outcome, with the income effect

of the higher wage exceeding the substitution effect was quite conceivable, but it didn’t happen.

Indeed, Keynes predicted a large increase in leisure in the century following his 1930 essay “Eco-

nomic Possibilities for our Grandchildren.” He still has another 30 years to go on his prediction,

but there are few signs of the great leisure boom he predicted. (His other prediction that “in the

long-run we are all dead” has done better.) No a priori principle prevents the income effect from

exceeding the substitution effect as Keynes guessed it would, but the lack of a strong trend in labor

hours in the face of an enormous joint trend in wages and consumption indicates something close

to cancellation between income and substitution effects on labor supply.

The macroeconomic literature on home production1 questions the standard interpretation of

income and substitution effects cancelling. The other alternative for explaining trend labor supply

facts is that the rate of technological progress in home production is the same as the rate of

technological progress in market production. We will discuss the issue of home production more

below. But the most important point is that the hypothesis of technological progress in home

production at just the right rate can only explain the trend facts. In addition to long-run growth

facts, a great deal of both cross-sectional and panel evidence analyzed by labor economists indicates

that the elasticity of labor supply with respect to a permanent increase in the real wage is very

small.

1 See for example Benhabib, Rogerson and Wright (1991), Greenwood and Hercowitz (1991), Greenwood, Roger-
son and Wright (1995), Campbell and Ludvigson (1997), McGratten, Rogerson and Wright (1997), Canova and
Ubide (1998) and Baxter and Jermann (1999).
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To summarize, the typical approach has been to maintain additive separability between con-

sumption and labor. That maintained assumption leads to an estimate of the elasticity of in-

tertemporal substitution in consumption which would make the income effect of a permanent wage

increase much stronger than the substitution effect of a permanent wage increase. This implication

is at variance with at least three types of evidence about long-run labor supply: (1) the lack of

a strong trend in weekly hours in the face of a dramatic trend in the real wage, (2) the fact that

households, say, at the 75th percentile of wages work on average about as much as those with wages

in the 25th percentile, and (3) the fact that permanent wage shocks to an individual on average do

not appear to have much effect on work hours.

In the face of the impressive evidence for approximate equality of the income and substitution

effects on labor supply of a permanent increase in the real wage, our approach is to make this

equality of income and substitution effects on labor supply a maintained assumption when estimat-

ing the elasticity of intertemporal substitution in consumption. With this maintained assumption,

we find a different value for the elasticity of intertemporal substitution than one estimates under

the maintained assumption of additive separability between consumption and labor, but the elas-

ticity of intertemporal substitution is still significantly different from 1. Thus, we reject additive

separability between consumption and labor.

While an income effect of permanent wage increases that is much larger than the substitution

effect is at serious violence with evidence on long-run labor supply, we see no serious problem with

abandoning additive separability between consumption and labor. Indeed, as we will discuss in the

Conclusion, additive nonseparability between consumption and labor helps to make sense of a wide

variety of economic phenomena beyond those that motivate us to consider this nonseparability in

the first place.

Historically, we suspect that one of the greatest recommendations of the assumption of additive

separability between consumption and labor has been simplicity. In this paper, we hope to show

among other things that the price in added complexity of our approach is quite reasonable. In

order to make the issues introduced by additive nonseparability with income and substitution

effects on labor supply cancelling as clear as possible, we illustrate our approach in the context

of what is an otherwise simple log-linearized consumption-Euler-equation estimation with additive

time separability in the style of Hall (1988). At this point, more complicated consumption empirics

would obscure the intuition for the issues we most want to clarify. As for theory, the key idea here

of imposing the parameter restrictions implied by cancellation of income and substitution effects
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on labor supply can be applied to much more general models2 (and we hope it will be), but the

case of additive time separability is the obvious baseline case.

Because we hope to have readers come away with a new perspective on the consumption

Euler equation, we will present our theory (Section II) and evidence (Section III) before discussing

the extensive previous literature on the consumption Euler equation (Section IV) and on home

production in macroeconomics (Section V).

II. Theory

As alluded to above, in order to focus on the main issue of interactions between consumption

and labor, we maintain the assumption of a representative consumer who has an additively time-

separable von Neumann-Morgenstern utility function with a constant utility discount rate:

Vt = E
t

∞∑
j=0

e−ρju(Ct+j , Nt+j).

For convenience in the estimation, the time interval will be one quarter. Time aggregation up from

continuous time will be handled in the usual way in the estimation by lagging the instruments an

extra quarter and allowing for an MA(1) structure to the error term of the Euler equation. However,

for clarity of exposition, this theory section will use discrete time and ignore time aggregation.

Operationally, “imposing cancellation between (nonzero) income and substitution effects”

means choosing from the set of utility functions that yield a real wage proportional to consumption

times some function of the quantity of labor3:

W

PC
= −uN (C,N)

uC(C,N)
= Cv′(N) (2)

Integrating this partial differential equation indicates that felicity (the period utility function) must

be of the form

u(C,N) = Φ(ln(C)− v(N))

for some monotonically increasing function Φ. At the risk of belaboring the obvious, note that with

this form of the felicity function,

2 More general models of interest include models with consumer durables, models with habit formation in con-
sumption and habit formation or durability of leisure.

3 It is a key part of the argument for Equation (2) that since labor supply is not totally inelastic, the supply-side
real wage −uN (C, N)/uC(C, N) is a continuous function of the quantity of labor N .
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−uN

uC
= −

(
−v′(N)Φ′(ln(C)− v(N))

1
C Φ′(ln(C)− v(N))

)
= Cv′(N).

Thus, the monotonically increasing function Φ does not affect the within-period first-order con-

dition. Φ only affects intertemporal substitution between now and the future, not atemporal

substitution between consumption and labor.4

The reasonable additional assumption of a constant elasticity of substitution in consumption

when the quantity of labor is held constant narrows the utility function down to the King-Plosser-

Rebelo form, which we write conveniently as

u(C,N) =
C1−γ

1− γ
e(γ−1)v(N). (3)

We also write

s = 1/γ,

where s now represents the labor-held-constant elasticity of intertertemporal substitution in con-

sumption, as will be apparent below.

The marginal utility of consumption is

uC(Ct, Nt) = C−γ
t e(γ−1)v(N).

