Prepared for presentation at "Health and Labor Force Participation Over the Life Cycle: Evidence from the Past." National Bureau of Economic Research, February 2-3, 2001.

The Significance of Lead Water Mains in American Cities: Some Historical Evidence

Werner Troesken

Associate Professor of History and Economics Department of History University of Pittsburgh Pittsburgh, PA 15260 troesken@pitt.edu

and

Patricia E. Beeson

Professor of Economics Department of Economics University of Pittsburgh Pittsburgh, PA 15260 beeson@pitt.edu

* We gratefully acknowledge helpful comments and advice from Dora Costa, Robert Fogel, Joel Tarr, and Peter Viechnicki. The usual disclaimer applies.

I. Introduction

By the turn of the twentieth century, cities throughout the United States were using lead service mains to distribute water. For example, in 1900 the nation's five largest cities–New York, Chicago, Philadelphia, Saint Louis, and Boston–all used lead services to varying degrees (Baker 1897, pp. 42, 89, 170, 373, and 501). Despite the fact that many of these mains are still in use and that up to 20 percent of all lead exposure in young children comes from drinking water, the significance of lead service mains is poorly understood and there exists little scientific evidence that would allow us to precisely measure their effects on human health (United States, Environmental Protection Agency 2000).

The dearth of information and scientific study on lead services is unfortunate. It is well known that ingesting even small amounts of lead can adversely affect health and mental development, particularly among children (Needleman and Belinger 1991). Moreover, the Centers for Disease Control (1997) estimate that as many as 5 percent of all American children suffer from sub-clinical lead poisoning. There are, as a result, numerous studies exploring the health effects of exposure to lead through soil (Xintaras 1992), paint and house dust (Lanphear and Rogham 1997), industrial pollution (Trepka et al. 1997), leaded gasoline (Charney 1980), and work environments (Sata et al. 1998). The importance of lead dissolved from lead service mains has received much less attention, in part, because over time oxidation has created a protective coating over the interior walls of lead pipes and limited the levels of lead ingested through drinking water (Wisconsin Department of Natural Resources 1993). Nonetheless, it would be useful to know just how widespread lead water mains are, and how they have affected human health both today and in the past.

Accordingly, our goals in this paper are twofold. First, we explore how many cities in the United States used lead services during the late nineteenth and early twentieth century and we examine what factors influenced the choice to use lead mains. The results indicate lead service mains were pervasive: 70 percent of all cities with populations greater than

2

30,000 in 1900 used lead service mains exclusively or in combination with some other type of main. As for the correlates of lead usage, the probability of using lead water mains was positively correlated with city size, a Midwestern location, and public ownership (publicly-owned water companies used lead more often than did private water companies).

Second, we explore how the use of lead service mains affected morbidity around the turn of the twentieth century. Evidence on morbidity is derived from a large sample of Union Army veterans whose health was assessed when they applied for pensions. Overall, our results suggest that the use of lead water mains probably did have some adverse effect on human health, but for the general population, these effects do not appear to have been very serious. For example, Union-Army recruits living in cities that used lead service mains appear to have experienced more ailments associated with low levels of lead exposure, such as increased dizziness and hearing problems, but they did not suffer from more serious ailments associated with high levels of lead exposure, such as kidney problems.

Whatever implications these results might have for current policy, they should also interest historians and historical demographers. Some historians attribute the decline of Rome to the fact that the Romans used lead-lined water mains and lead-based vessels to distill alcohol and store water (Waldron and Stöfen 1974, pp. 4-6). More recent studies have explored the possibility that prominent historical figures such as U.S. president Andrew Jackson (Deppisch et al. 1999) and the painter Francisco de Goya died of lead poisoning (Ravin and Ravin 1998). On a broader scale, several recent studies document tremendous improvements in human health and life expectancy over the past century and a half (e.g., Costa 2000; Fogel 1986; and Fogel and Costa 1997). While the factors that contributed to this improvement are generally well known and include improved nutrition, investments in public water and sewer systems, the development of vaccines and antibiotics, etc., the relative and absolute importance of these various factors is much less clear. This paper helps to clarify the importance of one of these factors: the reduced risk of unhealthy

3

levels of lead exposure.

II. The Use of Lead in Plumbing and Water Distribution Systems

In the late-nineteenth- and early-twentieth-century United States, lead was often used in the construction of water service mains. This section explains what service mains were, and some of the engineering concerns that prompted many cities to use lead services. Service mains were the pipes that connected individual homes and apartment buildings to street mains. The decision to install a service main was three dimensional, involving a choice about material, a choice about internal lining, and a choice about size. Services were made of iron, steel, or lead; if iron or steel, they were sometimes lined with lead or cement; and they typically ranged in size from three-quarters of an inch to one-and-one-quarter inches in diameter (Baker 1897).

The choices about material, lining, and size, were influenced by the following five variables: cost of pipe; malleability; propensity for external corrosion; propensity for internal corrosion; and toxicity. Table 1 ranks the most common pipe types in terms of these variables. As for the first variable, the cost of materials, a small (three-quarter inch) iron or steel pipe that was neither galvanized nor lined was the best choice. The primary drawback of this choice, however, was that small untreated iron pipes were subject to corrode and burst sooner than other alternatives. Because replacing broken service mains often required digging up paved streets and working around other infrastructure such as gas and sewer mains, the costs of reduced main life often overwhelmed whatever savings could have been reaped from reduced materials costs. As for the second variable, malleability, lead was a relatively soft and pliable metal and was the best choice. Malleability reduced labor costs by making it easier for plumbers to bend the service main around existing infrastructure and obstructions (*Engineering News*, September 28, 1916, pp. 594-96).

As for the third variable, external corrosion, service mains were subject to corrosion from the outside, and mains laid in salt marsh, cinder fill, or clay experienced faster

degradation than those laid in sand or gravel. Holding soil type constant, steel and iron services, whether plain or galvanized, experienced faster corrosion than lead services. If local authorities wanted to minimize the number of times services burst from external corrosion and required replacement, lead was the best choice. As for the fourth variable, internal corrosion, service mains were subject to corrode from the inside as a result of contact with stagnant water. Interior corrosion was a concern because it weakened the pipe and increased the risk of a rupture, and because rust deposits built up and clogged the main. Before 1910, there was no effective technique for cleaning out rust-filled mains other than by digging them up and cleaning them out directly or by replacing the mains. Lead, lead-lined, and cement-lined service mains exhibited the least internal corrosion. Another strategy for minimizing the problem of internal corrosion was to expand the size of the main, for the simple reason that the larger the diameter of the main the more rusted-material necessary to clog the main (*Engineering News*, September 28, 1916, pp. 594-96).

As late as 1916, most engineers believed the benefits of using lead mains outweighed the potential costs. A prominent engineering journal explained:

Lead is in many respects the most satisfactory material to use for service pipes. Its pliability and its comparative freedom from corrosive action make it almost ideal from a mechanical standpoint. The cost of lead pipe of sufficient thickness to safely withstand the pressure is more than the cost of many other materials used for services, but in a paved street the greater duration of life probably more than compensates for the extra cost, and in places where the streets are occupied by other pipes and conduits the ease of getting over and under these obstructions with a flexible pipe is a great advantage (*Engineering News*, September 16, 1916, p. 595).

The same journal went to confront, but then minimize, concerns about lead poisoning:

The most serious objection to the use of lead pipe for services is the possibility that the water may dissolve enough lead from the pipe to cause lead poisoning. It is certain that many cases of lead poisoning have been caused by the use of lead services. On the other hand, lead has always been

used for services in most of the large places without any unfavorable effects (*Engineering News*, September 28, 1916, p. 595).

Beyond lead service mains, lead pipes were also used widely in household plumbing and in the solder used to connect iron pipes. The same features that made lead attractive for services also made it attractive for plumbing. Specifically, lead was malleable and allowed plumbers to fit pipes around existing fixtures, and it did not corrode like iron.

III. Limiting Exposure to Lead Through Lead Service Mains and Lead Plumbing

Today, the Environmental Protection Agency (2000) recommends three steps to minimize the amount of lead in drinking water. First, households should flush their pipes before drinking the water. Because the amount of lead that dissolves into water is positively related to the time it sits in the pipes, running faucets for two minutes clears most leadcontaminated water. Second, households should use only cold water for drinking and cooking because hot tap water contains higher lead levels. Third, households should have their water tested to accurately measure its lead levels. According to the EPA, testing is especially important for individuals and families living in large apartment complexes, because flushing may not be effective in high-rise buildings with lead-soldered plumbing.

It is not clear how many families at the turn of the century were aware of these simple preventive measures. Prominent engineering journals such as the *Engineering News* (September 28, 1916, p. 595) argued that it was difficult to predict how much lead dissolved into water from water mains and recommended testing drinking water for lead content as the only safe guide to assessing levels of exposure:

It seems practically impossible to determine definitely in advance what the effect of any water on lead pipe will be, as the laboratory results fail in many cases to show the action which will occur in actual practice. Tests of service pipes in use for a considerable period are the only safe guides.

Such lukewarm recommendations notwithstanding, it seems unlikely that most

6

families would have been sufficiently concerned about lead in drinking water to motivate them to have had their water tested, or even to have flush their pipes regularly. Recent studies suggest people were much more concerned about bacteriological pollution (e.g., typhoid) than they were about industrial and chemical pollution of water. Some experts even believed that a minimal level of industrial contaminants in water could be beneficial because it killed off otherwise harmful bacteria (Melosi 2000, pp. 241-46). Moreover, it was not until the 1930s that states began passing laws regulating the amount of lead present in plumbing and water distribution systems, and it was not until 1986 that Congress banned the use of lead-based solder in plumbing (United States, Environmental Protection Agency 2000; and Wisconsin, Department of Natural Resources 1993). Finally, lead-based interior paints were marketed well into the mid-twentieth century (Markowitz and Rosner 2000).

IV. The Frequency and Correlates of Lead Usage

At the turn of the twentieth century, the use of lead service mains was widespread, particularly in large cities. This can be seen in two independent samples of cities. In 1916, the New England Water-Works Association surveyed 304 cities and towns, largely in the New England area, and found that 95 (31 percent) of these cities used lead or lead-lined services exclusively (*Engineering News*, September 28, 1916, p. 594). Another sample, predicated on the sample of Union Army recruits described below (see also Fogel 2000), is more geographically diverse and includes 797 cities and towns observed in 1900 from all over the United States. Of these cities, 209 (26 percent) used lead or lead-lined services exclusively; 137 (17 percent) used lead or lead-lined services in conjunction with some other material type, such as galvanized iron or cement-lined iron; and 451 (57%) used no lead. Table 2, which breaks down the usage of lead service mains by city size, suggests a strong positive correlation between lead usage and city size. For the largest cities, those with populations greater than 300,000, only 1 of 16 used no lead in its system of service

7

mains. In contrast, for cities with populations less than 8,000, the majority (67 percent) used no lead whatsoever.

To more fully identify the correlates of using lead service mains, we estimate variants on the following ordered-probit model:

(1)
$$L_i = {*}_0 + \boldsymbol{X_i} {*}_1 + , ,$$

where, L_i is an indicator variable which equals 2 if city i used lead service mains exclusively as of 1900, 1 if city i used lead services in conjunction with some other material, and 0 if it used no lead services; X_i is a vector of city characteristics that might have been correlated with main type, including city size, age of water system, region dummies, ownership of local water company (i.e, whether public or private), and measures of the development of other public infrastructure; and , i is a random error term. Equation (1) is estimated using data for all cities with populations greater than 30,000 as of 1902, and for which the relevant data are available. Data on service mains and ownership of local water systems are from Baker (1897); other data are from the *Census* of 1900 and the *Statistics of Cities: 1902.* We restrict the sample to cities with populations greater than 30,000 because data for these large cities are more easily acquired. In subsequent work, we intend to expand the sample to include smaller cities and towns.

Table 3 presents descriptive statistics, predicted signs, and the regression results. There are few notable descriptive statistics. Most large cities (i.e., those with populations greater than 30,000) used lead exclusively or in combination with some other type of service main; 77 percent of all large cities had public water companies; the typical large city constructed its waterworks before 1870; and nearly half of all large cities (49 percent) were located in the Northeast.

Predicted signs are as follows. The coefficient on public ownership should be positive. Because private water companies were often vulnerable to political expropriation in the future, they would have been more reluctant than public companies to invest in lead service mains, which were more expensive and more durable than iron mains (Troesken 1997). The coefficient on the year the waterworks were built should be negative, because over time American society grew increasingly sensitive to the risks of lead and lead poisoning. For example, during the late eighteenth and early nineteenth century, doctors used lead acetate to treat bleeding and diarrhea; whiskey distilleries used lead tubing to distill alcohol; and households frequently used vessels with a high lead content to cook and store drinking water. By 1900, such dubious practices had grown much less common, though as noted in the previous section, they certainly had not disappeared (Aufderheide et al. 1981; and Deppisch et al. 1999).

