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Abstract

If decision costs lead agents to update consumption every D peri-
ods, then high-frequency data will exhibit an anomalously low corre-
lation between equity returns and consumption growth (Lynch 1996).
We analytically characterize the dynamic properties of an economy
composed of consumers who have such delayed updating. In our set-
ting, an econometrician using an Euler equation procedure would infer
a coe¢cient of relative risk aversion biased up by a factor of 6D. Hence
with quarterly data, if agents adjust their consumption every D = 4
quarters, the imputed coe¢cient of relative risk aversion will be 24
times greater than the true value. High levels of risk aversion im-
plied by the equity premium and violations of the Hansen-Jaganathan
bounds cease to be puzzles. The neoclassical model with delayed ad-
justment explains the consumption behavior of shareholders. Once
limited participation is taken into account, the model matches most
properties of aggregate consumption and equity returns.
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1 Introduction

Consumption growth covaries only weakly with equity returns, which implies
that equities are not very risky. However investors have historically received
a very large premium for holding equities. For twenty years, economists
have asked why an asset with little apparent risk has such a large required
return.1

Grossman and Laroque (1990) argued that adjustment costs might an-
swer the equity-premium puzzle. If it is costly to change consumption,
households will not respond instantaneously to changes in asset prices. In-
stead, consumption will adjust with a lag, explaining why consumption
growth covaries only weakly with current equity returns. In the Grossman
and Laroque framework, equities are risky, but that riskiness does not show
up in a high contemporaneous correlation between consumption growth and
equity returns. The comovement is only observable in the long-run.

Delayed adjustment models have been adopted successfully in two re-
cent papers. Lynch (1996) and Marshall and Parekh (1999) have simulated
discrete-time delayed adjustments models and demonstrated that these mod-
els can potentially explain the equity premium puzzle.2 In light of the com-
plexity of these models, both sets of authors used numerical simulations.

We propose a continuous-time generalization of Lynch’s (1996) model.
Our extension provides two new sets of results. First, our analysis is an-
alytically tractable; we derive a complete analytic characterization of the
model’s dynamic properties. Second, our continuous-time framework gen-
erates e¤ects that are up to six times larger than those in discrete time
models.

We analzye an economy composed of consumers who update their con-
sumption every D (as in Delay) periods. Such delays may be motivated
by decision costs, attention allocation costs, and/or mental accounts.3 The
core of the paper describes the consequences of such delays. In addition,
we derive a sensible value of D based on a decision cost framework.

The “6D bias” is our key result. Using data from our economy, an
econometrician estimating the coe¢cient of relative risk aversion (CRRA)
from the consumption Euler equation would generate a multiplicative CRRA

1For the intellectual history of this puzzle, see Rubinstein (1976), Lucas (1978), Shiller
(1982), Hansen and Singleton (1983), Mehra and Prescott (1985), and Hansen and Jagan-
nathan (1991). For useful reviews see Kocherlakota (1996) and Campbell (2000).

2See also Caballero (1995) for a similar model, but without applications to asset pricing.
3See Gabaix and Laibson (2001) for a discussion of decision costs and attention allo-

cation costs. See Thaler (1992) for a discussion of mental accounts.

2



bias of 6D. For example, if agents adjust their consumption every D = 4
quarters, and the econometrician uses quarterly aggregates in his analysis,
the imputed coe¢cient of relative risk aversion will be 24 times greater than
the true value. Once we take account of this 6D bias, the Euler Equation
tests are unable to reject the standard consumption model. High equity
returns and associated violations of the Hansen-Jagannathan (1991) bounds
cease to be puzzles.

The basic intuition for this result is quite simple. If households adjust
their consumption every D ¸ 1 periods, then on average only 1

D households
will adjust each period. Consider only the households that adjust during
the current period and assume that these households adjust consumption
at dates spread uniformly over the period. Normalize the timing so the
current period is the time interval [0; 1]. When a household adjusts at
time i 2 [0; 1], it can only respond to equity returns that have already been
realized by time i. Hence, the household can only respond to fraction i of
within-period equity returns. Moreover, the household that adjusts at time
i can only change consumption for the remainder of the period. Hence,
only fraction (1¡ i) of this period’s consumption is a¤ected by the change
at time i. On average the households that adjust during the current period
display a covariance between equity returns and consumption growth that
is biased down by factor Z i=1

i=0
i(1¡ i)di = 1

6
:

The integral is taken from 0 to 1 to average over the uniformly distributed
adjustment times.

Since only fraction 1
D of households adjust in the …rst place, the aggregate

covariance between equity returns and consumption growth is approximately
1
6 ¢ 1D as large as it would be if all households adjusted instantaneously.
Since the Euler equation implies that the measured coe¢cient of relative
risk aversion is inversely related to the empirical covariance between equity
returns and consumption growth, the measured coe¢cient of relative risk
aversion is biased up by factor 6D.

In section 2 we describe our formal model, motivate our assumptions,
and present our key analytic …nding. In section 2.2 we provide an heuristic
proof of our results for the case D ¸ 1. In section 3 we present additional
results that characterize the dynamic properties of our model economy. In
section 4 we close our framework by describing howD is chosen. In section 5
we consider the consequences of our model for macroeconomics and …nance.
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In section 6 we discuss empirical evidence that supports the Lynch (1996)
model and our generalization. In section 7 we conclude.

2 Model and key result

Our framework is a synthesis of ideas from the continuous-time model of
Merton (1971) and the discrete-time model of Lynch (1996). In essence we
adopt Merton’s continuous-time modelling approach and Lynch’s emphasis
on delayed adjustment.

We assume that the economy has two linear production technologies:
a risk free technology and a risky technology (i.e., equities). The risk free
technology has return r: The risky technology is a geometric di¤usion process
with expected return r + ¼ and standard deviation ¾:

We assume that consumers hold two accounts: a checking account and
a balanced mutual fund. A consumer’s checking account is used for day
to day consumption, and this account holds only the risk free asset. The
mutual fund is used to replenish the checking account from time to time.
The mutual fund is professionally managed and is continuously rebalanced
so that µ share of the mutual fund assets are always invested in the risky
asset.4 The consumer is able to pick µ:5 In practice, the consumer picks
a mutual fund that maintains the consumer’s prefered value of µ: We call µ
the equity share (in the mutual fund).

EveryD periods, the consumer looks at her mutual fund and decides how
much wealth to withdraw from the fund to deposit in her checking account.
Between withdrawal periods — i.e., from withdrawal date t to the next
withdrawal date t +D — the consumer spends from her checking account
and does not monitor her mutual fund. For now we take D to be exogenous.
Following a conceptual approach taken in Du¢e and Sun (1990), we later
calibrate D with a decision cost model (see section 4). Alternatively, D
can be motivated with a mental accounting model of the type proposed by
Thaler (1992).

Finally, we assume that consumers have isoelastic preferences and expo-

4This assumption can be relaxed without signi…cantly changing the quantitative re-
sults. In particular, the consumer could buy assets in separate accounts without any
instantaneous rebalancing.

5The fact that µ does not vary once it is chosen is optimal from the perspective of the
consumer in this model.
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nential discount functions:

Uit = Et

Z 1

s=t
e¡½(s¡t)

Ã
c1¡°is ¡ 1
1¡ °

!
ds:

Here i indexes the individual consumer and t indexes time.
We adopt the following notation. Let wit represent the wealth in the

mutual fund at date t: Between withdrawal dates, wit evolves according to

dwit = wit ((r + µ¼)dt+ µ¾dzt) :

We can now characterize the optimal choices of our consumer. We describe
each date at which the consumer monitors — and in equilibrium withdraws
from — her mutual fund as a “reset date.” Formal proofs of all results are
provided in the appendix.

Proposition 1 On the equilibrium path, the following properties hold.

1. Between reset dates, consumption grows at a …xed rate 1
° (r ¡ ½):

2. The balance in the checking account just after a reset date equals the
net present value of consumption between reset dates, where the NPV
is taken with the risk free rate.

3. At reset date ¿; consumption is ci¿+ = ®wi¿¡ ; where ® is a function
of the technology parameters, preference parameters, and D:

4. The equity share in the mutual fund is

µ =
¼

°¾2
: (1)

Note that ci¿+ represents consumption immediately after reset and wi¿¡
represents wealth in the mutual fund immediately before reset.

Claim 1 follows from the property that between reset dates the rate of
return to marginal savings is …xed and equal to r: So between reset dates
the consumption path grows at the rate derived in Ramsey’s (1928) original
deterministic growth model:

_c

c
=
1

°
(r ¡ ½):

Claim 2 re‡ects the advantages of holding wealth in the balanced mutual
fund. Instantaneous rebalancing of this fund makes it optimal to store ‘ex-
tra’ wealth — i.e., wealth that is not needed for consumption between now
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and the next reset date — in the mutual fund. So the checking account is
exhausted between reset dates. Claim 3 follows from the homotheticity of
preferences. Claim 4 implies that the equity share is equal to the same eq-
uity share derived by Merton (1971) in his instantaneous adjustment model.
This exact equivalence is special to our institutional assumptions, but ap-
proximate equivalence is a general property of models of delayed adjustment
(see Rogers 2000 for numerical examples in a closely related model). Note
that the equity share is increasing in the equity premium (¼) and decreas-
ing in the coe¢cient of relative risk aversion (°) and the variance of equity
returns (¾2).

Combining claims 1-3 results implies that the optimal consumption path
between date ¿ and date ¿ +D is cit = ®e

1
°
(r¡½)(t¡¿)

wi¿¡ and the optimal
balance in the checking account just after reset date ¿ isZ ¿+D

¿
cse

¡r(s¡¿)ds =
Z ¿+D

¿
®e

1
°
(r¡½)(s¡¿)¡r(s¡¿)

wi¿¡ds

Claim 3 implies that at reset dates optimal consumption is linear in
wealth. For our purposes, it is only important that the consumers adopt a
linear rule at reset dates. The actual value of the propensity to consume,
®; does not matter for our results. Any linear rule — e.g., linear rules of
thumb — will su¢ce. In practice, the optimal value of ® in our model will
be close to the optimal marginal propensity to consume derived by Merton,

® =
½

°
+

µ
1¡ 1

°

¶µ
r +

¼2

2°¾2

¶
:

Merton’s value is exactly optimal in our framework when D = 0:

2.1 Our key result: the 6D bias

In our economy, each agent resets consumption at intervals of D units of
time.6 Agents are indexed by their reset time i 2 [0;D). Agent i resets
consumption at dates fi; i+D; i+ 2D; :::g:

We assume that the consumption reset times are distributed uniformly.
More formally, there exists a continuum of consumers whose reset indexes
i are distributed uniformly over [0;D): So if there is a mass one of agents,
the mass of agents resetting their consumption in any time interval of length
¢t · D is ¢t=D.