For the consumption Euler equation, we will need the natural logarithm of uC :

ln(uC(Ct, Nt)) = −γ ln(Ct) + (γ − 1)v(N) (4)

While it is helpful to assume constancy of the elasticity of substitution s as consumption C trends

upward, the lack of a strong trend in N allows us to deal with the function v(N) non-parametrically

by using a Taylor expansion around the average value of N , which we label N∗. Given good data

on the fluctuations in W , we could be slightly more exact (“slightly” in the sense of second-order),

4 Within a period, the indifference curves between labor and consumption are unaffected by the outer function Φ.
With N on the horizontal axis and C on the vertical axis, the restriction to the form u(C, N) = Φ(ln(C)−v(N))
means that each indifference curve is a vertical (C-direction) multiple of every other indifference curve. The
restriction we use empirically can be seen on this graph as follows. On the graph, the marginal utility of
consumption shows up as the reciprocal of the vertical distance between indifference curves with a fixed (small)
difference in utility. When moving along a given indifference curve, this gap is proportional to the level of
consumption, meaning that the marginal utility of consumption is inversely proportional to consumption when
changing C and N in a way that holds total utility constant. Locally, knowing the wage as seen by the household
is enough to know how to change C and N in a way that holds total utility constant.
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but we consider the short-run fluctuations in the observed real wage to be unreliable as indicators of

the short-run fluctuations in the marginal disutility of labor (primarily, in our view, because of the

existence of long-term relationships between workers and firms in which observed wage payments

often include implicit borrowing and lending—as well as implicit insurance premia and payouts—

between workers and firms). Our approach has the advantage of relying only on the long-run

average value of (after-tax) WN
PCC .

Optimal choice of consumption implies the Euler equation

uC(Ct−1, Nt−1) = Et−1e
(rt−ρ)uC(Ct, Nt).

Programmatically, we want to focus on just the first-order terms of the Taylor expansion. Moreover,

assuming homoscedasticity of the stochastic process for ln(C) and N , even the second-order depar-

tures from certainty equivalence only contribute a constant to the right-hand side of this equation.

Accordingly, we can act as if the natural logarithm can be interchanged with Et−1, yielding

ln[uC(Ct−1, Nt−1)] = Et−1{rt − ρ+ ln[uC(Ct, Nt)]}+ higher-order terms.

Substituting in the King-Plosser-Rebelo form of the utility function yields

−γ ln(Ct−1) + (γ − 1)v(Nt−1) = Et−1[rt − ρ− γ ln(Ct) + (γ − 1)v(Nt)] + higher order terms

Dividing through by γ, rearranging, writing 1
γ = s, and making rational expectations error term εt

explicit,

∆ ln(Ct) = s(rt − ρ) + (1− s)∆v(Nt) + εt + higher order terms. (5)

(Note that the rational expectations error term involves surprises in all three terms: consumption

growth, the ex post real interest rate and a function of labor.)

The final step is to use a first-order Taylor expansion of v(N) in ln(N) around the trend level

of labor N∗. Since v(N) = v(eln(N ), the chain rule implies

v(N) ≈ v(N∗) +N∗v′(N∗)[ln(N)− ln(N∗)].

Assuming that in the long run, the household can optimize labor supply, the intratemporal first-

order condition W/PC = Cv′(N) applied to the long run implies
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N∗v′(N∗) =
(
WN

PCC

)∗

= τ, (6)

where it is important that W be the after-tax wage seen by the household. The right-hand side,

which we denote as τ , is calibrated as a long-run average value of WN
PCC . Thus, τ is treated as a

constant in the estimation. τ is a number known from long-run labor supply facts. For example,

below, our preferred value is τ = .8. The rest of the estimation takes place conditional on a

particular value of τ .

Substituting the constant τ known from long-run labor supply facts into the log-linearized

Euler equation, and using small c and n to denote the natural logarithms of consumption C and

labor N , yields

∆c = s(rt − ρ) + τ(1− s)∆n+ εt + higher order terms. (7)

One more rearrangement shows that this is a very simple IV estimation:

∆c− τ∆n = constant + s[rt − τ∆n] + εt. (8)

In Equation (8), we have finally omitted the higher-order terms, except those that can be absorbed

into the constant term.

It is clear now that our estimation does more than simply add the growth in labor to the

consumption Euler equation. There is a non-trivial linear restriction between the coefficient on the

real interest rate and the coefficient on the growth in the quantity of labor. This restriction comes

from facts about long-run labor supply. What is surprising about this restriction is that (other

than the need for nonzero income and substitution effects for our main argument to go through) the

parameter restriction does not depend on the value of the labor supply elasticities indicating the

size of the income and substitution effects. This lack of dependence on the values of labor supply

elasticities is fortunate given the lack of consensus on the values of these labor supply elasticities.5

Before going on to estimation, it is worth pausing to ask if we can give a more intuitive ex-

planation for this linear restriction on the consumption Euler equation with labor. In Equation

(7), it is evident that the degree of nonseparability required—as indicated by the size of (1− s)τ ,

the coefficient on ∆n—becomes greater as the elasticity of intertemporal substitution drops further

5 This lack of consensus about labor supply elasticities comes in large part from the concern alluded to above
that the short-run fluctuations in the observed wage may not equal the short-run fluctuations in the shadow
wage that governs the equilibrium quantity of labor.
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below one. One way to understand this is as follows. As illustrated in the introduction, low values

of the elasticity of intertemporal substitution in consumption mean that the marginal utility of con-

sumption falls rapidly with growth in consumption. Without any interaction between consumption

and labor in the utility function, this swift decline in the marginal utility of consumption would

lead households to want more leisure unless the real wage increased markedly. What happens in the

case of the King-Plosser-Rebelo utility function is that consumption and labor are complements,

so that the increased level of consumption expenditures makes labor more pleasant. To tell a story,

with the extra expenditures, things at home can be taken care of pretty well despite all of the hours

spent at work; this makes households willing to continue working the same workweek even as they

become richer.

Note that complementarity between consumption and labor goes both ways. To use intro-

spection to check the plausibility of the complementarity that arises with the King-Plosser-Rebelo

utility function when s < 1, one can consider equivalently (1) whether an increase in work hours

would lead to an increase in the marginal utility of expenditures or (2) whether an increase in expen-

ditures would reduce the marginal disutility of work. Both are reflections of the same cross-partial

derivative inequality uCN > 0.6

III. Evidence

Data

We use quarterly, seasonally-adjusted, aggregate U. S. data from 1949:1 to 1998:3. Our measure

of consumption comprises non-durable consumption plus services, per capita. Our measure of per-

capita hours is total hours worked by all persons (civilian and military), from unpublished BLS

sources, divided by the non-institutional population over 16 plus members of the military. When

we augment the regressions with disposable income, we use aggregate disposable personal income

as defined by NIPA, per capita. The real interest rate is computed as the after-tax nominal rate

on three-month U. S. Treasury bills minus inflation in the price index of non-durable consumption

and services. We took our measure of the average marginal tax rate from Stephenson (1998); since

Stephenson’s calculations extend only to 1994, we assumed that the average marginal rate for all

6 One way to see the intuition behind complementarity between consumption and labor is to think about work-
related expenses. However, if one goes this route, one should think of “work-related expenses” in the broadest
sense possible. For example, having less leisure may cause one to shift towards more expensive but less time
consuming forms of entertainment, or to hire someone to fix a leaky faucet instead of doing it oneself. It is easy
to miss these more subtle types of added expenditures if one tries to make a direct measure of “work-related
expenses.” The Euler equation approach can be seen as a way to capture the full range of “work-related
expenses.”
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subsequent years equals the 1994 value.7

According to the theory, τ equals labor income divided by nominal consumption expenditure.

