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Abstract

In this paper we measure the effect of Catholic high school attendance on educational
attainment and test scores. Because there is no valid instrumental variable for Catholic
school attendance, we develop new estimation methods based on the idea that the amount
of selection on the observed explanatory variables in a model provides a guide to the
amount of selection on the unobservables, We show that if the observed variables are a
random subset of a large number of factors that influence the outcome of interest, then the
relationship between the index of observables that determines Catholic school attendance
and the index that determines the outcome will be the same as the relationship between
the indices of unobservables that determine the two variables. In some circumstances this
fact may be used to identify the effect or to bound the effect of the endogenous variable.
We also propose an informal way to assess selectivity bias based on measuring the ratio of
selection on unobservables to selection on observables that would be required if one is to
attribute the entire effect of the Catholic school attendance to selection bias. We use our
methods to estimate the effect of attending a Catholic high school on a variety of outcomes.
Our main conclusion is that Catholic high schools substantially increase the probability of
graduating from high school and, more tentatively, college attendance. We do not find
much evidence for an effect on test scores.







1 Introduction

Distinguishing between correlation and causality is the most difficult challenge faced by
empirical researchers in the social sciences. Social scientists rarely are in a position to run a
well controlled experiment. Consequently, they rely on a priori restrictions on the patterns
of interaction among the variables that are observed or unobserved. These restrictions
are typically in the form of exclusion restrictions, restrictions on the functional form of
the model, restrictions on the distribution of the unobserved variables, or restrictions on
dynamic interactions. Occasionally, the a priori restrictions are derived from a widely
accepted theory or are supported by other studies that had access to a richer set of data.
However, in most cases, doubt remains about the validity of the identifying assumptions
and the inferences that are based on them.

The challenge of isolating causal effects is particularly difficult for the question addressed
in our paper—“Do Catholic high schools provide better education than public schools?”
This question is at the center of the debate in the United States over whether vouchers,
charter schools, and other reforms that increase choice in education will improve the quality
of education. It is also highly relevant to the search for ways to improve teaching and gov-
ernance of public schools. Simple cross tabulations or multivariate regressions of outcomes
such as test scores and post secondary educational attainment typically show a substé.ntial
positive effect of Catholic school attendance.! However, many prominent social scientists,
such as Goldberger and Cain (1982}, have argued that the positive effects of Catholic school
attendance may be due to spurious correlations between Catholic school attendance and
unobserved student and family characteristics. The argument begins with the observation
that it costs parents time and money to send their children to private school. In the ab-
sence of experimental data, the challenge in addressiﬁg this potentially large bias is finding
exogenous variation that affects school choice but not outcomes. Most student background
characteristics that influence the Catholic school decision, such as income, attitudes, and
education of the parents, are likely to influence outcomes independently of the school sector
because they are likely to be related to other parental inputs. Characteristics of private and

public schools that influence choice, such as tuition levels, student body characteristics, or

1 The most influential examples are Coleman, Hoffer, and Kilgore (1982} and Coleman and Hoffer (1987).
Other early example examples of studies of Catholic schools and other private schools are Noell (1982),
Goldberger and Cain (1982), and Alexander and Pallas (1985). Recent studies include Evans and Schwab
(1995), Tyler (1994), Neal (1997), Grogger and Neal (1999), Figlio and Stone (2000), Sander (2000} and
Jepsen (2000). Murnane (1984), Witte (1992), Chubb and Moe (1990), Cookson {1993) and Neal {1998)
provide overviews of the discussion and references to the literature. Grogger and Neal provide citations to
a small experimental literature, which for the most part has found positive effects of Catholic school.







school policies, are likely to be related to the effectiveness of the schools.

Several recent studies, including Evans and Schwab (1995), Neal (1997), Grogger and
Neal (1999), Figlio and Stone (1999) and Altonji, Elder and Taber (1999) use various ex-
clusion restrictions to estimate the Catholic school effect on a variety of outcomes. Evans
and Schwab (1995) use religious afliliation as an exogenous source of variation in Catholic
school attendance and confirm the large positive estimates of Catholic school effects on
high school graduation and college attendance that they obtain when Catholic school at-
tendance is treated as exogenous. However, as Evans and Schwab recognize and Murnane
et al (1985) and Neal (1997) note, being Catholic could well be correlated with character-
istics of the neighborhood and family that influence the effectiveness of schools. Ancther
influential paper by Neal (1997) uses proxies for geographic proximity to Catholic schools
as an exogenous source of variation in Catholic high school attendance. The basic assump-
tion is that the location of Catholics and/or Catholic schools was determined by historical
circumstances and is independent of unobservables that influence performance in schools.
He finds evidence of a positive effect of Catholic high school attendance on high school and
college graduation among students in urban areas, particularly in the case of nonwhites.
In Altonji, Elder and Taber (1999, 2001), we employ a similar methodology using data on
zip code of residence and the zip codes of all of the Catholic high schools in the country to
compute a measure of distance from the nearest Catholic high school for our samples. We
conclude that the use of location or location interacted with religion is not a good way to
estimate Catholic school effects.? Grogger and Neal (2000) come to a similar conclusion.®
Altonji, Elder, and Taber (2001) also find that Catholic religion has a strong association
with graduation rates for students who attended public eighth grades even though such
students rarely attend Catholic high school. This evidence and work by Ludwig (1997)

raises serious doubts about the validity of Catholic religion as an instrument.

2We provide evidence based on links to observed variables and to eighth grade test scores that suggests
that neither distance from Catholic high schocls nor the interaction between distance and religion should
be excluded from the outcome equations unless detailed controls for location are included. (This informal
use of cbservables as a guide to correlation between the instrument and the unobservables lead to the
current paper.} Failure to control for these factors leads to negative biases in estimates of Catholic school
effects. Unfortunately, including detailed geographic controls (such as 3 digit zip code) leads to very large
standard errors. We also follow Neal (1997) and Evans and Schwab (1995) by using bivariate probit models
to jointly estimate the Catholic School decision with the outcomes. We find that empirical identification
comes largely from the functional form of the model rather than exclusion of the measure of distance from
Catholic schools. Nonlinearities in the effects of student background rather than proxies for distance from
Catholic schools seem to be the main source of identification.

3Grogger and Neal (2000) use NELS:88, the data set for the present study. Altonji, Elder and Taber
(1999) analyze NELS:88, the National Longitudinal Survey of the High School Class of 1972, and NLSY.
Neal (1997) uses the National Longitudinal Survey of Youth, 1979.







In this paper we develop new estimation strategies that may be helpful when strong
prior information is unavailable regarding the exogeneity of either the variable of interest
or instruments for that variable. We view this to be the situation in studies of Catholic
school effects and in many other applications in economics and the other social sciences.
We then use our strategies to assess the effectiveness of Catholic schools.

Our approach to estimation is based on the idea of using the degree of selection on
observables as a guide to how much selection there is on the unobservables. Researchers
often informally argue for the exogeneity of membership in a “treatment group” or for the
exogeneity of an instrumental variable by examining the relationship between group mem-
bership or the instrumental variable and a set of observed characteristics, or by assessing
whether point estimates are sensitive to the inclusion of additional control variables.? We
provide a formal analysis confirming the intuition that such evidence can be informative.
More importantly, we provide a way to quantitatively assess the degree of omitted variables
bias.’

Not surprisingly, the empirical relevance of using the link between the endogenous
variable and observed variables as a guide to the link with the unobservables hinges on
how the observables and unobservables are related. Using our Catholic schools application,

let the outcome ¥ be determined by

(1.1) Y =aCH+WT,

where C'H is an indicator for whether the student attends a Catholic high school, the
parameter « is the effect of Catholic school attendance on Y, W is a vector containing
the full set of other variables that influence Y, and I is the coefficient vector for W. Let
X represent the vector of observed components of W and v be the vector of associated

elements of I'. Then one may rewrite the above equation as

(1.2) Y =aCH+ X'y +e,

where the vector X is observed by the econometrician and the error term ¢ is the index of

the unobserved elements of W weighted by the corresponding elements of T'.

*See for example, Currie and Duncan (1995}, Engen et al (1996), Poterba et al (1994), Angrist and
Evans (1998), Jacobsen et al. (1999), Bronars and Grogger (1994), or Udry (1998).

*Two precursors to our study are Altonji’s (1988) study of the importance of observed and unobserved
family background and school characteristics in the school specific variance of educational outcomes and
especially Murphy and Topel’s (1990) study of the importance of selection on unobserved ability as an
explanation for industry wage differentials.







Let CH” be the latent variable that determines C'H, with CH = 1(CH* > 0) and

consider
(13) Proj(CH"|X'y,e) = ¢g + ¢peu X'7 + B

where Proj(.|.) denotes a linear projection. We call the condition

(14) Gex = ¢c5

“equality of selection on the observables and unobservables”. This condition relates selec-
tion into Catholic school to the factors that determine outcome Y. This equation says that
the coeflicient ¢, relating Catholic school attendance to the index of observables X+ that
determine the outcome Y is equal to coefficient ¢, on the index of unobservables . The
identical coefficients on X'+ and e capture the idea that “selection on the unobservables is
similar to selection on the observables.” We show that if (i) the elements of X are chosen
at random from W and (ii) the number of elements in both X and W are large so that
none of the elements dominates the distribution of school cheice C'H or the outcome Y,
then equality of selection will hold. While (1.4) is strong, we argue that is a better approx-
imation in many circumstances than the standard assumption underlying OLS and other

single equation methods, which is that

(1.5) .. = 0.

Major data sets with large samples and extensive questionnaires are not designed to address
one relatively specific question, such as the effectiveness of Catholic schools, but rather to
serve multiple purposes. As a result of limits on the number of factors that we know matter
for a particular outcome, know how to collect, and can afford to collect, many elements of
W are left out. This is reflected in the typically low the explanatory power of social science
models of individual behavior. Furthermore, in many applications, including ours, the
endogenous variable is correlated with many of the elements of X. Given the constraints
that shape choice of X and the fact that many of the elements of X are systematically
related to CH*, it is unlikely that the many unobserved variables that determine ¢ have
are unrelated to CH*, which is what (1.5) requires. Our view is that analysis based on
(1.4) is a useful complement to the standard analysis based on (1.5).

We show that in some circumstances (1.4), prior knowledge about the sign of the bias,
and an additional condition on the relationship among the included and excluded variables

are sufficient to identify «. In others, (1.4) and the other conditions are only sufficient to
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restrict o to be the root of a cubic equation. If selection on the observables is stronger
than selection on the unobservables, as we argue is true in our case, then one can identify
a lower bound for o.

Operationally, we estimate the joint model of Catholic school attendance and the out-
come subject to a transformation of (1.4). Similar ideas can be applied to “heterogenecus
effects” models in which the benefits of Catholic school attendance and public school at-
tendance vary across students.

We provide a similar estimation method that may be used when an excluded variable
(e.g., Catholic religion or proximity to a Catholic school in the Catholic schools literature)
is used to identify a model, but there are concerns about whether it is exogenous. We show
that if the observables are a random subset of the variables that determine the outcome,
then the instrumental variable will have the same relationship with the regression index
of the observables and the regression index of the unobservables. This condition can
sometimes be used to identify « even though the instrumental variable is correlated with
the error term in the outcome equation.

We also propose a related but more informal way to use the relationship between the
observables as a guide to endogeneity bias. It is related to the common practice of checking
for a systematic relationship between C'H and the mean of the elements of X. Let E{.)

. Ei{X' =1)— ! = . .
and Var(.) be mean and variance operators. We compute { 'Y'GHV;)F( )f,‘g 2|OH=0) , which is

the normalized shift in the index of observables in the outcome equation that is associated

with C'H, and then ask how many times larger the normalized shift in the index of the

ElelCH=1)—B{g|CH=0
Var(e)

a. The null hypothesis that the single equation estimator of « is unbiased corresponds

(e|]CH=1)—FE(e|CH=D
Var(e)

chosen subset of W implies that

unobservables ) would have to be to explain away the entire estimate of

to the case in which £ ) g 0, while the hypothesis that X is a randomly

Be|CH = 1) — BECH =0) _ B(X2|CH = 1) — E(X|CH 0)
Var(e) B Var(X"y) -

If selection on unobservables must be several times stronger than selection on the observ-

(1.6)

ables to explain for the entire estimaté of «, then the case for a causal effect of Catholic
school is strengthened.