Population, percentage of roads paved, and miles of sewer mains per 1,000 persons all should be positively correlated with the use of lead because they make malleability and durability more attractive–recall that on both of these characteristics lead service mains (as opposed to iron or cement lined) ranked high (see Table 1). For example, in a city where most roads were paved, it was costly to have a service pipe burst because replacing the service also would have required digging up the pavement. A city with few paved roads would not have confronted such costs. Finally, the attractiveness of lead would have varied depending on the city's climate, soil quality, and corrosiveness of water. These factors are captured by the regional dummies.

When significant, the estimated coefficients are consistent with these predictions. Cities with public water companies, cities located in the Midwest, and cities with populations greater than 80,000, were all more likely to have used lead service mains than other cities. There is also some very weak evidence that cities with waterworks built before 1880 were more likely to have installed lead service mains.

V. The Health Effects of Lead

Lead affects multiple systems in the human body, including the central and peripheral nervous system, the gastrointestinal tract, the kidneys, and the hematological

9

system (blood). Although further study is required, recent studies suggest lead might also adversely affect the human immune system (e.g., Cohen et al. 1989; Fischbein et al. 1993; Sata et al. 1998). Which of these systems is affected and to what degree, depends on how much lead is ingested and the overall size and health of the person exposed. Table 4 summarizes the effects of lead. At low levels of exposure (blood levels less than 20 : g Pb/dl), lead causes subtle changes in body chemistry and manifests itself in comparatively mild symptoms such as dizziness and hypertension in adults and developmental delays in children. At intermediate levels of exposure (blood levels between 20 and 40 : g Pb/dl), lead has more serious effects, including peripheral neuropathies, infertility in men, and increased systolic blood pressure in adults and reduced hemoglobin synthesis and vitamin D metabolism in children. At high levels of exposure (blood levels between 40 and 100 : g Pb/dl), lead causes nephropathy (chronic or acute kidney failure), frank anemia, and reduced hemoglobin synthesis in adults, and colic, nephropathy, and encephalopathy in children. At extremely high levels (blood levels exceeding 100 : g Pb/dl), lead will cause death.

Historically, it might have been difficult for doctors to accurately diagnose mild to moderate cases of lead poisoning. Deppisch et al. (1999) suggest that President Andrew Jackson's complaints of a severe and debilitating "rheumatism" in his right hand were consistent with peripheral neuropathy caused by lead poisoning. Because lead affects the gastrointestinal tract and can cause abdominal pain, anorexia, cramps, nausea, vomiting, and constipation, Jackson's many laments in this area also could have been related to exposure to toxic metals such as mercury or lead. Finally, it is possible that complaints about gout were related to plumbism (Ravin and Ravin 1999; Perazella 1996; Soliway et al. 1994).

VI. How the Use of Lead Water Mains Affected the Health of Union Army Veterans

To assess the impact of lead service mains on human health we employ data from a large sample of Union Army recruits compiled by researchers affiliated with the University

of Chicago (Fogel 2000). These data have been used in numerous published studies and readers unfamiliar with the data are directed to Fogel (2000) for a thorough description of the sample. The are only two significant differences between our study and previous work. First, it is necessary for us to supplement the Union Army data with information about the type of water mains used in the various towns where Union Army veterans resided. Data on the types of mains used (e.g., lead or galvanized iron) are from Baker (1897). Second, given the nature of the problem, we must restrict the sample to Union Army recruits living in cities or towns with reliable information about its public water system, and in particular, information about the types of services mains used to distribute water. We use the recruits address as of 1900 as his city of residence.¹

After restricting the data this way, we are left with a sample of 2,215 recruits. The sample is geographically diverse, with recruits living in forty different states as of 1900, though the Midwest and the Northeast are over-represented. Thirty-seven percent of the recruits lived in cities or towns using no lead water mains whatsoever; 27 percent lived in cities or towns using both lead and iron mains; and 36 percent lived in cities or towns using lead mains exclusively. (Complete descriptive statistics are provided in an appendix.)

The analysis that follows focuses on the following lead-related ailments: dizziness; ear problems; deafness; memory loss; kidney tenderness and pain; and kidney disease. We focus on these diseases and ailments because we were able to have them properly coded and cleaned in time for the conference. Other ailments and symptoms related to lead exposure, such as bleeding gums, constipation, and rheumatism in the extremities, require additional cleaning and will be studied in subsequent versions of this paper.

Given the discussion in Section IV, one might expect Union Army recruits living in cities with lead water mains, compared to recruits in cities with iron mains, to exhibit more

¹This ignores the fact that many recruits moved. In future work, we will better control for this by including variables on years of exposure to lead.

of the following symptoms: dizziness; ear problems; deafness; memory loss; kidney tenderness and pain; and kidney disease. Accordingly, we estimate variants on the following logit model:

(2) $X_i = \$_0 + \$_1 L 1_i + \$_2 L 2_i + \mathbf{Z}_i \$_3 + , i$

where X_i is an indicator variable equal to 1 if by 1910 the recruit reported a specific ailment related to lead poisoning (e.g., hearing or kidney problems), and 0 otherwise; $L1_i$ is an indicator variable equal to 1 if the recruit resided in a city that used lead water mains in conjunction with other types of mains (e.g., iron) as of 1900, and 0 otherwise (henceforth, we refer to this variable as the some-lead dummy); $L2_i$ is an indicator variable equal to 1 if the recruit resided in a city that used lead water mains exclusively as of 1900, and 0 otherwise (henceforth, we refer to this variable as the all-lead dummy); Z_i is a vector of other control variables related to the individual (e.g., occupation and health), war-time regiment, and the size of the city in which they resided in 1900 or the size of the city in which they enlisted; and , i is an error term. The control variables included in Z_i are summarized in Table 5, and for the most part, are identical to those employed in Costa (2000).

Table 6 reports the predicted effects of lead service mains under three conceivable hypotheses. The first hypothesis is that lead service mains had, at most, sub-clinical effects that did not manifest themselves in any ailments related to lead exposure and resulted in blood concentration levels less than 10 : g Pb/dl. Under this hypothesis, recruits living in cities with lead pipes as of 1900 would have experienced no more lead-related ailments than recruits living cities without lead pipes and the coefficients on lead water mains would be close to zero and statistically insignificant. One might expect results consistent with this hypothesis if people routinely flushed their pipes, used only cold tap water for cooking and drinking, and had their water tested. Results consistent with hypothesis 1 might also be obtained if the effects of lead service mains were overwhelmed by other sources of lead

exposure we have not been able to fully control for, such as work-related exposure, the use of lead-based solder and pipes in plumbing, or the use of lead-based paints.

The second hypothesis is that lead water mains had small but identifiable effects on human health, resulting in blood concentration levels between 10 and 40 : g Pb/dl and symptoms such as dizziness and reduced hearing acuity. Under this hypothesis, recruits living in cities with lead pipes as of 1900 would have experienced more ailments associated with low levels of lead exposure than recruits living in cities without lead pipes. The coefficients on lead water mains would be positive and statistically significant for dizziness and ear problems, but close to zero and statistically insignificant for more serious leadrelated ailments such as kidney disease and memory loss. In addition, for dizziness and ear problems, we expect the coefficient on the some-lead dummy to be smaller than the coefficient on the all-lead dummy, because individuals living in cities that used lead mains in conjunction with iron mains would have been exposed to less lead on average than individuals living in cities that used lead mains exclusively. Results consistent with the second hypothesis would suggest that only small amounts lead dissolved into water as a result of lead service pipes.

The third hypothesis is that lead water mains had large adverse effects on human health, resulting in blood concentration levels greater than 40 : g Pb/dl and symptoms such as kidney failure and memory loss. Under this hypothesis, recruits living in cities with lead pipes as of 1900 would have experienced more ailments associated with high levels of lead exposure than recruits living in cities without lead pipes. The coefficients on lead water mains would be positive and statistically significant for all of the lead-related ailments we consider–dizziness, ear problems, deafness, kidney disease, and memory loss. Again, we expect the coefficient on the some-lead dummy to be smaller than the coefficient on the all-lead dummy, because individuals living in cities that used lead mains in conjunction with iron mains would have been exposed to less lead on average than individuals living in cities

that used lead mains exclusively. Results consistent with the third hypothesis would suggest that significant amounts lead dissolved into water as a result of lead service pipes. Of the three hypotheses, this one strikes us as the least plausible. If the use of lead services caused such serious and life-threatening conditions, city residents would have grown increasingly cognizant of the dangers of lead and lead mains and demanded that local and state governments take steps to eradicate lead service pipes. Historically, we do not observe political outcomes consistent with this. On the contrary, as noted above, all but a handful the nation's largest cities (those with populations greater than 300,000) used, and continued to install, lead services well into the twentieth century, and as late as 1916, engineering journals were claiming that lead was the most attractive metal for service mains.

Table 7 reports some of the more important regression results for the variables of interest, $L1_i$ and $L2_i$. There are three notable findings. First, the explanatory power of these models is not high, and all of the psuedo- R^2 's are less 20 percent. This is consistent with other studies exploring the health of Union Army veterans. Second, overall, the results are most consistent with the second hypothesis: lead water mains appear to have had a small but identifiable effect on the health of Union Army veterans. Only two mild ailments, specifically dizziness and ear problems, show a significant positive correlation with the use of lead mains are dizziness and ear problems. More serious symptoms and ailments such as kidney disease show no significant correlation with the use of lead services. Third, whenever we obtain statistically significant results, the estimated coefficient on the all-lead dummy is greater than the estimated coefficient on the some-lead dummy. Because recruits living in cities that used lead mains exclusively would have been exposed to more lead on average than recruits living in cities that used both lead and iron mains, we expect this pattern and view it as weak confirmation that we are estimating reasonable specifications.

In all of the regressions, some observations are dropped because they are predicted perfectly by specific individual variables. This is particularly true when we include regiment fixed effects. To address this issue, we also estimate the equations using linear probability models. The same results are obtained. In addition, we report results without the regiment fixed effects (regressions 2, 5, 8, and 11), as well as, the raw, uncontrolled correlations (regressions 1, 4, 7, and 10). Again, the same results are obtained.

An appendix reports descriptive statistics and results for all variables for the "complete" regressions (i.e., equations 3, 6, 9, and 12). Also not reported in table 7 are our findings for deafness and kidney trouble. We find no statistically significant relationship between lead water mains and deafness, and between lead water mains and kidney tenderness and pain.

It is possible that veterans already in poor health were the most vulnerable to environmental insults, and therefore experienced more severe reactions to lead water mains. To explore this possibility, we restrict our sample to only those recruits who were privates throughout the Civil War on the assumption that they had poorer health than higher ranking soldiers. Restricting the sample this way does not significantly alter our findings except that lead now appears to have had a much larger impact on the probability that the recruit reports dizziness. See table 8, which reports the important regression results. Again, complete results are presented in the appendix.

VII. Conclusions

The central conclusions of this paper are as follows. First, in 1900, lead water mains were pervasive, especially among large cities. In the sixteen largest cities in the United States, all but one used lead mains exclusively or in combination with some other type of main. According to the engineering literature, lead was attractive because it was pliable and easy to work with, and because it did not corrode as quickly as iron and steel. Second, the use of lead service mains does not appear to have had serious effects on the health of Union Army veterans. Veterans living in cities with lead mains reported higher rates of dizziness and ear problems than veterans living cities without lead, but they did not report higher

levels of more serious lead-related ailments such as kidney failure. An important caveat is in order, however. Because lead's effects can be especially serious for the young, it would be desirable to extend this analysis to explore how lead water mains affected the growth and development of children.