6 In this section, we take D as given, but in section 4 we describe how D is endogenously
chosen and calibrate the value of D.
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To …x ideas, suppose that the unit of time is a quarter of the calendar
year, and D = 4. In other words, the span of time from t to t + 1 is one
quarter of a year. Since D = 4; each consumer will adjust her consumption
once every four quarters. Because adjustments are uniformly distributed
over time, an equal number of consumers will reset consumption on each day
of the four-quarter calendar year: January 1, January 2,..., December 31.
We will often choose the slightly non-intuitive normalization that a quarter
of the calendar year is one period, since quarterly data is the natural unit
of temporal aggregation with contemporary macroeconomic data.

Call Ct the aggregate consumption between t¡ 1 and t.

Ct :=

Z D

i=0

·Z t

s=t¡1
cisds

¸
1

D
di:

Note that
hR t
s=t¡1 cisds

i
is per-period consumption for consumer i.

Suppose that an econometrician estimates ° and ¯ using a consumption
Euler equation (i.e., the consumption CAPM). What will the econometrician
infer about preferences?

Theorem 2 Consider an economy with true coe¢cient of relative risk aver-
sion °. Suppose an econometrician estimates the Euler equation

Et¡1

"b̄ µ Ct
Ct¡1

¶¡b°
Rat

#
= 1

for two assets, the risk free bond and the stock market. In other words,
the econometrician …ts b̄ and b° to match the Euler equation above for both
assets. Then the econometrician will …nd

b° = ( 6D° for D ¸ 1
6

3(1¡D)+D2° for 0 · D · 1 (2)

plus higher order terms characterized in subsequent sections.

Figure 1 plots b°=° as a function of D. The formulae for the cases
0 · D · 1 and D ¸ 1 are taken from Theorem 2.

Insert Figure 1 about here

The two formulae paste at the crossover point, D = 1. Convexity of the
formula belowD = 1; implies that b°=° ¸ 6D for all values ofD. The case of
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instantaneous adjustment (i.e., D = 0) is of immediate interest since it has
been solved already by Grossman, Melino, and Shiller (1985). With D = 0
the only bias arises from time aggregation of the econometrician’s data, not
delayed adjustment by consumers. Grossman, Melino, and Shiller show
that time aggregation produces a bias of b°=° = 2; matching our formulae
for D = 0:

The most important result is the equation for D ¸ 1; b° = 6D°, which
we call the 6D bias. For example, if each period (t to t + 1) is a quarter
of a calendar year, and consumption is reset every D = 4 quarters, then we
get b° = 24°. Hence ° is overestimated by a factor of 24. If consumption is
revised every 5 years then we have D = 20, and b° = 120°:

Reset periods of four quarters or more are not unreasonable in practice.
For an extreme case, consider the 50-year-old employee who accumulates
balances in a retirement savings account (.e.g, a 401(k)) and fails to recognize
any fungibility between these assets and his pre-retirement consumption. In
this case, stock market returns will e¤ect consumption at a considerable lag
(e.g., D > 60 for this example):

However, such extreme cases are not necessary for the points that we
wish to make. Even with a delay of only four quarters, the implications for
the equity premium puzzle literature are dramatic. With a multiplicative
bias of 24, econometrically imputed coe¢cients of relative risk aversion of
50 suddenly appear quite reasonable, since they imply actual coe¢cients of
relative risk aversion of roughly 2.

Starting with Hall (1978), numerous authors have found that consump-
tion growth does respond to lagged stock returns. Recently, Daniel and
Marshall (1997, 1999) report that consumption Euler Equations for aggre-
gate data are not satis…ed at the quarterly frequency but are satis…ed at
the two-year frequency. Dynan and Maki (2000) report that current con-
sumption growth of stockholding households is in‡uenced by quarterly asset
returns from the previous two quarters. By comparison, with D = 4 quar-
ters our model implies that the average time delay between a stock price
innovation and a consumption response is half a year. We return to a
discussion of the empirical evidence in section 6.

We can compare the 6D bias analytically to the biases that Lynch (1996)
simulates in his original discrete time model. In Lynch’s framework, agents
consume every month and adjust their portfolio every T months. The
econometric observation period is time-aggregated periods of F months, so
D = T=F . In Appendix C we show that when D ¸ 1 Lynch’s framework
generates a bias which is bounded below by D and bounded above by 6D.
Speci…cally, an econometrician who naively estimated the Euler equation
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with data from Lynch’s economy would …nd a bias of

b°
°
= D

6F 2

(F + 1) (F + 2)
+ higher order terms: (3)

Holding D constant, the continuous time limit corresponds to F !1, and
for this case b°=° = 6D: The discrete time case where agents consume at
every econometric period corresponds to F = 1, implying b°=° = D, which
can be derived directly.

Finally, the 6D bias complements participation bias (e.g., Vissing (2000)).
If only a fraction s of agents are in the market, then the covariance between
aggregate consumption and returns is lower by a factor s. As the heuris-
tic proof below demonstrates (and, more formally, Theorem 6), this bias
combines multiplicatively with our bias: if there is limited participation,
the econometrician will …nd the values of b° in Theorem 1, divided by s: In
particular, for D ¸ 1, he will …nd:

b° = 6D

s
° (4)

This formula puts together the three main (in our view) sources of biases of
the Euler-equation (and Hansen-Jaganathan) tests of the equity premium
puzzle: b° will be overestimated because of time aggregation and delayed
adjustment (the 6D part, say 6D = 24), and because of limited participation
(the 1=s part, with say 1=s = 3).

2.2 Argument for D ¸ 1
In this section we present a heuristic proof of Theorem 2. A rigorous proof
is provided in the appendix.

Normalize a generic period to be one unit of time. The econometrician
observes the return of the stock market from 0 to 1:

lnR1 = ¾

Z 1

0
dzs + r + ¼ ¡ ¾

2

2
: (5)

where r is the risk-free interest rate, ¼ is the equity premium, ¾2 is the
variance of stock returns, and z is a Wiener process. The econometrician
also observes aggregate consumption over the period:

C1 =

Z D

i=0

·Z 1

s=0
cisds

¸
1

D
di:
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As is well-known, when returns and consumption are assumed to be jointly
log normal, the standard Euler Equation implies that7

b° := ¼

cov
³
ln C1C0 ; lnR1

´ : (6)

We will show that when D ¸ 1 the measured covariance between con-
sumption growth and stock market returns cov(lnC1=C0; lnR1) will be 6D
lower than the instantaneous covariance, cov(d lnCt; d lnRt)=dt; that arises
in the frictionless CCAPM. As is well-known, in the frictionless CCAPM

° =
¼

cov(d lnCt; d lnRt)=dt
:

Assume that each agent has consumption in period [¡1; 0] of 1.8 So ag-
gregate consumption in period [¡1; 0] is also one: C0 = 1. Since lnC1=C0 '
C1=C0 ¡ 1; we can write

cov

µ
ln
C1
C0
; lnR1

¶
' cov(C1; lnR1) (7)

=

Z D

0
cov(Ci1; lnR1)

1

D
di (8)

with Ci1 =
R 1
0 cisds the time-aggregated consumption of agent i during

period [0; 1].
First, take the case D = 1. Agent i 2 [0; 1) changes her consumption

at time i. For s 2 [0; i), she has consumption cis = ®wi¿e
¯(s¡¿); where

¿ = i¡D and ¯ = 1
° (r ¡ ½):

Throughout this paper we use approximations to get analytic results.
Let " := max(r; ½; µ¼; ¾2; ¾2µ2; ®). When we use annual periods " will be

7Et¡1

·b̄ ³ Ct
Ct¡1

´¡b°
Rat

¸
= 1 with Rat = e

¹a¡¾2a=2+¾a"a : So,

¡± ¡ °(¹c ¡ ¾2=2) + °2¾2c=2 + ¹a ¡ °¾ac = 0
If we evaluate this expression for the risk-free asset and equities, we …nd that,

¼ = °cov

µ
ln

Ct
Ct¡1

; lnRt

¶
8This assumption need not hold exactly. Instead, consumption must be unity up to

O(") + ~O(
p
") terms. See notation below.
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approximately .05. For quarterly periods, " will be approximately .01. We
can express our approximation errors in higher order terms of ":

Since consumption in period [¡1; 0] is one,

wi¿ =
1

®
+O(") + ~O(

p
"):

Here ~O(
p
") represents stochastic terms. These terms are of order

p
"; have

mean zero, and depend only on equity innovations that happened before
time 0. Hence these stochastic ~O(

p
") terms are all orthogonal to equity

innovations during period [0; 1].
Drawing together our last two results, for s 2 [0; i);

cis = ®wi¿e
¯(s¡¿)

= ®wi¿ +O(")

= 1 +O(") + ~O(
p
")

Without loss of generality, set z(0) = 0: So the consumer i’s mutual fund
wealth at date t = i is

wi;t=i = wi¿e
(r+µ¼¡µ2¾2=2)i+µ¾(z(i)¡z(i¡D))

= wi¿ (1 + µ¾z(i)) +O(") + ~O(
p
")

The consumer adjusts consumption at t = i, and so for s 2 [i; 1] she
consumes

cis = ®wi;t=ie
¯(s¡i)

= ®wi;t=i +O(")

= ®wi¿ (1 + µ¾z(i))) +O(") + ~O(
p
")

= 1 + µ¾z(i) +O(") + ~O(
p
")

The covariance of consumption and returns for agent i is

cov(Ci1; lnR1) =

Z 1

0
cov(cis; lnR1)ds

=

Z i

0
0ds+

Z 1

i
cov(1 + µ¾z(i) +O(") + ~O(

p
"); lnR1)ds

= µ¾2i(1¡ i) +O
³
"3=2

´
' µ¾2i(1¡ i)
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Here ' means “plus higher order terms in "”.
The covariance contains the multiplicative factor i because the consump-

tion change re‡ects only return information which is revealed between date 0
and date i. The covariance contains the multiplicative factor (1¡ i) because
the change in consumption occurs at time i, and therefore e¤ects consump-
tion for only the subinterval of time from date i to date 1.