In section 2 we set the stage for the development and application of our econometric
methods by providing a standard multivariate analysis of the Catholic school effect using
the National Educational Longitudinal Survey of 1988 (NELS:88). We present descriptive

statistics on the relationship between Catholic school attendance and a broad range of
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observable measures of family background, eighth grade achievement, educational expec-
tations, social behavior, and delinquency. The descriptive statistics show huge Catholic
high school advantages in high school graduation and college attendance rates, and smaller
ones in 12th grade test scores. However, the evidence across the wide range of observ-
ables, which have substantial explanatory power in our outcome equations, suggests fairly
strong positive selection into Catholic schools. We also find that the link between observ-
ables and Catholic high school attendance is much weaker among children who attended
Catholic eighth grade. To reduce sample selection bias and to avoid confounding the effect
of attending Catholic high school with the effect of Catholic elementary school, we use the
Catholic eighth grade sample for much of our analysis, unlike most previous studies.

We present an initial set of regression and probit models containing detailed controls for
student characteristics that are determined prior to high school. We find a small positive
effect on 12th grade math scores, and a zero effect on reading scores. However, our
estimates of the effect of Catholic high school point to a very large positive effect of 0.15 on
the probability of attending a 4 year college 2 years after high school and 0.08 on the high
school graduation rate. The estimates are not very sensitive to the addition of a powerful
set of controls, particularly in the case of the high school graduate rate. The insensitivity
of the results to the controls and the “modest” association between the observables that
determine the outcome and Catholic high school suggests that part of the educational
attainment effect is real. However, the small positive effects on math test scores could
easily be accounted for by positive selection on unobservables.

In sections 3 and 4 we develop and apply our methods for using the degree of selection on
observables to provide better guidance about bias from selection on unobservables. Because
high school outcomes depend on many variables that are determined after the decision to
attend Catholic high school is made, selection on unobservables that affect outcomes is
likely to be weaker than selection on observables, with 0 < ¢, < ¢,,. Consequently, our
estimates of a joint model of Catholic high school attendance and educational attainment
subject to (1.4) are likely to overstate selection and understate the Catholic school effect.
The estimate of the effect of Catholic school on high school graduation declines from the
univariate estimate of about 0.08, which we view as an upper bound, to 0.07 when we
impose equal selection, which we view as a lower bound, although sampling error widens
this range. The estimate of the effect on college attendance declines from the univariate
estimate of 0.15 to 0.07 or (.02, depending on the details of the estimation method.

Using (1.6) we estimate that selection on unobservables would have to be between 2.78







and 4.29 times stronger than selection on the observables to explain away the entire Catholic
school effect on high school graduation, which seems highly unlikely. It would have to be
between 1.30 and 2.30 times stronger to explain away the entire college effect, which is also
unlikely. However, more modest positive selection on the unobservables could explain away
the entire Catholic school effect on math scores. We conclude that Catholic high school
attendance substantially boosts high school graduation rates and, more tentatively, college
attendance rates.

In section 5 we extend our analysis to a subsample of urban minorities, for whom we
obtain larger univariate effects but also stronger evidence of selection. In section 6 we
provide conclusions and an agenda for further research on the use of observables as a guide

to selection bias.

2 A Preliminary Analysis of the Catholic School Ef-
fect

In section 2.1 we describe the data. In section 2.2 we present the sample means of outcomes,
measures of family background, eighth grade achievement, soctal behavior, and delinquency
as a way of assessing the potential importance of selection bias and to motivate the choice
of sample. In section 2.3 we present probit and QLS regression estimates of the Catholic
school effect which serve as a benchmark for our subsequent analysis. In section 2.4 we
present an analysis of the sensitivity of the Catholic high school effect to assumptions about

the degree of selection on unobservables.

2.1 Data

Our data set is NELS:88, a National Center for Education Statistics (NCES) survey which
began in the Spring of 1988. The base year sample is a two stage stratified probability
sample in which a set of schools containing eighth grades were chosen on the basis of school
size and whether they were classified as private or public. In the second stage, as many
as 26 eighth grade students from within a particular school were chosen based on race
and gender. A total of 1032 schools contributed student data in the base year survey,
resulting in 24,599 eighth graders participating. Subsamples of these individuals were
reinterviewed in 1990, 1992, and 1994. The NCES only attempted to contact 20,062 base-
year respondents in the first and second follow-ups, and only 14,041 in the 1994 survey.

Additional observations are lost due to attrition.







The NELS:88 contains information on a wide variety of outcomes, including test scores
and other measures of achievement, high school dropout and graduation status, and post-
secondary education (in the 1994 survey only). Parent, student, and teacher surveys in the
base year provide a rich set of information on family and individual background, as well
as pre-high school achievement, behavior, and expectations of success in high school and
beyond. Each student was also administered a series of cognitive tests in the 1988, 1990,
and 1992 surveys to ascertain aptitude and achievemént in math, science, reading, and
history, and the evolution of achievement throughout high school. We use standardized
item response theory (IRT) test scores that account for the fact that the difficulty of the
10th and 12th grade tests taken by a student depends on the 8th grade scores. We use the
Bth grade test scores as control variables and the 10th and 12th grade reading and math
tests as outcome measures.

We also use high school graduation and college attendance as outcome measures. The
high school graduation variable is equal to one if the respondent graduated high school by
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the date of the 1994 survey, and zero otherwise.” The “College attendance” indicator is

one if the respondent was enrolled in a four-year university at the date of the 1994 survey
and zero otherwise.”

The indicator variable for Catholic high school attendance, CH, is one if the current or
last school in which the respondent was enrolled was Catholic as of 1990 (two years after
the eighth grade year) and zero otherwise.®

We estimate models using a full sample, a Catholic eighth grade sample, and various
other subsamples. We always exclude approximately 400 respondents who attended non-

Catholic private high schools or private, non-Catholic eighth grades. Observations with

®We obtain similar results using a “drop out” dummy variable which equals one if a student dropped
out of high school by 1992, or if the student dropped out of high school by 1990 and was not reinterviewed
in 1992 or 1994, zero otherwise. This variable catches dropouts who left the survey by 1990 and were either
dropped from the sample or were nonrespondents.

"Our major findings are robust to whether or not college attendance is limited to 4-year universities,
full-time versus part-time, or enrolled in college “at some time since high school” or at the survey date.

BA student who started in a Catholic high school and transferred to a public school prior to the tenth
grade survey would be coded as attending a public high school (C'H = (). If such transfers are frequently
motivated by discipline problems, poor performance, or alienation from school, then misclassification of
the transfers as public high school students could lead to upward bias in estimates of the effect of CH on
educational attainment. We investigated this issue using an 8th grade question about whether the student
expected to attend Catholic high school and information about whether the student had changed high
schools prior to the 10th grade survey. Among Catholic school 8th graders for whom we have the relevant
data, 832 of 889 kids (94%) who reported that they expected to attend Catholic high school actually
attended Catholic high school. Among the remaining 57, only 12 students had transferred at least once
and of these only 3 failed to graduate high school. Furthermore, it is quite possible that 1 or 2 of these
students never started Catholic high school, perhaps because of a family move. We conclude that any bias
from misclassification of students is small.







missing values of key eighth grade or geographic control variables (such as distance from the
nearest Catholic high school) were dropped. Sample sizes vary across dependent variables
because of data availability and are presented in the tables. The sampling preobabilities for
the NELS:88 followups depend on choice of private high school and the dropout decision,
so sample weights are used to avoid bias from a choice based sample. Unless noted, the
results reported in the paper are weighted.® Details regarding construction of variables

and the composition of the sample are provided in Appendix B.

2.2 Characteristics of Catholic High School and Public High School
Students by Eighth Grade Sector

In Table 1 we report the weighted means by high school sector of a set of family background
characteristics, student characteristics, eighth grade outcomes, and high school cutcomes.
We report results separately for students who attended Catholic eighth grades (the “C8”
sample) and for the full sample. The outcomes category displays by high school sector the
college attendance rate, high school graduation rate, and 10th and 12th grade math and
reading test scores for students from the NELS:88 sample.! Looking at the full sample,
the graduation and college attendance rates differ enormously between the two sectors.
Catholic high school students are one fifth as likely to drop out of high school as their
public school counterparts (0.03 versus 0.15), and are twice as likely to be enrclled in a
four year college in 1994 (0.59 versus 0.29). Differences in twelfth grade test scores are
more modest but still substantial-—about 0.4 of a standard deviation higher for Catholic
high school students. In the C8 sample the gap in the dropout rate is also very large (0.02
versus 0.10), as is the gap in the college attendance rate (0.62 versus 0.39). The gap in the
12th grade math score is about 0.25 standard deviations. Table 2 shows that the gaps in

“In the initial sample, private schools and schools with a minority enrollment of over 19 percent were
oversampled. The probability of sampling in the first and second follow-ups is smaller for high schoals
attended by fewer than 10 students from the NELS:88 base year sample and the weight declines with
the number of sample members in the high school. This is likely to lead to undersampling of students
who attend private high schools. In contrast, the third follow-up sample design oversamples those who
attended private high schools. Furthermore, the sampling probability depends on whether the student was
believed to have dropped out of high school. Because the sample probabilities depend on an endogenous
right-hand side variable and the school attainment variables, it is necessary to weight the analysis to obtain
consistent parameter estimates. We use the first follow-up panel weights for the analysis of 10th grade test
scores, the second follow-up panel weights for the analysis of 12th grade scores, and the third follow-up
cross section weights for the analysis of high school graduation and college attendance. The results are
somewhat sensitive to the use of sample weights, although our main findings are robust to weighting. Given
the sampling scheme the weighted estimates are clearly preferred.

0In Table 1 and Table 2 the outcome variables are weighted with the same weights used in the regression
analysis, as described in the previous section. All other variables are weighted using second follow-up panel
weights.







school attainment and test scores are even more dramatic for minority students in urban
schools.

Tables 1 and 2 also show that the means of favorable family background measures, 8th
grade test scores and grades, and positive behavior measures in eighth grade are substan-
tially higher for the students who attend Catholic high schools. The large discrepancies for
many of the variables raise the possibility that part or even all of the gap in outcomes may
be a reflection of who attends Catholic high school. However, the gap is much lower for
most variables in the case of Catholic eighth graders. For example, the gap in log family
income is 0.49 for the full sample but only 0.19 for the C8 sample. The high school sector
gap in measures of the parents’ educational expectations for the child is more favorable to
the students who attend Catholic high school in the full sample than in the eighth grade
sample, and the difference in the student’s expected years of schooling is 0.72 in the full
sarmple but only 0.40 in the C8 sample.!’ The high school sector differential in father's
education is about one year in both samples, but for mother’s education it is 0.75 for the
full sample and 0.54 for the C8 sample. The discrepancy in the fraction of students who
repeated a grade in grades 4-8 is -0.05 in the full sample and only -0.01 in the C8 sample,
and the gap in the fraction of students who are frequently disruptive is -0.05 in the full
sample and 0 in the C8 sample. Both of these variables are powerful predictors of high
school graduation. Finally, the gap in the 8th grade reading and math scores are 3.86 and
3.44, respectively, in the full sample, but only 1.47 and 1.09, respectively, in the C8 sample.

These results hold for most of the other variables in Table 1. Specifically, differences by
high school sector among the family background characteristics and eighth grade outcomes
are much smaller for Catholic eighth graders than for public eighth graders. This pattern
is consistent with the presumption that since the parents of 8th graders from Catholic
schools have already chosen to avoid public school at the primary level, other, arguably
more idiosyncratic factors, are likely to drive selection into Catholic high schools from
Catholic eighth grade. Intuitively, it seems likely that these factors could lead to less
selection bias than in the full sample, although the overwhelming evidence based on very
broad set of 8th grade observables is that selection bias is positive in both samples. These
considerations, concern about selection bi‘as arising from the fact that only a 0.3% of public

school eighth graders in our effective sample go to Catholic high school, and the desire to

11 Appendix B and the footnotes to Table 3 provide the complete list of variables used in our multivariate
models. Many are excluded from Tables 1 and 2 to keep them manageable. The expectations variables in
Tables 1 and 2 are excluded from our outcome models because if Catholic school has an effect on outcornes,
this may be influence expectations.

10







avoid confounding the Catholic high school effect with the effect of Catholic elementary
school lead us to focus on the sample of Catholic eighth graders in much of our analysis,

in contrast to most previous studies.!?

2.3 Estimates of the Effect of Catholic High Schools

In this section of the paper we present regression and univariate probit estimates of the
effects of Catholic high school attendance on a set of outcomes. For reasens discussed
above, we focus on the subsample who attended Catholic eighth grade, although we also
present results for the full sample.

