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Abstract

This paper reinterprets standard axioms in choice theory to introduce the concepts
of “belief dependent” utility functions and aversion to “state-uncertainty.” Within
a standard pure-exchange economy in which investors ignore the long run drift
of consumption growth (“the state”) I show that this type of preferences helps
to explain the various stylized facts of stock returns, including a high equity risk
premium, a low risk-free rate, a high return volatility, stock return predictability
and volatility clustering. Since the long-run drift of consumption determines the
(average) path of future consumption, in this context “aversion to state uncer-
tainty” has the natural interpretation of “aversion to the dispersion of long-run

consumption paths,”

which differs from the standard notion of (local) risk aversion
in its temporal dimension. In a parsimonious parametrization, it is shown that the
model calibrated to real consumption generates unconditional moments for asset
returns that are in line with the empirical observation. In addition, when estimated
using consumption data the fitted model produces posterior distributions on the
drift rate of consumption that are relatively dispersed, which further motivates the
notion of aversion to “long-run risk” put forward in this paper. Besides showing

a good match of unconditional moments, the model also generates a time series of

conditional volatility in line with the empirical observation.



1 Introduction

This paper introduces the concepts of “belief dependent” wtility functions and aversion to
“state-uncertainty” and shows in a standard pure-exchange economy that this type of prefer-
ences help explaining the various stylized facts of stock returns, including a high equity risk
premium, a low risk-free rate, a high return volatility, stock return predictability and volatility
clustering.

In a nutshell, a “belief-dependent” utility function is a generalization of the more common
“state-dependent” utility function, where the “state” is not known with certainty. The recent
literature in asset pricing has studied a number of “state-dependent” utility functions, where
we can include the works on habit formation (see e.g. Constantinides (1990), Abel (1990),
Campbell and Cochrane (1999)), relative social standing (Bakshi and Chen (1996)) and loss
aversion (see e.g. Barberis, Huang and Santos (2000)). In these examples, the “state” is always
known with certainty. In this paper I take the approach that the “state” is not observable by
the agents but they can infer it from various signals. Hence, at any point in time, agents have
a posterior distribution on the possible states. State-dependent utilities are then recovered as
a special case in which agents have a degenerate posterior distribution.

More specifically, 1 first use standard axioms in the decision theory literature to show
that “belief-dependent” utility functions can be obtained by re-interpreting the representation
results about state-dependent utility function. I show that this notion of belief dependent
utility functions naturally induces the concept of “aversion to state-uncertainty,” that is, the
aversion to a more diffuse distribution on the unknown state of nature. I also characterize
belief-dependent utility functions with constant coefficient of absolute or relative risk aversion
or with belief-dependent coeflicient of risk aversion.

As an application of this approach to asset pricing, I study a Lucas (1978) exchange economy
where investors are uncertain about the current drift rate of dividends (the “state”). This
set-up is of particular interest because it implies a natural interpretation of the concept of
aversion to state uncertainty in terms of aversion to long-run risk. In fact, since the drift
rate of consumption determines the average path of future consumption, “aversion to state

uncertainty” can be interpreted as “aversion to the dispersion of long-run consumption paths,”



which differs from the standard notion of (local) risk aversion in its temporal dimension.
In other words, while the standard notion of risk aversion applies to the variability of local
consumption, aversion to state-uncertainty applies to the dispersion on the whole path of future
consumption, which can then be termed “long-run risk.” One implication is that it is possible
to separate the intertemporal elasticity of substitution from this “aversion to long-run risk”
while retaining the time-separability of the utility function. This in turn makes the model
highly tractable. Indeed, I obtain simple closed-form formulas for stock returns and interest
rates whose characteristics can be fully interpreted.

In a parsimonious parametrization, I show that when calibrated to consumption data the
model is able to explain many of the empirical features in the asset pricing literature. Specif-
ically, aversion to state uncertainty (or long-run risk) has the effect of increasing the risk
premium, lowering the risk free rate and increasing return volatility. In addition, accordingly
with previous literature on learning (see e.g. David (1997), Veronesi (1999, 2000)), I also find
time-varying expected returns, predictability and stochastic volatility. The set up is able to
achieve these results even by assuming that investors have a utility function characterized by
constant relative risk aversion. Intuitively, aversion to state-uncertainty (long run risk) gen-
erates a high equity premium and a high return volatility because it increases the sensitivity
of the marginal utility of consumption to news. In addition, it also lowers the interest rate
because it increases the demand for bonds from investors who are concerned about the long-
run mean of their consumption. Indeed, under the interpretation put forward in the paper,

“yolatility” of consumption that matters in generating risk premia, but the

it is not only the
uncertainty on its long run drift as well. Hence, the consumption process can even be rather
smooth (as in the data) and yet carry a somewhat high risk due to the uncertainty relating its
long-term average dispersion (which depends on the drift). Finally, since I am not constrained
in assuming a high coefficient of (local) risk aversion to generate a high risk premium, interest
rates result low also because I can calibrate the model to reasonable values for the elasticity
of intertemporal substitution.