References

- Aufderheide, A.C., F.D. Neiman, L.E. Wittmers, et al. 1981. "Lead in Bone II: Skeletal-Lead Content as an Indicator of Lifetime Lead Ingestion and the Social Correlates in an Archeological Population." *American Journal of Physical Anthropology*, 45:723-35.
- Baker, M.N. 1897. *The Manual of American Water-Works*. New York: The Engineering News Publishing Company.
- Centers for Disease Control and Prevention. 1997. Morbidity and Mortality Weekly Report.
- Charney, E., J.W. Sayre, and M. Coulter. 1980. "Increased Lead Absorbtion in Inner City Children: Where Does the Lead Come From?" *Pediatrics*, 65:226-31.
- Cohen, N., D. Modai, A. Golik, J. Weissgarten, S. Peller, A. Katz, Z. Averbukh, and U. Shaked. 1989. "Increased Concanavalin A-induced Suppressor Cell Activity in Humans With Occupational Lead Exposure." *Environmental Research*, 48:1-6.
- Costa, D.L. 2000. "Understanding the Twentieth-Century Decline in Chronic Conditions Among Older Men." *Demography*, 37:53-72.
- Deppisch, L.M., J.A. Centeno, D.J. Gemmel, J. David, and N.L. Torres. 1999. "Andrew Jackson's Exposure to Mercury and Lead: Poisoned President?" *Journal of the American Medical Association*, 282:569-71.
- Fischbein, A., P. Tsang, J.J. Luo, J.P. Roboz, J.P. Jiang, and J.G. Bekesi. 1993. "The Immune System as Target for Subclinical Lead Related Toxicity." *British Journal of Industrial Medicine*, 50:185-86.
- Fogel, R.W. 1986. "Nutrition and the Decline in Mortality Since 1700: Some Preliminary Findings." In *Long-Term Factors in American Economic Growth*, edited by S. Engerman and R.E. Gallman. Chicago: University of Chicago Press.
- Fogel, R.W. 2000. Public Use Tape on the Aging of Veterans of the Union Army: Military, Pension, and Medical Records, 1860-1940, Version M-5. Center for Population Economics, University of Chicago Graduate School of Business, and Department of Economics, Brigham Young University.

- Fogel, R. W. and D.L. Costa. 1997. "A Theory of Technophysio Evolution, with Some Implications for Forecasting Population, Health Care Costs, and Pension Costs." *Demography*, 34: 49-66.
- Lanphear, B. and K.J. Rogham. 1997. "Pathways of Lead Exposure in Urban Children." *Environmental Research*, 74:67-73.
- Markowitz, G. and D. Rosner. 2000. "'Cater to the Children': The Role of the Lead Industry in a Public Health Tragedy, 1900-1955." *American Journal of Public Health*, 90:36-46.
- Melosi, Martin V. 2000. *The Sanitary City: Urban Infrastructure from Colonial Times to the Present.* Baltimore: The Johns Hopkins University Press.
- Needleman, H.L. and D. Belinger. 1991. "The Health Effects of Law Level Exposure to Lead." *Annual Review of Public Health*, 40:111-40.
- Perazella, M.A. 1996. "Lead and the Kidney: Nephropathy, Hypertension, and Gout." *Connecticut Medicine*, 60:521-26.
- Ravin, J.G. and T.B. Ravin. 1999. "What Ailed Goya?" *Journal of Ophthalmology*, 44:163-70.
- Sata, F., S. Araki, T. Tanigawa, Y. Morita, S. Sukurai, A. Nakata, and N. Katsuno. 1998. "Changes in T Cell Subpopulations in Lead Workers." *Environmental Research*, 76:61-64.
- Solliway, B.M., A. Schaffer, H. Pratt, S. Yannai. 1994. "A Multidisciplinary Study of Lead-Exposed Subjects." *Environmental Research*, 67:168-82.
- Tarr, J.A. 1996. The Search for the Ultimate Sink. Akron: The University of Akron Press.
- Trepka, M.J., J. Heinrich, C. Krause, C. Schulz, U. Lippold, E. Meyer, and H.E.
 Wichman. 1997. "The Internal Burden of Lead Among Children in a Smelter Town–A Small Area Analysis." *Environmental Research*, 72:118-30.

- Troesken, W. 1997. "The Sources of Public Ownership: Historical Evidence from the Gas Industry." *Journal of Law, Economics, and Organization*, 13:1-27.
- United States. Environmental Protection Agency. Office of Water. 2000. *Lead in Your Drinking Water*. (http://www.epa.gov/safewater/Pubs/lead1.html).
- Waldron, H.A. and D. Stöfen. 1974. *Sub-clinical Lead Poisoning*. London: Academic Press.
- Wisconsin. Department of Natural Resources. 1993. *Lead in Drinking Water*. (http://www.dnr. state.wi.us/org/water/dwg/lead.html).
- Xintaras, C. 1992. Analysis Paper: Impact of Lead-Contaminated Soil on Public Health. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry. Atlanta, GA. (http://www.atsdr.cdc.gov/exlead.html).

Main characteristics	Cost of material	Malleability	External corrosion	Internal corrosion	Toxicity
Material and lining:					
plain iron or steel ^a	1	3	3	5	2
galvanized iron or steel ^a	2	4	2	4	1
lead ^a	4	1	1	1	3
iron: cement lined ^{b}	3	3	2	3	2
iron: lead lined ^c	3	2	2	2	3
Size of pipe:					
small (3/4" diameter)	1	_	_	3	-
medium (1" diameter)	2	_	-	2	-
large (1 1/4" diameter)	3	_	-	1	-

Table 1. The Costs and Benefits of Some Common Types of Service Mains

Notes:

^a - unlined

^b - exterior of pipe, galvanized iron; interior of pipe, cement.

^c - exterior of pipe, galvanized iron; interior of pipe, lead.

Source: Engineering News, September 28, 1916, pp. 594-97.

Table 2. City Size and Lead Usage in 1900

	Total		Cities using	
City size as of 1900	cities	only lead ^a	lead & other b	no lead ^c
Pop > 300,000	16	8 (50%)	7 (44%)	1 (6%)
30,000 < Pop < 300,000	107	55 (51%)	22 (21%)	30 (28%)
8,000 < Pop < 30,000	156	46 (29%)	36 (23%)	74 (47%)
Pop < 8,000	518	100 (19%)	72 (14%)	346 (67%)
All towns and cities	797	209 (26%)	137 (17%)	451 (57%)

Notes:

^a - cities using lead or lead-lined service mains exclusively.

^b - cities using lead or lead-lined service mains alongside services made of other materials such as galvanized iron or cement-lined.

^c - cities using non-lead service mains exclusively.

Source: Data on services are from Baker (1897); sample derived from the Union-Army data compiled under the auspices of the Center for Population Economics at the University of Chicago. See Fogel (2000).

			or	dered-pro	bit
Variable	: (F ²)	Predicted sign	(1)	(2)	(3)
Water services:					
2 if lead exclusively	1.23			dependent	t
1 if lead and other	(.89)			variable	
0 if no lead					
1 if public water co.;	.766	+	.667*	.728*	.662*
0 if private			(.29)	(.29)	(.29)
Year waterworks were	1867	_	001		.001
built	(19)		(.01)		(.07)
1 if built before 1880;	.187	+		.374	
0 if after				(.33)	
Total population in	110	+	.001	.001	
1900 (000s)	(157)		(.001)	(.001)	
1 if pop < 80,000;	.636	-			712*
0 if not					(.28)
pct of roads paved	.399	+	.048	.303	271
	(.24)		(.09)	(.56)	(.58)
Miles of sewer mains	1.01	+	170	167	171
per 1,000 persons	(.45)		(.26)	(.27)	(.26)
1 if city in Northeast;	.491	•••	omit	omit	omit
0 otherwise					
1 if city in Midwest;	.290	+ /-	.851*	.814*	.724*
0 otherwise	• • •		(.31)	(.29)	(.31)
1 if city in South;	.159	+ /-	.264	.159	.208
0 otherwise			(.34)	(.35)	(.34)
1 if city in West	.056	+ /-	.491	.456	.173
0 otherwise			(.55)	(.55)	(.56)
No. of observations	107		107	107	107
Log likelihood			-99.0	-100.3	-95.8
Pseudo R^2	• • •		.071	.075	.101

 Table 3. The Correlates of Lead Usage in Large Cities (Pop > 30,000 in 1902)

Table 3 continued. . .

Notes:

* - significant at the 5 percent level or higher.

Standard errors are in parentheses.

Sources: see text.

Lead levels		Effects
in blood	Children	Adults
0-9:g Pb/dl	uncertain	uncertain
10-19:g Pb/dl	 Ú IQ, hearing, and growth Ú vitamin D metabolism; erythocyte protoporphyrin^a 	hypertension; erythocyte proto- porphyrin ^a (women)
20-29:g Pb/dl	${f \acute{u}}$ nerve conduction velocity	erythocyte protoporphyrin ^a (men)
30-39:g Pb/dl		Ü systolic blood pressure (men); Ú hearing acuity
40-49:g Pb/dl	Ú hemoglobin synthesis	peripheral neuropathies ^b ; infertility (men); nephropathy ^c
50-100:g Pb/dl	colic; frank anemia; nephro- pathy ^c ; encyphalopathy ^d	Ú hemoglobin synthesis; Ú longev-ity; frank anemia; encephalopathy ^d
> 100 : g Pb/dl	death	death

Table 4. How Lead Affects Children and Adults

Notes:

 $\boldsymbol{\acute{\boldsymbol{\mathsf{U}}}}$ - decreased function.

 $\ddot{\boldsymbol{U}}$ - increased function.

^a - changes in the shape and size of red blood cells.

^b - nerve disorders in the extremities. Historically, such disorders might have manifested themselves as complaints about "rheumatism" in the hands and feet, gout, and wrist and foot drop.

^c - chronic or acute kidney failure.

^d - any brain-related disorder. Historically, such disorders might have manifested themselves in violent mood swings, memory loss, and dementia.

Source: Perazella 1996; Ravin and Ravin 1999; and Xintaras (1992).

Table 5. List of Control Variables

Individual Characteristics	Individual Characteristics (continued)
At time of enlistment	In 1900
Occupation:	Occupation (in 1900):
= 1 if farmer	= 1 if farmer
= 1 if professional	= 1 if professional
= 1 if artisan	= 1 if artisan
= 1 if laborer	= 1 laborer
= 1 if skilled laborer	= 1 skilled laborer
= 1 if occupation unknown	= 1 occupation unknown
Physical condition:	Marital status and age:
Height	Age
Weight	= 1 if married
During wartime	Regiment Fixed Effects
Wounds, rank, etc:	City-Level Characteristics
= 1 if gunshot wound	At time of enlistment
= 1 if prisoner of war	City size:
= 1 if dishonorable discharge	=1 if $< 4,000$
= 1 if private	=1 if > 4,000 & < 30,000
= 1 if injured	=1 if > 30,000
Illnesses:	In 1900:
= 1 if measles	= 1 if < 8,000
= 1 if diarrhea	=1 if > 8,000 & < 30,000
= 1 if respiratory	=1 if > 30,000
= 1 if tuberculosis	
= 1 if typhoid	
= 1 if malaria	
= 1 if syphilis	
= 1 if rheumatism	

Table 6. Predicted Effects

	De	Dependent variable: $= 1$ if recruit reported								
Variable	dizziness	ear problems	deafness	kidney disease	memory loss					
	Hypothe	esis 1: lead water ma	ins had no effec	t (blood concentrat	ion < 10)					
some lead $(\$_1)$	0	0	0	0	0					
all lead $(\$_2)$	0	0	0	0	0					
relative effect										
	Hypothesis 2:	lead water mains ha	d small effect (blood concentration	n > 10 & < 40)					
some lead $(\$_1)$	+	+	0	0	0					
all lead $(\$_2)$	+	+	0	0	0					
relative effect	$\$_1 < \$_2$	$\$_1 < \$_2$								
	Hypothes	is 3: lead water main	ns had large effe	ect (blood concentra	tion > 40)					
some lead $(\$_1)$	+	+	+	+	+					
all lead ($\$_2$)	+	+	+	+	+					
relative effect	$\$_1 < \$_2$	$\$_1 < \$_2$	$\$_1 < \$_2$	$\$_1 < \$_2$	$\$_1 < \$_2$					

				Dep	endent va	ariable = 1	1 if recrui	t reporte	d:			
		dizziness	5	ea	r problei	ms	kio	lney dise	ase	m	emory le	OSS
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
some lead	.302	.295	.362	.084	.070	.059	015	136	.051	092	145	052
	(.32)	(.33)	(.37)	(.11)	(.11)	(.13)	(.50)	(.50)	(.57)	(.25)	(.25)	(.28)
all lead	.508*	.540*	.674*	.215*	.196*	.261*	.040	081	.654	009	051	.127
	(.28)	(.29)	(.35)	(.10)	(.10)	(.12)	(.45)	(.46)	(.56)	(.22)	(.23)	(.27)
Table 5 Controls:												
Individual characteristics	no	yes	yes	no	yes	yes	no	yes	yes	no	yes	yes
Regiment fixed effects	no	no	yes	no	no	yes	no	no	yes	no	no	yes
City-level characteristics	no	no	yes	no	no	yes	no	no	yes	no	no	yes
Pseudo R^2	.005	.098	.120	.001	.012	.039	.000	.084	.197	.000	.036	.068

Table 6. Regression Results: Full Sample

Notes:

All equations are estimated with a logit.

Standard errors are in parentheses.

* - significant at the 10 percent level or higher.