In the top panel of Table 3 we report the coefficient on C'H, the Catholic high school
attendance dummy, in univariate probit, OLS, and school fixed effects models for high
school graduation.!® The difference in means is 0.08 when no controls are included. In
the probit model, the coeflicient is 0.88 (0.25), with an associated average marginal effect
on the graduation rate of 0.084, which is a huge effect given that the graduation rate is
(.947 among students from Catholic eighth grades. In this sample the family background
and geographic controls explain none of the raw difference of 0.08 in the graduation rate.
The point estimate of the marginal effect of C'H declines slightly to 0.081 when we add
eighth grade test scores in column 5, and increases to 0.088 when we add a large set of
eighth grade measures of attendance, attitudes toward school, academic track in eighth
grade, achievement, and behavioral problemns. The stability of the Catholic school effect
is remarkable, especially given the fact that the control variables in column 6 are quite
powerful, explaining 0.32 percent of the variance in the latent variable for high school
graduation when C'H is excluded from the model.

The second row in Table 3 is based on linear probability models of high school grad-
unation. The coeflicient on CH varies from 0.080 to 0.081 and closely agrees with the
probit estimates. Row 3 of columns 4-6 adds eighth grade fixed effects to the specifications
reported in row 2.1* The fixed effects estimate is .113 for the basic specification and 0.102

12This is an unweighted percentage. The weighted percentage is 0.8%. We have made similar calculations
based on the sample of 16,070 individuals for whom information on sector of eighth-grade and sector of
10th grade is available, The corresponding estimate of the percentage of the eighth graders from public
schools who attend Catholic high schools is 0.3%. If one restricts the analysis to individuals whose parents
are Catholic, only 0.7% of students who attended public eighth-grade attend a Catholic high school. The
unweighted and weighted estimates of the percentage of Catholic high school 10th graders who attended
Catholic eighth-grade are 95.2 percent and 84.7 percent.

3 Huber-White standard errors are reported throughout the paper. The standard errors account for the
use of weights and, with the exception of Table 7 and &, they account for correlation among students from
the same eighth grade.

MThat is, it includes separate intercepts for each eighth grade.
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when the full set of controls is included.!'®

In Table 3 we also report estimates of the effect of Catholic high school attendance on
the probability that a student is enrolled in a 4 year college at the time of the 3rd follow-
up survey in 1994, 2 years after most students graduate from high school. For the basic
specification (column 4) the probit estimate implies that CH raises the college enrollment
probability by 0.154, which compares to a raw difference of 0.23. This estimate falls to
0.149 when we add detailed controls to the model. Linear probability models yield similar
estimates.

In Table 4 we report estimates of the effect of CH on 10th and 12th grade reading and
math scores. In contrast to the above findings, we obtain modest negative estimates of the
effects of Catholic high schools on 10th grade reading scores. In the simplest specification
for the Catholic eighth grade subsample, we obtain a coeflicient of -1.07 (0.97), which rises
to -0.87 (0.77) when the full set of controls and eighth grade fixed effects are added. We
obtain a small but statistically insignificant coeflicient of -0.32 {1.01) in the case of math,
but this estimate declines to essentially 0 when we add detailed controls.

In the bottom panel of Table 4 we report estimates of the effects on 12th grade reading
and math scores. For the Catholic eighth grade sample with the full set of controls we
obtain a small positive effect of 1.14 (0.46) on the math score and 0.33 (0.62) on the reading
score. As Grogger and Neal (1999) emphasize, a positive effect of Catholic schools on the
high school graduation rate might lead to a downward bias in the Catholic high school
coefficient in the 12th grade test equations given that dropouts have lower test scores and
that dropouts have a lower probability of taking the 12th grade test. However, the issue

appears to be of only minor importance.!®

Y We report fixed effects results not because the use of fixed elfects is necessarily a more appropriate
estimator but rather to show that factors that vary across Catholic elementary schools (such as public
high school quality) do not drive the large positive estimates of the Catholic high school effect. Bias from
individual heterogeneity could well be more severe in the within-school than the cross-school analysis.

16We deal with this issue by filling in missing data for both high school graduates and dropouts using
predicted values from a regression of the 12th grade score on the full set of controls in the outcome
regression, plus the Catholic high school dummy and the 10th grade test scores and a dummy variable for
whether the individual graduated from high school (high school graduation has a small and statistically
insignificant coefficient). Using the new dependent variable and sample the estimated effect of Catholic
high schools for 12th grade math and reading are 1.20 and 0.58 respectively. We obtain 1.20 and 0.56,
respectively, when we use an alternative imputation in which we adjust for differences in unobservables
using the assumption that the difference between dropouts with and without 12th grade test scores In
the mean/variance of the regression residual from the test score prediction regression is the same as the
difference in the mean/variance of the predicted values of the tests. The R? of the prediction equations
are 0.70 for reading and 0.86 for math. The estimates of the reliability of the math test reported in the
NELS:88 documentation, while probably downward biased, are in the 0.87 to 0.90 range. Consequently,
a substantial part of the test score residual probably reflects random variation in test performance and is
unrelated to achievement levels, For this reason selection on unobservables in the availability of test data
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To facilitate a comparison to other studies, we also present estimates for the combined
sample of students from Catholic and public eighth grades. For this sample the effect
of Catholic high school attendance is reduced from 0.081 to 0.052 after we add the full
set of controls (Table 3, columns 1-3). It is interesting to note, however, that the OLS
estimate is only 0.023 once the full set of controls are added and differs substantially from
the probit estimate of the average marginal effect. The college attendance results largely
mirror the high school graduation results. The probit estimate of the effect of Catholic
school attendance is 0.074 once the full set of controls are included, which is substantial
relative to the mean college attendance probability of 0.31. Note that the controls make a
much larger difference in the full sample than in the Catholic eighth grade sample, which
is consistent with the evidence that selection on the observables is more severe in the full
sample.

Once detailed controls for eighth-grade outcomes are included, the estimates of the effect
of Catholic high schools on 10th grade math and reading scores are essentially 0, and the
estimates of the effects on 12th grade reading and math are only 1.14 and 0.92, respectively.
Again, there is little evidence that Catholic high schools increase achievement by 10th
grade, in accordance with the findings based on the Catholic eighth grade subsample. In
contrast, the 12th grade math and reading score results indicate a small but statistically
significant positive effect. Given the high degree of selection into Catholic high school in
the full sample on the basis of observable traits, these estimates may reflect the effects of
unobserved differences between public and Catholic high school students rather than actual

effects on test scores, and should be interpreted with caution.

2.4 A Sensitivity Analysis.

Based on observables, there is not much evidence of selection. However, it is possible that
a small amount of selection on unobservables could explain the whole Catholic school effect.
We now explore this possibility by examining the sensitivity of the estimates of the Catholic
high school effect to the correlation between the unobserved factors that determine CH
and the various outcomes ¥. We display estimates of the Catholic school effect for a range
of values of the correlation between the unobserved determinants of school choice in the
outcome.

Consider the bivariate probit model

is probably less strong than selection on the predicted portion of the test scores.
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(2.1) CH; = 1(X/B+u>0)
(2.2) Y; = 1(X{v+aCH;+¢e>0)

([ 1)

where 1(-) is the indicator function taking the value one if its argument is true and zero oth-

2

(2.3) (u,e)

erwise. While this model is formally identified without an exclusion restriction, semipara-
metric identification requires such an excluded variable. Furthermore, empirical researchers
are highly skeptical of results from this model in the absence of an exclusion restriction.
Our thought exercise in this section is to treat this model as if it were underidentified by
one parameter. In particular, we act as if p is not identified.!”

In Table 7 we display estimates of Catholic schooling effects that correspond to various
assumptions about p, the correlation between the error components in the equation for CH
and Y.'® We report results for high school graduation in the top panel and college atten-
dance in the bottom panel, and include both probit coefficients and average derivatives of
the outcome probabilities (in brackets). We include family background, eighth grade tests,
and other eighth grade measures. However, because of convergence problems in estimating
the bivariate probit models we eliminated the dummy variables for household composition
(but not marital status of parents), urbanicity, region, and indicators for “student rarely
completes homework”, “student performs below ability”, “student inattentive in class”, “a
limited English proficiency index”, and “parents contacted about behavior” from the set of
controls. We vary p from 0 (the probit case that we have already considered above) to 0.5
by estimating probit models constraining p to the specified value. For the full sample, the
raw difference in the high school graduation probability is 0.12. When p = 0 the estimated
effect is 0.058, and the figure declines to 0.037 when p = 0.1 and to 0.011 if p = 0.2. Given
the strong relationship between the observables that determine high school graduation and
Catholic school attendance in the full sample, the evidence for a strong Catholic school
effect is considerably weaker than the estimates that take Catholic school attendance as
exogenous suggest.

For our preferred sample of Catholic 8th graders, the results are less sensitive to p. The

effect on high school graduation is 0.078 when p = 0,which is slightly below the estimate we

1"We use the hivariate probit because it is convenient. An alternative would be to treat £ and u non-
parametrically subject to the normalization var(s) = var(u) = 1 and the restriction corr(e,u) = p.
18See Rosenbaum (1995) for examples of this type of sensitivity analysis.
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obtain with the full set of controls in Table 3. It declines to 0.038 when p = 0.3 and is still
positive when p = 0.5. Thus, for the Catholic 8th grade sample, the correlation between
the unobservable components of Catholic school attendance and high school graduation
would have to be greater than 0.5 to explain the estimated effect under the null of no
“true” Catholic high school effect.

In the bottom panel of Table 7 we present the results for college attendance. For the full
sample, the results are very similar to the high school graduation results. The evidence for
a positive effect of CH on college attendance is stronger in the Catholic 8th grade sample
than in the full sample, with the effect remaining positive until p is about 0.3. However, in
this sample the strongest evidence is for a positive effect.of C'H on high school graduation.

The problem with this type of analysis is that, without prior knowledge, there is no
manner to judge the magnitude of p. We will show in the section 3 that assuming that
“selection on the unobservables is similar to selection on the observables” can solve this

problem.

2.5 Lessons from the Preliminary Analysis

Our preferred results, which are based on the Catholic eighth grade sample, suggest a strong
positive effect of C'H on high school graduation and college attendance. The estimates of
the effect on 12th grade test scores are much smaller (Tables 5 and 6 present qualitatively
similar results for urban minorities, which we consider in detail in section 5). The key
question is how much of the estimated high school effect on educational attainment is real,
and how much is due to selection bias. We have taken advantage of the fact that the
NELS:88 data set contains an unusually rich set of family background variables and eighth
grade outcomes that are likely to be relevant for educational attainment and achievement
to provide some guidance regarding the extent of selection bias. The means of favorable
variables are typically higher for Catholic high school students, suggesting positive sclection
bias. However, positive selection is more modest in the sample of Catholic eighth graders,
and in this sample the estimates of the effect of C'H on high school graduation and college
attendance, are very large. Furthermore, the estimates are not very sensitive to the addition
of a powerful set control variables, especially in the high school graduation case. Finally,
in Table 7 we show that even with what seems like a large amount of correlation between
the observables and uncbservables, we cannot explain away all of the Catholic high school
effect. In this sample it seems as if the degree of selection must be quite high to explain the

full Catholic high school effect. We would conclude that part of the Cathelic school effect
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on educational attainment is real, but could not go much beyond such a statement. This
is where the typical analysis of biaé due to selection on unobservables based on patterns in
the observables would end.

In the remainder of the paper, we formalize the idea of using the degree of selection
on the observables as a guide to bias from selection on unobservables and provide ways of
formally incorporating such information into the sensitivity analysis. We then apply our
methods to study the effect of CH.

3 Selection Bias and the Link Between the Observed
and Unobserved Determinants of School Choice and
Education Outcomes

In this section we consider ways to use the relationship among the observed determinants
of Catholic school attendance and educational outcomes to provide a quantitative assess-
ment of the importance of the bias resulting from a relationship between the unobserved
determinants. In particular we show that modeling how the set of observed variables is
determined can yield conditions that are useful for identification.

To motivate this section we consider a model in which C'H represents a dummy variable
for participation in a “program” such as Catholic high school. Let C'H* denote the latent

variable such that

CH=1(CH* > 0).
Define another latent variable that depends on C'H itself,
(3.1) Y*=aCH+ X'y +e¢.

Our outcome variable will be some function of this latent variable. In some cases we may
be interested in a binary variable such as graduating from high school (GH.S) in which the
outcome may be GHS = 1(Y™* > 0). In others the continuous variable Y itself may be the
variable of interest (such as test scores in the analysis above).