To substantiate the discussion above, I also estimate the model using quarterly consumption

data for the post-war period. Interestingly, I find that the time series of fitted posterior



distributions on the drift rate of consumption tend to display a relatively large dispersion. This
empirical finding further strengthens the notion that investors may be averse to this “long run
risk” besides the local risk aversion stemming from the (low) volatility of consumption. Besides
matching the unconditional first and second moments of returns and the level and the volatility
of the interest rate, I also obtain a time series of fitted return volatility that matches well the
realized volatility of stock returns in the post-war period (unfortunately, quarterly data for
consumption are not available before 1946). I also show that the model implied price-dividend
ratio is reasonable, although it matches the realized one to a less degree.

The paper is related to a number of recent articles: First, recent literature uses utility
functions with habit formation to describe a preference over consumption in relative terms,
that is, relative to other agents’ aggregate consumption (see e.g. Abel (1990) and Campbell
and Cochrane (1999)). In other words, for given consumption level today, the investor’s utility
is higher the farther away this level is from the habit level. This has the effect of making
the marginal utility of consumption “state-dependent” where the state is some function of
the habit level. This in turn affects asset prices by yielding for example time-varying risk
aversion. Second, some of the recent literature uses the concept of “recursive” utility in order to
disentangle the risk aversion from the elasticity of intertemporal substitution (see e.g. Epstein
and Zin (1989), Weil (1989), Campbell (1996)). High risk aversion generates high risk premia
while high elasticity of intertemporal substitution keeps the real rate low. Finally, a number
of studies have concentrated on the concept of “Knightian uncertainty” to explain asset prices
(see e.g. Epstein and Wang (1995), Maenheud (1999), Hansen et. al (1999), Cagetti et al
(2000)).

Belief-dependent utility functions as obtained in this paper have the same intuitive moti-
vations as those in these recent approaches, but it substantially differs from them in many
respects. Compared to habit formation, for example, also belief-dependent utility functions
yield a marginal utility of consumption that varies over time in response to past innovations in
consumption. However the economic interpretation of the two approaches is different. Consider
for example the set-up in Campbell and Cochrane (1999): in that model a positive innovation

in consumption decreases the individual agent’s marginal utility because now his/her con-



sumption level is farther away from a slow moving habit. Instead, in my set-up good news in
consumption reduce the current marginal utility because the investor now expects even bet-
ter times for his/her own future. That is, the relevant comparison is not with other people’s
consumption but with the agent’s own consumption in the future.

Similarly, by incorporating the overall distribution of beliefs in the utility function I ef-
fectively endow investors with a preference for resolution of their own uncertainty on the
underlying true state of nature. Although this is different from preferences over early/late
resolution of uncertainty as understood in the recent literature, it yields nonetheless similar
implications. For example, the elasticity of intertemporal substitution in my approach is still
equal to the inverse of the coeflicient of relative risk aversion. However, as mentioned above,
since in my set up investors are averse to “uncertainty” (or long run risk), it is still possible to
obtain a high equity premium and high volatility of returns without affecting the intertemporal
elasticity of substitution.

Finally, although state-uncertainty is rather different from the famous “Knightian uncer-
tainty” a la’ Gilboa and Schmeidler (1993), whereby agents are endowed with families of prior
distributions on a given state and then use the max-min rule to take decisions, this paper
retains the intuitive appeal that “uncertainty” is bad and that agents prefer certainty to un-
certainty. In addition, the present approach does not suffer from the known problem of the
“Knightian uncertainty” paradigm about the rational updating of a family of beliefs on the
state of nature. In my approach, investors are endowed with only one posterior distribution
which is simply updated using Bayes’ rule (but see Cagetti et al. (2000) on this point).

An additional advantage of the present approach is that it is extremely manageable: Be-
liefs enter linearly in the instantaneous utility functions and hence intertemporal preferences
preserve additivity both across time and across states (the beliefs). Since in dynamic models
belief must evolve according to some linear model (and if the underlying state of nature is
constant, they are actually martingales), it is quite simple to compute current expectation of
future belief-dependent utilities. This allows me to obtain simple formulas for the stochastic
discount factor and hence obtain simple and very interpretable formulas for asset prices and

interest rates.



The article proceeds as follows: Next section introduces the concept of belief-dependent
utility functions and aversion to state uncertainty. It also discusses some of the properties.
Section 3 introduces the asset pricing model and section 4 obtains closed form solutions for
asset prices for a class of belief-dependent utility functions. Section 5 specializes the analysis
to the case of Constant Relative Risk Aversion and obtains stock returns implications. Section
6 takes the model to the data: After introducing a statistical model for dividends characterized
by random jumps in their drift rate, it contains a calibration of the model and an empirical

application. Section 7 concludes.