The average covariance of consumption growth is

1

µ¾2
cov (C1; lnR1) =

Z 1

i=0

1

µ¾2
cov(Ci1; R1)

1

D
di

'
Z 1

0
i(1¡ i)di = 1

6

which is the (inverse of the) 6D factor for D = 1:
Consider now the case D ¸ 1. Consumer i 2 [0;D) resets her consump-

tion at t = i. During period one (i.e., t 2 [0; 1]) only agents with i 2 [0; 1]
will reset their consumption. Consumers with i 2 (1; D] will not change
their consumption, so they will have a zero covariance cov

¡
Ci; R1

¢
. Hence,

1

µ¾2
cov (Ci1; R1) '

½
i(1¡ i) if i 2 [0; 1]
0 if i 2 [1;D]

For D ¸ 1 the covariance of aggregate consumption is just 1=D times what
it would be if we had D = 1:

1

µ¾2
cov(lnC1=C0; R1) '

Z D

0

1

µ¾2
cov(Ci1; R1)

di

D

=
1

D

Z 1

0

1

µ¾2
cov(Ci1; R1)di

' 1

D

Z 1

0
i(1¡ i)di

=
1

6D

The 6D lower covariance of consumption with returns translates into a
6D higher measured CRRA b°: Since µ = ¼

°¾2
(equation 1) we get

cov(lnC1=C0; lnR1) =
¼

6D°
:

The Euler Equation (6) then implies

b° = 6D°
12



as anticipated.
Several properties of our result should be emphasized. First, holding

D …xed, the bias in b° does not depend on either preferences or technology:
r; ¼; ¾; ½; °. This independence property will apply to all of the additional
results that we report in subsequent sections. When D is endogenously
derived, D itself will depend on the preference and technology parameters.

For simplicity, the derivation above assumes that agents with di¤erent
adjustment indexes i have the same “baseline” wealth at the start of each
period. In the long-run this wealth equivalence will not apply exactly.
However, if the wealth disparity is moderate, the reasoning above will still
hold approximately. Instead of “6D”, the multiplicative bias isRD

0 witdiR 1
0 witi(1¡ i)di

:

Numerical analysis with 50-year adult lives implies that this quantity is
very close to 6D, the value it would have if all of the wealth levels, wit; were
identical period-by-period.

3 General characterization of the economy

In this section we provide a general characterization of the dynamic prop-
erties of the economy described above. We analyze four properties of our
economy: excess smoothness of consumption growth, positive autocorrela-
tion of consumption growth, low covariance of consumption growth and asset
returns, and non-zero covariance of consumption growth and lagged equity
returns.

Our analysis focuses on …rst-order e¤ects with respect to the parameters
r; ½; µ¼; ¾2; ¾2µ2; and ®. Call " := max(r; ½; µ¼; ¾2; ¾2µ2; ®). We assume
" to be small. Empirically, " ' :05 with a period length of a year, and
" ' :01 with a period length of a calendar quarter. All the results that
follow (except one9) are proved with O("3=2) residuals. In fact, at the cost
of more tedious calculations, one can show that the residuals are actually
O("2).10

The following theorem is the basis of this section. All proofs appear in
the appendix.

9Equation 12 is proved to order O(
p
"), but with more tedious calculations can be

shown to be O("):
10One follows exactly the lines of the proofs presented here, but includes higher order

terms. Calculations are available from the authors upon request.
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Theorem 3 The autocovariance of consumption growth at horizon h ¸ 0
can be expressed

cov

µ
ln

Ch+t
Ch+t¡1

; ln
Ct
Ct¡1

¶
= µ2¾2¡(D;h) +O

³
"3=2

´
(9)

where

¡(D;h) :=
1

D2
[d(D + h) + d(D ¡ h)¡ d(h)¡ d(¡h)] ; (10)

d(D) :=
4X
i=0

µ
4

i

¶
(¡1)i
2 ¢ 5! jD + i¡ 2j

5 ; (11)

and
¡4
i

¢
= 4!

i!(4¡i)! is the binomial coe¢cient.

The expressions above are valid for non-integer values ofD and h: Functions
d(D) and ¡(D;h) have the following properties, many of which will be ex-
ploited in the analysis that follows11.

² d is C4

² d(D) = jDj =2 for jDj ¸ 2
² d(0) = 7=30:
² ¡(D;h) » 1=D for large D

² ¡(D;h) ¸ 0
² ¡(D;h) > 0 i¤ D + 2 > h
² ¡(D;h) is nonincreasing in h
² ¡(D; 0) is decreasing in D, but ¡(D;h) is hump-shaped for h > 0:
² ¡(0; h) = 0 for h ¸ 2
² ¡(0; 0) = 2=3
² ¡(0; 1) = 1=6
Figure 2 plots d(D) along with a second function which we will use

below).

Insert Figure 2 about here
11¡ is continuous, so ¡(0; h) is intended as limD!0 ¡(D;h):
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3.1 ¡(D; 0)

We begin by studying the implications of the autocovariance function, ¡(D;h);
for the volatility of consumption growth (i.e, by setting h = 0). Like Ca-
ballero (1995), we also show that delayed adjustment induces excess smooth-
ness. Theorem 3 describes our quantitative result.

Corollary 4 In the frictionless economy (D = 0), var(dCt=Ct)=dt = ¾2µ2.
In our economy, with delayed adjustment and time aggregation bias,

var(lnCt=Ct¡1)
¾2µ2

= ¡(D; 0) · 2=3:

The volatility of consumption, ¾2µ2¡(D; 0), decreases as D increases.

The normalized variance of consumption, ¡(D; 0); is plotted against D,
in Figure 3.

Insert Figure 3 about here.

For D = 0, the normalized variance is 2=3; well below the benchmark
value of 1. The D = 0 case re‡ects the bias generated by time aggregation
e¤ects. As D rises above zero, delayed adjustment e¤ects also appear. For
D = 0; 1; 2; 4; 20 the normalized variance takes values .67, .55, .38, .22, and
.04. For large D, the bias is approximately 1=D.

Intuitively, as D increases, none of the short-run volatility of the econ-
omy is re‡ected in consumption growth, since only 1=D proportion of the
agents adjust consumption in any single period. Moreover, the size of the
adjustments only grows with

p
D: So the total magnitude of adjustment is

falling with 1=
p
D and the variance falls with 1=D:

3.2 ¡(D; h) with h > 0

We now consider the properties of the (normalized) autocovariance function
¡(D;h) for h = 1; 2; 4; 8: Figure 4 plots these respective curves, ordered
from h = 1 on top to h = 8 at the bottom. Note that in the benchmark
case — instantaneous adjustment and no time-aggregation bias — the au-
tocovariation of consumption growth is zero. With only time aggregation
e¤ects, the one-period autocovariance is ¡(0; 1) = 1=6, and all h¡period
autocovariances with h > 1 are zero.

Insert Figure 4 about here.
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3.3 Revisiting the equity premium puzzle

We can also state a formal and more general analogue of Theorem 2.

Proposition 5 Suppose that consumers reset their consumption every ha
periods. Then the covariance between consumption growth and stock market
returns at horizon h will be

cov(lnC[t;t+h]=C[t¡h;t]; lnR[t;t+h]) =
µ¾2h

b(ha=h)
+O

³
"3=2

´
where,

b(D) =

(
6D for D ¸ 1

6
3(1¡D)+D2 for 0 · D · 1

The associated correlation is

corr(lnC[t;t+h]=C[t¡h;h]; lnR[t;t+h]) =
1

b(D)¡(D; 0)1=2
+O

³
"1=2

´
(12)

with D = ha=h.

In the benchmark model with continuous sampling, the normalized co-
variance (i.e., correlation) is unity,

cov(d lnCt; d lnRt)=dt

µ¾2
= 1

We compare this benchmark to the e¤ects generated by our discrete
observation, delayed adjustment model. As the horizon h tends to +1, the
normalized covariance between consumption growth and asset returns tends
to

µ¾2h

b(0)

1

µ¾2h
=
1

2
;

which is true for any …xed value of ha: This e¤ect is due exclusively to time
aggregation. Delayed adjustment ceases to matter as the horizon length
goes to in…nity.

Proposition 5 covers the special case discussed in section two: horizon
h = 1, and reset period ha = D ¸ 1. For this case, the normalized
covariance is approximately equal to

µ¾2

b(D)

1

µ¾2
=

1

6D
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Figure 5 plots the multiplicative covariance bias factor 1=b(ha=h) as a
function of h, for ha = 1. In the benchmark case (i.e., continuous sampling
and instantaneous adjustment) there is no bias; the bias factor is unity.
In the case with only time aggregation e¤ects (i.e., discrete sampling and
ha = 0) the bias factor is 1=b(0=h) = 1=2.

Insert Figure 5 about here.

Hence, low levels of comovement show up most sharply when horizons
are low. For D ¸ 1 (i.e., ha=h ¸ 1), the covariance between consumption
growth and stock returns is 6D times lower than one would expect in the
frictionless continuous sampling model.

We now characterize covariance between current consumption growth
and lagged equity returns.

Theorem 6 Suppose that consumers reset their consumption every ha =
Dte periods. Then the covariance between lnC[t;t+1]=C[t¡1;t] and lagged
equity returns lnR[t+¿1;t+¿2] (¿1 < ¿ 2 · 1) will be

cov(lnC[t;t+1]=C[t¡1;t]; lnR[t+¿1;t+¿2]) = µ¾
2V (D; ¿1; ¿2) +O("

3=2) (13)

with

V (D; ¿1; ¿ 2) =
e(¿1)¡ e(¿2)¡ e(¿1 +D) + e(¿2 +D)

D
(14)

where

e(¿) =

(
3x2¡jxj3

6 for jxj · 1
3jxj¡1
6 for jxj ¸ 1 (15)

The following corollary will be used in the empirical section.

Corollary 7 The following hold, between the

cov(ln
C[s+h¡1;s+h]
C[s¡1;s]

; lnR[s;s+1]) = µ¾2
e (1 +D)¡ e (1)¡ e (1¡ h+D) + e (1¡ h)

D
(16)

+O("3=2)

In particular, when h ¸ D + 2; cov(lnC[s+h¡1;s+h]=C[s¡1;s]; lnR[s;s+1]) =
µ¾2 : One sees full adjustment at horizons (weakly) greater than D + 2:
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In practice, Theorem 6 is most naturally applied when the lagged equity
returns correspond to speci…c lagged time periods: i.e., ¿2 = ¿1 + 1, ¿1 =
0;¡1;¡2; :::.