	Dependent variable: $= 1$ if recruit reported							
Variable	dizziness	memory loss	ear problems	deafness	kidney disease	kidney trouble		
= 1 if recruit lived in city using	1.30*	.005	007	.112	784	579		
both lead & iron services	(.578)	(.439)	(.185)	(.438)	(1.41)	(.482)		
= 1 if recruit lived in city using	1.61*	.166	.300*	167	1.27	678		
exclusively lead services	(.540)	(.418)	(.175)	(.416)	(1.13)	(.480)		
Table 5 controls	included	included	included	included	included	included		
Log likelihood	-128.7	-167.8	-689.9	-170.7	-33.6	-137.9		
Pseudo R^2	.148	.098	.051	.115	.387	.175		
Number of observations	825	875	1065	896	434	744		

Table 8. Regression Results: Privates Only

Notes:

All equations are estimated with a logit. In all of the regressions, some observations are dropped because they are predicted perfectly. To address this issue, we also estimate the equations using linear probability models. The same results are obtained.

Standard errors are in parentheses.

* - significant at the 10 percent level or higher.

Source: see text.

Appendix

Key to variable names in tables

Variable definition Variable name in output Occupation at time of enlistment: =1 if farmer =1 if professional efarmer =1 if artisan eprof =1 if laborer eartisan =1 if skilled laborer elaborer =1 if occupation unknown eskllab Size of city of enlistment: eoccna =1 if < 4,000 =1 if > 4,000 & < 30,000 sml1870 =1 if > 30,000 med1870 Physical condition at time of big1870 enlistment: Height Weight height Wartime experiences: weight =1 if gunshot wound =1 if prisoner of war wgsw =1 if private pow =1 if injured private Regiment fixed effects: winjury Wartime illnesses: Iregi_1...Ireg_29 =1 if measles =1 if diarrhea wmeasl =1 if respiratory wdiar =1 if tuberculosis wresp =1 if typhoid wtb =1 if malaria wtyphoid =1 if syphilis wmalaria =1 if rheumatism wsyphilis Occupation in 1900: wrheum =1 if farmer =1 if professional farmer =1 if artisan prof =1 laborer artisan =1 skilled laborer laborer =1 occupation unknown skllab Size of city of residence in occna 1900: =1 if < 8,000 =1 if > 8,000 & < 30,000 sml1900 =1 if > 30,000 med1900 Other 1900 information: big1900 Aqe =1 if married married age

Descriptive Statistics

.

Variable	Obs	Mean	Std. Dev.	Min	Max
dizzy1	 2215	.0334086	.1797416	0	1
memory	2215	.0505643	.2191558	0	1
rheu	2215	.7589165	.4278375	0	1
efarmer	2215	.4907449	.5000272	0	1
eprof	2215	.0984199	.2979488	0	1
eprof	2215	.0984199	.2979488	0	1
eartisan	2215	.2343115	.4236634	0	1
elaborer	2215	.1128668	.3165014	0	1
eskllab	2215	.0505643	.2191558	0	1
eoccna	2215	.0117381	.1077293	0	1
height	2196	67.35384	2.597964	56.5	81
pow	2215	.0893905	.285371	0	1
private	2215	.4848758	.4998841	0	1
age	2215	59.69526	6.622322	5	86
married	2215	.7056433	.4558559	0	1
farmer	2215	.1327314	.3393608	0	1
prof	2215	.1616253	.3681898	0	1
artisan	2215	.1367946	.343708	0	1
laborer	2215	.0844244	.278086	0	1
skllab	2215	.0776524	.2676842	0	1
occna	2215	.0478555	.2135087	0	1
kidneyd	2215	.0121896	.1097564	0	1
kidneyt	2215	.0397291	.1953662	0	1
lead1	2215	.2659142	.4419186	0	1
lead2	2215	.3598194	.4800557	0	1
big1900	2215	.4252822	.4944974	0	1
med1900	2215	.1923251	.394216	0	1
big1870	2215	.1349887	.3417887	0	1
med1870	2215	.3553047	.4787136	0	1
wdiar	2215	.2668172	.4423959	0	1
wresp	2215	.0419865	.2006035	0	1
wtb	2215	.0171558	.1298809	0	1
wmeasl	2215	.0383747	.1921426	0	1
wtyphoid	2215	.048307	.2144626	0	1
wmalaria	2215	.0230248	.1500162	0	1
wsyphil	2215	.0158014	.1247345	0	1
wrheum	2215	.1079007	.310325	0	1
winjury	2215	.1155756	.3197875	0	1
wgsw	2215	.1751693	.3801977	0	1

FULL SAMPLE REGRESSION: DIZZY DEPENDENT VARIABLE

Number of c		1998				
LR chi2(55) Prob > chi2		74.89 0.0385 Log	likelihood	= -275.79209	Pseudo R2=0	.1195
dizzyl	Coef.	Std. Err	Z	P> z	[95% Conf.	Interval]
lead1	.3618071	.3733428	0.969	0.332	3699313	1.093546
lead2	.6740107	.349562	1.928	0.054	0111183	1.35914
efarmer	13.942	3.844745	3.626	0.000	6.406443	21.47757
eprof	13.67622	3.860368	3.543	0.000	6.110038	21.2424
eartisan	13.82824	3.846503	3.595	0.000	6.289233	21.36725
elaborer	14.43134	3.837231	3.761	0.000	6.910503	21.95217
eskllab	14.0496	3.872441	3.628	0.000	6.45976	21.63945
eoccna	15.18721	3.917585	3.877	0.000	7.508888	22.86554
weight	.0001833	.004972	0.037	0.971	0095617	.0099282
height	.0073933	.052924	0.140	0.889	0963359	.1111225
pow	.2957393	.4149364	0.713	0.476	5175211	1.109
private	.021524	.265011	0.081	0.935	4978879	.540936
age	0396996	.0214491	-1.851	0.064	0817391	.0023398
married	.583426	.3442622	1.695	0.090	0913154	1.258167
farmer	.1853978	.4753374	0.390	0.697	7462464	1.117042
prof	.2314218	.4697823	0.493	0.622	6893347	1.152178
artisan	.808543	.4469507	1.809	0.070	0674643	1.68455
laborer	-1.278671	.8214115	-1.557	0.120	-2.888608	.3312658
skllab	.413302	.5313752	0.778	0.437	6281744	1.454778
occna	.6959518	.5563779	1.251	0.211	3945288	1.786432
big1900	2104294	.3317404	-0.634	0.526	8606286	.4397699
med1900	3858917	.3852104	-1.002	0.316	-1.14089	.3691068
big1870	.6209966	.4606949	1.348	0.178	2819487	1.523942
med1870	4907256	.3041889	-1.613	0.107	-1.086925	.1054736
wdiar	.05613	.2845946	0.197	0.844	5016652	.6139251
wresp	-1.30773	1.035315	-1.263	0.207	-3.336909	.7214495
wtb	1863323	1.06564	-0.175	0.861	-2.274948	1.902283
wmeasl	3398632	.6427306	-0.529	0.597	-1.599592	.9198657
wtyphoid	.9686065	.4571741	2.119	0.034	.0725616	1.864651
wmalaria	228707	.7871308	-0.291	0.771	-1.771455	1.314041
wsyphil	1.018011	.8105646	1.256	0.209	5706664	2.606688
wrheum	.4602238	.3655438	1.259	0.208	2562288	1.176676
winjury	.5318856	.3531952	1.506	0.132	1603643	1.224135
wgsw	2925745	.3795134	-0.771	0.441	-1.036407	.451258
Iregi_2	1.449476	1.307459	1.109	0.268	-1.113097	4.012049
Iregi_4	1.78341	1.19341	1.494	0.135	555631	4.122451
Iregi_5	1.188114	1.303099	0.912	0.362	-1.365914	3.742143
Iregi_7	1926895	1.488817	-0.129	0.897	-3.110717	2.725338
Iregi_8	3998096	1.23006	-0.325	0.745	-2.810683	2.011064
Iregi_9	.2661801	1.167011	0.228	0.820	-2.021119	2.553479
Iregi_10	7162974	1.485028	-0.482	0.630	-3.626898	2.194303
Iregi_11	1133103	1.494231	-0.076	0.940	-3.04195	2.81533
Iregi_13	.811934	1.162709	0.698	0.485	-1.466934	3.090802
Iregi_14	.8073187	1.226379	0.658	0.510	-1.596341	3.210978
Iregi_15	1.63565	1.1334	1.443	0.149	5857731	3.857073
Iregi_16	1.791495	1.190572	1.505	0.132	5419825	4.124972
Iregi_17	3250819	1.298325	-0.250	0.802	-2.869751	2.219587
Iregi_18	1.418898	1.101044	1.289	0.198	7391083	3.576903
Iregi_19	.1519883	1.17614	0.129	0.897	-2.153204	2.457181
Iregi_20	1.64976	1.125572	1.466	0.143	5563199	3.85584
Iregi_21	.6877184	1.257612	0.547	0.584	-1.777155	3.152592

Iregi_24	1.191629	1.528258	0.780	0.436	-1.803702	4.18696
Iregi_26	.1944334	1.494952	0.130	0.897	-2.735619	3.124485
Iregi_28	2.635698	1.684896	1.564	0.118	6666383	5.938035
Iregi_29	1.768699	1.347187	1.313	0.189	8717391	4.409137
_cons	-17.23474	•		•		•

FULL SAMPLE REGRESSION: MEMOREY DEPENDENT VARIABLE

Logit estimates; Number of obs = 1965; LR chi2(55) = 57.96

Prob > chi2= 0.3667; log likelihood = -394.98618 ; Pseudo R2=0.0684

memory	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lead1	0529411	.2817207	-0.188	0.851	6051035	.4992213
lead2	.1267313	.264741	0.479	0.632	3921516	.6456141
efarmer	14.59645	2.932261	4.978	0.000	8.849323	20.34357
eprof	15.23987	2.929252	5.203	0.000	9.498638	20.9811
eartisan	14.34789	2.932253	4.893	0.000	8.600781	20.095
elaborer	13.08046	2.97092	4.403	0.000	7.25756	18.90335
eskllab	14.94598	2.937854	5.087	0.000	9.187895	20.70407
eoccna	15.65906	2.961377	5.288	0.000	9.854867	21.46325
weight	0005708	.0040073	-0.142	0.887	008425	.0072834
height	.0527155	.0419753	1.256	0.209	0295545	.1349855
pow	.1545636	.353533	0.437	0.662	5383483	.8474755
private	1488722	.2162653	-0.688	0.491	5727443	.2749999
age	0078759	.0170706	-0.461	0.645	0413336	.0255818
married	.1572017	.256567	0.613	0.540	3456604	.6600639
farmer	6288286	.3962039	-1.587	0.112	-1.405374	.1477169
prof	2270954	.3461391	-0.656	0.512	9055156	.4513248
artisan	1457617	.3766481	-0.387	0.699	8839784	.5924549
laborer	1974786	.4233504	-0.466	0.641	-1.02723	.6322729
skllab	2453878	.4463617	-0.550	0.582	-1.120241	.629465
occna	.0084847	.4687593	0.018	0.986	9102666	.9272361
big1900	268488	.2731989	-0.983	0.326	803948	.266972
med1900	.1327314	.2755725	0.482	0.630	4073807	.6728435
big1870	5725792	.4202435	-1.362	0.173	-1.396241	.2510829
med1870	.1858064	.2352678	0.790	0.430	27531	.6469228
wdiar	2807422	.2420982	-1.160	0.246	755246	.1937615
wresp	.3437166	.4559641	0.754	0.451	5499565	1.23739
wtb	.4816163	.6496152	0.741	0.458	7916062	1.754839
wmeasl	.8554742	.4139768	2.066	0.039	.0440945	1.666854
wtyphoid	.1682589	.4559202	0.369	0.712	7253283	1.061846
wmalaria	.7050691	.5054801	1.395	0.163	2856537	1.695792
wrheum	0672488	.3404907	-0.198	0.843	7345984	.6001007
winjury	.4871729	.2838969	1.716	0.086	0692548	1.043601
wgsw	.2550009	.2681778	0.951	0.342	2706178	.7806197
Iregi_2	0747275	1.201312	-0.062	0.950	-2.429255	2.2798
Iregi_3	.9614925	.8899627	1.080	0.280	7828024	2.705787
Iregi_4	.8846916	.8781943	1.007	0.314	8365376	2.605921
Iregi_7	0314154	.968776	-0.032	0.974	-1.930181	1.867351
Iregi_8	1.210052	.713208	1.697	0.090	1878104	2.607914
Iregi_9	.3387086	.7449079	0.455	0.649	-1.121284	1.798701
Iregi_10	.7003191	.9752604	0.718	0.473	-1.211156	2.611794
Iregi_11	1.967863	.8496522	2.316	0.021	.3025754	3.633151
Iregi_12	1.658248	1.262096	1.314	0.189	8154145	4.13191
Iregi_13	.6022782	.7510961	0.802	0.423	8698431	2.0744
Iregi_14	1.170498	.7557439	1.549	0.121	3107325	2.651729
Iregi_15	.6155873	.8172105	0.753	0.451	9861159	2.217291
Iregi_16	.7825827	.8868695	0.882	0.378	9556496	2.520815
Iregi_17	.7770568	.7720135	1.007	0.314	7360619	2.290175
Iregi_18	1.159185	.6813908	1.701	0.089	1763164	2.494687
Iregi_19	.2245688	.7536621	0.298	0.766	-1.252582	1.701719
Iregi_20	1.138954	.7236142	1.574	0.115	2793033	2.557212
Iregi_21	.5425224	.771385	0.703	0.482	9693645	2.054409
Iregi_22	1.390245	.9159427	1.518	0.129	4049697	3.18546