2 Belief-Dependent Utility Functions

In this first part of the paper I introduce the concepts of belief dependent utilities and aversion
to state uncertainty. Specifically, I first point out that the axiomatic foundation of state-
dependent utility functions naturally implies the foundation of belief-dependent utility func-
tions upon reinterpretation of the states of Nature and the timing of resolution of uncertainty
over states. A number of axiomatic approaches have been proposed and I recall one of these
in Appendix A. Here, I set out the minimum notation necessary to understand the nature of
the representation. The discussion is taken from Myerson (1991). Let C be a set of prizes and
O a set of states. A lottery f is a function assigning a probability distribution on C to each
state € ©. That is, f : © — A(C) where A(C) is the set of probability distributions on
C. For every event S C O, let us denote by >g a conditional preference relation on the set
of lotteries on C. Assuming that »=gsatisfies the (standard) axioms listed in Appendix A, we
then have that there exists a state-dependent utility function u : C x ©® — R and a subjective
conditional probability function 7 (.|S) on © such that for all lotteries f and g ,
frsg <= Y w@018)Y fld)u(cld) =D m(0]S))  g(cl0)u(c|o) (1)
oS ceC oS ceC
Here, 7 (.|S) is simply a conditional probability distribution on © with unit mass on the event
S that satisfies Bayes law.
To better interpret the representation of preferences in (1), consider its specialization to a

special types of lotteries called the “constant” lotteries, that is such that f (c|d) =1 for every



0 € ©. If we denote such a lottery by [c], then the application of the representation result (1)

implies that

d =5[] <= D w(0lS)u(clf) =D 7 (6]S)u(c]9)
0eS oes
Since [c] is a constant act and agents “know” w (c|@) for all 6, this representation is simply

saying that even if an agent obtains a prize ¢, his/her “subjective” utility from “consuming” ¢
is “belief dependent,” in the sense that it depends on the whole subjective distribution m (6]5)
over . In other words, since the “uncertainty” over the lottery f may be resolved before
the uncertainty over the underlying state of nature 6, this approach implies that agents have
belief-dependent utility functions.

A couple of simple examples will help to clarify this point:

Examples: (i) Consider an agent in a large class of students who just took an exam and
got a B. If the “utility” from the B changes depending on the overall average obtained by the
(large) class, then the student utility is “state-dependent” (where the state can be considered
the “average grade”). However, suppose that the agents ignores what is the exact average class
grade but only holds a probability distribution on it. If shifts in this probability distribution
changes the “utility” from the grade, now the utility is “belief-dependent” because it depends
on the (subjective) belief on the average grade. (ii) Example (i) considered the state to be
“external.” The same example works on an “internal” basis, that is, when the student judges
his/her own performance in an exam compared to his/her previous performance in other exams.
Suppose that the student took a few exams in the past weeks but only one grade is already
available. If the utility he/she derives from a grade of B depends on his/her beliefs on the
average grades on all the other exams, the agent holds a belief-dependent utility function. In
other words, state-dependent utility functions are the special case of belief-dependent utilities

when the state is known with certainty.
Definition: A belief dependent utility function over an act f is given by

U(f.m) = m(0)) f(clo)u(clp) )

0O ceC
In particular, a belief dependent utility function over a prize c is

ZT( u(c|f) (3)

0cO

6



2.1 Aversion to State-Uncertainty

Characterization (3) naturally leads to a definition of aversion to “state-uncertainty.” To
emphasize it, let me recall again the implication of this utility representation: Given a constant
act [c] yielding a known prize ¢ and a set of states 6 € O, the effective utility for the decision
maker is given by a weighted average of the state-dependent utilities, weighted by the agent’s
beliefs on the state. Since the agent knows “u (¢|6)” for every prize ¢ and every state 6, although
(3) holds formally only ex ante, it must hold also ex-post, after observing c.

Given ¢, we can vary the distribution m over © and obtain various levels of “utility.” Of
interest to us are the changes in the “dispersion” of the probability m while keeping its expected
value constant. To this end, it is often used the concept of “mean-preserving spread” (see
Ingersoll (1987)) to do comparative statics exercises. I use this concept to define aversion to

state uncertainty:

Definition: (a) Let m and ¢ be given. A belief-dependent utility function U (¢, ) displays

aversion to state-uncertainty given c if a mean preserving spread 7 on the distribution 7 yields
U(c,m) < Ule,m) (4)

(b) A belief dependent utility function displays aversion to state uncertainty if (4) holds for

all c.

In the context of example () in the previous subsection, if the student is happy to learn that
the average grade of the class was exactly B when he/she was assigning equal probabilities to
be either C+, B and A-, then he/she is averse to state-uncertainty. I will give other examples

below in the context of a dynamic economy.