Taking nominal wages and salaries from the National Income Accounts and dividing by nominal

spending on non-durable consumption and services gives an average ratio of 0.90. But we should

use prices as perceived by the consumer, so we should define τ using the after-tax wage. Multiplying

the numerator by our average marginal tax series reduces the mean τ to 0.77. We thus use τ = 0.8

as our preferred value, but check our results for several other values.

Results

Due to time aggregation of the data, the error term in our estimating equation has an MA(1)

structure. Thus, instead of equation (7), we actually estimate:

∆c− τ∆n = µ+ s(r − τ∆n) + εt + θεt−1 (9)

(Consumption and labor are in logs, as indicated by the small letters c and n. The constant µ

potentially includes higher order terms such as precautionary saving effects from a homoscedastic

time series process for c.) Given the potential ambiguities about the precise value of τ , we estimate

the equation for four values of τ ranging from 0.6 to 1.2. We use twice-lagged values of ∆c, ∆n

and r as instruments. The results are in Table 1.

We consistently estimate values of the EIS significantly greater than zero, unlike Hall (1988)

and most subsequent work in this area. Depending on the value of τ the estimate of the elasticity

of intertertemporal substitution s ranges from 0.3 to 0.5. The value s=.5 corresponds to the utility

function

−e
v(N)

C
,

while s = .333̄ corresponds to the utility function

−e
2v(N)

2C2
.

We also report the first-stage F -statistics in Table 1. According to Staiger and Stock (1997),

these indicate that we are unlikely to have weak-instrument problems. The Hansen J-statistic indi-

cates that we cannot reject the overidentifying restrictions, except, perhaps, for τ = 1.2, indicating

that this value of τ may be significantly too high.

7 Since average marginal rates are very stable, this procedure should not create significant problems.
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We now check the robustness of our results. First, we show that our results are robust to

alternative instruments sets. (We use some of these instruments later in the paper, when we

investigate the robustness of our result to adding disposable income to the consumption Euler

equation.) In addition to the variables we use as instruments in Table 1, we use the twice-lagged

change in disposable income, ∆y(−2), and the twice-lagged ratio of consumption to disposable

income c(−2)− y(−2). The results are in Table 2.

We find that the estimated s is not sensitive to the instrument set used. All the results say

that s is about one-third; three of the four point estimates are within 0.02 of one another, and the

standard errors are all roughly 0.10. The first-stage fit is reasonably good in all cases, and in no

case can we reject the overidentifying restrictions at conventional significance levels.

Second, we investigate the restrictions imposed by the King-Plosser-Rebelo functional form

that we have assumed so far. In particular, it is possible that the significant EIS that we have

estimated so far is due to the correlation between ∆n and ∆c, and does not reflect the effect of

the real interest rate on consumption growth. We check this hypothesis by estimating several less-

constrained versions of our equation, for our preferred value of τ = 0.8. We report the results in

Table 3.

We fail to reject the null hypothesis that the coefficient on r makes no additional contribution

beyond the combination r − τ∆n at the 5% level. The p-values for the test of the null hypothesis

hover around 10% for our four instrument sets (.090, .105, .143 and .081). To the extent that the

point estimates do not obey the restriction, they disobey in the direction of unpredictability of ∆c.8

We then run our regressions “in reverse”—that is, we regress r − τ∆n on ∆c − τ∆n, which

normalizes the coefficient of r−τ∆n to 1, instead of normalizing the coefficient of ∆c−τ∆n to 1 as

in the previous regressions. Assuming additive separability, which in equation (8) is mechanically

equivalent to setting τ equal to zero, Campbell and Mankiw (1989) find that both the forward

regression and the reverse regression often yield coefficients close to zero. They interpret this

finding as a specification test indicating that the standard rational representative-agent model of

consumption is incorrect. By contrast, in Table 4B we find that our reverse regressions yield

estimates of 1/s that are quite consistent with the estimates of s from the forward regressions in

Table 4A. For example, for τ = 0.8, we estimate s to be 0.36 from the forward regression and 0.47

from the reverse regression. Since 0.47 is within the 95 percent confidence interval of our forward

8 In our regressions we can say that we obey both of Frank Fisher’s laws. According to a personal communication
with Greg Mankiw, Frank Fisher’s Iron Law of Econometrics is: “Regression coefficients are always too small.”
Frank Fisher’s Iron Law of Non-Linear Econometrics: is “Don’t do it.”
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estimate, we do not think that the Campbell-Mankiw specification test rejects our model. On the

other hand, the reverse estimate of the standard τ = 0 consumption Euler equation, 0.75, is not in

the confidence interval of its forward estimate, confirming Campell and Mankiw’s original finding.

However, we prefer estimates of s based on the forward regression, because the reverse regression

has poor first stage fit (for all instrument sets we examine in Table 2, not just for the baseline

result we report). The first-stage F -statistic for the reverse regression ranges from 2 to 3, which is

well within the danger zone identified by Staiger and Stock (1997). The reason is fairly intuitive-in

the reverse regression, the right-hand-side variable is approximately the change in consumption

minus the change in labor hours. Both of these series are procyclical and both are less volatile than

output, so it is not surprising that their difference is difficult to predict.

We now proceed to compare our model of consumption based on non-separable leisure to

Campbell and Mankiw’s (1989) hypothesis of rule-of-thumb consumption. Campbell and Mankiw

augment the standard (τ = 0) consumption Euler equation with disposable income, and find a

positive, significant coefficient on disposable income. They interpret this coefficient as the frac-

tion of consumption that is done by rule-of-thumb consumers who consume a fraction of their

current disposable income (or, perhaps, the fraction of consumption due to liquidity-constrained

consumers). They find estimates as large as 0.5, suggesting that up to half of all consumption

is done by rule-of-thumb consumers. In Table 5 we augment our basic estimating equation (8)

with disposable income, for τ = 0.8. We use the various instrument sets we explored in Table 2,

since some of the additional instruments may be better at predicting income growth than our basic

set of variables. The results generally support our model, and do not support the hypothesis of

significant rule-of-thumb consumption. In all cases the disposable income variable is insignificant.