Iregi_24	.3062856	1.229756	0.249	0.803	-2.103991	2.716563
Iregi_25	1.773623	1.303953	1.360	0.174	7820782	4.329323
Iregi_29	.2052196	1.222868	0.168	0.867	-2.191558	2.601997
_cons	-21.1892		•			

FULL SAMPLE REGRESSION: EAR PROBLEMS

FULL SAMPI Number of	LE REGRESSION obs =	2195	JEMS			
LR chi2(65		115.22				
Prob > chi			likelihood =	-1435.3406	Pseudo R2=	0.0386
earprob	Coef.	Std. Err	. Z	P> z	[95% Conf.	Interval]
lead1	.0590704	.1262051	0.468	0.640	1882871	.3064278
lead2	.261108	.1216722	2.146	0.032	.0226348	.4995812
efarmer	-1.257694	1.289434	-0.975	0.329	-3.784938	1.269551
eprof	-1.305081	1.295441	-1.007	0.314	-3.844099	1.233937
eartisan	-1.228642	1.28897	-0.953	0.340	-3.754978	1.297693
elaborer	-1.315555	1.295	-1.016	0.310	-3.853709	1.222598
eskllab	8550887	1.301543	-0.657	0.511	-3.406067	1.695889
eoccna	-1.750584	1.366631	-1.281	0.200	-4.429132	.9279637
weight	.0038437	.0018313	2.099	0.036	.0002545	.0074329
height	0102717	.0189537	-0.542	0.588	0474203	.0268768
dishonor	1.072593	.734513	1.460	0.144	3670257	2.512212
pow	.1284608	.1594134	0.806	0.420	1839837	.4409053
private	.0595451	.0944426	0.630	0.528	1255589	.2446491
age	.0103809	.007291	1.424	0.155	0039091	.024671
nonwhite	4023775	1.186898	-0.339	0.735	-2.728655	1.9239
married	2103875	.1100869	-1.911	0.056	4261539	.005379
farmer	.1032807	.1707826	0.605	0.545	231447	.4380084
prof	.2140553	.1589463	1.347	0.178	0974737	.5255843
artisan	.5782624	.1650712	3.503	0.000	.2547287	.901796
laborer	.2443172	.1891435	1.292	0.196	1263972	.6150317
skllab	.3113438	.1922473	1.619	0.105	0654541	.6881417
occna	.1399859	.2301725	0.608	0.543	3111439	.5911156
big1900	002396	.1216077	-0.020	0.984	2407427	.2359507
med1900	.3044183	.1302479	2.337	0.019	.049137	.5596995
big1870	1349526	.1583568	-0.852	0.394	4453262	.175421
med1870	0024591	.1074282	-0.023	0.982	2130145	.2080962
wdiar	.0623224	.1041694	0.598	0.550	1418458	.2664907
wresp	.4284713	.2219552	1.930	0.054	0065529	.8634954
wtb	.0018242	.3489201	0.005	0.996	6820465	.685695
wmeasl	.3014778	.2325638	1.296	0.195	154339	.7572946
wtyphoid	.5324291	.2131942	2.497	0.013	.1145762	.9502821
wmalaria	.5474237	.2982275	1.836	0.066	0370914	1.131939
wsyphil	2898388	.3736368	-0.776	0.438	-1.022153	.4424758
wrheum	.0946861	.1453399	0.651	0.515	1901747	.379547
winjury	0583068	.1445768	-0.403	0.687	3416722	.2250585
wgsw	0858391	.1259208	-0.682	0.495	3326392	.1609611
Iregi_2	.3952642	.4506543	0.877	0.380	488002	1.27853
Iregi_3	0277976	.4326919	-0.064	0.949	8758582	.8202631
Iregi_4	.2417783	.4113018	0.588	0.557	5643584	1.047915
Iregi_5	3846704	.4893535	-0.786	0.432	-1.343786	.5744448
Iregi_6	.7226568	.4653469	1.553	0.120	1894063	1.63472
Iregi_7	.0412065	.3891318	0.106	0.916	7214779	.8038909
Iregi_8	.4480115	.3182191	1.408	0.159	1756864	1.071709
Iregi_9	.613753	.310175	1.979	0.048	.0058212	1.221685
Iregi_10	.693371	.3807116	1.821	0.069	0528101	1.439552
Iregi_11	.8156451	.421639	1.934	0.053	0107521	1.642042
Iregi_12	1.14388	.6988114	1.637	0.102	2257651	2.513525
Iregi_13	.714712	.3245828	2.202	0.028	.0785414	1.350883
Iregi_14	1.178741	.3560057	3.311	0.001	.480983	1.8765
Iregi_15	.8197801	.3490471	2.349	0.019	.1356603	1.5039
Iregi_16	.7077137	.4074123	1.737	0.082	0907996	1.506227

Iregi_17 Iregi_18 Iregi_19 Iregi_20	.6991417 .7435378 .7623839 .5185634	.3349323 .3082462 .3110078 .3303052	2.087 2.412 2.451 1.570	0.037 0.016 0.014 0.116	.0426865 .1393863 .1528197 128823	1.355597 1.347689 1.371948 1.16595
continued	next page					
Iregi_21	1.210052	.3443053	3.514	0.000	.5352256	1.884878
Iregi_22	1.211712	.5048354	2.400	0.016	.2222524	2.201171
Iregi_23	.5098877	.5280421	0.966	0.334	5250558	1.544831
Iregi_24	1.704998	.5057439	3.371	0.001	.7137581	2.696238
Iregi_25	1.297155	.7425214	1.747	0.081	1581601	2.75247
Iregi_26	.7028773	.3968316	1.771	0.077	0748982	1.480653
Iregi_27	1.696339	.5288995	3.207	0.001	.6597155	2.732963
Iregi_28	.1032684	1.20772	0.086	0.932	-2.26382	2.470356
Iregi_29	.6962184	.5023282	1.386	0.166	2883268	1.680763
Iregi_31	1.226254	.6415438	1.911	0.056	0311486	2.483657
_cons	5424628	1.810524	-0.300	0.764	-4.091025	3.006099

FULL SAMPLE REGRESSION: DEAFNESS Number of obs = 2091

Number of	obs =	2091				
					i2(61) =	48.66
					> chi2 =	0.8731
Log likeli	hood = -395.0)2222		Pseudo	o R2 =	0.0580
deaf	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Tntervall
+					[]] % CONT.	
lead1	0550463	.299835	-0.184	0.854	642712	.5326194
lead2	.3666335	.269922	1.358	0.174	162404	.895671
efarmer	14.82169	3.048747	4.862	0.000	8.846261	20.79713
eprof	14.88965	3.047364	4.886	0.000	8.916928	20.86238
eartisan	14.51393	3.051674	4.756	0.000	8.532756	20.4951
elaborer	14.88536	3.048526	4.883	0.000	8.910357	20.86036
eskllab	15.51656	3.055281	5.079	0.000	9.528316	21.5048
eoccna	14.86926	3.195951	4.653	0.000	8.60531	21.13321
weight	0049232	.0042539	-1.157	0.247	0132608	.0034144
height	0208002	.0437365	-0.476	0.634	1065222	.0649217
pow	.0744807	.357909	0.208	0.835	6270081	.7759695
private	0266343	.2175348	-0.122	0.903	4529946	.399726
age	.0081634	.0168571	0.484	0.628	0248758	.0412026
nonwhite	1.639758	1.435907	1.142	0.253	-1.174567	4.454084
married	.0390051	.2535224	0.154	0.878	4578896	.5358998
farmer	.20392	.3821935	0.534	0.594	5451654	.9530055
prof	.0377489	.39143	0.096	0.923	7294399	.8049376
artisan	.9251224	.3568252	2.593	0.010	.2257579	1.624487
laborer	.2874533	.4544796	0.632	0.527	6033103	1.178217
skllab	.3071017	.4548679	0.675	0.500	5844231	1.198626
occna	.0379004	.5475809	0.069	0.945	-1.035338	1.111139
big1900	4831864	.2744283	-1.761	0.078	-1.021056	.0546831
med1900	2388358	.2928988	-0.815	0.415	8129069	.3352354
big1870	7900537	.4546189	-1.738	0.082	-1.68109	.1009829
med1870	1364843	.240446	-0.568	0.570	6077498	.3347812
wdiar	.301755	.2262441	1.334	0.182	1416752	.7451852
wresp	4879584	.6088336	-0.801	0.423	-1.68125	.7053335
wtb	.9339614	.5982364	1.561	0.118	2385604	2.106483
wmeasl	.2816147	.4572353	0.616	0.538	61455	1.177779
wtyphoid	.3754025	.42889 .7528246	0.875	0.381	4652064	1.216011
wmalaria	4173986		-0.554	0.579	-1.892908	1.05811
wsyphil	8319818	1.055065	-0.789	0.430	-2.899872	1.235909
wrheum winjury	.1068554 .2250638	.3177831 .30589	0.336 0.736	0.737 0.462	5159881 3744696	.7296989 .8245972
winjury wgsw	.3195932	.2676754	1.194	0.232	2050409	.8442273
Iregi_2	.2479747	.9780037	0.254	0.800	-1.668877	2.164827
Iregi_4	0336285	.9704365	-0.035	0.972	-1.935649	1.868392
Iregi_6	.3178136	1.222969	0.260	0.795	-2.079162	2.714789
Iregi_7	.2748891	.8860601	0.310	0.756	-1.461757	2.011535
Iregi_8	.1992367	.7497377	0.266	0.790	-1.270222	1.668695
Iregi_0	1274046	.7485866	-0.170	0.865	-1.594607	1.339798
Iregi_10	9312476	1.203263	-0.774	0.439	-3.289601	1.427105
Iregi_10	.4443559	.9826451	0.452	0.651	-1.481593	2.370305
Iregi_12	1.283352	1.250694	1.026	0.305	-1.167962	3.734666
Iregi_12	.378742	.7458225	0.508	0.612	-1.083043	1.840527
Iregi_14	.5507941	.802013	0.687	0.492	-1.021122	2.122711
Iregi_15	.6485324	.7705002	0.842	0.400	8616203	2.158685
Iregi_16	.3188647	.8931028	0.357	0.721	-1.431585	2.069314
Iregi_17	.5235678	.7546131	0.694	0.488	9554468	2.002582
5 1						

Iregi_18 Iregi_19 Iregi_20 Iregi_21	.4951796 .2671233 .2938469 .9723537	.7004804 .7338943 .7665645 .7636377	0.707 0.364 0.383 1.273	0.480 0.716 0.701 0.203	8777368 -1.171283 -1.208592 5243486	1.868096 1.70553 1.796286 2.469056
table cont	inued on next	page				
deafness o	continued from	last page				
Iregi_22	.3252031	1.245086	0.261	0.794	-2.11512	2.765526
Iregi_23	.5162149	1.225977	0.421	0.674	-1.886656	2.919085
Iregi_24	.4832657	1.24338	0.389	0.698	-1.953715	2.920246
Iregi_26	.075126	.9878225	0.076	0.939	-1.86097	2.011222
Iregi_27	1.625997	1.026634	1.584	0.113	3861695	3.638163
Iregi_28	3.166158	1.416561	2.235	0.025	.3897496	5.942567
Iregi_29	.2328978	1.232616	0.189	0.850	-2.182986	2.648781
Iregi_31	1.290093	1.298375	0.994	0.320	-1.254676	3.834862
_cons	-16.74388	•	•	•	•	•