Note that V (¿1; ¿2) > 0 i¤ ¿2 · ¡D ¡ 1: Hence, the covariance in
Theorem 6 is positive only at lags 0 through D + 1.

Figure 6 plots the normalized covariances of consumption growth and
lagged asset returns for di¤erent values ofD. Speci…cally, we plot V (¿; ¿+1)
against ¿ for D = :25; 1; 2; 4, from right to left.

Insert Figure 6 about here.

Consider a regression of consumption growth on some arbitrary (large)
number of lagged returns,

lnCt=Ct¡1 =
0X
¿=¿

¯¿ lnRt+¿ :

One should …nd,

¯¿ = µV (D; ¿; ¿ + 1):

Note that the sum of the normalized lagged covariances is one,

1

µ¾2

0X
¿=¡1

cov(lnC[t;t+1]=C[t¡1;t]; lnR[t+¿;t+¿+1]) =
0X

¿=¡1
V (¿ ; ¿ + 1) = 1:

This implies that the sum of the coe¢cients will equal the portfolio share of
the stock market,12

0X
¿=¡D¡1

¯¿ = µ: (17)

3.4 Extension to multiple assets and heterogeneity in D.

We now extend the framework to the empirically relevant case of multiple
assets with stochastic returns. We also introduce heterogeneity in D’s.

12This is true in a world with only equities and riskless bonds. In general, it’s more
appropriate to use a model with several assets, including human capital, as in the next
section.

18



Such heterogeneity may arise because di¤erent D’s apply to di¤erent asset
classes and because D may vary across consumers.

Say that there are di¤erent types of consumers l = 1; :::; nl and di¤erent
types of asset accounts m = 1:::nm: Consumers of type l exist in proportion
pl (

P
l pl = 1) and look at account m every Dlm periods. The consumer

has wealth wlm invested in account m; and has an associated MPC ®lm: In
most models the MPC0s will be the same for all assets, but for the sake of
behavioral realism and generality we consider possibly di¤erent MPC0s.

For instance, income shocks could have a lowD = 1, stock market shocks
a higher D = 4, and shocks to housing wealth a D = 40.13 Account m
has standard deviation ¾m; and shocks dzmt : Call ½mn = cov(dznt; dzmt)=dt
the correlation matrix of the shocks and ¾mn = ½mn¾m¾n their covariance
matrix.

Total wealth in the economy is
P
l;m plwlm and total consumption

P
l;m pl®lmwlm:

A useful and natural quantity is

µlm =
pl®lmwlmP

l0;m0 pl0®l0m0wl0m0
(18)

A shock dzmt in wealth account m will get translated at mean interval Dlm
into a consumption shock dC=C =

P
l µlmdzmt:

We can calculate the second moments of our economy.

Theorem 8 In the economy described above, we have,

cov(lnCt=Ct¡1; lnRn[t+¿1;t+¿2]) =
X
l;m

µlm¾mnV (Dlm; ¿1; ¿2) +O
³
"3=2

´
(19)

and

cov(lnCt+h=Ct+h¡1; lnCt=Ct¡1) =
X

l;l0;m;m0
µlmµl0m0¾mm0¡(Dlm;Dl0m0 ; h) +O

³
"3=2

´
(20)

with

¡(D;D0; h) =
1

DD0
£
d(D + h) + d(D0 ¡ h)¡ d(D0 ¡D ¡ h)¡ d(h)¤ (21)

and V de…ned in (14).

13Thaler (1992) describes one behavioral model with similar asset-speci…c marginal
propensities to consume.

19



The function ¡(D; t); de…ned earlier in (10), relates to ¡(D;D0; t) by
¡(D;D; t) = ¡(D; t). Recall that V (D; 0; 1) = 1=b(D). So a conclusion
from (19) is that, when there are several types of people and assets, the bias
that the econometrician would …nd is the harmonic mean of the individual
biases b(Dlm), the weights being given by the “shares of variance”:

As an application, consider the case with identical agents and di¤erents
assets (l = L = 1, l suppressed here); with di¤erent MPC ®m = ®. Recall
that V (D; 0; 1) = 1=b(D). So, the bias b°=° will be:

b°
°
=

ÃX
m

µ2m¾
2
mP

m0 µ2m¾
2
m

b(Dm)
¡1
!¡1

(22)

Hence, with several assets, the aggregate bias is the weight mean of the
biases, the mean being the harmonic mean, and the weight of asset m be-
ing the share of the total variance that comes from this asset: This allows
us, in Appendix B, to discuss a modi…cation of the model with di¤erential
attention to big shocks (jumps).

These relationships are derived exactly along the lines of the single as-
set, single type economy of the previous sections. Expression (19) is the
covariance between returns, lnRn[t+¿1;t+¿2] = ¾nz

n
[t+¿1;t+¿2]

+ O ("), and the
representation formula for aggregate consumption,

lnCt=Ct¡1 =
X
l;m

µlm¾m

Z 1

¡1
a(i)zm[t¡1+i¡Dm;t¡1+i]di+O("

3=2): (23)

Equation (23) can also be used to calculate the autocovariance (20) of con-
sumption, if one de…nes:

¡(D;D0; h) =
Z
i;j2[¡1;1]

a(i)a(j)cov
¡
z[t¡1+i¡D;t¡1+i]; z[t¡1+j+h¡D0;t¡1+j+h]

¢ di
D

dj

D0
:

(24)

The closed form expression (21) of ¡ is derived in the appendix.

3.5 Sketch of the proof

Proofs of the propositions appear in the appendix. In this subsection we
provide intuition for those arguments. We start with the following represen-
tation formula for consumption growth.
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Proposition 9 We have,

lnCt+1=Ct = µ¾

Z 1

¡1
a(i)z[t+i¡D;t+i]

1

D
di+O("): (25)

Note that the order of magnitude of µ¾
R 1
¡1 a(i)z[t+i¡D;t+i]

di
D is the order

of magnitude of ¾, i.e. O(
p
"):14

Assets returns can be represented as lnR[t+¿1;t+¿2] = ¾z[t+¿1;t+¿2]+O(").
So we get
cov

³
ln Ct

Ct¡1 ; lnR[s+¿1;s+¿2]

´
= µ¾2

Z 1

¡1
a(i)cov

¡
z[t¡1+i¡D;t¡1+i]; z[s+¿1;s+¿2]

¢ di
D
+O("3=2) (26)

= µ¾2
Z 1

¡1
a(i)¸ ([t¡ 1 + i¡D; t¡ 1 + i] \ [s+ ¿1; s+ ¿2]) di

D
(27)

+O("3=2)

Here ¸(I) is the length (the Lebesgue measure) of interval I. Likewise one
gets

cov(lnCh+t=Ch+t¡1; lnCt=Ct¡1) = B;

with B

= µ2¾2
Z 1

¡1

Z 1

¡1
a(i)a(j)cov(z[h+t¡1+i¡D;h+t¡1+i]; z[t¡1+j¡D;t¡1+j])

di

D

dj

D
+O

³
"3=2

´
= µ2¾2

Z 1

¡1

Z 1

¡1
a(i)a(j)¸([h+t¡1+i¡D;h+t¡1+i]\[t¡1+j¡D; t¡1+j])di

D

dj

D
+O

³
"3=2

´
The bulk of the proof is devoted to the explicit calculation of this last equa-
tion and equation (27).

4 Endogenizing D

Until now, we have assumed that D is …xed exogenously. In this section we
discuss how D is chosen, and provide a framework for calibrating D.

Because of delayed adjustment, the actual consumption path will devi-
ate from the “…rst-best” instantaneously-adjusted consumption path. In

14 Insert heuristic derivation for the case D ¸ 2 here.
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steady-state, the welfare loss associated with this deviation is equivalent,
using a money metric, to a proportional wealth loss of ¤C , where,15

¤c =
°

2
E

µ
¢C

C

¶2
+ higher order terms: (28)

Here ¢C is the di¤erence between actual consumption and …rst-best instan-
taneously adjusted consumption. If the asset is observed every D periods,
we have

¤c =
1

4
°µ2¾2D +O

¡
"2
¢

(29)

(Equations (28) and (29) are derived in the appendix). We assume that
each consumption adjustment costs q proportion of wealth, w. A sensible
calibration of q would be qw = (1%)(annual consumption) = (:01)(:04)w =
(4 ¢ 10¡4)w.

Then the total fraction of wealth paid is q
P
n¸0 e

¡rnD; implying a total
cognitive cost of

¤q =
q

1¡ e¡rD :

The optimal D minimizes both consumption variability costs and cognitive
costs, i.e. D¤ = argmin¤c +¤q.

D¤ = argmin
D

1

4
°µ2¾2D +

q

1¡ e¡rD
so

1

4
°µ2¾2 = qr

e¡rD

(1¡ e¡rD)2 =
qr¡

erD=2 ¡ e¡rD=2¢2
=

qr

4 sinh2 rD2

and we …nd for the optimal D

D¤ =
2

r
arg sinh

r
qr

°µ2¾2
(30)

' 2

µ¾

r
q

°r

15This is a second-order approximation. See Cochrane (1989) for a similar derivation.
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when r D ¿ 1:
We make the following calibration choices: q = 5 ¢ 10¡4; ¾2 = (:17)2,

° = 3; r = :04, ¼ = :06, and µ = ¼=(°¾2) = :69: Substituting into our
equation for D, we …nd

D = 1:10 years.

This calibration supports our earlier emphasis on the benchmark case D = 1
year (i.e. D = 4 quarters if each period is a quarter):

Note that formula (30) would work for other types of shocks than stock
market shocks. With several accounts indexed by m, people would pay
attention to account m every

Dm =
2

r
arg sinh

r
qmr

°(µm¾m)2
(31)

with µm generalized as in equation (18). (Comment on the sensible com-
parative statics). Thus we get a mini-theory of the allocation of attention
across accounts16.

5 Consequences for macroeconomics and …nance

5.1 Simple calibrated macro model

To draw together the most important implications of this paper, we describe
a simple model of the US economy. We use our model to predict the vari-
ability of consumption growth, the autocorrelation of consumption growth,
and the covariance of consumption growth with equity returns.