The fundamental selection/endogeneity problem is that C'H* and thus C'H may be
correlated with . In an ideal world one could solve this problem with an instrumental
variable that is strongly correlated with C'ff and uncorrelated with . Unfortunately, we
do not believe a perfect instrument exists for Catholic high schools in existing data sets
(see Altonji, Elder, and Taber, 2000), so we must use alternative methods for inference.

In particular we consider the following condition which was discussed above
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Condition 1
(3.2 Proj(CH"| X'v,e) = ¢y + ¢ X'v + d.£.

This condition relates selection into Catholic school to the factors that determine the out-
come Y*. The identical coefficients on X'+ and & capture the idea that “selection on the
unobservables is similar to selection on the observables.” We are not advocating imposing
Condition 1 to produce an estimate that would be interpreted as the “best” single estimate
of «. Instead, we use Condition 1 to inform the type of sensitivity analysis we performed
in section 2.4.

It is useful to contrast this condition with the condition which is needed to justify OLS

or other standard single equation methods,
Condition 2
Proj(CH*|X'y,e) = ¢g + ¢ X'7.

There is not much of a case for preferring Condition 2 a priori to Condition 1 in our Cathelic
school problem. Random assignment of C'H, as in a social experiment, would imply that

. = 0 in both conditions so that they would both hold. However, if ¢, is not zero, it
is hard to justify Condition 2, particularly if a large number of covariates have the same
sign in the regression and selection equations. We see no reason to expect the omitted
determinants of Y* to be uncorrelated with CH* if the factors in our data that influence
Y™* are systematically related to CH™.

In section 3.1 we present a model of observable and unobserved variables that justifies
Condition 1. We do this for two reasons. First, the model makes clear the type of assump-
tions that are likely to yield Condition 1 and aids interpretation of the parameters. Second,
it justifies the particular multivariate regression representation that we use in Condition
1. While the assumptions are admittedly strong, it would take even assumptions to justify
Condition 2. Again, our claim is not that Condition 2 is wrong and should never be used
while Condition 1 is right and should always be the basis for identification. We maintain
instead that estimating treatment effects under both conditions is helpful in assessing the
evidence. In our application we argue that Condition 1 is likely to yield an upper bound
on the amount of selection bias while Condition 2 is likely to yield a lower bound. Thus
the true effect of Catholic schools is likely to lie between our two estimates. We strongly
suspect this to be the case in other contexts although they should be assessed on a case by

case basis.
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In section 3.2 we point out that a structural model of school choice in which the odds
of attending a Catholic school depend directly on the outcome can also lead to Condition
1. In our own application we interpret condition 1 as a bound on the amount of selection,
but in section 3.3 we consider the implications of Condition 1 for point identification of the
treatment effect. We show that Condition 1 can take the place of an exclusion restriction
and deliver identification of the treatment effect.

In section 3.4 we extend the analysis in a few directions. First, we consider the case
of continuous dependent variables. Second, we discuss cases in which a possibly invalid
instrumental variable is available. An alternative condition for identification of the model
above is that one has an instrument that is related to C'H, but uncorrelated with the error
term conditional on X. This is the usual assumption in studies that use an IV strategy

and is equivalent to assuming that
Pl'Oj (Z|X”}’1 E) = ¢D + ¢'er’}/7

where Z is the excluded instrument. We show that the type of data set generation process

that leads to Condition 1 also implies that
Proj(Z| X'y, e) = ¢ + ¢, X'y + .2.

Many of the points made above about Condition 1 and 2 apply to these conditions. It is
very hard to argue that an instrument should be orthogonal to unobservable determinants
of Y* when it is correlated with a broad set of observable determinants of Y*. The third
part of the section discusses heterogeneous treatment effects.

In section 3.5 we discuss the relevance of our analysis for studies of the Catholic school
effect. We argue that the truth is somewhere between Conditions 1 and 2. Using this

argument we show how one can identify a set of permissible values of a.

3.1 A Model of Observed and Unobserved Variables

The goal of this subsection is to present a model that formalizes the idea that “selection
on the unobservables is similar to selection on the observables.” We derive the model and
then show that it implies Condition 1. Let W be the full set of variables that determine

Y™ according to
(3.3) Y*=aCH+W'T,

where ' is a conformable coefficient vector. We assume that ' is random, but is drawn

once and is identical for everyone in the population. However, W and C'H are random
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variables that vary across members of the population, so that each individual obtains a
separate value of W and CH but common values of I' and «.

Assume that some of the elements of W are observable to the econometrician and others
are not (or that the econometrician does not know that some of the observed variables be-
long in the model for Y*). Denote the observable portion of W as X and the corresponding

elements of I' as v so that
(3.4) Y*=aCH + X'y +¢,

where ¢ is unobserved. That is, for each potential covariate, W, let S; be a dummy variable

indicating whether W, is observable. Then

K K
X'y=Y SWiT;, e=)Y (1-8;)WT;.

j=1 j=1
Like I';, S; does not vary across the population.

We do not know of a formal discussion of how variables are chosen for inclusion in data
sets. However, we make a few general comments that apply to many social science data
sets, including NELS:88. First, most large scale data sets such as NLSY, NELS:&8, the
PSID, and the German Socioeconomic Panel are collected to address many questions. Data
set content is a compromise among the interests of multiple research, policy making, and
funding constituencies. Burden on the respondents, budget, and access to administrative
data sources serve as constraints. Obviously, content is also shaped by what is known (i.e.
the factors that really matter for particular outcomes) and by variation in the feasibility
of collecting useful information on particular topics. Explanatory variables that influence
a large set of important outcomes (such as family income, race, education, gender, or
geographical information) or those that are themselves of interest as outcomes, are more
likely to be collected. Major data sets with large samples and extensive questionnaires are
not designed to address one relatively specific question, such as the effectiveness of Catholic
schools, but rather to serve multiple purposes. As a result of the limits on the number of
the factors that we know matter and that we know how to collect and can afford to collect,
many elements of W are left out. This is reflected in the relatively low explantory power of
social science models of individual behavior. Furthermore, in many applications, including
ours, the endogenous variable is correlated with many of the elements of X.

These considerations suggest that Condition 2, which underlies single equation methods
in econometrics, will rarely hold in practice. The optimal survey design for estimation of

o would be to assign the highest priority to variables that are important determinants of
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both CH* and Y™ when choosing S (it would also be to include variables that determine
C' H* but not Y™ that can serve as instruments). However, many factors that influence Y™*
and are correlated with CH* and/or X are left out.

An alternative approximation is that the constraints on data collection are sufficiently
severe that it is better to think of the elements of X are a more or less a random subset of
the elements of W, rather than a set that has been systernatically chosen to eliminate bias.
We show below that random selection from W leads to Condition 1. Indeed, a natural
way to formalize the idea that “selection on the observables is the same as selection on
the unobservables” is to treat observables and unobservables symmetrically by assuming
that the observables are a “randomn subset” of a large number of underlying variables. In
our notation this amounts to assuming that S; is an ¢id binary random variable which
is equal to one with probability Ps. The outcome of S; determines whether covariate W;
is observed. Of course, there are other ways to capture the idea of equality of selection
on observables and unobservables. For example, Ps may vary across types of variables
but have no systematic relationship with the values of T'; relative to the influence of the
variables on CH* (8; below). An important question for future research is the degree to
which our results change under different assumptions about the data set generation. To
the extent that the data set was designed for the study of the effect of CH* on Y™, one
might expect that in (3.2) the coeflicient on X’y would exceed the coefficient on . For
this and other reasons discussed in section 3.5, we use (3.2) as the basis for a bound rather
than for point identification.

To see the intuition for the link between random choice of variables and condition 1,

define ¢, and w such that

(3.5) Proj (CH* |WT) = ¢+ ¢ W'T
(3.6) w = CH"—¢y— ¢ W'T,

Notice that

(3.7 E(X'yw) = E(Zsjwjrju)

=1

K
= PE (w > W,I‘j)

j=1

= PsE(W'T)=0.
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Similar logic yields E{ew) = 0. Consequently, since

CH" = ¢o+ ¢ WT+w
= ¢0+¢CX”Y+¢’CE+{'U

and since X'y and ¢ are orthogonal to w, Condition 1 holds on average over draws of the
vector {S]....Sk}. This result in itself is not useful in practice because we only observe one
draw of the sequence of S; and I';. To justify use of Condition 1 we now show that as the
number of covariates W gets large, Condition 1 will become approximately true for a given
draw of S; and I';, and equality of selection on observables and unobservables holds.

We will define Yy, CHyg, and CHj, as outcomes for a sequence of models where there
are K factors that determine Y;.!¥ A natural part of the thought experiment in which K
varies across models is the idea that the importance of each individual factors declines with
K. That is,

K
(3.8) Y = aCHg + Y W[TY,

j=1

where either W/ or I'f* depend on K. To insure that Yy is well behaved as K gets large,
we specify that the net effect of the change in scale of W/ and/or T’} on the scale of W/ TF

is inversely proportional to K, which means that the above equation may be rewritten as

K
1
(3.9) Vi = aCHx + —= > Wiy

We restrict W,I'; in this sequence to be stationary so that the first variable included in the

=1

data set will be treated symmetrically with the last variable included so that no particular
covariate will be any more important ex-ante than others. This embpdies the idea that a
large number of factors are important in determining outcomes in social science data and
that none dominate. We also need to normalize the model by assuming that E(W,;I';} = 0.

The variables C Hy and CHj; also must be well behaved as the number of covariates
gets large. Since these are typically not linear functions of variables this will be done in a
very general manner. After presenting the theorem we give an example of a specification for

C Hy that satisfies the condition. We put no restrictions on the relationship between C'Hg

19The “local to unity” literature in time series econometrics and the “weak instruments” literatures
(Staiger and Stock, 1997) are other examples in econometrics in which the asymptotic approximation is
taken over a sequence of models, which in the case of those literatures, depend on sample size.

21







and CHj;, so our notation is general enough to include the specification CHg = CH, as
well as CHy = 1 (CH}, > 0).

We now show that under certain assumptions Condition 1 will hold as the number
of elements of W gets large. Note that our asymptotic analysis is nonstandard. First,
we are allowing the number of underlying factors, K, to get large. Second, the random
variable W is different in a sense than random variables I'; and 5;. For each j we draw one
observation on I'; and S; which are the same for every person in the population; however,
each individual will draw their own W;. Consider the projection of C' H on the observable
portion of Yy, V,LE Ejil S;W;T;, and the unobservable portion, \/—1? Zjil (1-—S;)W,T;.
This projection is meant to be the population projection (ie., for a very large number of
persons) but with K fixed. That is, this projection conditions on a particular realization
of I'; and Sj, j = 1...K. The theorem states that as K gets large the projection coefficients
on ﬁ Ejil s;W;T'; and # Z;il (1 — s;) W;I'; will approach each other with probability

one.

Theorem 1 Define
| X
Ye =aCHp +—= ) W[y,
K K '\/I?:,:Zl i

where W; and 3, are independent nondegenerate, stationary, ergodic processes that satisfy
the conditions for White's (1984) Central Limit Theorem 5.15, BE(W;T;) = E(CHy) =
0,and S; is independent and identically distributed with 0 < Pr{S; =1) < 1.

Let

V= {phm\/EE (CHW,; | Ty, ...I‘K)} :
K—o0

For each j, E(V;} < oo,the sequence {I';V;} satisfies the mizing conditions specified in

MecLeish’s (1975) law of large numbers, and
plim sup | (V; = VKB (CHxW; | Ty, ...PK))‘ —0.

HK—oo f

Define ¢ 5 and ¢op such that conditional on S1,..., Sk, I'1, .., Tk,
1 o« 1 &
Proj (CH?{ | TR ;Sﬂﬂ'rjs TR ; (1-5;) erj)

K K
1 1
== 3 SWiTs + bax—= Y (1= S;) W,T;.
¢1K\/f_{j:1 AR ¢2K\/E j=1( J) 7

Then as K gets large, (¢, — dox} converges in probability to zero.
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(Proof in Appendix A.1)
One nonstandard agsumption in the theorem is that
V; = {plimx/f_(E' (CHW; | Ty, ...FK)}
K—o0

is well behaved. To motivate that assumption suppose that C'Hj, is treated symmetrically
with (Yr — aC Hg) so that

1 K
(3.10) CHy=—= > Wb,
VK =1 !

where E(W;3;) = 0 and the sequence {W,I';} is stationary. Under standard stationarity

assumptions about W; and {Fj, 6j} this will satisfy the conditions since

K—o0 K—oo

K
phm\/I?E(CH}"{Wh ‘ 1_‘1, PK) = phmE (Z W?sz,@jg | Pl, FK)

ja=1
- B3t It )
Ja=1
Conditional on a sequence of ['; this will be finite. Since T'; is random, V; will be a
random variable. It is then straightforward to provide conditions about {I‘j, ﬁj} under

which {T';V;} will satisfy the conditions for the law of large numbers.