FULL SAMPLE REGRESSION: KIDNEY DISEASE

Number of	obs =	1481		ID o		E2 04
					hi2(48) =	53.24 0.2797
Log likeli	hood = -108	2595			do R2 =	0.1973
LOG TIKCII	1000 - 100	2373		isco	40 12 -	0.10/5
kidneyd	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
lead1	.050764	.5695637	0.089	0.929	-1.06556	1.167088
lead2	.6535724	.5647033	1.157	0.247	4532258	1.760371
efarmer	11.7673	5.550977	2.120	0.034	.8875815	22.64701
eprof	11.99372	5.495323	2.183	0.029	1.22308	22.76435
eartisan	11.16771	5.56358	2.007	0.045	.2632898	22.07212
elaborer	11.77433	5.55452	2.120	0.034	.8876731	22.66099
eskllab	10.91137	5.592495	1.951	0.051	0497242	21.87245
weight	0041278	.0083057	-0.497	0.619	0204067	.0121511
height	2036582	.0828101	-2.459	0.014	365963	0413533
pow	.8269955	.6393939	1.293	0.196	4261936	2.080185
private	1814693	.4459425	-0.407	0.684	-1.055501	.6925621
age	.0130561	.033914	0.385	0.700	0534142	.0795264
married	.1575498	.4939508	0.319	0.750	810576	1.125676
prof	3096238	.7801508	-0.397	0.691	-1.838691	1.219444
artisan	-1.480752	1.136658	-1.303	0.193	-3.708561	.7470569
laborer	.1118964	.7809787	0.143	0.886	-1.418794	1.642586
skllab	.0790846	.7748584	0.102	0.919	-1.43961	1.597779
occna	.8398234	.7998538	1.050	0.294	7278612	2.407508
big1900	-1.404775	.6264549	-2.242	0.025	-2.632604	1769462
med1900	.1050529	.5257011	0.200	0.842	9253023	1.135408
big1870	1.70649	.7141021	2.390	0.017	.306876	3.106105
med1870	2683275	.5756185	-0.466	0.641	-1.396519	.859864
wdiar	.1038202	.4990146	0.208	0.835	8742305	1.081871
wresp	1.209847	.6637536	1.823	0.068	0910862	2.51078
wmalaria	.911795	1.146828	0.795	0.427	-1.335947	3.159537
wsyphil	1.410923	1.23416	1.143	0.253	-1.007986	3.829833
wrheum	.4980966	.5736279	0.868	0.385	6261934	1.622387
winjury	.0225065	.6730837	0.033	0.973	-1.296713	1.341726
wgsw	-1.37779	.7901466	-1.744	0.081	-2.926449	.1708692
Iregi_4	.4778837	1.182429	0.404	0.686	-1.839635	2.795403
Iregi_5	.5100259	1.418871	0.359	0.719	-2.27091	3.290962
Iregi_6	.7148217	1.455115	0.491	0.623	-2.137151	3.566794
Iregi_7	-1.162491	1.432818	-0.811	0.417	-3.970764	1.645781
Iregi_8	-1.589902	1.207141	-1.317	0.188	-3.955855	.7760506
Iregi_9	-2.282221	1.394786	-1.636	0.102	-5.015952	.4515104
Iregi_13	-1.525985	1.382211	-1.104	0.270	-4.235069	1.1831
Iregi_14	7267685	1.422222	-0.511	0.609	-3.514273	2.060736
Iregi_15	9229662	1.402461	-0.658	0.510	-3.67174	1.825807
Iregi_16	5709844	1.424446	-0.401	0.689	-3.362848	2.220879
Iregi_17	-1.868125	1.438218	-1.299	0.194	-4.686981	.9507309
Iregi_18	3709208	1.111111	-0.334	0.739	-2.548659	1.806817
Iregi_19	-2.07604	1.360076	-1.526	0.127	-4.741739	.5896591
Iregi_20	-1.294746	1.383695	-0.936	0.349	-4.006739	1.417246
Iregi_21	-1.44674	1.442062	-1.003	0.316	-4.27313	1.379651
Iregi_22	7875423	1.515768	-0.520	0.603	-3.758393	2.183308
Iregi_24	.1709115	1.325746	0.129	0.897	-2.427503	2.769326
Iregi_26	7074676	1.448274	-0.488	0.625 0.878	-3.546032	2.131097
Iregi_27	2327662	1.516363	-0.154	0.0/0	-3.204784	2.739251

_cons | -1.415954

FULL SAMPLE: KIDNEY TROUBLE

Logit	estimates

Number of obs	=	1687
LR chi2(52)	=	74.29
Prob > chi2	=	0.0229
Pseudo R2	=	0.1084

Log likelihood = -305.50996

kidneyt	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lead1	4472463	.3282424	-1.363	0.173	-1.090589	.1960969
lead2	4626372	.3261728	-1.418	0.156	-1.101924	.1766497
efarmer	15.56898	3.589254	4.338	0.000	8.534173	22.60379
eprof	15.21681	3.583249	4.247	0.000	8.193773	22.23985
eartisan	14.56808	3.590686	4.057	0.000	7.530467	21.6057
elaborer	14.54171	3.594801	4.045	0.000	7.496026	21.58739
eskllab	15.12893	3.608279	4.193	0.000	8.056833	22.20103
weight	0062215	.0049961	-1.245	0.213	0160136	.0035706
height	.0666345	.0498315	1.337	0.181	0310334	.1643025
pow	3560974	.497579	-0.716	0.474	-1.331334	.6191396
private	0520363	.2419474	-0.215	0.830	5262446	.422172
age	.0326056	.0184794	1.764	0.078	0036134	.0688246
married	1155734	.2858482	-0.404	0.686	6758256	.4446788
farmer	022978	.3923086	-0.059	0.953	7918888	.7459327
prof	.3955449	.3922937	1.008	0.313	3733366	1.164426
artisan	.0160047	.4816974	0.033	0.973	9281048	.9601142
laborer	2256339	.5465683	-0.413	0.680	-1.296888	.8456203
skllab	0873876	.5438423	-0.161	0.872	-1.153299	.9785238
occna	.41995	.5151776	0.815	0.415	5897796	1.42968
big1900	3977514	.3312185	-1.201	0.230	-1.046928	.2514248
med1900	0988556	.3204535	-0.308	0.758	726933	.5292218
big1870	.7421154	.476779	1.557	0.120	1923542	1.676585
med1870	.0825532	.2662086	0.310	0.756	4392061	.6043126
wdiar	.5821503	.2453631	2.373	0.018	.1012475	1.063053
wresp	3047807	.6279264	-0.485	0.627	-1.535494	.9259325
wmeasl	6624083	.6347576	-1.044	0.297	-1.90651	.5816937
wtyphoid	.6900532	.448289	1.539	0.124	188577	1.568683
wmalaria	.3349784	.5802025	0.577	0.564	8021976	1.472154
wsyphil	000339	1.079904	0.000	1.000	-2.116912	2.116234
wrheum	0455317	.3709836	-0.123	0.902	7726462	.6815827
winjury	.264809	.3437596	0.770	0.441	4089476	.9385655
wgsw	7436111	.401547	-1.852	0.064	-1.530629	.0434065
Iregi_2	1.428151	1.285508	1.111	0.267	-1.091398	3.947701
Iregi_4	1.491835	1.212941	1.230	0.219	8854845	3.869155
Iregi_8	.320544	1.210765	0.265	0.791	-2.052512	2.6936
Iregi_10	1.439719	1.222675	1.178	0.239	9566792	3.836118
Iregi_11	.8886921	1.478774	0.601	0.548	-2.009651	3.787036
Iregi_12	2.320377	1.523735	1.523	0.128	666088	5.306842
Iregi_13	1.61211	1.106438	1.457	0.145	5564688	3.780689
Iregi_14	1.633974	1.132502	1.443	0.149	5856883	3.853636
Iregi_15	2.037918	1.10497	1.844	0.065	1277842	4.20362
Iregi_16	2.45305	1.137944	2.156	0.031	.2227205	4.683379

Iregi_17	.7278007	1.214791	0.599	0.549	-1.653146	3.108747
Iregi_18	1.357572	1.09367	1.241	0.214	785983	3.501126
Iregi_19	.7879986	1.138083	0.692	0.489	-1.442604	3.018601
Iregi_20	1.246269	1.128656	1.104	0.270	9658573	3.458395
Iregi_21	1.906728	1.124653	1.695	0.090	297552	4.111007
Iregi_22	.8239706	1.505174	0.547	0.584	-2.126115	3.774057
Iregi_23	1.049785	1.487303	0.706	0.480	-1.865276	3.964846
Iregi_26	.4789048	1.4794	0.324	0.746	-2.420665	3.378475
Iregi_27	1.691141	1.519566	1.113	0.266	-1.287155	4.669436
Iregi_29	1.171089	1.506086	0.778	0.437	-1.780785	4.122962
_cons	-24.87106				•	•

DROP IF PRIVATE == 0

Logit dizzyl leadl lead2 efarmer-eoccna weight height-private age-occna bigl > 900-Iregi_31

Number of obs	=	825
LR chi2(47)	=	44.71
Prob > chi2	=	0.5677
Pseudo R2	=	0.1480
	LR chi2(47) Prob > chi2	Prob > chi2 =

dizzy1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lead1	1.298346	.5782436	2.245	0.025	.1650091	2.431683
lead2	1.608334	.5397789	2.980	0.003	.5503872	2.666282
efarmer	14.24739	5.375095	2.651	0.008	3.712399	24.78238
eprof	13.96377	5.373186	2.599	0.009	3.432523	24.49502
eartisan	14.21994	5.417664	2.625	0.009	3.601518	24.83837
elaborer	14.70794	5.362669	2.743	0.006	4.197298	25.21857
eskllab	14.88257	5.398548	2.757	0.006	4.301612	25.46353
weight	008089	.0075888	-1.066	0.286	0229627	.0067848
height	.0853543	.0769216	1.110	0.267	0654093	.2361179
pow	.1726709	.7163043	0.241	0.810	-1.23126	1.576602
age	0779924	.0304332	-2.563	0.010	1376403	0183445
married	.7602741	.5151697	1.476	0.140	2494399	1.769988
farmer	4712777	.6961987	-0.677	0.498	-1.835802	.8932467
prof	2666093	.7106415	-0.375	0.708	-1.659441	1.126223
artisan	.6125377	.631364	0.970	0.332	6249131	1.849988
laborer	-1.055343	.9250253	-1.141	0.254	-2.86836	.757673
skllab	.4605025	.7285916	0.632	0.527	9675108	1.888516
occna	.6643835	.7338623	0.905	0.365	7739603	2.102727
big1900	8830639	.4587407	-1.925	0.054	-1.782179	.0160513
med1900	6308891	.5397148	-1.169	0.242	-1.688711	.4269326
big1870	.6485155	.7798793	0.832	0.406	8800199	2.177051
med1870	1375618	.4169106	-0.330	0.741	9546915	.679568
wdiar	.006634	.4257754	0.016	0.988	8278705	.8411386
wresp	-1.011633	1.106237	-0.914	0.360	-3.179819	1.156552
wtb	1.733347	1.195061	1.450	0.147	6089299	4.075624
wmeasl	4880651	.8306139	-0.588	0.557	-2.116038	1.139908
wtyphoid	.8712362	.7774192	1.121	0.262	6524774	2.39495
wmalaria	4292003	1.190199	-0.361	0.718	-2.761948	1.903548
wsyphil	.6988848	1.19674	0.584	0.559	-1.646682	3.044452
wrheum	.3857353	.557605	0.692	0.489	7071504	1.478621
winjury	.0648333	.6033182	0.107	0.914	-1.117649	1.247315

wgsw	346168	.6039517	-0.573	0.567	-1.529892	.8375555
Iregi_2	1.964124	1.434224	1.369	0.171	8469038	4.775151
Iregi_4	1.065333	1.57502	0.676	0.499	-2.02165	4.152317
Iregi_8	0461901	1.39057	-0.033	0.974	-2.771657	2.679277
Iregi_9	0872988	1.415876	-0.062	0.951	-2.862365	2.687767
Iregi_11	.0642485	1.627157	0.039	0.969	-3.124921	3.253418
Iregi_13	.3630095	1.406196	0.258	0.796	-2.393083	3.119102
Iregi_14	.9115624	1.367075	0.667	0.505	-1.767855	3.59098
Iregi_15	.6108791	1.39823	0.437	0.662	-2.129601	3.35136
Iregi_16	1.140085	1.456064	0.783	0.434	-1.713748	3.993919
Iregi_17	6461417	1.6159	-0.400	0.689	-3.813248	2.520965
Iregi_18	.9516859	1.250435	0.761	0.447	-1.499122	3.402494
Iregi_19	4942101	1.382397	-0.358	0.721	-3.203658	2.215238
Iregi_20	1.833564	1.258678	1.457	0.145	6333988	4.300527
Iregi_26	.4221743	1.584941	0.266	0.790	-2.684254	3.528602
Iregi_29	.9364247	1.537561	0.609	0.543	-2.07714	3.94999
_cons	-19.34451	•	•		•	•