Assume the economy is comprised of two classes of agents: stockholders
and non-stockholders.17 The actors that we model in section 2 are stock-
holders. Non-stockholders do not have any equity holdings, and instead
consume earnings from human capital. Stockholders have aggregate wealth
St and non-stockholders have aggregate wealth Nt. Total consumption is
given by the weighted sum

Ct = ® (St +Nt) :

16Here we have derived the amount of attention paid to account m, given the costs of
thinking qm. See Gabaix and Laibson (2000a,b) for analysis that endogenizes the costs
qm of economic decision-making.
17This is at a given point in time. A major reason for non-participation is that relatively

young agents have most of their wealth in human capital, against which they cannot borrow
to invest in equities (see Constantinides, Donaldson and Mehra 2000).
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Recall that ® is the marginal propensity to consume.
So, consumption growth can be decomposed into

dC=C = sdS=S + ndN=N:

Here s represents the wealth of shareholders divided by the total wealth
of the economy and n = 1 ¡ s represents the wealth of non-shareholders
divided by the total wealth of the economy. So s and n are wealth shares for
shareholders and non-shareholders respectively. We make the simplifying
approximation that s and n are constant in the empirically relevant medium-
run.

Using a …rst-order approximation,

ln(Ct=Ct¡1) = s ln(St=St¡1) + n ln(Nt=Nt¡1):

If stockholders have loading in stocks µ, the ratio of stock wealth to total
wealth £ in the economy is,

£ = sµ: (32)

To calibrate the economy we begin with the observation that human
capital claims about 2/3 of GDP, Y . Human capital is the discounted net
present value of labor income accruing to the current cohort. We assume
that the expected duration of the remaining working life of a typical worker
is 30 years, implying that the human capital of the current work-force is
equal to

H =

Z 30

0
e¡rt

2

3
Y dt =

2(1¡ e¡rT )
3r

Y ' 17Y;

where Y is aggregate income. Capital income claims 1/3 of GDP. Assuming
that it has the riskiness (and the returns) of the stock market, the amount
of capital is

K =
1

3(r + ¼)
Y ' 5Y

so that the equity share of total wealth is

£ =
K

K +H
' :22

As above, we assume ¾ = :17, ¼ = :06, r = :01; and ° = 3, so the equity
share (equation (1) above) is µ = ¼=(°¾2) = :69. Then equation (32) implies
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s = :32: In other words, 32% of the wealth in this economy is owned by
shareholders.

Say that equity holders readjust their consumption at intervalD periods,
and wage earners every D0 periods. To …x ideas we take D = 1 and D0 = 0,
which implies ¡(D; 0) = :55, ¡(D0; 0) = 2=3 = :67, ¡(D; 1) = :22, ¡(D0; 1) =
:17.

Assume for simplicity thatN and S are uncorrelated. Then the volatility
of aggregate consumption growth is,

¾2C = s
2¡(D; 0)µ2¾2 + n2¡(D0; 0)¾2N

so

¾C =
£
¡(D; 0)£2¾2 + n2¡(D0; 0)¾2N

¤1=2
We assume that ¾N = :02. Our assumption jointly imply that ¾C = :029.

This estimate compares favorably with its empirical counterparts. We
calculate ¾C using the US National Income and Product Accounts (NIPA)
for the period 1929-1999.18 We adopt two di¤erent de…nitions of consump-
tion: “nondurables and services” and “total consumption.” For these two
de…nitions we estimate ¾C = :023 and ¾C = :032 respectively, close to
our theoretical prediction of .029.19 Had we instead used a model with only
stockholders (s = 1), we would have found ¾C = ¡(D; 0)1=2µ¾ = :083, which
is far greater than any of the available empirical estimates.

Next, we turn to the …rst-order autocorrelation of consumption growth:

½C = corr(lnCt=Ct¡1; lnCt¡2=Ct¡1)
= (¾2C)

¡1 £¡(D; 1)£2¾2 + n2¾2N¡(D0; 1)¤
Using our calibration choices, our model predicts that ½C = :38; close to
empirical estimates of .49 (nondurables and services) and .35 (total con-
sumption) calculated from the NIPA.

We turn now to the covariation between aggregate consumption growth
and equity returns cov(lnCt=Ct¡1; lnRt). Since we are working with annual
data, we set D = 1, and …nd

cov(lnCt=Ct¡1; lnRt) = £¾2V (D; 0; 1) = :0010

18Bureau of Economic Analysis, Commerce Department.
19Mankiw and Zeldes (1991) report a slightly larger range of estimates for ¾C : [.014,

.036].
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assuming that in the short-run the consumption growth of non-stockholders
is uncorrelated with the consumption growth of stockholders. The covari-
ance estimate of .0010 lies slightly above our empirical estimates of .0008
and .0009.20 In summary, the simple model matches all of the important
high frequency properties of consumption in this economy, including the low
covariation between consumption growth and equity returns.

What would an econometrician familiar with the consumption-CAPM
literature conclude if he observed annual data from our model economy?
First, he might calculate,

b° = ¼

cov(lnCt=Ct¡1; lnRt)
= °

b(D)

s
= 56:25;

and conclude that the coe¢cient of relative risk aversion is close to eighty.
If he were familiar with the work of Mankiw and Zeldes (1991), he might
restrict his analysis to stockholders and calculate,

b° = ¼

cov(lnSt=St¡1; lnRt)
= °b(D) = 18:

Finally, if he read Mankiw and Zeldes carefully, he would realize that he
should also do a continuous time adjustment (of the type suggested by
Grossman et al 1987), leading to another halving of his estimate. But,
after all of this hard work, he would still end up with a biased coe¢cient
of relative risk aversion: °b(D)=2 = 18=2 = 9. For this economy, the true
coe¢cient of relative risk aversion is 3.

Had he worked with quarterly data, things would look worse. His esti-
mate of the coe¢cient of relative risk aversion for stockholders would be 72,
and even after halving this estimate he would still be left with an in‡ated
estimate of 36, 12 times the true value of 3.

The situation rapidly deteriorates if households adjust less quickly than
once a year. Imagine that some households adjust very slowly so that a
typical adjustment interval is …ve years. Now, if the econometrician used
annual data, the inferred coe¢cient of relative risk aversion for stockhold-
ers would be 6D° = (6)(5)° = 90. Incorporating the Grossman et al
adjustment, this coe¢cient drops to 45, 15 times its true value. If the
econometrician is working with quarterly data, the inferred value of ° would
be 6D° = (6)(20)° = 360; or 180 with the Grossman et al adjustment.

These observations suggest that the literature on the equity premium
puzzle should be reappraised. Once one takes account of delayed adjust-
ment, high estimates of ° no longer seem anomalous. If workers in mid-life
20Mankiw and Zeldes report a range of empirical covariances between .0008 and .0023.
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take decades to respond to innovations in their retirement accounts, we
should expect naive estimates of ° that are far too high.

Defenders of the Euler equation approach might argue that economists
can go ahead estimating the value of ° and simply correct those estimates for
the biases introduced by delayed adjustment. However, we do not view this
as a fruitful approach, since the adjustment delays are di¢cult to observe
or calibrate.

For an active stock trader, knowledge of personal …nancial wealth may be
updated daily, and consumption may adjust equally quickly. By contrast, for
the typical employee who invests in a 401(k) plan, retirement wealth may be
in its own mental account,21 and hence may not be integrated into current
consumption decisions. This generates lags of decades or more between
stock price changes and consumption responses. Without precise knowledge
of the distribution of D values, econometricians will be hard pressed to
accurately measure ° using the Mehra-Prescott approach.

In summary, our model tells us that high imputed ° values are not
anomalous and that high frequency properties of the aggregate data can be
explained by a model with delayed adjustment. Hence, the equity premium
may not be a puzzle.

Finally, we wish to note that our delayed adjustment model is comple-
mentary to the theoretical work of other authors who have analyzed the
equity premium puzzle.22 Our qualitative approach has some similarity
with the habit formation approach (e.g., Constantinides 1990, Abel 1990,
Campbell and Cochrane 1999). Habit formation models imply that slow
adjustment is optimal because households prefer to smooth the growth rate
(not the level) of consumption. In our 6D model, slow adjustment is only
optimal because decision costs make high frequency adjustment too expen-
sive.

6 Review of related empirical evidence

In this section, we review two types of evidence that lend support to our
model.
21See Thaler (1992).
22For other proposed solutions to the equity premium puzzle see Kocherlakota (1996),

Bernartzi and Thaler (1995), and Barberis et al (2000).
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6.1 Knowledge of equity prices

Consumers can’t respond to high frequency innovations in equity values if
they don’t keep close tabs on the values of their equity portfolios. In this
subsection, we discuss survey evidence that suggests that consumers may
know relatively little about high frequency variation in the value of their
equity wealth.23 We also discuss related evidence that suggests that con-
sumers may not adjust consumption in response to business cycle frequency
variation in their equity holdings. All of this evidence is merely suggestive,
since survey responses may be unreliable.

The 1998 Survey of Consumer Finances (SCF) was conducted during the
last six months of 1998, a period of substantial variation in equity prices.
In July the average value of the Wilshire 5000 equity index was 10,770. The
index dropped to an average value of 9,270 in September, before rising back
to an average value of 10,840 in December. Kennickell et al (2000) analyze
the 1998 SCF data to see whether self-reported equity wealth covaries with
movements in stock market indexes. Kennickell et al …nd that the SCF
equity measures are uncorrelated with the value of the Wilshire index on the
respondents’ respective interview dates. Only respondents that were active
stock traders (¸12 trades/year) showed a signi…cant correlation between
equity holdings and the value of the Wilshire index.