In three of the four cases the coefficient is negative, which has no meaningful interpretation in the

rule-of-thumb context. In three of the four cases, our estimate of s is significant and quite close to

the values we estimate for our basic specification. The one exception is for our standard instrument

set, which is not surprising since that instrument set is not chosen for its ability to predict future

income. The largest instrument set, which adds the twice-lagged consumption-income ratio to our

basic instruments, yields an estimate of s that is exactly the same as our original estimate in Table

1 and an insignificant, negative coefficient on disposable income.

IV. Relationship to the Consumption Euler Equation Literature

Campbell and Ludvigson (2000), in summarizing previous empirical literature on the consump-

tion Euler equation, write that “. . . aggregate data offer no evidence of any important nonsepara-
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bility between market consumption and labor hours . . . . For example, Campbell and Mankiw find

that although there is substantial predictable variation in hours, it is not significantly related to

predictable consumption growth as it should be if utility over leisure and consumption were addi-

tively nonseparable. This evidence suggests that consumption and nonmarket hours can be well

characterized by an additively separable utility function over consumption and nonmarket time,

or, more generally, over consumption and some function of nonmarket time, as would be the case

in models with home production.”9

We disagree. First, even when we do not impose the parameter restriction implied by King-

Plosser-Rebelo preferences, we find a significant relationship between consumption growth and both

the real interest rate and predictable movements in labor. This shows up in Table 3 as a coefficient

on τ∆n significantly different from -1, since the left-hand-side variable is ∆c− τ∆n.

To stack the deck against ourselves even more, we performed unrestricted “horse-race” IV

regressions of ∆c on both ∆n and ∆y with a wide variety of instrument sets and both with

and without the real interest rate r in the regression. To summarize a large number of results,

without the real interest rate r in the regression, ∆n and ∆y do equally well by a t-statistic metric,

but neither ∆n or ∆y ever have a coefficient significantly different from zero for any of our four

instrument sets. (The minimum p-value is greater than .11.) With r in the regression, ∆n does

better than ∆y.10 Both are insignificant for the first two instrument sets, but in the last two

instrument sets, which include the lagged consumption/income ratio, ∆n has a two-tailed p-value

of .056 and .050, while ∆y has a p-value of .362 and .688.11 The relative performance of ∆n and

∆y for the last instrument set12 can also be seen by comparing the last two scatter plots. Based on

these results, we maintain that an analyst who was indifferent between ∆n and ∆y a priori would

have no reason to prefer ∆y to ∆n based on these horse-race regressions.

But second, we do not think one should be indifferent a priori between augmenting the con-

sumption Euler equation with ∆n or with ∆y. The burden of the first two sections of this paper is

9 In thinking about the early consumption Euler equation research, it is important to remember that certain
aspects of current empirical practice were not yet solidly in place during this period. First, some of the early
work on consumption Euler equations addresses time aggregation and some does not. Second, almost all of the
early consumption Euler equation research using instrumental variables used what would now be considered
too many instruments for reliable results.

10 Strangely enough, there is some tendency for ∆y to do better when using instrument sets that emphasize
lagged ∆n and for ∆y to do better when using instrument sets that emphasized lagged ∆y and the lagged
consumption to income ratio.

11 The instrument set ∆c(−2), r(−2), ∆y(−2), c(−2)− y(−2) makes ∆n significant with or without r (p-values
of .011 with r and .031 without r) while ∆y is insignificant (p-values of .345 with r and .096 without r).

12 We consider the last instrument set most appropriate for this exercise since it includes both ∆n(−2) and
c(−2)− y(−2).
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to show why theory makes it almost mandatory on theoretical grounds to have ∆n appear in the

consumption Euler equation.

By contrast, the closest reasonable empirical substitute—adding ∆y to the consumption Eu-

ler equation—involves taking the grave step of abandoning the Permanent Income Hypothesis.

Campbell and Mankiw (1989), believing that one could not reasonably avoid including ∆y in the

consumption Euler equation, write “The failures of the representative consumer model documented

here are in some ways unfortunate. This model held out the promise of an integrated framework

for analyzing household behavior in financial markets and in goods markets.” We believe that

appropriate inclusion of labor in the formula for the marginal utility of consumption holds great

promise for improving the empirical performance of the Permanent Income Hypothesis in a wide

variety of economic contexts.

In the consumption Euler equation context, theory not only mandates the inclusion of ∆n,

it mandates the size of the coefficient on ∆n given the coefficient on the real interest rate r. We

are not adding any free parameters. Therefore, we believe that the appropriate test for “excess

sensitivity” of consumption to current income in aggregate data is the one reported in Table 5.

V. Relationship to the Macroeconomic Literature on Home Production

Although there is no doubt that home production is an important area of research for mi-

croeconomics, we will argue in this section that macroeconomic analysis can ordinarily ignore the

details of home production without serious loss.

To see this, consider a household with an underlying utility function given by U(X), where X

is a vector of goods produced in home production. Some examples of possible elements of X are

being well rested, being well fed, being entertained, etc. The household production function for the

vector X is

X = F (Q,L,Z),

where Q is a matrix with rows showing all the different ways of using up the vector of marketed

consumption goods, L is a row vector of different possible ways to spend time away from work,

and Z is a vector of the technology for home production. Conditional on the total quantity vector

C of marketed consumption good used and time N spent at work and the technology for home

production Z, the household solves

max
Q,L

U(F (Q,L,Z))
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s.t.

∑
j

Qij = Ci

and

∑
j

Lj +N = T,

where T is the total time endowment. Since the total time endowment per unit time is fixed,

the maximum value is only a function of C and N . Thus, for this household engaged in home

production, we can define u(C,N,Z) by

u(C,N,Z) = max
Q,L

U(F (Q,L,Z))

s.t.

∑
i

Qi = C

and

∑
i

Li +N = T.

We maintain that the reduced form utility function u(C,N,Z) contains all of the information needed

for macroeconomics. The only importance for considering home production is the theoretical one

of establishing the a priori plausibility for various forms of the utility function u(C,N,Z). For

example, thinking about home production may make one more eager to allow for more than one

consumption good and may legitimate the exogenous effects of Z, which in the reduced form utility

function look like preference shocks. But considerations about the household production function

are on a par with any other reasoning about the form of the reduced form utility function u(C,N,Z).