3.2 Structural Models of School Choice and Condition 1

A conventional path to identification of causal effects in the presence of endogeneous vari-
ables is through the use of an economic model as a source of informed restrictions. Here we
digress briefly to show that this kind of approach can also deliver restrictions like Condition
1. Suppose that Catholic school attendance depends on X and ¢ only through ¥*. In
addition, C H* may depend on some additional unobserved variables that are unrelated to

X and z. In this case, the equation for CH* would take the form:

(3.11) CH* = a1 (Y —aCH) +g,

where ¢ is uncorrelated with X and . Combining these equations one obtains
(3.12) CH*=¢.X'v+ ¢ +5,

where ¢, = a1, and Condition 1 is satisfied. However, 3.11 is much stronger than Condition

1 because it implies CH* is linear with coefficient 3; = ¢.v; for all j.
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The above model might be a plausible approximation of the decision making process
of the schools, parents, and children in situations in which schools are oversubscribed and
select students to maximize outcornes such as achievement or college attendance. Many
Catholic high schools give admissions tests and base decisions in part on the results, so the
criterion of the high schools is partly related to 10th grade or 12th grade test performance.
But particular elements of X may influence CH™* quite differently from the way in which

20 Qur point is simply to establish that

they influence the secondary school outcomes.
structural models of school choice and outcomes may also lead to Condition 1. Qur model

of the data generation process is sufficient for Condition 1, it is not necessary.

3.3 Identification Based on Condition 1

In this section we show how one can use Condition 1 to obtain point identification of the
model. First, we will strengthen Condition 1 to account for the fact that the index X'~y
is not identified unless E(z|X) = 0 even if e is known. Then we show how the modified
condition can help solve the identification problem.

A problem that arises is that Condition 1 is not operational because -y is not identified
unless F(e|X) = 0. Mean independence of £ and X is maintained in virtually all studies of
selection problems, because without it, ¢ is not identified even if one has a valid exclusion
restriction.? Our discussion of how the observables are arrived out makes clear that it is
hard to justify in most settings, including ours. If the observables are correlated with one
another, as in most applications, then observed and unobserved variables are likely to be
correlated.

Assume that the conditional expectation is linear and define 4 and Z to be the slope

vector and error term of the “reduced form”

E(Y*—aCH | X)+e = X4
Y*—aCH = XA+

In appendix A.2 we consider the closely related condition

20For example, the relative effects of specific variables such as religion, race, parental education, and the
ability and motivation of the child on secior choice and outcomes may be different. Allowing the effects of
a subset of the observed variables to enter freely into (3.11) may not be sufficient and one would require a
priori information about which variables to enter. The implicit restrictions on the unobservables embodied
in (3.11) also pose a problem, since whether or not a student graduates from high school or attends college
will be influenced by many factors that are determined after the child decides whether to attend a Catholic
high school.

21The exception is when the instrument is uncorrelated with X as well as ¢, as when the instrument is
randomly assigned in an experimental setting.
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Condition 1’
Proj(CH™(X'H,E) = ¢o + ¢ X' + ¢

We consider the case in which C'H* is linear as defined in (3.10) and consider our data

generation process defined above. We show that in this case

T8 o EW;Wid) E (B, ) 2ot B (w’“éw‘%‘:e) E (87

3.13 =
(3.13) Yo B (WiWii) E (1) T2 __E (W’GW:B) E (7%j-)

H

is a sufficient condition for Condition 1’ where W; is the component of W; that is orthogonal
to X. This condition will hold under that standard assumption E{s | X) = 0, in which
case v = 4 and £ = & implying that Condition 1 and Condition 1’ are identical. However,
E(e | X) = 0 is not necessary for (3.13). For example, (3.13) will also hold if E (8;v,_,) is
proportional to £ (fyﬂj_f) regardless of the correlations among the W;. Furthermore, in an
informal Monte Carlo analysis not reported, we did not obtain large biases even when the
unobservables were correlated with the observables in the original data generating process,
which provides some additional reassurance.

We are now ready to discuss identification. Model (3.1) developed above is linear; how-
ever, in studying identification we want to isolate the contribution of Condition 1 or 1’ from
the role of linearity or large sample properties (e.g., normality of £ is implied by our model
as the number of factors gets large).?? We only want to rely on an assumption about the
relationship between unobservables and observables rather than all of the implications of

1.23 We also wish to avoid some of the complications that arise in studying non-

the mode
parametric identification of discrete choice models. Consequently, we study identification

of o using the familiar “treatment effect” model without exclusion restrictions:

22For example, as long as the probability of going to a Catholic school is nonlinear, linearity of g in (3.11)
below is sufficient for identification of » and one does not need an exclusion restriction. The propensity
score could be used as an instrument.

23The use of a subset of restrictions implied by a mode! for identification is common in applied work.
For example, consider a standard linear model with one endogenous variable such as

Y =aCH+X'y+e,

where we are concerned about endogeneity of CH but not X. One could always use nonlinear functions
of covariates in X as instruments, but this is not deemed appropriate. We are taking a similar approach
here in that we do not want identification to come from the linearity assumption, but rather from the
relationship between observables and unobservables.
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(3.14) CH = L(CH* > 0)
(3.15) Y =aCH +g(X) +¢
(3.16) E(|X)=0

where E(e | X) = 0. The econometrician observes (X,CH,Y), but not £ or the latent
variable C H*.*

It is well known that (3.14)-(3.15) is not nonparametrically identified without an exclu-
sion restriction. Even if E(z | X) = 0, we are essentially one parameter (or one equation)
short of identification. This result suggests that one more restriction on this set of equations
may deliver identification of «. We now show that prior information about how the observ-
ables are chosen can sometimes suffice. It should be understood that if E(s | X) # 0 we
require that a condition analogous to Condition 1’ holds. However, to avoid further notation
we leave implicit the fact that in this case we could redefine g(X) to be E(Y* — aCH|X)
and € to be (Y* - aCH) — E(Y* — aCH|X) and work with the analog to Condition 1’
rather than the analog to Condition 1.

In the notation of (3.14)-(3.15) Condition 1 (or Condition 1’ after redefinition of g(X)

and ¢) is
Condition 1”
Prof(CH"|g(X},€) = ¢o + ¢9(X) + dee.
Since we are assuming that E(e | X) = 0 this is equivalent to the condition.
cov(CH*, g{ X)) CO’U(OH*,E).

(3.17) var(g(X))  wvar(e)

[t turns out that Condition 1” sometimes delivers point identification and always re-

stricts the model so that the solutions a* for a are the roots of a cubic.

Theorem 2 In the selection model (3.14)-(3.15)) let a be the true value of the treatment
effect. Under Condition 2, in the data we can identify a set A of which a is a member.

Define p(X} as the propensity score p(X) = Pr(CH = 1| X). The elements o* of A are

24 At this point we abstract from most of the recent literature on program evaluation by assuming that
o does not vary across individuals. We discuss how one might extend our model into this framework in
section 3.4.3.
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roots of the cubic

0= (a— oy’ [UGT‘(OH = p(X)) cov(CH* p(X))  war(p(X)) cov (CH*,CH —p(X))}
var(e) var(g(X)) var(g( X)) var(e)
I var(CH —p(X)} = _cov(e,CH — p(X)) cov(CH*, p(X})
+i ) {gﬁ var(e) _ +2 var(e) var(g(X))
2000 o000, 400 con OB, OF =40
var(g(X)) var(g(X)) var(e)
o o cov(CH*, p(X)) cov(e, CH — p(X))
o) | 4 2 e
(O G 5)_y o200
var(e) var(g(X))

(Proof in Appendix A.3)

Since there is no constant term, a® = « is one root of the cubic. Except for pathological
cases, there will be either no other real roots, or two others.?®

To understand why Condition 1” does not always yield point identification, note that
in (3.16) the denominators, var(g{X)) and var(¢), are not identified without knowledge of
«. In particular, defining (a*, g*,2*) to be an alternative possibility for {«, g, ), one may

write var(g*(X)) as

(318)  var(g"(X)) = var (9(X) + (@ — a*) p(X))
— var(g(X)) +2 (& — a*) con(g(X), p(X)) + (@ — &) var(p(X)).

Equation (3.16) may be rewritten as
cov(b(X), g"(X))var(e") = cov{u, " Jvar(g* (X)).

The right hand side is the product of var(g*(X)), which is quadratic in (@ — «*), and
cov(u, £*), which is linear in (& — «*). This yields a cubic.

It is not clear how much we should worry about this potential problem even when one
is using the condition for point identification. Consider equation (3.17). We suspect that
in typical applications, the contribution of (a* — «)p(X) to the variance of ¢*(X) will be
small relative to var{g(X)) when o* remains within a reasonable range. In this case the
other two roots are not worrisome since they involve changes in var(g*(X)) outside the
range of plausibility. In our empirical work we have found that var{g*(X)) is insensitive to
reasonable values of a*, but the question of whether this is true in most applications can

only be answered through empirical implementation.

251f al] three coefficients of the cubic are 0, there are infinitely many solutions. If the cubic is tangent to
0, there can be two roots. While hoth of these cases are possible, they are very special.
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3.4 Extensions

3.4.1 Continuous Endogenoﬁs Variables

The discussion in the previous subsection focused on a model such as Catholic schooling in
which C'H is binary and the restriction applies to the underlying latent variable. However,
the link between C'H and CH* in the theory section is not restricted to CH = 1{CH* >
0). Many potential applications of the idea involve continuous endogenous variables. We

maintain the model
Y'=aCH+g(X)+e
but no longer reqﬁire that CH be binary but instead assume that
CH=CH".
Define

b(X) = E(CH|X)
v = CH-bX).

In this case we obtain a stronger identification result using Condition 17 and one addi-

tional assumption:

Theorem 3 Assume Condition 17 and that

var(u) var(e)

var(b{X)) 7 var(g(X))

We can identify the set A which includes two values, the true o and o + 2L

cov{u,e)”

(Proof in Appendix A.4)

Although there are two roots, this result is very useful. In most cases in which an applied
researcher is worried about the bias in a regression type estimator, he or she has a strong
prior about the sign of the bias, which is the sign of cov(u,¢). Imposing an assumption
about the sign of cov{u,e) on the data delivers point identification; if one imposes that

cov(u,€) is positive (negative), then the smaller (larger) of the two elements in A is the

true value.







3.4.2 Using an Invalid Instrumental Variable

The results above extend to the case in which the researcher works with an invalid instru-
mental variable Z that is correlated with the error term in the outcome equation. For

simplicity we focus on the linear case and maintain our notation
Y'=aCH+ X'y +¢,

where X is observable but £ is not. CH is a binary variable in our case but could also be
continuous. We assume that X is uncorrelated with =, but C'H is potentially endogenous
and thus correlated with z. We assume our instrument Z does not influence Y directly, but
is correlated with C'H. However, Z is not necessarily a valid instrument because it might be
correlated with €. We extend the idea of using the data generation process for identification
by showing that if the relationship between X'y and Z is similar to the relationship between
e and Z, then we can sometimes obtain identification.

Define 3 and 7 to come from least squares projection such that

(3.19) Proj(Z | X) = X'r,
(3.20) Proj (CH | X,Z) = X'8+)Z,

and define v and u as the residuals of these regressions, so that

(3.21) Z = X'm+u,
(3.22) CH = X'B+M2+u.

Consider the regression of ¥ onto the predicted value Proj(CH | X, Z) and X. The coeffi-
cient on the predicted value in this regression converges to

d—adt co*u(’u,s).
Avar{v)
If Z is a valid instrument, » would be uncorrelated with £ and @ would equal .
Can our assumption about the relationship between unobservables and observables pin
down this bias? In general it helps but may or may not be sufficient for point identification.

As above,

Condition 3

cov(X'm, X"y)  cou(v, )
var(X'y)  wvar(e)
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restricts the solutions a* to be the solutions of a cubic equation, one of which is «. This
means that typically there are either three solutions (i.e. three values of a* that we can
not distinguish between) or there is a unique solution that equals «. The details are in

Appendix A.5.

3.4.3 Heterogeneity in the Effects of Catholic Schools

Qur analysis extends in a natural way to the case of heterogeneity in the effect of attending
Catholic school. Let Y and Y} be the outcomes conditional on choice of Catholic high
school and public high school, respectively, for a given student. As above let W be the set
of covariates that fully determine Y} and Y’ and let X be the observed components of W.