Dynan and Maki (2000) report related results. They analyze the re-
sponses to the Consumer Expenditure Survey (CEX) from the …rst quarter
of 1996 to the …rst quarter of 1999. During this period, the U.S. equity
markets rose over 15% during almost every 12 month period. Nevertheless,
when respondents were surveyed for the CEX, one third of stockholders re-
ported no change in the value of their securities during the 12 month period
before their respective interviews.24

Starr-McCluer (2000) analyzes data from the Michigan Survey Research
Center (SRC) collected in the summer of 1997. One of the survey questions
asked, “Have you [Has your family] changed the amount you spend or save
as a result of the trend in stock prices during the past few years?” Among
all stockholder respondents, 85.0% said “no e¤ect.” Among stockholder
respondents with most of their stock outside retirement accounts, 83.3% said
“no e¤ect.” Even among stockholders with large portfolios (¸ $250; 000),
78.4% said “no e¤ect.”
23We are grateful to Karen Dynan for pointing out much of this evidence to us.
24For the purposes of this survey a change in the value of equity securities includes

changes due to price appreciation, sales, and/or purchases.
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6.2 The e¤ect of lagged equity returns on consumption growth

Dynan andMaki (2000) analyze household level data on consumption growth
from the CEX, and ask whether lagged stock returns a¤ect future consump-
tion growth. They break their results down for non-stockholders and stock-
holders. For stockholders with at least $10,000 in securities a 1% innovation
in the value of equity holdings generates a 1.03% increase in consumption
of nondurables and services. However, this increase in consumption occurs
with a lag. One third of the increase occurs during the …rst nine-months
after the equity price innovation. Another third occurs 10 to 18 months
after the price innovation. Another quarter of the increase occurs 19 to 27
months after the price innovation and the rest of the increase occurs 28 to
36 months after the price innovation.

We now turn to evidence from aggregate data. We look for a relationship
between lagged equity returns and consumption growth. Speci…cally, we
evaluate Cov (lnRt+1; ln [Ct+h=Ct]) for h = 1; 2; :::; 25:

Under the null hypothesis of D = 0; the quarterly covariance between
equity returns and consumption growth is predicted to be,

Cov (lnRt+1; ln [Ct+1=Ct]) =
£¾2

2

=
(:22)(:16=

p
4)2

2
= :0007:

Time aggregation bias is re‡ected in this prediction. An equity innovation
during period t+1 only a¤ects consumption after the occurrence of the eq-
uity innovation. So the predicted covariance, Cov (lnRt+1; ln [Ct+1=Ct]) ; is
half as great as it would be if consumption growth were measured instanta-
neously.

This time-aggregation bias vanishes once we extend the consumption
growth horizon to two or more periods. So, if D = 0 and h ¸ 2;

Cov (lnRt+1; ln [Ct+h=Ct]) = £¾2

= (:22)(:16=
p
4)2

= :0014:

Hence theD = 0 assumption implies that the pro…le of Cov (lnRt+1; ln [Ct+h=Ct])
for h ¸ 2 should be ‡at.

Figure 7 plots the empirical values of Cov (lnRt+1; ln [Ct+h=Ct]) ; for
h 2 f1; 2; :::; 25g. We use the cross-country panel dataset created by Camp-

29



bell (1999).25 Figure 7 plots the value of Cov (lnRt+1; ln [Ct+h=Ct]) ; aver-
aging across all of the countries in Campbell’s dataset: Australia, Canada,
France, Germany, Italy, Japan, Netherlands, Spain, Sweden, Switzerland,
United Kingdom, and USA.26 Figure 7 also plots the average value of
Cov (lnRt+1; ln [Ct+h=Ct]) ; averaging across all of the countries with large
stock markets. Speci…cally, we ordered the countries in the Campbell dataset
by the ratio of stock market capitalization to GDP in 1993. The top half of
the countries were included in our “large stock market” subsample: Switzer-
land (.87), United Kingdom (.80), USA (.72), Netherlands (.46), Australia
(.42), and Japan (.40).

Insert Figure 7 about here.

Two properties of the empirical covariances stand out. First, the empir-
ical covariances slowly rise as the consumption growth horizon, h, increases.
Contrast this slow increase with the counterfactual prediction for the D = 0
case that the covariance should plateau at h = 2. Second, the empirical
covariances are much lower than the covariance predicted by the D = 0
case. For example, at a horizon of 4 quarters, the empirical covariances are
roughly .0002, far smaller than the theoretical prediction of .0014.

Figure 7 also plots the predicted covariance pro…le implied by the 6D
model. To generate this prediction we assume that D values are uniformly
distributed from 0 years to 30 years. We adopt this distribution to capture
a wide range of investment styles. Extremely active investors will have a
D value close to 0, while passive savers may put their retirement wealth in
a special mental account, e¤ectively ignoring the accumulating wealth until
after age 65. We are agnostic about the true distribution of D types, and
we present this example for illustrative purposes. Any wide range of D
values would serve to make our key points.

The 6D model predicts that the covariance, Cov (lnRt+1; ln [Ct+h=Ct]),
slowly rises with the horizon h: To understand this e¤ect, recall that the
6D economy slowly adjusts to innovations in the value of equity holdings.
Some consumers respond quickly to equity innovations, either because these
consumers have low D values, or because they are coming up to a reset
period. Other consumers respond with substantial lags. For our illustrative
25We thank John Campbell for giving this dataset to us.
26Speci…cally, we calculate Cov (lnRt+1; ln [Ct+h=Ct]) for each country and each h-

quarter horizon, h 2 f1; 2; :::; 25g: We then average across all of the countries in the
sample. We use quarterly data from the Campbell dataset. The quarterly data begins
in 1947 for the US, and begins close to 1970 for most of the other countries. The dataset
ends in 1996.
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example, the full response will take 30 years. For low h values, the 6Dmodel
predicts that the covariance pro…le will be close to zero. As h goes to in…nity,
the covariance pro…le asymptotes to the prediction of the instantaneous
adjustment model, so limh!1Cov (lnRt+1; ln [Ct+h=Ct]) = £¾2 = :0014:
Figure 7 shows that our illustrative calibration of the 6D model does a
fairly good job of matching the empirical covariances.

We conclude by emphasizing that the empirical data is completely in-
consistent with the standard assumption of instantaneous adjustment. The
analysis in this section shows that lagged equity returns a¤ect consumption
growth at very long horizons: Cov (lnRt+1; ln [Ct+h=Ct]) rises slowly with
h, instead of quickly plateauing at h = 2. This slow rise is a key test of the
6D framework.

7 Conclusion

Grossman and Laroque (1990) argue that adjustment costs might explain the
equity-premium puzzle. Lynch (1996) and Marshall and Parekh (1999) have
successfuly numerically simulated discrete-time delayed adjustments models
which con…rm Grossman and Laroque’s conjecture. We have described
a continuous-time generalization of Lynch’s (1996) model. We derive a
complete analytic characterization of the model’s dynamic properties. In
addition, our continuous-time framework generates e¤ects that are up to six
times larger than those in discrete time models. We analzye an economy
composed of consumers who update their consumption every D periods.
Using data from our economy, an econometrician estimating the coe¢cient
of relative risk aversion (CRRA) from the consumption Euler equation would
generate a multiplicative CRRA bias of 6D. Once we take account of this 6D
bias, the Euler Equation tests are unable to reject the standard consumption
model. We have derived closed form expressions for the …rst and second
moments of this delayed adjustment economy. The model matches the
empirical moments of aggregate consumption and equity returns. Future
work should test the new empirical implications of our framework, including
the rich covariance lag structure that we have derived.

8 Appendix A: Proofs

We use the notation f(") = Ot(g (")), for g a deterministic function to mean
that f is Ft¡measurable (f is known at time t), and there is "0 > 0 and
a constant A > 0 such that for " · "0A, we have E0[f2]1=2 · A jg(")j.
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More concisely the norms are in the L2 sense. For instance, ert+¾z(t) =
1 + ¾z(t) +Os(") for s ¸ t.

Also, we shall often use the function:

a(i) := (1¡ jij)+: (33)

Finally, for Z a generic standard Brownian motion, we call Z[i;j] = Z(j)¡
Z(i), and remark:

cov
¡
Z[i¡D;i]; Z[j¡D0;j]

¢
= min

³¡
D ¡ (i¡ j)+¢+ ; ¡D0 ¡ (j ¡ i)+¢+´ (34)

as both are equal to the measure of [i¡D; i] \ [j ¡D0; j].

8.1 Proof of Proposition 1

Call v(w) = E
R1
0 e¡½tc1¡°t =(1 ¡ °)dt the expected value of the utils from

consumption under the optimal policy, assuming the …rst reset date is t = 0.
So v(¢) is the value function that applies at reset dates. Say that the agent
puts S in the checking account, and the rest, w¡S; in the mutual fund. Call
M the (stochastic) value of the mutual fund at time D. By homotheticity,
we have v(w) = v ¢w1¡°=(1¡ °): We have:

v(w) =

Z D

0
e¡½t

c1¡°t

1¡ ° dt+ e
¡½DE

£
v
¡
w0
¢¤
with (35)

w0 = M + SerD ¡
Z D

0
cte

r(D¡t)dt

Optimizing over ct for t 2 [0;D), we get e¡½tc¡°t = E [v0(w0)] er(D¡t), so
that consumption growth is that of the Ramsey model: ct = ®we

r¡½
°
t for

some ® (by the implicit function theorem one can show that it is a continuous
function of D, and it has Merton’s value whenD = 0). To avoid bankruptcy,
we need S ¸ S0 =

R D
0 cte

¡rtdt: Imagine that the consumer starts by putting
aside the amount S0. Then, he has to manage optimally the remaining
amount, w¡S0. Given some strategy, he will end up with a stochastic wealth
w0, and he has to solve the problem of maximizing vE

£
w01¡°=(1¡ °)¤ : But

this is a …nite horizon Merton problem with utility derived from terminal
wealth, whose solution is well-known: the whole amount w ¡ S0 should be
put in a mutual fund with constant rebalancing, with a proportion of stocks
µ = ¼=

¡
°¾2

¢
: In particular, only the amount S0 is put in the checking

account. ¤
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8.2 Proof of Proposition 9

The basis of our calculations is the representation formula in the represen-
tation formula for consumption, Proposition 9. To prove it we shall need
the following

Lemma 10 We have

wit+s = wit (1 + µ¾ (z(t+ s)¡ z (t)) +O (")) (36)

Proof. If the agent doens’t check her portfolio between t and t+ s, we
have

wt+s = wse
(r+µ¼¡µ2¾2=2)s+¾µ(z(t+s)¡z(t))

= ws (1 + ¾µ (z (t+ s)¡ z (t)) +O (")) (37)

When the agents checks her portfolio at time ¿ , and puts a fraction f =R D
0 ®e

¡r¿+r¡½
°
¿
d¿ = O (") in the checking account, so that

w¿+ = w¿¡ (1¡ f) (38)

= w¿¡ (1 +O (")) (39)

so pasting together (37) and (39) at di¤erent time intervals we see that (37)
holds between two arbitrary (i.e. possibly including reset dates) dates t and
t+ s, and the lemma is proven.