PRIVATE ONLY: MEMORY

logit memory lead1 lead2 efarmer-eoccna weight height-private age-occna big1

Logit estimates	Number of obs	=	875
	LR chi2(49)	=	36.44
	Prob > chi2	=	0.9080
Log likelihood = -167.78543	Pseudo R2	=	0.0979

memory	Coef.	Std. Err.	Z	P> z	[95% Conf. Interval]
+					
lead1	.0059758	.4390263	0.014	0.989	8544999 .8664515
lead2	.1658829	.4183666	0.397	0.692	6541005 .9858664
efarmer	15.30311	4.750624	3.221	0.001	5.992056 24.61416
eprof	15.80257	4.731334	3.340	0.001	6.529325 25.07581
eartisan	14.80267	4.76167	3.109	0.002	5.469965 24.13537
elaborer	13.25025	4.837802	2.739	0.006	3.768333 22.73217
eskllab	15.07907	4.741979	3.180	0.001	5.784959 24.37317
eoccna	16.50203	4.764736	3.463	0.001	7.163318 25.84074
weight	0004927	.0061808	-0.080	0.936	0126068 .0116214
height	.0802498	.0675204	1.189	0.235	0520877 .2125873
pow	.3202061	.598118	0.535	0.592	8520836 1.492496
age	.0125471	.024872	0.504	0.614	036201 .0612952
married	3969503	.363654	-1.092	0.275	-1.109699 .3157985
farmer	-1.090051	.6565447	-1.660	0.097	-2.376855 .1967532
prof	0409056	.540246	-0.076	0.940	-1.099768 1.017957
artisan	.3054774	.5445292	0.561	0.575	7617803 1.372735
laborer	1319897	.6420548	-0.206	0.837	-1.390394 1.126414
skllab	5235634	.8288621	-0.632	0.528	-2.148103 1.100977
occna	.0216369	.6912272	0.031	0.975	-1.333144 1.376417
big1900	6581487	.4305754	-1.529	0.126	-1.502061 .1857636
med1900	.0394255	.4190884	0.094	0.925	7819727 .8608237
big1870	.233654	.734279	0.318	0.750	-1.205506 1.672814
med1870	.5496105	.3547873	1.549	0.121	1457598 1.244981
wdiar	.0114414	.3673739	0.031	0.975	7085982 .7314811
wresp	7742485	1.068582	-0.725	0.469	-2.868631 1.320134

wtb	1.756276	1.234888	1.422	0.155	6640598	4.176612
wmeasl	.282706	.6917462	0.409	0.683	-1.073092	1.638504
wtyphoid	.8227823	.6897926	1.193	0.233	5291863	2.174751
wmalaria	1.132517	.6943555	1.631	0.103	2283945	2.493429
wrheum	.1054723	.5214493	0.202	0.840	9165496	1.127494
winjury	3790138	.5916098	-0.641	0.522	-1.538548	.7805201
wgsw	.3767336	.4907281	0.768	0.443	5850758	1.338543
Iregi_4	.568105	1.343294	0.423	0.672	-2.064704	3.200914
Iregi_7	.7399846	1.10846	0.668	0.504	-1.432557	2.912527
Iregi_8	.5174812	1.058823	0.489	0.625	-1.557773	2.592735
Iregi_9	8727386	1.325452	-0.658	0.510	-3.470578	1.7251
Iregi_10	.2512463	1.358526	0.185	0.853	-2.411416	2.913908
Iregi_12	2.035431	1.479287	1.376	0.169	8639184	4.934781
Iregi_13	.575412	.9977829	0.577	0.564	-1.380207	2.531031
Iregi_14	.8540231	1.039727	0.821	0.411	-1.183804	2.891851
Iregi_15	.1210506	1.342079	0.090	0.928	-2.509376	2.751478
Iregi_16	.4232052	1.375719	0.308	0.758	-2.273154	3.119564
Iregi_17	.3476751	1.14631	0.303	0.762	-1.899051	2.594401
Iregi_18	.3470315	.9291865	0.373	0.709	-1.474141	2.168204
Iregi_19	.2036047	.9713531	0.210	0.834	-1.700212	2.107422
Iregi_20	1.400258	.9429456	1.485	0.138	447882	3.248397
Iregi_21	.7219842	1.025124	0.704	0.481	-1.287222	2.73119
Iregi_24	1.395397	1.450541	0.962	0.336	-1.447612	4.238406
Iregi_29	.0485416	1.424658	0.034	0.973	-2.743736	2.840819
_cons	-24.50792					

PRIVATE ONLY: EAR PROBLEMS

logit earprob lead1 lead2 efarmer-eoccna weight height-private age-occna big
> 1900-Iregi_31

Logit estimates	Number of obs	=	1065
	LR chi2(61)	=	73.45
	Prob > chi2	=	0.1318
Log likelihood = -689.86102	Pseudo R2	=	0.0505

earprob	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lead1	0070224	.184947	-0.038	0.970	3695118	.355467
lead2	.2999023	.1754202	1.710	0.087	043915	.6437195
efarmer	-15.68072	1.931736	-8.117	0.000	-19.46685	-11.89459
eprof	-16.17912	1.939957	-8.340	0.000	-19.98136	-12.37687
eartisan	-15.7544	1.93628	-8.136	0.000	-19.54944	-11.95936
elaborer	-15.41296	1.930685	-7.983	0.000	-19.19703	-11.62888
eskllab	-15.33954	1.932807	-7.936	0.000	-19.12778	-11.55131
eoccna	-15.85593	2.032944	-7.799	0.000	-19.84043	-11.87143
weight	.0040582	.0026424	1.536	0.125	0011209	.0092373
height	0039471	.0280697	-0.141	0.888	0589627	.0510685
dishonor	1492275	1.447395	-0.103	0.918	-2.98607	2.687615
pow	.1304038	.2451478	0.532	0.595	3500772	.6108847
age	.0070085	.0099067	0.707	0.479	0124083	.0264253
married	2399098	.1609045	-1.491	0.136	5552769	.0754572
farmer	.0554786	.2412524	0.230	0.818	4173674	.5283245
prof	.3698354	.2437664	1.517	0.129	107938	.8476089
artisan	.4486838	.2404928	1.866	0.062	0226734	.920041
laborer	.0494841	.2661055	0.186	0.852	472073	.5710412

skllab	.5565173	.2899525	1.919	0.055	0117792	1.124814
occna	.0135643	.321465	0.042	0.966	6164955	.6436241
big1900	0301003	.1753862	-0.172	0.864	3738509	.3136504
med1900	.3273478	.1905417	1.718	0.086	0461071	.7008027
big1870	1412237	.2627004	-0.538	0.591	6561071	.3736596
med1870	0922059	.1529426	-0.603	0.547	3919679	.2075561
wdiar	2243973	.1538722	-1.458	0.145	5259814	.0771867
wresp	.3580247	.3353891	1.067	0.286	2993258	1.015375
wtb	6108249	.6328308	-0.965	0.334	-1.851151	.6295007
wmeasl	.3100703	.308276	1.006	0.315	2941395	.9142801
wtyphoid	.3872834	.331531	1.168	0.243	2625053	1.037072
wmalaria	1.111629	.4123563	2.696	0.007	.3034252	1.919832
wsyphil	.1154728	.5081131	0.227	0.820	8804106	1.111356
wrheum	.05676	.213261	0.266	0.790	3612239	.4747439
winjury	1260137	.2203331	-0.572	0.567	5578586	.3058312
wgsw	.1763228	.200076	0.881	0.378	2158189	.5684645
Iregi_2	.0333479	.5781061	0.058	0.954	-1.099719	1.166415
Iregi_3	0049168	.6110826	-0.008	0.994	-1.202617	1.192783
Iregi_4	.0840304	.5922795	0.142	0.887	-1.076816	1.244877
Iregi_5	5517348	.6102212	-0.904	0.366	-1.747746	.6442769
Iregi_6	.7689411	.6546749	1.175	0.240	5141982	2.05208
Iregi_7	0290771	.5598873	-0.052	0.959	-1.126436	1.068282
Iregi_8	0176589	.473897	-0.037	0.970	9464799	.9111622
Iregi_9	.5665914	.4522739	1.253	0.210	3198491	1.453032
Iregi_10	.3711782	.5419404	0.685	0.493	6910054	1.433362
Iregi_11	0673092	.6145283	-0.110	0.913	-1.271762	1.137144
Iregi_12	.457887	.8783473	0.521	0.602	-1.263642	2.179416
Iregi_13	.5426415	.4634935	1.171	0.242	365789	1.451072
Iregi_14	.8154752	.48975	1.665	0.096	1444171	1.775368
Iregi_15	.2309781	.5230021	0.442	0.659	7940872	1.256043
Iregi_16	.406625	.5759551	0.706	0.480	7222262	1.535476
Iregi_17	.2008495	.4972308	0.404	0.686	773705	1.175404

Table continued next page

Private only ear problems continued

Iregi_18	.6070134	.4275227	1.420	0.156	2309157	1.444943
Iregi_19	.6991013	.4315025	1.620	0.105	146628	1.544831
Iregi_20	.2961755	.451143	0.657	0.512	5880485	1.180399
Iregi_21	1.090019	.4944877	2.204	0.028	.1208405	2.059197
Iregi_22	.5636984	1.310933	0.430	0.667	-2.005682	3.133079
Iregi_23	.9141096	.6577951	1.390	0.165	3751452	2.203364
Iregi_24	2.171055	.9407917	2.308	0.021	.3271372	4.014973
Iregi_26	.7998658	.5849808	1.367	0.172	3466755	1.946407
Iregi_27	1.881008	.8120453	2.316	0.021	.2894286	3.472588
Iregi_29	.7386136	.621022	1.189	0.234	4785672	1.955794
Iregi_31	.4327513	1.048997	0.413	0.680	-1.623245	2.488748
_cons	14.02136	•		•	•	•

PRIVATE ONLY: DEAF

Logit estimates Number of obs =	896
	11 00
LR chi2(49) =	44.26
Prob > chi2 =	0.6655
Log likelihood = -170.7449 Pseudo R2 =	0.1147
deaf Coef. Std. Err. $z P > z $ [95% Conf. Int	erval]
lead1 .1121231 .4376114 0.256 0.7987455796 .9	698258
	471319
	.32603
	.16747
-	.23065
	.56378
	.18157
	110536
	970773
- 1	210758
- 1	178813
	323448
	811194
	361558
- !	420676
	957184
	782848
	482557
big1900 .0665215 .4092168 0.163 0.8717355287 .8	685717
	122304
big1870 -1.512431 1.105198 -1.368 0.171 -3.678578 .6	537173
med1870 .0633357 .3466565 0.183 0.8556160985 .7	427699
wdiar .5221316 .3325095 1.570 0.116129575 1.	173838
wresp0626863 .8107866 -0.077 0.938 -1.651799 1.	526426
wtb 1.156501 1.157974 0.999 0.318 -1.113087 3.	426089
wmeasl .1014207 .6486931 0.156 0.876 -1.169994 1.	372836
wtyphoid .0192125 .8067436 0.024 0.981 -1.561976 1.	600401
wmalaria .0151905 .788107 0.019 0.985 -1.529471 1.	559852
	540154
winjury .3813721 .4494712 0.848 0.3964995753 1.	262319
- 1	340533
	649993
1	868852
	750698
	290206
-	882529
1	838755
1	450359
1	749788
	930362
	798734
	690663
	159258
	707932
	963297
Iregi_23 1.06755 1.407858 0.758 0.448 -1.6918 3.	826901

Iregi_26	.6456663	1.376924	0.469	0.639	-2.053055	3.344388
Iregi_27	1.906352	1.4905	1.279	0.201	-1.014975	4.827679
Iregi_29	.6511693	1.397634	0.466	0.641	-2.088142	3.390481
_cons	-17.49595	•	•	•	•	•

PRIVATE ONLY: KIDNEY DISEASE

Logit kidneyd lead1 lead2 efarmer-eoccna weight height-private age-occna big
> 1900-Iregi_31