The heterogeneous effects model may be written as

(3.23) oh = Fen(X) +Em
(3.24) Yy = gp(X)+e

where Y}, is observed if CI{* > 0, in which case CH = 1, and ¥}, is observed otherwise. Our
previous specification is a special case of this model in which ge,(X) —g,(X) is constant and
€ = £p. Treating the data generation processes for Y3 and Y’ as equivalent to the data

generation process for Y — aC H above and applying Theorem 1, we obtain the restrictions

Proj(CH"|gen(X),en) = Gengen(X) + denten
PI‘Oj(CHﬂQp(X),Ep) = ¢ng(X)+¢p€P'

These restrictions can be used to help identify the model in a way that is directly
analogous to our use of Condition 1 to identify the model in the homogeneous effects
case. We conjecture that if the components of X are a random subset of the components
of W and if the number of elements of W and X are large, then the joint distribution
of {8(X), gen(X),g,{X)) is the same as the joint distribution of (u,&cn,&p) up to a scale
parameter that depends on the fraction of elements of W that are observed. If this is the
case, then a nonparametric or semiparametric analysis may be possible, at least in theory.

We leave a full analysis of this case to future work.

3.5 Relevance to the Study of the Catholic School Effect and
Bounding the Results

We have data on a broad set of family background measures, teacher evaluations, test

scores, grades, and behavioral outcomes in eighth grade, as well as measures of proximity
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to a Catholic high school. These measures have substantial explanatory power for the
outcomes that we examine, and a large number of the variables play a role, particularly in
the case of high school graduation and college attendance. Once we restrict the sample
to Catholic eighth graders and condition on Catholic religion and distance from a Catholic
high school, a broad set of variables make minor contributions to the probability of Catholic
high school attendance. The relatively large number and wide variety of observables that
enter into our problem suggests that the observables may provide a useful guide to the
unobservables.

However, our “random selection of observables” model is not to be taken literally. There
are in fact strong reasons to expect that the relationship between the unobservables will be
weaker than the relationship between the observables. The most important is that shocks
that occur after eighth grade are excluded from X.** These will influence high school
outcomes but not the probability of starting a Catholic high school.?” To see this, return
to the linear index formulation (3.1) and augment the model by rewriting € as £ = £, + €3,
where ¢, is determined during eighth grade and ¢, is the independent innovation in the error
term that is determined during high school. Since the observables X and the unobservable
u are determined during eighth grade, we can impose our data generation condition on the

variables determined prior to high school, in which case
cov(CH* X'v)  cou(CH* e1)
var(X'y)  wvar(e)

(3.25)

S cov(CH*, 21+ €3)
var{e; + €2)

We will show how this condition can allow us to identify a set of permissible values of c.

We use the following alternative to Condition 1”.
Condition 4

Prof{CH"|g(X),e) = &y + ¢ 9(X) + ¢p,8,
(3.26) 0 <€ ¢, <o,

26 A second reason is that it is quite possible that among Catholic eighth graders the decision to attend
Catholic high school is influenced by highly idiosyncratic preference variables, such as the religious beliefs
of the parents, whether close friends of the student are going to Catholic high school, whether the parents
attended Catholic high school, the influence of a particular eighth grade teacher or minister, the quality
of the school band or sports teams, the logistics of getting to and from the school, or transitory variation
in the finances of the family. We suspect that many of these factors have coefficients in the outcome
and school choice equations that are quite different with some being positively correlated with outcomes
and others negatively correlated. This would also lead selection on the unobservables to be weaker than
selection on the observables.

27In the case of the 10th and 12th grade test scores, £ will also reflect variability in test performance on
a particular day, which presumably has nothing to do with the decision to start Catholic high school.
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Theorem 4 For any value o there is a unique value of g and ¢ consistent with the selection
model (3.14)-(3.15). Define go« and £, as these values. We can identify the set

var{eqa-}) ~  var(ge-(X))

Under Condition 4 the true value o is a member of this set.

Treating the restriction as a bound actually simplifies the identification procedure some-
what. In this case all we could ever hope to identify is a set of values of o that are consistent
with {3.24). The identification proof is constructive in suggesting a manner for testing hy-
potheses about « (or constructing confidence intervals). Following the theorem for any
potential value ap we can construct g,, and £,, and then test whether the restriction holds
for those values.

After experimenting with our data we find that the upper bound on a occurs when

one assumes that ﬂv%l = 0 and the lower bound comes when one assumes that
covr(CH* X'y) __ ecov(CH=g)

T = e Thus, in the empirical work below, we interpret estimates of
a that incorporate Condition 1” as a lower bound for & and single equation estimates with
C H treated as exogenous as an upper bound. This simplifies the analysis substantially. If
the lower bound estimates point to a substantial Catholic school effect, we interpret this as
strong evidence in favor of such an effect. As it turns out, for some outcomes and samples,
such as high school graduation, the single equation estimates are so large relative to the
degree of selection on the observables that the lower bound estimate is still substantial. In

other cases, even an amount of selection on the unobservables that is small relative to the

selection on the observables is sufficient to eliminate the entire Catholic School effect.

4 Adjusting for Selection Bias Using Selection on the
Observables

4.1 Using the indices of Observables in the School Choice and
Outcome Equations as a value for p.

We now return to the bivariate probit model given by (2.1), (2.2), and (2.3). We argue in
the theory section that Condition 1 represents an extreme assurmption about the degree of
selection and that the true amount of selection is somewhere between independence and

Condition 1 which we formalized as Condition 4. In practice we have found the model
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to be monotonic so the highest value of the treatment effect o occurs at p = 0 while the
minimum value occurs when condition 1 is binding, so we focus on estimating the model
while imposing condition 1 and interpret the result as a low bound on . In the bivariate

probit case, Condition 1’ may be re-written®® as

_ Cov(Xi83, Xi7)
- Var(Xiy)

(4.27)

We take two approaches to estimating the model while imposing this restriction. The
first is to use the Catholic eighth grade sample directly and maximize the likelihood subject
to (4.26) . To improve precision of the estimates of & and as a check on the robustness of
the results, we employ an alternative method using information contained in the public 8th
grade sample. We partition X and + into the subvectors { X, X5 X} and {v{, Ve, .--s Yo}
consisting of variables and parameters that fall into the same category. In practice, G
is 6. We estimate v on the public 8th grade sample on the grounds that very few such
students go to Catholic school, and so selectivity will not influence the estimates of v even
though the mean of the error term may be different for this sample. We then assume that
the values of 4 are the same for students from Catholic and public 8th grades, up to a
proportionality factor for each subvector. Note that the univariate models reported above
for the full sample implicitly assume that v does not depend on the sector of the 8th grade.
We are relaxing that assumption to some extent.?

In Table 8, we present estimates using methods 1 and 2 to impose the restriction,
focusing on the results for the Catholic eighth grade sample. The estimate of p is 0.24, the
estimate of & is 0.59 (0.33), which implies an effect of 0.07 on the probability of high school
graduation. Consequently, even with the extreme assumption imposed, there is evidence
of a large positive effect of attending Catholic high school on high school graduation.

The results for college attendance follow a similar pattern. The regression relationship
between the indices of observables that determine C'H and college attendance is sufficiently
strong that imposing the restriction leads to a reduction in the estimated effect of Catholic
schooling. The point estimate of 0.07 is substantial, although it is not statistically signifi-

cant given our sample size.

28Keep in mind that in the binary probit the variances of ¢ and u are normalized to 1.

2¥The restrictions pass with a p-value of .12 in the high school graduation case, but fail with a p-value of
.03 in the college attendance case, largely because the restriction fails for the coefficients on distance from
Catholic school. Details are in Table 8 note 4.

33







When we use method 2, we obtain qualitatively similar results that point to an even
larger effect of Catholic schooling on high school graduation—in this specification, p is only
0.09 and the estimate of the effect on the graduate probability is 0.09. The college effect
is only 0.02. The restrictions on ~ restrictions pass with a p-value of .12 in the high school
graduation case, but fail with a p-value of .03 in the college attendance case, so perhaps
the method 2 results for college attendance should be discounted. Details are in Table 8

note 4.3

4.2 The Relative Amount of Selection on Unobservables Required
to Eliminate the Catholic School Eﬂ'ect

In this section we provide a different, more informal way to use information about selection
on the observables as a guide to selection on the unobservables that permits us to use the

Catholic high school indicator directly. Consider the alternative restriction,

Condition 5

var(e;) var{X}vy)

This condition implies that the relationship between Catholic high school and the lo-
cation of the distribution of the index of the observables that determine outcomes and the
index of unobservables is the same, after adjusting for differences in the dispersion of these
distributions. We justify this condition informally in Appendix A.. Tt will hold under the
assumptions that lead to Conditions 1 and 2. However, it requires that X be uncorrelated
with e.

For reasons discussed earlier, the standardized difference in the mean of the unobserv-
ables that determine is Y is likely to be smaller than the standardized difference in the
index of observables, because many post-eighth grade factors influence the cutcomes, and

many hard-to-observe factors influence high school choice. One way to gauge the strength

30For completeness, we also present estimates of o and p from an unrestricted bivariate probit on the
Catholic school sample. The estimates « and p for high school graduation are guite close to the restricted
estimates, although this is a matter of luck in view of the large standard errors. In the college attendance
case we obtain a large and implausibly negative value of p equal to -0.52 and an implausibly large but very
imprecise estimate of @ equal to 1.18. As Grogger and Neal (1999) note, a finding of negative selection
on unobservables based on bivariate probit models is not uncommon in the Catholic schools literature
and is sometimes attributed to pre-existing differences in student motivation or discipline that are poorly
captured in existing data sets. We are very skeptical of this interpretation because the rich set of 8th grade
student behavior measures in NELS:88 point to positive selection more or less across the board. Our view
is that without exclusion restrictions or a restriction such as Condition 2, identification of « and g is very
tenuous. We place little weight on the unrestricted estimates.
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of the evidence for a Catholic school effect is to see how much of it would remain if Con-
dition 4 were true, and to ask how large the ratio on the left would have to be relative to
the ratio on the right to eliminate the entire Catholic school effect. An advantage of this
approach is that we do not have to simultaneously estimate the parameters of the C'H and
Y equations subject to {4.26). Consequently, we are able to use the full control set used in
columns 3 and 6 of Tables 3 and 4. In Altonji, Elder, and Taber (2001) we expand on this
approach by showing how it can be used to evaluate an instrumental variable.

To gauge the role of selection bias in a simple way we ignore the fact that Y; is estimated
by a probit and treat a as if it were estimated by a regression of the latent variable ¥
= Xlv+ aCH; + ¢ on X; and CH,. Let X' and ﬁi represent the predicted value and
residuals of a regression of CH; on X; so that CH; = X'3 + CH ;. Then,

Y= X[y +af| + aCﬂ'Tfi + &.

Assuming that the bias in a probit is close to the bias in OLS applied to the above model
and using the fact that CH ; 1s orthogonal to X; leads to

cou(éTﬁ,s)
var (EH")
= ot 2O ool = 1) — Ble | CH: = 0)].
var (CH)

pima =~ a-+

Thus, subject to Condition 4 one can estimate E(X]y | CH; = 1) — E{X]y | CH; = 0) and
estimate the magnitude of this bias.

We use the single equation estimates of a obtained under the assumption that Catholic
schooling is exogenous in the outcome equation. A problem with using Condition 4 is that
bias in « will lead to bias in the estimates of «, which are required to evaluate the left hand
side of the equation. We believe that in many applications this problem will be minor.
However, as a robustness check we try three alternative ways to obtain . The first method
is use the -y from the public eighth grade sample to form the index X}~ for each Catholic 8th
grade student. The results are reported in the first row of Table 9. In the case of high school
graduation, the estimate of (E(X!v | CH; =1) — E(X!y | CH; =0)) /Var(X]v) is 0.30.
That is, the mean/variance of the probit index of X variables that determine high school
graduation is 0.28 higher for those who attend Catholic high school than for those who do
not. Since the variance of £, is 1.00, the implied estimate of E(e; | CH; =1) — E(e; | CH; =

0) if Conditicn 4 holds is 0.30 (row 1, column 3). Multiplying by var (CH;) fvar (C’H )
yields a bias of 0.37, while the estimate of the e is 1.03. The last column of the table reports
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that the ratio a/[ﬁ%w(q | CH; = 1) — E(e; | CH; = 0))] = (1.03/.37) = 2.78. That
is, the normalized shift in the distribution of the unobservables would have to be 2.78 times
as large as the shift in the observables to explain away the entire Catholic school effect.
This seems highly unlikely.