We can now proceed to the
Proof of Proposition 9. Say that i 2 [0; D) has her latest reset point

before t¡1 at ti = t¡1¡i. The following reset points are ti+mD form ¸ 1,
and for s ¸ t¡ 1 we have (the …rst O (") term capturing the deterministic
increase of consumption between reset dates)

cis=® =

0@wti +X
m¸1

(wti+mD ¡wti+(m¡1)D)1s¸ti+mD
1A (1 +O ("))

= wti +
X
m¸1

wti(µ¾z[ti+(m¡1)D;ti+mD] +O("))1s¸ti+mD +O (")

so that, using the notation ³im := wti
¡
¹D + µ¾z[ti+(m¡1)D;ti+mD]

¢
Z T

ti

cis=®ds+O(") = (T ¡ ti)wti +
X
m¸1

³im

Z T

ti

1s¸ti+mDds

= (T ¡ ti)wti +
X
m¸1

³im (T ¡ (ti +mD))+
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and remarking that (x+ 1)+ ¡ 2x+ + (x¡ 1)+ = a(x), we get:

Ci;t+1 ¡Ci;t +O(") =

µZ t+1

ti

¡2
Z t

ti

+

Z t¡1

ti

¶
(cis=®ds)

=
X
m¸1

¿ im=ti+mD

³im
¡
(t+ 1¡ ¿ im)+ ¡ 2(t¡ ¿ im)+ + (t¡ 1¡ ¿ im)+

¢
=

X
m¸1

³ima (t¡ (ti +mD))

=
X
m¸1

³ima (1 + i¡mD)

because ti = t¡ 1¡ i. Using wi;t¡D¡1 = wt¡D¡1(1 +O(")), we can …nally
get the expression of the consumption growth

Ct+1 ¡Ct =

Z D

0
(Ci;t+1 ¡Ci;t) di

D

=
X
m¸1

Z D

0
wt¡D¡1µ¾z[t¡1¡i+(m¡1)D;t¡1¡i+mD]a (1 + i¡mD)

di

D
+O(")

so that, as
R 1
¡1 a(x)dx = 1,

Ct+1 ¡Ct
®wt¡D¡1

=

Z 1

¡1
µ¾z[t+j¡D;t+j]a (j)

dj

D
+O(")

One can likewise calculate

Ct
®wt¡D¡1

= 1+O(
p
")

so

lnCt+1=Ct =

Z 1

¡1
µ¾z[t+j¡D;t+j]a (j)

dj

D
+O (") :

¤
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8.3 Proof of Theorem 2

Use Proposition 9, lnRt+1 = ¾z[t;t+1] +O (") to get:

cov (lnCt+1=Ct; lnRt+1) = µ¾2
Z 1

¡1
a(i)cov

¡
z[t+i¡D;t+i]; z[t;t+1]

¢ di
D

+Ot("
3=2) withZ 1

¡1
a(i)cov

¡
z[t+i¡D;t+i]; z[t;t+1]

¢ di
D

=

Z 1

0
a(i)min(D; i)

di

D
by (34)

=
3(1¡D) +D2

6
if D · 1

=
1

6D
if D ¸ 1.

Using (1) and (6), this leads to the expression (2).

8.4 Proof of Theorem 3

First we need the

Lemma 11 We have, with d de…ned in (11), for D 2 R;Z
R
a(i)a(i+D)di = d00(D):

Proof of the lemma 11
De…ne, for D 2 R;

g(D) :=

Z
R
a(i)a(i+D)di: (40)

First, note that g is even because a is, and for D ¸ 2, then g(D) = 0 : for
the integrand to be non-zero in (40), we need both jij < 1 and ji+Dj < 1 ,
which is impossible for D ¸ 2.

For a general D, we derive (in the sense of the theory of distributions,
with ± Dirac’s function) g over D, starting from (40):

g(4)(D) =

Z
R
a(i)a(4)(i+D)di

=

Z
R
a00(i)a00(i+D)di by integration by parts

=
4X
j=0

µ
4

j

¶
(¡1)j± (j ¡ 2 +D)
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by direct calculation (or combinatorial insight) using a00(x) = ±(x + 1) ¡
2±(x) + ±(x¡ 1). We now integrate g(4)(D), which gives:

g(D) =
4X
j=0

µ
4

j

¶
(¡1)j
2 ¢ 3! jj ¡ 2 +Dj

3 +
3X
j=0

bjD
j

= d00 (D) +
3X
j=0

bjD
j

where the bj are integration constants. But the condition g(D) = 0 for
D ¸ 2 forces the bj ’s to be 0, which concludes the proof.¤

The rest of the proof is in two steps. First we prove (41)- (42), then we
calculate this expression of p(D; t).

Step 1.

Using (25) at t and t+ h, we get

cov (lnCt+1=Ct; lnCt+1+h=Ct+h) = µ
2¾2¡(D;h) +O("3=2)

with

¡(D;h) = cov

µZ 1

¡1
a(i)z[t+i¡D;t+i]

di

D
;

Z 1

¡1
a(j)z[t+h+j¡D;t+h+j]

dj

D

¶
=

Z 1

¡1

Z 1

¡1
a(i)a(j)cov(z[t+i¡D;t+i]; z[t+h+j¡D;t+h+j])

di

D

dj

D

so using(34) we get

¡(D;h) =
p(D;h)

D2
(41)

with

p(D;h) :=

Z Z
i;j2[¡1;1]

a(i)a(j) (D ¡ ji¡ j ¡ hj)+ didj (42)

Step 2.
Our next step is to calculate p(D;h). Start with the case D ¸ h + 2:

then (D ¡ ji¡ j ¡ hj)+ = D ¡ ji¡ j ¡ hj as ji¡ j ¡ hj · 1 + 1 + h · D),
and given

R R
i;j2[¡1;1] a(i)a(j)didj =

³R
i2[¡1;1] a(i)di

´³R
i2[¡1;1] a(j)dj

´
= 1,

we get

p(D;h) = D ¡A(h) for D ¸ h+ 2 with (43)

A(h) =

Z Z
i;j2R

ji¡ j ¡ hja(i)a(j)didj:
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Going back to a general D > 0, we get from (42):

p00(D) =

Z Z
i;j2R

a(i)a(j)± (D ¡ ji¡ j ¡ hj) didj

=

Z
R
a(i) (a(i+D ¡ h) + a(i¡D ¡ h)) di

=

Z
R
a(i) (a(i+D ¡ h) + a(i+D + h)) di

because a is even. So from Lemma 11 p00(D) = d00(D ¡ h) + d00(D + h) and

p(D;h) = d(D + h) + d(D ¡ h) + d0 + d1D

for some real numbers d0; d1. Equation (43) gives us d1 = 0, and p(0) = 0
gives A(h) = ¡d0 = d(h) + d(¡h), and , which concludes the proof.

8.5 Proof of Corollary 4

¡(D; 0) is monotonic by direct calculation from the result in Theorem 3: So
¡(D; 0) · ¡(0; 0), which comes from the result in Theorem 3, which implies

¡(D; 0) =
2

3
¡ D

2

6
+
D3

20
for D 2 [0; 1]:

or, more directly, from the calculation at the end of the proof of Theorem 3.

8.6 Proof of Proposition 5

Immediate by calculation. For the limit when h!1, we use b(D = 0) = 2
and ¡(D = 0; 0) = 2=3:

8.7 Proof of Theorem 6

Because V (¿1; ¿2) = V (¿1; 1)¡ V (¿2; 1), it is enough to …x ¿2 = 1. We use
the notation ¿ = ¿1: Recall (25), so that

cov(lnC[t;t+1]=C[t¡1;t]; lnR[t+¿;t+1]) =
µ¾2

D
W (¿) +O("3=2)
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with

W (¿) = D

Z 1

¡1
a(i)cov

¡
z[t+i¡D;t+i]; z[t+¿;t+1]

¢ di
D

=

Z 1

¡1
a(i) (i¡max(i¡D; ¿))+ di (44)

So, calling using the Heaviside function H(x) := 1 if x ¸ 0, 0 otherwise,

W 0 (¿ ) = ¡
Z
a(i)H (i¡max(i¡D; ¿))H(¿ ¡ i+D)di

= ¡
Z
a(i)H (i¡ ¿)H(¿ ¡ i+D)di

and

W 00 (¿) =

Z
a(i) (± (i¡ ¿)H(¿ ¡ i+D)¡ ±(¿ ¡ i+D)H (i¡ ¿))di

= a(¿)¡ a(¿ +D)

Introducing the e function de…ned in (15), which satis…es e00 = a, we get:

W (¿) = e(¿)¡ e(¿ +D) +W0 +W1¿ (45)

for some constants W0;W1. Observe that for ¿ ¸ 1, (44) gives W (¿) = 0,
so (45) gives us W1 = 0 (and W0 = D=2). This allows to conclude the
proposition.

8.8 Proof of Corollary 7

Immdiate application of the preceding Theorem.

8.9 Proof of Theorem 8

The expression (23) is derived exactly like in Proposition 9. The only new
work is to calculate ¡(D;D0; h). Using (34) we get:

¡(D;D0; h) =
p(D;D0; h)
DD0

with

p(D;D0; h) =

Z
i;j2[¡1;1]

a(i)a(j)min
³¡
D ¡ (i¡ j ¡ h)+¢+ ; ¡D0 ¡ (j ¡ i+ h)+¢+´ didj
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To calculate p, we derive (again, H (x) = 1x¸0 is Heaside’s function)

pD0 =

Z
a(i)a(j)H

³¡
D ¡ (i¡ j ¡ h)+¢+ ¡ ¡D0 ¡ (j ¡ i+ h)+¢+´H ¡D0 ¡ (j ¡ i+ h)+¢ didj

and

pD0D0 =

Z
a(i)a(j)H

³¡
D ¡ (i¡ j ¡ h)+¢+ ¡ ¡D0 ¡ (j ¡ i+ h)+¢+´ ± ¡D0 ¡ (j ¡ i+ h)+¢didj

¡
Z
a(i)a(j)±

³¡
D ¡ (i¡ j ¡ h)+¢+ ¡ ¡D0 ¡ (j ¡ i+ h)+¢+´H ¡D0 ¡ (j ¡ i+ h)+¢ didj

=

Z
a(i)

¡
a(i+D0 ¡ h)¡ a ¡i+D0 ¡D ¡ h¢¢di

So Lemma 11 gives:

p = d(D0 ¡ h)¡ d(D0 ¡D ¡ h) + e0 + e1D0

where e0; e1 are functions of D and h. As p = 0 for D0 = 0, we get e0 =
¡d(¡h) + d(¡D ¡ h) = ¡d(h) + d(D + h), as d is even.As we should have
p(D;D; h) = p(D;h) for p in (42), we can conclude e1 = 0 and deduce the
value of e0, and the Theorem 8 is proven.