Logit estimates	Number of obs	=	434
	LR chi2(34)	=	42.49
	Prob > chi2	=	0.1505
Log likelihood = -33.644324	Pseudo R2	=	0.3871

kidneyd Coef. Std. Err. z P> z [95% Conf. Interval] lead1 7837767 1.406122 -0.557 0.577 -3.539725 1.972171 lead2 1.267866 1.13322 1.119 0.263 9532046 3.488936 efarmer 9.469134 1.736996 5.451 0.000 6.064684 12.8738 eprof 10.88686 1.829492 5.951 0.000 7.301117 14.47259 eartisan 10.42026 1.762599 5.912 0.000 6.965632 13.87489 elaborer 8.402053 weight -0.025607 1.319218 -0.146 0.884 -2.77818 2.393059 age -0.137345 .0688624 -0.199 0.842 1487024 1.212333 married 2.702748 1.279111 2.113 0.035 .1957359 5.20976 prof 9540097 1.463557 -0.							
lead2 1.267866 1.13322 1.119 0.263 9532046 3.488936 efarmer 9.469134 1.736996 5.451 0.000 6.064684 12.87358 eprof 10.88686 1.829492 5.951 0.000 7.30117 14.47259 eartisan 10.42026 1.762599 5.912 0.000 6.965632 13.87489 elaborer 8.402053 weight 0089151 .0189366 -0.4711 0.638 0460301 .0281998 height .0271163 .1507911 0.180 0.857 2684288 .3226614 pow 1925607 1.319218 -0.146 0.884 -2.77818 2.393059 age 0137345 .0688624 -0.199 0.842 1487024 .121333 married 2.702748 1.279111 2.113 0.33 .1957359 5.20976 prof 9540097 1.463557 -0.652 0.515 -3.822528 1.914508 attisan -1.233434 1.578	kidneyd	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
efarmer9.4691341.7369965.4510.0006.06468412.87358eprof10.886861.8294925.9510.0007.30111714.47259eartisan10.420261.7625995.9120.0006.96563213.87489elaborer8.402053weight0089151.0189366-0.4710.6380460301.0281998height.0271163.15079110.1800.8572684288.3226614pow19256071.319218-0.1460.884-2.778182.393059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.1299148852witair1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wr	lead1	7837767	1.406122	-0.557	0.577	-3.539725	1.972171
eprof10.886861.8294925.9510.0007.30111714.47259eartisan10.420261.7625995.9120.0006.96563213.87489elaborer8.402053weight0089151.0189366-0.4710.6380460301.0281998height.0271163.15079110.1800.8572684288.3226614pow19256071.319218-0.1460.884-2.778182.393059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.242981.3630.173-74169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-4.7969873.093389wresp4.2308111.4922942.8350.0051.3059697.155633wrhau1.651036.9277731.7800.4675163.661553irgi_13<	lead2	1.267866	1.13322	1.119	0.263	9532046	3.488936
eartisan10.420261.7625995.9120.0006.96563213.87489elaborer8.402053 <td>efarmer</td> <td>9.469134</td> <td>1.736996</td> <td>5.451</td> <td>0.000</td> <td>6.064684</td> <td>12.87358</td>	efarmer	9.469134	1.736996	5.451	0.000	6.064684	12.87358
elaborer8.402053weight0089151.0189366-0.4710.6380460301.0281998height.0271163.15079110.1800.8572684288.3226614pow19256071.319218-0.1460.884-2.778182.333059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.0463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-4.7908065.737803med1870-4.3092311.949362-2.2110.027-8.12991-488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.5602	eprof	10.88686	1.829492	5.951	0.000	7.301117	14.47259
weight0089151.0189366-0.4710.6380460301.0281998height.0271163.15079110.1800.8572684288.3226614pow19256071.319218-0.1460.884-2.778182.393059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-4.7908065.737803med1870-4.3092311.949362-2.2110.027-8.12991-488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.7516736543.469438winjury1.0537031.2788750.8240.410-1.452846<	eartisan	10.42026	1.762599	5.912	0.000	6.965632	13.87489
height.0271163.15079110.1800.8572684288.3226614pow19256071.319218-0.1460.884-2.778182.393059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-4.7969873.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.60252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_14-4.3081452.695515-2.4430.015-11.86773	elaborer	8.402053		•			
pow19256071.319218-0.1460.884-2.778182.393059age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.687516 <td>weight</td> <td>0089151</td> <td>.0189366</td> <td>-0.471</td> <td>0.638</td> <td>0460301</td> <td>.0281998</td>	weight	0089151	.0189366	-0.471	0.638	0460301	.0281998
age0137345.0688624-0.1990.8421487024.1212333married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-4.7908065.737803med1800-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrhum1.651036.9277731.7800.075-16736543.469488winjury1.0537031.2788750.8240.410-1.45286632.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.6846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.6091382-1.6010.109-9	height	.0271163	.1507911	0.180	0.857	2684288	.3226614
married2.7027481.2791112.1130.035.19573595.20976prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.0974796867.4007546wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-	pow	1925607	1.319218	-0.146	0.884	-2.77818	2.393059
prof95400971.463557-0.6520.515-3.8225281.914508artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.097-47908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.660252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_14-4.3081452.695515-2.4430.015-11.86773-1.301505Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070<	age	0137345	.0688624	-0.199	0.842	1487024	.1212333
artisan-1.2334341.578394-0.7810.435-4.3270291.86016laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122966Iregi_18-6.7255043.046396-2.2080.027-12.69633.7546772Iregi_19-5.2238412.39621-2.1800.029 <td>married</td> <td>2.702748</td> <td>1.279111</td> <td>2.113</td> <td>0.035</td> <td>.1957359</td> <td>5.20976</td>	married	2.702748	1.279111	2.113	0.035	.1957359	5.20976
laborer1.6951271.2432981.3630.17374169324.131947occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.8998372.625723-2.2470.025	prof	9540097	1.463557	-0.652	0.515	-3.822528	1.914508
occna1.7871451.3554181.3190.18786942454.443715big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.09389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.898372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.0	artisan	-1.233434	1.578394	-0.781		-4.327029	1.86016
big1900-2.1981161.325979-1.6580.097-4.796987.4007546med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.015 <td>laborer</td> <td>1.695127</td> <td>1.243298</td> <td>1.363</td> <td>0.173</td> <td>7416932</td> <td>4.131947</td>	laborer	1.695127	1.243298	1.363	0.173	7416932	4.131947
med1900.20463421.0398520.1970.844-1.8334382.242706big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122962Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.003 <td>occna</td> <td>1.787145</td> <td>1.355418</td> <td>1.319</td> <td>0.187</td> <td>8694245</td> <td>4.443715</td>	occna	1.787145	1.355418	1.319	0.187	8694245	4.443715
big18702.6293611.5859691.6580.09747908065.737803med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_18-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	big1900	-2.198116	1.325979	-1.658	0.097	-4.796987	.4007546
med1870-4.3092311.949362-2.2110.027-8.12991488552wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	med1900	.2046342	1.039852	0.197	0.844	-1.833438	2.242706
wdiar1.244517.94331941.3190.18760435473.093389wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	big1870	2.629361	1.585969	1.658		4790806	5.737803
wresp4.2308111.4922942.8350.0051.3059697.155653wrheum1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	med1870	-4.309231	1.949362	-2.211	0.027		488552
wrheun1.651036.9277731.7800.07516736543.469438winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.238412.39621-2.1800.029-9.9203265273559Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	wdiar	1.244517	.9433194			6043547	3.093389
winjury1.0537031.2788750.8240.410-1.4528463.560252wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_20-5.238412.39621-2.1800.029-9.9203265273559Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	wresp	4.230811	1.492294		0.005	1.305969	7.155653
wgsw16938721.130783-0.1500.881-2.3856812.046906Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316		1.651036				1673654	3.469438
Iregi_553598922.118165-0.2530.800-4.6875163.615538Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	winjury	1.053703	1.278875	0.824	0.410	-1.452846	3.560252
Iregi_8-6.5846182.695515-2.4430.015-11.86773-1.301505Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	wgsw	1693872	1.130783			-2.385681	2.046906
Iregi_13-6.1045732.660064-2.2950.022-11.31828909437Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_5	5359892	2.118165	-0.253	0.800	-4.687516	3.615538
Iregi_14-4.3081452.691382-1.6010.109-9.583157.9668661Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_8	-6.584618	2.695515	-2.443	0.015	-11.86773	-1.301505
Iregi_17-4.9806982.75158-1.8100.070-10.3737.4122996Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_13	-6.104573			0.022		
Iregi_18-6.7255043.046396-2.2080.027-12.696337546772Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_14	-4.308145	2.691382	-1.601	0.109	-9.583157	.9668661
Iregi_19-5.2238412.39621-2.1800.029-9.9203265273559Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_17	-4.980698	2.75158	-1.810			.4122996
Iregi_20-5.8998372.625723-2.2470.025-11.046167535136Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_18	-6.725504	3.046396	-2.208		-12.69633	7546772
Iregi_21-5.2071542.600079-2.0030.045-10.303221110926Iregi_26-2.3599412.324153-1.0150.310-6.9151972.195316	Iregi_19		2.39621	-2.180			
Iregi_26 -2.359941 2.324153 -1.015 0.310 -6.915197 2.195316	Iregi_20	-5.899837	2.625723			-11.04616	7535136
	Iregi_21	-5.207154	2.600079	-2.003	0.045	-10.30322	1110926
_cons -11.20351 9.626103 -1.164 0.244 -30.07032 7.66331	Iregi_26		2.324153	-1.015		-6.915197	2.195316
	_cons	-11.20351	9.626103	-1.164	0.244	-30.07032	7.66331

PRIVATE ONLY: KIDNEY TROUBLE

. logit kidneyt lead1 lead2 efarmer-eoccna weight height-private age-occna big Logit estimates Number of obs = 744 LR chi2(46) = 58.44 Prob > chi2 = 0.1031 Log likelihood = -137.87564Pseudo R2 = 0.1749 _____ kidneyt | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____+____ lead1 -.5785576 .4817251 -1.201 0.230 -1.522722 .3656063 lead2 | -.6784425 .4801737 -1.413 0.158 -1.619566 .2626807 13.97877 3582.359 0.004 0.997 -7007.316 7035.273 efarmer 14.91333582.35913.276863582.35913.574783582.359 0.004 0.997 7036.208 eprof -7006.381 -7008.018 0.004 0.997 eartisan 7034.571 -7007.72 0.004 0.997 7034.869 elaborer -7008.327 7034.263 0.004 0.997 eskllab 12.96819 3582.359 weight -.0030749 .0076336 -0.403 0.687 -.0180364 .0118867 .1029099 .0766072 height | 1.343 0.179 -.0472374 .2530573 .06291 .0131602 .025383 -.3130589 .4202418 0.518 0.604 -.0365896 age married | -0.745 0.456 -1.136718 .5106 -.2735705 .5862454 -0.467 0.641 farmer -1.42259 .8754494 prof | 0.190 0.850 1.391397 .122796 .6472575 -1.145805 -0.541 0.588 artisan -.4236648 .7830529 -1.95842 1.111091 laborer .0914916 .6944631 0.132 0.895 -1.269631 1.452614 -1.108 0.268 skllab -1.257908 1.134941 -3.482352 .9665367 -.2368142 1.068104 .6657868 1.604 0.109 2.373022 occna -1.477 0.140 -.7090602 -1.64987 big1900 .4800136 .2317492 med1900 -.1787916 .4951352 -0.361 0.718 -1.149239 .7916557 .9484699 .7976035 big1870 1.189 0.234 -.6148041 2.511744 med1870 .4268834 .375093 1.138 0.255 -.3082854 1.162052 wdiar 1.238374 .3704076 3.343 0.001 .512388 1.964359 -1.467629 -2.427998 0.264 0.792 wresp .2284773 .8653761 1.924583 -0.871 0.384 wmeasl -.74714 .8575963 .9337179 .5397972 0.606 0.545 2.286251 wtyphoid | -1.206657 .8910642 1.382 -.4321803 wmalaria 1.03244 .7472688 0.167 2.49706 1.348 wsyphil 1.729406 1.28313 0.178 -.7854827 4.244295 .2351284 .5146638 -.7735941 0.457 0.648 1.243851 wrheum .2800908 .5559477 0.504 0.614 -.8095467 winjury | 1.369728 -1.276723 .7877352 -1.621 0.105 -2.820656 .2672094 wqsw Iregi 2 17.65375 3470.78 0.005 0.996 -6784.949 6820.257 15.85389 3470.78 0.005 0.996 -6786.749 Iregi_8 6818.457 Iregi 10 | 0.005 0.996 16.31505 3470.78 -6786.288 6818.918

Iregi_11	17.53231	3470.78	0.005	0.996	-6785.071	6820.136
Iregi_13	17.23376	3470.78	0.005	0.996	-6785.369	6819.837
Iregi_14	17.44089	3470.78	0.005	0.996	-6785.162	6820.044
Iregi_15	16.63114	3470.78	0.005	0.996	-6785.972	6819.234
Iregi_16	18.1081	3470.78	0.005	0.996	-6784.495	6820.711
Iregi_17	16.27294	3470.78	0.005	0.996	-6786.33	6818.876
Iregi_18	16.97676	3470.78	0.005	0.996	-6785.626	6819.58
Iregi_19	16.45131	3470.78	0.005	0.996	-6786.152	6819.054
Iregi_20	16.50668	3470.78	0.005	0.996	-6786.096	6819.11
Iregi_21	17.9957	3470.78	0.005	0.996	-6784.607	6820.599
Iregi_23	17.01758	3470.78	0.005	0.996	-6785.586	6819.621
Iregi_26	17.39793	3470.78	0.005	0.996	-6785.205	6820.001
Iregi_29	17.12883	3470.78	0.005	0.996	-6785.474	6819.732
_cons	-40.84261	4987.948	-0.008	0.993	-9817.04	9735.355