The second row of Table 9 reports the results when the left hand side of Condition 4
is evaluating using the estimate of + obtained from the single equation probit estimate of
the high school graduation equation on the Catholic school sample. The third row uses
the estimate of v when « is constrained to be 0. For these methods, the implied ratios are
4.29 and 3.55. The results in Table 9 suggest that a substantial part of the effect of CH
on high school graduation is real.

For college attendance the ratios range between 1.30 and 2.03 depending on how we
estimate <y (rows 4, 5, and 6). Since the ratio of selection on unobservables relative to
selection on observables is likely to be less than 1, part of the Catholic school effect on
college graduation is probably real.

Table 10 presents 10th and 12th grade test score results using the same methodology
described above. The coeflicient on C' H; has a positive and statistically significant coeffi-
cient only in the case of 12th grade math scores. However, this effect is small (1.14) and
would be almost completely eliminated assuming the upper bound Condition 4 holds. Even
if selection on unobservables is only one half as strong as that on observables, the effect
of Catholic schooling would be negligible. Given the weak evidence from the univariate
models and the likelihood of some positive bias, we conclude that Catholic high school

probably has little effect on test scores.

5 Results by minority status and urbanicity

A number of studies, including Evans and Schwab (1995), Neal (1997), and Grogger and
Neal (1999) using NELS:88 have found much stronger effects of Catholic schooling for
minority students in urban areas than for other students. Table 2 reports differences in
the means of outcomes and control variables, by high school type, for all urban minority
students and for urban minority students who attended Catholic eighth grades. Note that
54 of the 56 minority students who attended Catholic high school came from Catholic
eighth grades. Only 15 of the 700 urban minority students in public 10th grades came from
Catholic 8th grades, which is too few observations to support an analysis on the Catholic

eighth grade subsample. In the full urban minority sample the control variables provide
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evidence of strong positive selection into Catholic high schools. The gaps in mother’s
education and father’s education are (.66 years and 1.69 years, respectively. The gap in
the log of family income is 0.83. There are also very large discrepancies in the base year
measures of parental expectations for schooling and student expectations for schooling and
white-collar work, large gaps in the eighth-grade behavioral measures, and gaps of 6.49 and
3.28 in the eighth grade reading and math tests, respectively. Since there is more selection
on observable variables for this subsample it is quite plausible that there could be more
selection on unobservables as well and that this could explain the large measured Catholic
schooling effects.

In Table 5 we report models of the high school graduation probability estimated using
the urban sample of white students as well as the urban sample of minorities. All of the
regression models include our full set of controls. For the minority sample, the average
derivative implied by the probit estimate of the Catholic high school effect on high school
graduation is 0.191, while the linear probability model estimate is 0.133 (0.056).*! Turning
to the bottom panel of Table 5, we find a substantial effect of Catholic high school on
college attendance, with estimates for the urban minority sample varying from 0.144 to
0.182 depending on the estimation methods. Consistent with previous work, the effects
are generally larger for minorities than for the samples of whites. However, since there
is more selection on observable variables for this subsample it seems quite plausible that
there could be more selection on unobservables as well and that this could explain the large
measured Catholic schooling effects.

Table 6 presents test score results for the urban minority sample. As shown in the second
column of the table, we obtain negative but small and statistically insignificant estimates
of the effect of Catholic schooling on both the math and reading 10th grade tests, which
agrees with the analysis based on both the full NELS:88 sample and the Catholic eighth
grade subsample. We obtain a coefficient of -0.19 (1.39) for the 12th grade reading score
as well, and a coeflicient of 1.25 (1.09) for the 12th grade math score. Evidently, most
or all of the substantial Catholic high school advantage for urban minorities in test scores
disappears once we control for family background and 8th grade outcomes. This result
reflects the large gap in the means of the controls in favor of minorities attending Catholic

high school. As one can see in the table, we obtain similar results when we add suburbanites

1 The estimate including eighth grade school fixed effects is essentially zero, which leaves open the
possibility that cross-school variation in the opportunities available to urban minority students may be
responsible for the positive estimated Catholic high school effects. However, the standard error of the fixed
effects estimate is quite large {.107), so one should not make too much of this result.
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and extend our analysis to a pocled urban/suburban minority subsample.

We also perform a sensitivity analysis of the kind described above for the urban mi-
nority sample. Turning again to Table 7, note that the raw differential in the high school
graduation probability is 0.22 and the estimate of the Catholic school effect under the as-
sumption p = 0 is 0.176. The estimate is 0.132 when p is 0.2, and 0.013 when p is 0.5.
Thus, the correlation between the unobservables would have to be in the neighborhood of
0.5, a very large correlation, for one to conclude that the true effect of Catholic schools on
the graduation rates of urban minorities is 0. This value seems unreasonable.

In Table 11, we conduct an analysis involving the differences in indices of observable
variables based on Condition 4. In rows 2 and 4 we form the index of selection on observables
using the estimates of ~+ from the urban minority public 8th grade sample. For this sample
under Condition 4 the implied shift in (E(e; | CH; = 1) — E{e; | CH; = 0}) is 0.56 in the
case of high school graduation and 0.72 in the case of college attendance, which reflects
strong selection on the observables that influence these outcomes. Still, selection on the
unobservables would have to be 2.37 times as strong as selection on the observables to
explain away the entire high school graduation effect. This seems very unlikely to us; the
evidence suggests that a substantial part of the estimated effect of Catholic schooling on
graduation would remain for this group, even if there was a high degree of sample selection
bias. On the other hand, we cannot rule out the possibility that much of the effect of CH
on college attendance is due to selection bias.

In Table 12 we report the results of an analysis of test scores. As we have already noted,
there is little evidence that Catholic high school improves the reading scores of minorities.
The table shows that in the case of 12th grade reading scores (E(X/y | CH; = 1) —
E(X!v | CH; = 0)) /Var(X!y) is 0.090. Under Condition 4 this amount of favorable
selection on the observables implies an estimate of (F(g; | CH; = 1) — E(e; | CH; = 0))
equal to 2.76. Since the point estimate of o is already negative, there is certainly no
evidence that Catholic schools boost 12th grade reading scores.

In the case of 12th grade math, the point estimate of a is 1.82 and the implied estimate
of (E(e; | CH; = 1) — E(g; | CH; = 0)) under Condition 4 is 1.17, and the implied ratio of
selection on unobservables to selection on observables required to explain away the entire
estimate of « is 0.89. Consequently, we would not rule out a small positive effect on math
but overall conclude that there is not much evidence that Catholic high schools boost the

test scores of urban minorities.??

32These test score findings are robust to the imputation procedures for dropouts described in Section 2.3.
In contrast, Grogger and Neal (1999) find some evidence for a Catholic school effect on mincrity test scores
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6 Conclusion

Our analysis of the Catholic school effect is guided by three premises. The first is that the
exclusion restrictions used in previous studies, including Altonji, Elder and Taber (1999),
do not provide a reliable means of identifying the Catholic school effect. The second premise
is that in the absence of a bulletproof instrument, it is important to start with a rich set of
control variables and with a group of students who do not differ dramatically by whether or
not they attended Catholic high school. This leads us to focus on students from Catholic
eighth grades. Focusing on Catholic eighth graders allows us to avoid concerns about lack
of comparability between the tiny fraction of students from public primary schools who
attend Catholic high school and other students. It also allows us to isclate the effect of
Catholic high school from the effect of Catholic primary school.

The third premise is that the degree of selection on the observables is informative
about selection on the unobserved characteristics. As we noted in the introduction, it
is standard procedure to consider the relationship between an explanatory variable or an
instrumental variable and the observed variables in the model in discussions of exogeneity.
The methodological contribution of this paper is to formalize the use of such information
and to provide a way to assess quantitatively the degree of selection bias. We make the
theoretical point that knowledge of how the observable variables are chosen from the full
set of variables can be sufficient to identify the effect of an endogenous variable. We
illustrate this by establishing identification in the case in which selection on observables
and unobservables is the same in the sense that unit shifts in the indices of observables
and unobservables that determine the outcome have the same effect on school choice. We
estimate our model subject to the restrictions imposed by equal selection. We argue that in
the Catholic school case, selection on the observables is likely to be stronger than selection
on the unobservables. Consequently, we use the restricted estimate as a lower bound
estimate of the effect of Catholic schools and use the single equation estimates as an upper
bound. We also propose an informal way to assess selectivity bias based on a measure of
the ratio of selection on unobservables relative to selection on observables that would be
required if one is to attribute the entire Catholic school effect to selection bias.

We have three main substantive findings regarding Catholic schools. First, attending

using median regression, particularly when they restore high school dropouts with missing test score data
to the sample by simply assigning them 0. We have not fully investigated the source of the discrepancy,
but suspect that our use of a more extensive set of control variables, our imputation process, differences in
the samples used, and differences between mean and median regression all play a role.
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Catholic high school substantially raises high school graduation rates. In the Catholic
eighth grade sample, none of the 0.08 Catholic high school advantage in graduation rates
is explained by eighth grade outcomes or family background and we obtain a lower bound
estimate of 0.07 when we impose equality of selection of observables and unobservables.
While estimates that treat Catholic school attendance as exogenous almost certainly over-
state the effect of Catholic high schools, the degree of selection on the unobservables would
have to be much stronger than the degree of selection on the observables to explain away
the entire effect. We also find that the effect of Catholic school on the probability of college
attendance is very large (0.15) when Catholic school attendance is treated as exogenous,
but the lower bound estimates range between 0.07 and 0.02 depending on estimation de-
tails. We conclude that part of the effect of CH on college attendance is probably real, but
the evidence is less strong than in high school graduation case.

Second, we find little evidence that Catholic high schools raise reading scores. In fact,
most of our point estimates are negative. The single equation estimates point to a positive
effect of about 0.1 standard deviations on the 12th grade math score. However, given
sampling error and evidence of positive selection bias, we do not have much evidence that
Catholic high schools boost test scores as well as high school graduation rates.

Third, our results for urban minorities suggest that Catholic high school attendance
substantially raises the probability of high school graduation for this group. Single equation
estimates of the impact on college attendance are also very large, but the degree of positive
selection on the observables that determine college attendance is sufficiently large that
one could not rule out selection bias as the full explanation for the Catholic school effect
on college attendance. One problem is that our sample of urban minorities who attended
Catholic eighth grade is not big enough to permit us to perform the analysis on the Catholic
eighth grade sample. Unfortunately, in the full urban minority sample, differences by high
school sector in family background characteristics and eighth grade performance are very
large. The assumption that the selection on the unobservables mirrors selection on the
observables results in a larger selectivity bias correction for this group. While we believe
that selection on the unobservables is less strong, the evidence for a Catholic school effect on
college attendance is weaker for this group. In general, we find smaller differences between
urban minorities and other groups in the Catholic school effect than other recent studies.

The next step on the empirical side of the project is to examine the mechanism through
which Catholic schools affect high school graduation in light of the literature on Catholic

schools and the data on school characteristics and student behavior during the high school
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vears in NELS:88. Multivariate analysis of the effect of differences in background and eighth
grade social behavior suggests that such differences are more important for graduation than
for test scores (not reported). Many of the traits of Catholic schools stressed by Bryk et al
(1993) and Coleman and Hoffer (1987) may work to reduce the dropout probability among
low achieving students or students with behavioral problems. The more structured and
communitarian environment normally found in Catholic high schools may be effective in
reducing dropout rates and increasing college attendance.

There is a long agenda for future research on the econometric methods that we propose.
With regard to the theoretical foundations, high priorities include additional analysis of
identification in both single equation and instrumental variables settings and a full analysis
of the heterogeneous effects case introduced in section 3.6. Our theoretical analysis suggests
that the observables may not have much to say about bias from selection on unobservables
in situations in which only a handful of variables dominate the distribution of the outcome
{a situation in which structural economic model may be feasible to develop and estimate),
or in which the set of observables is small. In our application, the measure of the relative
degree of selection on observables and unobservables is not very sensitive to how we compute
~, the parameters of the outcome equation, and we were able to use the public 8th grade
sample as a benchmark for v in any case. However, a theoretical analysis of conditions
under which bias in the estimates of « is important would be helpful.

With regard to the art of assessing when and how to use the methods that we describe,
a monte carlo analysis of how the methods perform in the context of real world examples
would prove informative, particularly in those cases in which concern about identification
is a first order issue. One could also do a monte carlo analysis in which one samples
at random from the hundreds of 8th grade family background and student characteristics
available in the NELS 88, although this would be taking too literally the idea of random
inclusion of variables.