For example, the main costs and benefits of going from one type of marketed consumption good

to two (say adding consumer durables to the nondurables and services we have been concentrating

on) are there in roughly the same degree whether or not one worries about home production, and

can be considered by looking directly at the behavior implied by different forms of the reduced

form utility function u(C,N,Z). And from the macroeconomic point of view, the key costs and
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benefits of adding preference shocks to a reduced form model of household behavior remain little

changed by household production considerations.

If, for the sake of parsimony, the reader grants us the simplification of having only a single

marketed consumption good, the argument we give in the first two sections for the King-Plosser-

Rebelo utility function remain. Since the evidence from labor economics about the effects of a

permanent increase in the real wage on N indicates that households at a given point in time,

with a given value of Z, show cancellation of income and substitution effects, which we think of

operationally as the equation W = CvN (N,Z), the utility function must have the form

u(C,N,Z) =
C1−γ

1− γ
e(γ−1)v(N,Z). (10)

Following through with the same exercise as in section II, we arrive at the same estimating equation,

except that linear terms involving the household technologies Z are added to the error term:13

∆c = µ+ sr + (1− s)τ∆n+ (1− s)
∑

j

ζj∆zj + εt + θεt−1. (11)

The difficulties preference shocks can cause for Euler equation estimation are well known. If one

believes in important household preference shocks, the best way to interpret our results is to think

of our estimation as assuming that preference shocks (or equivalently, home production technology

shocks) cannot be predicted by our instruments.

To round out this section on home production, we should mention that the paper closest in

spirit to ours is Baxter and Jermann (1999): “Household Production and the Excess Sensitivity of

Consumption.” Indeed, our model is the special case of theirs when there is no home production.

Given the large share of pure leisure in their utility function, which is modeled in the King-Plosser-

Rebelo form, we suspect that many of their results are not so much due to anything special about

home production but rather to the effects we discuss in this paper. We think readers of both our

paper and theirs will find the two papers complementary, even though we would interpret their

results differently than they do.

13 The reason a first-order approximation should be OK for the effects of Z is that when s 6= 1 and vN,Z 6= 0, any
strong trend in Z should cause a trend in optimal N over time that is not observed. In the dimensions where
vN,Z = 0, so that v is additively separable in labor and the production technology, a trend in Z will not cause
a trend in labor N , so we cannot rule out a trend in this dimension of Z, but the additive separability means
that variation in ζj in that dimension would be hard to distinguish from heteroscedasticity in that dimension

of Z.
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VI. What if the Cancellation Between Income and Substitution Effects is Not Exact?

So far, for the sake of a clarity, we have maintained an exact cancellation between the income

and substitution effects of a permanent wage increase. What if that cancellation is not exact?

Indeed, some of the stylized facts seem to suggest that the income effect is slightly stronger. For

example, looking at the scatter plot Abel and Bernanke (1995) display of average weekly hours

across countries suggests that richer countries have somewhat shorter work weeks: across countries,

a tenfold higher real wage across countries seems to be associated with about a 12% reduction

reduction in weekly hours, from 44 hours to 39 hours. Taking those numbers at face value, that

represents an elasticity of labor hours with respect to permanent wage increases of about -.05.

Could the gap between -.05 and 0 make a big difference to the empirical analysis?

To give some insight into this issue, let us take a totally nonparametric approach with a

felicity function u(C,N) of general form. (We will continue to assume additive time-separability

with a constant utility discount rate ρ.) The way we have imposed the restriction of income and

substitution effects cancelling is by assuming that W = Cv′(N). In particular, this means that,

holding labor constant, the elasticity of the real wage with respect to consumption is 1. Since the

shadow real wage as seen by the household is

W (C,N) =
−uN (C,N)
uC(C,N)

,

the elasticity of the wage with respect to consumption when labor is held constant is

ξ(C,N) =
∂ ln(W (C,N))

d ln(C)
=
CuNC(C,N)
uN (C,N)

− CuCC(C,N)
uC(C,N)

.

Let’s explore what happens when ξ(C,N) 6≡ 1.

Define also the elasticity of intertemporal substitution for consumption s(C,N) and the

consumption-constant elasticity of labor supply η(C,N) by

1
s(C,N)

= −CuCC(C,N)
uC(C,N)

,

and
1

η(C,N)
=
∂ ln(W (C,N))

∂ ln(N)
=
NuNN (C,N)
uN (C,N)

− NuCN (C,N)
uC(C,N)

Finally, define

τ(C,N) =
W (C,N)N

C
=
−NuN (C,N)
CuC(C,N)

.
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Since the Hessian
[
uCC uCN

uNC uNN

]
is symmetric, the three elasticities ξ(C,N), s(C,N) and η(C,N),

plus τ(C,N) (which indicates the local ratio of marginal utilities) determine all local first and

second derivatives of the felicity function u(C,N) (except for overall scale of felicity, which has no

economic meaning.)

A first-order Taylor expansion of ln(uC) indicates that

∆ ln(uC(C,N)) ≈ CuCC(C,N)
uC(C,N)

∆ ln(C) +
NuCN (C,N)

uC
∆ ln(N) (12)

= − 1
s(C,N)

∆ ln(C) +
(
−NuN (C,N)
CuC(C,N)

) (
−CuCN

uN (C,N)

)
∆ ln(N)

= − 1
s(C,N)

∆ ln(C) + τ(C,N)[
1

s(C,N)
− ξ(C,N)]∆ ln(N).

Combining the results of Equation (12) with the consumption Euler equation, and using c and n

to represent the logarithms of C and N , the estimation equation corresponding to Equation (9) is

∆c− τ∆n = µ+ s(r − ξτ∆n) + εt + θεt−1. (13)

Equation (13) reduces to Equation (9) when ξ = 1. Numerically, this estimate will be very similar

to what we do in previous sections as long as ξ is reasonably close to 1 (say, in the range [.8, 1.2]),

and the elasticities s and ξ—plus the ratio τ—do not vary too widely over the sample period.14

How far might ξ reasonably be away from 1 given the facts about long-run labor supply? For a

numerical example, suppose that we take -.05 as the elasticity of labor with respect to permanent,

equal increases in both the real wage W and consumption C. (See the discussion at the beginning

of this section.) From the definitions of ξ and η,

d ln(W ) = ξd ln(C) +
1
η
d ln(N). (14)

If improvements in technology, coupled with the budget constraint causes consumption and the

real wage to trend up together, then d ln(C) = d ln(W ) and Equation (14) reduces to

(1− ξ)d ln(W ) =
1
η
d ln(W )

14 The other way of arranging Equation (13)—

∆c = µ + sr + (1− sξ)τ∆n) + εt + θεt−1

—suggests that a value of ξ somewhat higher than 1 could help to explain why the freely estimated coefficient
on ∆n is somewhat smaller than it should be if ξ = 1.
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or

ψ =
d ln(N)
d ln(W )

= η(1− ξ)

where ψ is the elasticity of labor supply with respect to permanent increases in the real wage

(coupled with equal increases in consumption). Solving for ξ,

ξ = 1− ψ

η
.