8.10 Derivation of the utility losses

A fully rigorous derivation, e.g. of the type used by Rogers (2001), is possible
here. Such a derivation begins with the Bellman equation (35), and then
uses a Taylor expansion to derive an expression for v of the type v = v0 +
v1D +O

¡
v2
¢
. This approach is tedious and not very instructive about the

economic orgins of the losses, which is why we present the following more
heuristic proof.

Equation (28) is standard (e.g., see Cochrane 1989). For completeness’s
sake, though, let us mention a way to derive it. We want to calculate
U(C) ¡ U(C0), where C = (ct)t¸0 is the optimum vector of (stochastic)
consumption ‡ows, U(C) = E

£R1
0 e¡½tu(ct)

¤
, and C0 is another vector that

can be bought with the same Arrow-Debreu prices p. For C and C0 close,
we have:

¢U : = U(C 0)¡U(C)
= U 0(C)(C0 ¡C) + (C0 ¡C)0 ¢ U 00(C) ¢ (C 0 ¡C)=2 +O((C 0 ¡C)3)
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As by optimality of C, U 0(C) = ¸p for some p, and pC = pC 0 = intial wealth
=W , we have U 0(C)(C ¡C 0) = 0. Expressing U 00 …nally gives:

¢U =
1

2
E

·Z 1

0
e¡½tu00(ct)(ct ¡ c0t)2dt

¸
:

A change ¢W in the initial wealth creates, by homotheticity of the optimal
policy, a change in consumption ¢ct=ct = ¢W=W , hence a change in utility

¢U = E

·Z 1

0
e¡±tu0(ct)ct

¢W

W
dt

¸
so the suboptimality of plan C 0 is equivalent to a wealth loss of (using
u0(c) = c¡°).

¤c : = ¡¢W
W

= ¡1
2

E
hR1
0 e¡±tu00(ct)c2t (

ct¡c0t
ct
)2dt

i
E
£R1
0 e¡±tu0(ct)ctdt

¤
=

°

2
h
µ
ct ¡ c0t
ct

¶2
i

where the weights in the mean h¢i are given by hXti = E
hR1
0 e¡½tc1¡°t Xtdt

i
=E
hR1
0 e¡½tc1¡°t dt

i
:

This proves equation (28).
We now derive h¢c2t=c2t i, with ¢ct = c0t ¡ ct. With latest reset at time

¿(t)

¢ct
®

=
c0t ¡ ct
®

= w0¿(t) ¡wt
= w¿ ¡wt +w0¿(t) ¡w¿(t)

Now (??) gives (sparing the reader the tedious details) we normalizeE[c1¡°t ] =
c1¡°0 e(½¡¯)t, with ¯ > 0;

h¡w¿(t) ¡wt¢2 =w2t i = E

"Z D

0

µZ t

0
µ¾dzs

¶2
dt

D

#
+O("2)

= µ2¾2D=2 +O
¡
"2
¢

and

h¡w0¿ ¡wt¢2 =w2t i = h®2µ2¾2tDi

= ®2µ2¾2D

R1
0 e¡¯ttdtR1
0 e¡¯tdt

= ®2µ2¾2D=¯

= µ2¾2DO(") = O("2)

40



and the cross term h(w¿ ¡wt)
³
w0¿(t) ¡w¿(t)

´
i = 0:

So we have the important (and general in those kinds of problems) fact
that …rst order contribution to the welfare loss is the direct impact of the
delayed adjustment – the w¿¡wt term – whereas the indirect impact (where
a suboptimal choice of consumption creates modi…cations in future wealth)
is second order. In other terms

h¢c2t=c2t i = h¢c2t =c2t ij without modi…cation of the wealth process +O("2)
= h¡w¿(t) ¡wt¢2 =w2t i+O ¡"2¢
= µ2¾2D=2 +O("2):

Using (28) we get (29).

9 Appendix B: Model with immediate adjustment
in response to large changes in equity prices

Suppose that people pay greater attention to “large” movements in the stock
markets (because they are more salient, or because it is more rational to do
so). How does our bias change? We propose the following tractable way to
answer this question. Say that the returns in the stock market are:

drt = ¹dt+ ¾dzt + djt (46)

where jt is a jump process with arrival rate ¸. For instance, such jumps
may correspond to crashes, or to “sharp corrections”, though we need not
have E[djt] < 0. To be speci…c, when a crash arrives the return falls by J
(to …x ideas, say J = :1 ¡ :3): To model high attention to crashes, we say
that consumption adjusts to dzt shocks every D periods, and adjusts to dj
shocks immediatly (D = 0 for those Poisson events).

Call ¾2B = ¾
2 the variance of Brownian shocks and ¾2J = E[dj

2
t ]=dt = ¸J

2

the variance of jump shocks. The total variance of the stock market is:
¾2tot = ¾2B + ¾

2
J , assuming for simplicity that the two types of shocks are

independent. The equity premium is ¼ = ¹¡ r ¡ ¸J . By writing down the
standard value function for the Merton problem, one sees that the optimal
equity share, µ; is now the solution of a non-linear equation

¼ ¡ °¾2µ + ¸ ¡1¡ (1¡ Jµ)¡°¢J = 0
For tractability, we use the approximation J ¿ 1 (which is reasonable, since
a typical value for J is :1 to :25). We get the analogue of the simple formula
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(1):

µ =
¼

°¾2
(1 +O(¾J)): (47)

One can show that formula (22), which was derived in the case of assets
with Brownian shocks, carries over to the case of a mix of Brownian shocks
and jumps. Thus we get

b°
°
=

µ
¾2B
¾2tot

1

b(D)
+
¾2J
¾2tot

1

b(0)

¶¡1
+O("+ ¾J)

with b(0) = 2 and ¾2tot = ¾
2
B+¾

2
J . Thus, the new bias is the harmonic mean

of the b(D) = 6D (if D ¸ 1) bias for “normal” Brownian shocks, and the
shorter b(0) = 2 bias of the Brownian shocks.

As a numerical illustration, say a “jump” corresponds to a monthly
change in the stock market of more than J =25% in absolute value. This
corresponds, empirically, to an estimate of ¸ = :53%/year (5 months since
1925), i.e. a crash every 14 years. Then ¾2J=¾

2
tot = ¸J2=¾2 = :014. Take

D = 4 quarters as a baseline. The new b°=° becomes 20:6 which is close to
the old ratio of 24.

10 Appendix C: Expression of the bias in the Lynch
setup when D ¸ 1:

In Lynch’s (1996) setup, agents consume every month and adjust their
portfolio every T months. The econometric observation period is time-
aggregated periods of F months, so D = T=F .

Say consumer i adjusts his consumption at i+nT , n 2 Z: Say the econo-
metrician looks at period f1; :::; Fg: The aggregate per capita consumption
over this period is

CF =
1

T

TX
i=1

FX
s=1

cis: (48)

The returns are

RF =
FX
s=1

rs: (49)

Call CiF =
PF
s=1 cis the consumption of agent i in the period.
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For i > F , cov(CiF ; RF ) = 0 because agent i didn’t adjust his consump-
tion during the period.

For 1 · i · F , cit = 1 + O(") (normalizing) for t < i, and cit =
1 + µ

Pi
s=1 rs + O(") where the O(") terms incorporate the deterministic

part of consumption growth. The stochastic part, in rs, has the order of
magnitude ¾ = O("1=2), and dominates those terms. Information about
stock returns up to i will a¤ect only consumption from time i to F , so

cov(CiF ; RF ) = cov

Ã
(F + 1¡ i)µ

iX
s=1

rs;
FX
s=1

rs

!
= µ¾2i (F + 1¡ i) for 1 · i · F:

For aggregate consumption growth,

cov(CF ; RF ) =
1

T

TX
i=1

µ¾2i (F + 1¡ i) 11·i·F

=
µ¾2

T

FX
i=1

(F + 1) i¡ i2

=
µ¾2

T

µ
(F + 1)

F (F + 1)

2
¡ F (F + 1) (2F + 1)

6

¶
= µ¾2

F (F + 1)(F + 2)

6T

The naive economitrician would predict cov (CF ; RF ) = µ¾2F . The econo-
metrician estimating b° = ¼F=cov (CF ; RF ) will get a bias of (with D = T=F
and as µ = ¼=

¡
°¾2

¢
)

b°
°
= D

6F 2

(F + 1) (F + 2)
: (50)

Holding D constant, the continuous time limit corresponds to F !1, and
we …nd the value: b°=° = 6D: The discrete time case where agents would
consume at every econometric period corresponds to F = 1, and then one
gets b°=° = D, which can be easily derived directly.
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Figure 1: Ratio of estimated γ to true γ

D=(time between consumption resets)/(time between econometric observations)
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Figure 2: The d(x) and e(x) functions
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Figure 3: The normalized variance of consumption growth, Γ(D,0)
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Figure 4: Normalized autocovariance, Γ(D,h), with h = 1, 2, 4, 8
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Figure 5: Multiplicative covariance bias factor 1/b(1/h)
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Figure 6: Normalized covariance of consumption growth and lagged asset returns,
V(τ, τ+1), for D = .25, 1, 2, 4                                          
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1Dataset is from Campbell (1999). Full dataset includes Australia, Canada, France, Germany,       
Italy, Japan, Netherlands, Spain, Sweden, Switzerland, United Kingdom, and USA.                      
2To identify countries with large stock markets, we ordered the countries by the ratio of stock   
market capitalization to GDP (1993).  The top half of the countries were included in our large       
stock market subsample: Switzerland (.87), United Kingdom (.80), USA (.72), Netherlands (.46),       
Australia (.42), and Japan (.40).                                                                    
3We assume that households have D values that are uniformly distributed from 0 years to 30 years. 
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6D Model3 

Countries with large stock markets2 