In closing, we caution against the potential for misuse of the idea using observables to
draw inferences about selection bias. The conditions required for Theorem 1 imply that it
is dangerous to infer too much about selection on the unobservables from selection on the
observables when the observables are small in number and explanatory power or if they are

unlikely to be representative of the full set of factors that determine an outcome.
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Appendix A

A.1 Proof of Theorem 1
Proof. We simplify the notation by defining
EX()Y=E(|5,, .Sk TI1,..Tk)
Define
BEI?OEK (CH} (Yx — aCHg))
B0 = T mER (Ve = aCHRY)

K—oo
plim Y330, TV KB (CHE W)
. K K
EETO% 2oj=1 2aip=1 DD ES (W5, Wi,
pimk S T3, + pling ©72,T5 (VRS (CH;) - i)
e oc BT oW W)
plim {% S B (le“ﬂ/})}

K—oo

Yoo BT W W, )

The term 3 Zj{: Yy (\/f EX (CHW;) — VJ) goes to zero as a result of our assump-
I (Vj . VKE(CHLW; | Ty, ...FK))| . We apply the central limit

tion about plim sup;
H—oo
theorem to W,I'; in deriving the denominator and apply the law of large numbers for the
numerator. Under the assurnptions of the theorem both the numerator and denominator
are finite.
To simplify the exposition define

Vg =

ﬁ};fil SiWiT;
71? Zj:l (1- Sj) WL

By definition of the projection of interest
] < o
= [ i ] + [BX (U W) EX (\PK (GH;;— T { i D) .

From the conditions in the theorem (E\I'K i | G TK ) is finite and positive definite.
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To see that EX (llf;( (OH}"{ — U [ i jl))converges to zero note that

)

© O

plim £ (\/_ZSWF (CHK ' [

K—co

=plim— Z S, EX (W;CHj,)

K~+oo

— plim— ZZS T; 05, EX (W, W)

KooK 1=17a=1

=E (S;) plim {% Y E (WjI‘jV,-)} — E{(5;) ( i E(Tjrj—erM—e)) ¢
£

Koo =1

=0
where we have used (A — 1}. By virtually the same argument

: 1 =z * 4 )
plim&* (ﬁ > (1—8;) W;T; (CHK . { g D) = 0.

7

Thus
plim {¢;x} = plim {gex}
K—oo K—roo
= ¢
|

A.2 Justification for Condition 1’

When implementing our model we have assumed that the error terms are uncorrelated with
the regressors, but this is not a property of the data generation process that we defined
in Theorem 1 nor is it required for Condition 1. We briefly discuss the conditions under
which our assurnption is consistent with the previous analysis.

As above treat the model as

K
1
CHE = —— > W;f,
K VK S i#;

K
1
Y o= — ) Wiy,
K ',_K; 3'73
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where we have incorporated aC Hy into Y3 to simplify the notation. In this section we use
notation that differs somewhat from the text. Throughout this section we use “hats” to
define the predicted value from a least square regression of a variable onto the observable
covariafgs in W and “tildes” to denote the residual from that regression. For example

Y =Yg+ ‘;’IE where }7}? is the linear prediction from a regression of Y3 on the observables.
In the notation of the text

Vi = X%
Y; = ¢
Furthermore we simplify the notation by dropping the K subscript when we mean the

probability limit of the variable so Y* =plim{Y}}.
In this notation Condition 1’ can be written as

cov(CH*,?:) _eon(CH*, Y+

A-2 == —
(4-2) var(Y™*) var(Y™*)

When does our data generation process yield (A-2)? It is straightforward to verify that
(A-2) is equivalent to

coo(CH*,Y™) con(CH*,Y™)
var(Y) var(Y")

Since C'Hy and Yy are linear we can also write

K

Z Wjﬁj + Uk

j=1

K
—_— 1 —

Y* = _E W _
K e o i

— 1
A3 CH: = ——
(A-3) k= 7F

Under the assumptions in Theorem 1 as the mumber of regressors gets large for any j,

cov(CH* Y*) Yo E (Wiﬁjw’rj—”j—ﬂ)
var{Y™) - Yoo L E (W}%Wj—ﬂj—f)
Ym0 B (WiWi—e) E (B;7,-¢)
Yt oo B (WiWi) E (v77520)

where the expectation is over both (W;W;_,) and (ﬁﬂ_,-_f) :
Similarly,

cov(CH*,Y™) N e o B (ﬁ’iﬁ;f) E(B17;-1)
var(¥%) 52 B(WWise) E (17,.0)

Since in general the autocovariance structure of W; will be different from the autoco-

variance structure of ﬁf;j, these will be different and the restriction (A-2) will not be valid.
However, we can give two examples for which (A-2) holds.
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The first example is the independence case. Suppose there is no serial correlation in the
W’s so that the unobservables are uncorrelated with the observables. If that is the case

cov(CH*)Y) E(W,W;)E (ﬁjfyj)
var(Y ") E(WW,)E (’}'J-'yj)

E (8,15)

E (v7;)

cov(aﬁ*, 17)
var(Y*)

&

The second example is if there exists some constant 7 such that
E(Bivj-) =TE (vy7i-e) -
In this case
ool CH ) | - B (WiWile) TE (177;)
var(¥") 55 B (WiW52) B (177,-0)

= T

Such a case can occur when v; and 3; have the same stationary ARMA process. To see
this consider the MA(oo) process

B; = wij+bwi ) +0wi,+ ...
v, = w? + Blwf-_l + 920«’?_2 + ..

where the joint distribution of (w ,w?) is serially uncorrelated with constant variance and

cov(ws,w?) = 0 when k # j, then (deﬁning 6o =1)
E (Bj'yj,g) = cov wJ,w] ZH Brie

E (f}fﬂj,g) = var(w?) ZGTQH_E
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cov (w; \ wf)

E (Bivj-2) = “var@d)

(’Yﬂj—E) .
A.3 Proof of Theorem 2

Proof. Consiser any value a* # « that is consistent with the model and Condition 1.
Then define (g*(X),e*) as the analogues of (g{X),e) that accompany it. Then

E(Y |CH=0,X) = ¢(X)+E(|CH" <0,X)
= ¢(X)+ Ele| CH" <0,X),

E(Y|CH=1,X) = o' +¢"(X)+E(*|CH" >0,X)

= a+g(X)+E( | CH > 0,X),
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and

Solving these equations for ¢g* yields
g"(X) = g(X) + p(X) (a — 0"),
where p(X) is the propensity score (i.e. p(X} =Pr(CH = 1| X) and thus
g =(a—0a")(CH-pX))+e.
If the alternative model satisfies (3.16) then

cou(CH*, g* (X)) _ cov{CH™*, ")
var{g*(X)) var(e*)

cov{CH", g{X)) + (a — &) cov{ CH*, p( X))
var(g(X)) + 2 (a — a*) con(g(X), p(X)) + (@ — @) var(p(X))
cov{(CH* e} + {a — a*) cov (CH*,CH — p{X))
var(c) + 2 (o — a*) cov(e, CH — p(X)) + (a — &) var(CH — p(X))

Defining
b= cov{CH*,g(X)) _ cov(CH",¢)
— var(g(X)) var(e)
and dividing top and bottom by var(g(X)) and var(e), we get
6+ (a — o) 2O pO0)

var(g(X})
+Y cov(g(X),p(X) «\2 var(p(X
142 (a— o) 2B + (o — o) 2B

oy cov(CH* CH—p(X}}
¢) + (OC c ) var(e)

1+2(a - ar) @ECHpE) | (o — gr)? 2erlCHpX))-

var(e) var(g)

Algebraic manipulation yields

0= (a— o) |:var(C'H — p(X)) coo(CH*,p(X)) wvar(p(X))cov (CH*,CH —p(X))}
var(e) var(g(X)}) var(g{X)) var(e)
Y var(CH — p(X)) cov(CH*,CH — p(X)) cov(CH*,p(X))
+(a ) [qf; var(e) +2 var(e) var(g(X))
_¢WT(P(X)) _ peov(g(X), p(X)) cov (CH™, CH —P(X))]
var(g(X) 2 var(g(X)) o
o cov(CH*, p(X)) cov(z,CH — p(X))
o ) [ var(g(X)) i var(e)
_cou(CH*CH ~p(X)) _, cov(g(X),p(X))}
var(e) var(g(X)) )

Thus the only values of «* that are consistent with the observed data and the assumptions
of the model are members of the set A, so it must be identified. Furthermore note that

a* = @ is a member of the set.
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A.4 Proof of Theorem 3

Proof. Follow similar logic to Theorem 2. Consider any value a* # o that is consistent
with the model and Condition 1’. Then define (¢*(X), £*) as the analogues of (g(X), ) that
accompany it. Then
Y=a'CH+g"(X)+c"
Since £* must be mean zero conditional on X,
g"(X) = g(X) + (@ — a”) b(X),
and |
=+ (o —a*}u
If the alternative model satisfies the conditions in the theorem then

cov(CH*, g*(X)) _ cov(CH*, =*)
var(g*(X)) var(e*)

Substituting in for g* and £* leads to
cov(b(z), g(X)) + (& — o) var (b(X))
var (9(X)) 1 2 (o — %) cov(g(X), b(00) + (a — @) war(B(X))
cov(u, e) + (e — o) var (u) -
var(e) + 2 (@ — o) cov(e, u) + (o — a*)? var(u)

(A-4)

As above, defining

o= cov(b(X), g(X)) _ cov(u, £)
- war(g(X)) var(g)

and dividing top and bottom of the left hand side of A-4 by var(g(X)) and the right hand
side by var(e) (respectively), one finds that

drla-oERE e+l
1+2(a -0 ¢+ (o —o) EEEE  1-2(@—a)d+(a—a i

Algebraic manipulation leads to

(o o var{b(X)) B var{u} Y var(b(X))  var(u)
0= =) S ~ S £ e [iotm)

This gives two roots

ot = a
— ety e
©= e (;S_a cov(u, e}

Thus the only values of «* that are consistent with the observed data and the assumptions
of the model are members of the set A, so it must be identified. Furthermore note that
a* = « is a member of the set.

|
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A.5 Cubic Solution from Instrumental Variable

Following the text above, the question is whether the assumptions allow us to pin down
the bias. Suppose it cannot. Then there would exist alternative values o*, v*, and * with
a* # o so that for the same & as in the text

cov (v, e*)

Avar(v)

a=ao" +
Under these conditions note that
Y—o'CH = (a—o")CH+X'v+¢
= (a—a) [ X'B+u+ A X'm+v)] + X'y +e,
and thus
¥ o= y+{a—a’)(8+ i)
g = e+ (a—a")(ut ).
But if this model satisfies the assumptions we know that
cov(X'm, X'y*)  cov(v,e")
var(X'v*) var(e*) ’

which is equivalent to
cov (X'm, X'v) + (@ — a*) cov (X'm, (X' + A X'm))
var (X'v) + 2 {a — a*) cov( X"y, (X'8 + AX'7)) + (o — o) var(X'8 + AX'm)
. cov (v,€) + (a — ™) cov (v, (u + Av))
 war(e) + 2(a — a*) cov(e, (u + M) + (o — ) var(u + M)’

Imposing the restriction from the true model

¢

cov(X'm, X'y) _ cov(v,e)
var(X'y)  wvar(e) ’

yields
sy cov{ X 'n (X' A4+AX'
b+ (o= ) o)
) cor(X /7 (X' 542X n 2 var{ X' 342X
1+2(a — ar) BRI 4 (0 — o) 2R
‘,'b + (G{ _ 0{*) covﬁsj:z—:))w

B 1+2 (05 — (]f*) covie,(ut ) + (a _ a*)2 var{utiv) '

var(e) var{s)

Solving out yields
0= (a—a')? [CO’U (v, (v + M) var(X'8 + AX'm)  cov (X'm, (X'8 + AX'm)) var(u+ )\’U)]
var(e) var{X'y) var{X'y) var(e)
s [ var(X'B+AX'T) _cov (v, (u+ ) cov( X'y, (X' + A X'm))
Tla—al) [ var(X'y) +2 var{e) var(X'y)
#qb’va'r(u + ) oL (X'm, (X'8+ A X'7)) cov(e, {u + /\fu))]
var(e) var(X'y) var(e)
[ eov (v, (u 4 Av)) ccon{ X'y, (X'8 + A X))
+le—a) |: var{e) T2 var(X'y)
_cov (X'm, (X'B+ AX'm)) 2¢co'v(s, (u+ )\*v))] .
var(X'y) var(g)
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