If ψ = −.05, then ξ = 1+ .05
η . Alternatively, if one allows some leeway in the estimate of the long-run

elasticity of labor with respect to permanent increases in the real wage, by setting d ln(N)
d ln(W ) = −.1,

then ξ = 1 + .1
η . Given an elasticity of labor supply with respect to permanent increases in the

real wage, the only way ξ can be far away from 1 is if the consumption-constant elasticity of labor

supply η is quite low (say .25 or below). Although some estimates of the consumption-constant

elasticity of labor supply can indeed be quite low, these estimates are questionable, because they

all rely on either (1) life-cycle variation in the real wage, which is confounded with age effects or (2)

treating the observed short-run fluctuations in the real wage as if they were the true shadow wage

determining labor allocations. If the true consumption-constant elasticity of labor supply were as

low as, say .25, macroecomists of any stripe would have little hope of explaining the substantial

variation in the quantity of labor over the business cycle. Departures of ξ from exact unity are the

least of the problems macroeconomists would face with a low value of η.

In summary, we do not claim that ξ is literally equal to exactly 1. However, we believe it to

be close enough to 1 that for practical purposes, it is best to treat it as equal to 1. It is worth

addressing the issue once, as we have here, but we think that economic understanding will advance

fastest if discussion of departures from exact cancellation of the income and substitution effects of

permanent wage increases is, in the future, primarily relegated to footnotes. Indeed, following this

dictum, we return in the next section to assuming a King-Plosser-Rebelo utility function.

VII. Aggregation of the Consumption Euler Equation for Individual Households

Many authors have discussed issues about consumption aggregate for the consumption Euler

equation in the additively separable case. We will not attempt to repeat what they say here, but

only to give a perspective on those issues and the new issues that arise from nonseparability.

One reason one might be concerned about the interaction of nonseparability with aggregation

up from the household level is that changes between working and not working often involve a
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discontinuous jump in hours. These discontinuous jumps in hours suggest a utility function that is

not always concave in hours. Close examination of the logical derivation behind the King-Plosser-

Rebelo utility function shows that the same form should hold even when the utility function is not

concave in hours. The inner function v(N) can encode such nonconcavities:

u(C,N) =
C1−γ

1− γ
e(γ−1)v(N).

At the same time, it is important to clarify the effects of more than one working member of

the household. From here on, we will be careful to interpret N as a vector indicating the labor

hours of each member of the household. With this reinterpretation, the form of the utility function

again looks the same.

Nonconcavities in the felicity function give rise to three technical issues. First, in dealing with

non-concave utility, the Pontryagin maximum principle that the Hamiltonian must be globally

maximized at every point in time is very helpful. The maximum principle holds exactly only

in continuous time. So there is one more reason to insist that the true underlying model is in

continuous time. Second, to ensure that the Hamiltonian actually achieves a maximum, it is

helpful to assume that v(N) is lower hemi-continuous-that is, the argument N going to a limit can

lead to a jump down in v(N) (and up in felicity), but not to a jump up in v(N). For example,

there can be a fixed cost of going to work (away from an element of N being zero), but there is no

sudden fixed felicity benefit of going to work. Third, given the possibility of discontinuous changes

in labor hours, it is important to assume that wherever such a discontinuous change takes place,

the marginal shadow wage is unaffected by that discontinuous change. In other words, if there is

something like an overtime premium in the true shadow wage, that change in the marginal wage

takes place away from the discontinuous jump in labor hours that might take place, for example,

in going from not working at all to working positive hours.

Consider the household problem

E
t
max
C,N

∫ ∞

t

e−ρ(t′−t)C
1−γ
t′

1− γ
e(γ−1)v(Nt′ ) dt′

s.t.

dbt
dt

= rtbt + Πt +Wt ·Nt − Ct,

and

lim
t→∞

e−∞
∞
t0

rt′dt′bt = 0.
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The variable bt is household financial assets, while Πt is non-labor income. The price of

consumption goods has been normalized to 1, so that W is a vector of real wages. The Hamiltonian,

which is maximized globally, is

H(C,N, λ,W ) =
C1−γ

1− γ
e(γ−1)v(N) + λ[rtbt + Πt +Wt ·Nt − Ct].

Even though the model is stochastic, there is no problem with speaking of the Hamiltonian.

Even if we added risky asset choices to the model, maximization of the “Hamiltonian” written

above is a necessary condition for the maximization implicit in the Bellman equation, where λ is

just the derivative of the value function with respect to household assets bt. (It is important, if one

adds risky asset choices to assume that the value of risky assets follows a diffusion process, so that

wealth and the marginal value of wealth and consumption λ follow a continuous, if jagged, path.)

Let us call the globally maximized Hamiltonian H?:

H?(λ,W ) = max
C,N

H(C,N, λ,W )

The envelope theorem is robust to jumps in the control variables. Since H(C,N, λ,W ) is continuous

in λ and W , the maximized Hamiltonian H?(λ,W ) is also continuous in λ and W . Moreover,

whenever small changes in λ and W do not cause any large jumps in C or N ,

dH?(λ,W ) = Hλ(C,N, λ,W )dλ+HW (C,N, λ,W ) · dW = [W ·N − C]dλ+ λN · dW, (15)

evaluated at the optimal values of C and N . Around discontinuities, this result works in terms of

right-hand and left-hand derivatives and their multidimensional analogs.

Regardless of the shape of v(N), the Hamiltonian is strictly concave in consumption C. There-

fore the first order condition for optimal consumption, as before, is

λ = C−γe(γ−1)v(N) (16).

The result we want comes from using this first order condition in conjunction with the envelope

theorem for the globally maximized Hamiltonian. Equation (15) allows us to rewrite the globally

maximized Hamiltonian as

H?(λ,W ) = λ

[
C

1− γ
+W ·N − C

]
= λ

[
W ·N − C

1− s

]
,
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where s = 1/γ as before.

At boundaries where either C or N is discontinuous, the continuity of H? requires that

∆C = (1− s)W ·∆N, (17)

in moving across the boundary. At points where both C and N are continuous, the envelope

theorem (15) requires that

[
W ·N − C

1− s

]
dλ+ λN · dW + λW · dN − λ

1− s
dC = [W ·N − C]dλ+ λN · dW,

or equivalently,

dC = (1− s)W · dN − sC
dλ

λ
. (18)

Since the jumps in C and N of Equation (17) occur essentially with essentially no change in λ and

what change in λ there is essentially occurs on either side of a jump boundary, Equations (17) and

(18) are both consistent with the following single equation, appropriate for small changes in λ and

W , whether or not C or N jumps:

∆C = (1− s)W ·∆N − sC∆ ln(λ) + higher order terms (19)

where the value of C in sC∆ ln(λ) is a time average over the path of λ from beginning to end.

The next step is to combine Equation (19) with the Euler equation. The Euler equation is

∆λ = [ρ− r]λ+ rational expectations error.

Dividing by λ,

∆ ln(λ) = constant− r + R.E. error + higher order terms, (20)

where the difference between ∆ ln(λ) and ∆λ
λ has been absorbed in the constant term and in the

higher order terms. (Remember that the risky assets follow a diffusion process, so that the marginal

value of wealth λ is continuous.) Combining Equations (19) and (20) yields

∆C = (constant)C + srC + (1− s)W ·∆N + R.E. error + h.o.t. (21)
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Because it is linear in C, ∆C and ∆N , Equation (21) aggregates perfectly, aside from the

higher-order terms. To be explicit, if i indexes households, when s, r and W are constant across

households,

∑
i

∆Ci = (constant)
∑

i

Ci + sr
∑

i

Ci + (1− s)W ·
∑

i

∆Ni + R.E. error +
∑

i

h.o.t.i (22)

Dividing through by aggregate consumption, and rewriting the third term with the steady state

value of the aggregate after-tax labor income to consumption ratio τ = W∗·N̄∗

C̄∗ made explicit yields

an equation very close to what we estimate empirically:

∑
i ∆Ci∑
i Ci

= constant + sr + (1− s)
(
W ·

∑
iNi∑

i Ci

) (
W ·

∑
i ∆Ni

W ·
∑

iNi

)
+ R.E. error +

∑
i

h.o.t.i

m

What if the intertemporal elasticity of substitution is not constant across households? Then s

in Equation (22) is replaced by the consumption-weighted average of household si

∑
i Cisi∑
i Ci

.

What if wages are not constant across households? Because it allows for a vector of different

types of labor, the term

(1− s)W ·
∑

i

∆Ni

in Equation (22) can handle this case with appropriate reinterpretation. Let the vector of different

types of labor N include as components all distinctions of labor types that would ever command

a different wage.15 This approach to differing wages accords well with empirical approaches that

distinguish different types of labor to the extent possible and weights changes in each type of labor

hours by the corresponding wage.

Finally, what about the higher order terms? The higher order terms consist of effects such as

precautionary saving effects, which are just as much a problem when consumption and labor are

additively separable. They are not new here. We are not trying to claim that that our consumption

15 Because the household function vi(N) is unconstrained, it can represent the absence of a certain type of labor
in the household by a large enough drop in utility if the quantity of that type of labor departs from zero.
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Euler equation aggregates perfectly, but that it aggregates as well as the consumption Euler equation

with felicity additively separable between consumption and labor, where the aggregation issues

caused by the higher order terms are relatively well understood.

The one big gap in our understanding of aggregation for the consumption Euler equation with

nonseparable labor is the dearth of research on precautionary saving with nonseparable labor. This

is not the place to try to fill that gap in any detail, but it is worth pointing out that with King-

Plosser-Rebelo utility with γ > 1, the negative sign of uCCN , coupled with the positive empirical

correlation between consumption and labor makes it possible for nonseparability between consump-

tion and labor to generate smaller precautionary saving effects than when felicity with the same

value of γ is additively separable. Let us present a simple numerical example of the effect of second-

order terms on the marginal utility of consumption. Consider a one-earner household operating

at a point where u(C,N) is thrice differentiable in all variables, the second-order conditions hold

strictly, γ = 3 (corresponding to s = .333), τ = .8 and η = v′(N)
Nv′′(N) = .8. When felicity is additively

separable between consumption and labor, and γ = 3, the proportionate effect of consumption

variance on the marginal utility of consumption is

E
uCCC(C,N)
uC(C,N)

∆C2

2
≈ 6

σ2
C

C2
.

For comparison, with King-Plosser-Rebelo felicity, γ = 3, τ = .8 and η = .8, the proportionate

effect of consumption variance on the marginal utility of consumption is

E
uCCC(C,N)∆C2 + 2uCCN∆C∆N + uCNN∆N2

2uC(C,N)
≈ 6

σ2
C

C2
− 4.8

%σCσN

CN
+ 2.28

σ2
N

N2
,

where % is the correlation between ∆C and ∆N . The overall precautionary saving effects for King-

Plosser-Rebelo felicity, as gauged by the proportionate rise in the expected future marginal utility

of consumption are smaller than for additively separable felicity whenever16

%
σC

C
> .458

σN

N
.

What is much more important (both because of the size of the consumption variance involved

and cross-sectional differences in this consumption variance), when possible movements in and

16 When this inequality is violated, but only by a little, the precautionary saving effects will be slightly larger
in terms of the effect on the expected future marginal utility of consumption uC , but the effect in reduced
current consumption will still be less, since precautionary saving comes from increased current work hours as
well as reduced current consumption, both of which raise current uC , since uCC < 0 and uCN > 0 for King-
Plosser-Rebelo utility with γ > 1. Thus, the overall drop in current consumption induced by a given increase
in expected future marginal utility is less in the nonseparable case.
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out of work generate the possibility of jumps in C and N according to the logic of a nonconcave

King-Plosser-Rebelo utility function, the discussion above makes clear that the marginal utility of

consumption, equal to λ, is unaffected ex post by the realized jumps and is therefore unaffected ex

ante by the possibility of these optimal jumps. Yet the associated variance of consumption would

lead an economist thinking in terms of additively separable utility to believe that the expected

marginal utility of future consumption was being driven up, adding significantly to precautionary

saving.

VIII. Relationship to the Literature on Microeconomic Consumption Empirics

A cursory examination of recent work on the consumption Euler equation in micro data pro-

vides substantial evidence for nonseparability between consumption and labor and confirms the

point that allowing for nonseparability between consumption and labor leaves very little evidence

for liquidity constraints from the consumption Euler equation.17 Attanasio and Weber (1995) even

use a utility function that is multiplicatively separable between consumption and labor, as we rec-

ommend, but use the long-run equality of the real wage with the marginal rate of substitution

to impose our restriction. Imposing our restriction in micro-data would add discipline that would

help in making the case that nonseparability between consumption and labor is at work rather than

the ability of labor participation and hours to proxy for badly measured components of disposable

income.

The estimates of the elasticity of intertemporal substitution for consumption vary in different

studies (from close to zero to close to one), but our estimate is well within the range of estimates

obtained.

Overall, we read the existing microeconomic evidence as wholly consistent with our claim for

nonseparability between consumption and labor of a substantial and well-defined magnitude.

IX. Conclusion

Departing from the assumption of additive separability, which is typically made more for

convenience than from conviction, we estimate the elasticity of intertemporal substitution while

imposing the King-Plosser-Rebelo functional form needed for balanced trend growth of consumption

and the real consumption wage. This mode of estimation is not the same as simply including the

quantity of labor in a consumption Euler equation in an unrestricted way. Additive separability is

easily rejected, but our restriction to King-Plosser-Rebelo preferences is not rejected. We find that

17 See for example Browning and Meghir (1991), Attanasio and Weber (1993), Attanasio and Weber (1995),
Attanasio and Browning (1995), and papers cited in Attanasio (1998).
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such an estimate, which effectively combines information about the responsiveness of consumption

to fluctuations in the real interest rate and the quantity of labor and information about the low-

frequency behavior of labor and the real wage, yields an estimate of the elasticity of intertemporal

substitution of about .6. Moreover, we find that the interactions between consumption and labor

induced by the lack of additive separability allow one to solve a problem one finds in a Hall (1988)-

type regression: estimates of the elasticity of intertemporal substitution that differ dramatically

depending on which variable in the instrumental variable regression has its coefficient normalized

to 1. This problem can be viewed as a particularly serious failure of the overidentifying restrictions

of the IV estimation. In view of our results, omitted variable bias from leaving the quantity of

labor out of the equation can account for this failure. Omitted variable bias can also account for

Campbell and Mankiw’s (1989,1991) finding that predictable movements in disposable income are

related to predictable movements in consumption. We find no evidence for such a relationship once

labor is properly included in the regression.

In our thinking, we come to reject additive separability—and arrive at the view that the utility

function exhibits complementarity between consumption and labor (or equivalently, substitutability

between consumption and leisure)—by considering facts about long-run labor supply. But this view

also points to predictions in other areas that seem tantalizing and beg for further investigation.

First, as some economists have already noticed, complementarity between consumption and

labor means that households should plan to have their consumption drop at retirement. The

observed drop in consumption at retirement has been considered a minor mystery, but if one takes

the King-Plosser-Rebelo utility function as a touchstone, it is easy to get optimal planned drops

in consumption at retirement that are quite large. From our perspective, the mystery may be why

consumption doesn’t drop even more at retirement than it does. But it is likely to be much easier

to modify a nonseparable model to moderate the drop in consumption at retirement than to get a

significant drop in consumption at retirement out of a model with additive separability.

Second, complementarity between consumption and labor provides a straightforward channel

for a monetary expansion to cause an increase in consumption. Business cycle theorists have

puzzled over how to get interest-rate effects alone to cause an increase in consumption in response

to monetary shocks. No solution of this type has been entirely successful. But when labor and

consumption are complentary, the increase in labor when aggregate demand increases is enough to

cause consumption to increase (as long as interest and wealth effects are not too large–a condition

easy to satisfy).
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In conclusion, let us reemphasize that we are arguing not for the particular utility function

that we use in this paper, but that any utility function used (though it might be more complex

than the one here) should pass the test of implying that a permanent increase in the real wage will

have very little effect on labor hours.
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Table 1:  Estimates of s

∆c − τ ⋅ ∆n = µ + s(r − τ ⋅ ∆n) + εt +θεt−1

τ Estimated s p-value of restrictions First-stage F

0.6 0.30
(0.11) 0.40 13.6

0.8 0.36
(0.11) 0.24 11.6

1.0 0.42
(0.10) 0.12 10.4

1.2 0.49
(0.10) 0.06 9.7

Notes:
Instruments are ∆c −2( ),  ∆n −2( ),  and r −2( ).
p-value is for the test of over-identifying restrictions.



Table 2:  Different Instrument Sets

∆c − τ ⋅ ∆n = µ + s(r − τ ⋅ ∆n) + εt +θεt−1

Instrument Set Estimated s p-value of restrictions First-stage F

∆c −2( ),  ∆n −2( ),
r −2( )

0.36
(0.11) 0.24 11.6

∆c −2( ),  ∆y −2( ),
r −2( )

0.34
(0.10) 0.39 10.9

∆c −2( ),  r −2( ),
c −2( )− y −2( )

0.30
(0.12) 0.31 10.2

∆c −2( ),  r −2( ),
∆n −2( ),
c −2( )− y −2( )

0.35
(0.10) 0.34 8.8

Notes:
p-value is for the test of over-identifying restrictions.



Table 3:  Robustness Checks

Included Variables

r − τ ∆n 0.52
(0.16)

r
-0.35
(0.20)

0.30
(0.12)

τ ∆n -0.61
(0.18)

Notes:

Dependent variable is ∆c − τ ⋅ ∆n .

τ is set to 0.8.

Instruments are ∆c −2( ),  ∆n −2( ),  and r −2( ).

All regressions include a constant.



Table 4A:  Forward Regressions

∆c − τ ⋅ ∆n = µ + s(r − τ ⋅ ∆n) + εt +θεt−1

τ Estimated s

0 0.30
(0.11)

0.8 0.36
(0.11)

Table 4B:  Reverse Regressions

r − τ ⋅∆n = µ + (1 s)(∆c −τ ⋅∆n) + εt + θεt−1

τ Estimated 1/s Implied s

0 1.32
(0.44) 0.75

0.8 2.13
(0.54) 0.47

Notes:
Instruments are ∆c −2( ),  ∆n −2( ),  and r −2( ).
All regressions include a constant.



Table 5:  Adding Disposable Income

∆c − τ ⋅ ∆n = µ + s(r − τ ⋅ ∆n) +β∆y + εt +θεt−1

Instrument Set Estimated s Estimated β

∆c −2( ),  ∆n −2( ),
r −2( )

0.53
(0.31)

-0.67
(0.62)

∆c −2( ),  ∆y −2( ),
r −2( )

0.41
(0.18)

-0.47
(0.46)

∆c −2( ),  r −2( ),
c −2( )− y −2( )

0.28
(0.14)

0.02
(0.27)

∆c −2( ),  r −2( ),
∆n −2( ),
c −2( )− y −2( )

0.36
(0.14)

-0.13
(0.27)

Note:

τ is set to 0.8.
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