2.2 Absolute and Relative Risk Aversion of Belief Dependent Utility Func-

tions

In this section I provide the characterization of belief dependent utilities in the case of constant

absolute and relative risk aversion. I introduce some notation first:



Absolute Risk Aversion: The absolute risk aversion of belief dependent utility function

U (c,m) is given by
_82U (¢,7) /Oc? 5)
oU (¢, m) /0c

Relative Risk Aversion: The relative risk aversion of belief dependent utility function

A(m,c) =

U (z,m) is given by U o2
(o) = - St )

These are the analogous notions of absolute and relative risk aversion as in the case of state-

independent utility function. Since for given distribution 7, the utility function U (¢) = U (¢, 7)
is a standard Von-Neuman Morgenstern utility function with respect to state-independent lot-
teries (of which the constant lotteries are a special case), (5) and (6) reflect the local curvatures
of the utility function that are necessary and sufficient to generate “aversions” to fair bets (ei-
ther in absolute or in relative terms).

Given their importance in finance applications, I now characterize the belief dependent
utility function for the case of constant absolute or relative risk aversion:

Proposition 1: (a) A(c,7) = A constant if and only if
u(e,m) = By k1 ()] — By k2 (6)] ¢ (7)

where k2 (0) > 0 for all 0 € © and Ey [k; (0)] = >0, mjk; (0;).

(b) v (c,m) =~y constant if and only if
=

u(c,m) = Ey[k1 (0)] + Ey [k (0)] 11—~

with ko (6) > 0 for all # € ©.

Proof: See Appendix.

Albeit easy to prove, the implications of this proposition are rather interesting. Consider
for instance the case with constant relative risk aversion (8). Although in a static model this
representation is basically equivalent to one with no state-dependent utility because one can
define a = E'[k1 (0)] and 3 = FE [k (0)] and proceed as usual, in a dynamic context where
agents learn about the true state 6 over time, this representation becomes important.

For example, suppose that ks (#) is a convex function of # € ©. Then, an immediate conse-

quence of the above proposition is that a mean preserving spread on the posterior distribution



over € (that is, an increase in uncertainty for given E [6]) implies an increase of E [ks (6)] and
hence it decreases the “utility” for v > 1 (because ¢!~7/(1 — ) < 0) and it increases the
marginal utility of consumption

ou (c,m) B

O —Elha(0)] o)

We will see that his has interesting implications for asset prices, for example.

2.3 Belief-Dependent Relative Risk Aversion

Even though the agent does not have full information about the underlying state of nature, ac-
cording to Myerson’s axiomatic approach he/she may nonetheless establish the level of his/her
relative risk aversion conditional on each state being true. That is
c0?u (c|0)
= A
DA
In this case, the representation of utility function is as follows:
Proposition 2: The belief-dependent utility function with belief-dependent risk aversion
is given by
n 01_7(91)
Ul(e,m) = Ey [k ()] + Y miky (0;) ———— (10)
— 1—(6:)
Proof: See Appendix. B

I shall use this representation of belief-dependent utilities to state the main asset pricing
result of this paper, contained in section 4. However, I will then restrict the analysis of the
properties of stock returns and interest rates as well as the empirical work to the case where
investors have constant relative risk aversion, that is, v (#) = 7 for all v € ©. This will allow
me to depart from standard state-independent preferences in only one dimension and hence it
will make it clearer the additional effects that one obtains when “aversion to state-uncertainty”

is introduced.



3 A Pure Exchange Economy

Let W be a Wiener process defined on a complete probability space (Q, PO F 0). I make the
following assumptions about the economy

Assumption 1: Real dividends evolve according to the stochastic differential equation

dD

where 6 (t) is unobservable and its dynamics is described below and op is a 1 X 2 constant

vector.

Assumption 2: 0 (t) follows a Markovian process defined on a finite set © = {6;}" ;. We
assume that for every 6;,0; € © there exists A;; such that in the infinitesimal interval A we
have:!

Pr(0(t+A) = 0,16 (1) = ;) = \yA

The infinitesimal generator A is such that [A],; = Ajj for @ # j and [A]; = =", Nij.

Assumption 2 makes the approach very convenient and allow us to obtain closed form
solutions for asset prices under rather general conditions on the process 0 (t). Although it
assumes that 6 (¢) can only take a finite number of values, the assumption leaves unspecified
the number of states. Hence, we can effectively approximate any continuous-time, continuous-
state stationary Markov process by choosing a sufficiently fine grid © = [01,609,...,6,] on
the real line and by carefully choosing the transition probabilities );;. Section 6 contains
one such example, where 6 (t) is assumed to follow a pure jump process with state-dependent
jump intensity. Approximations to other mean reverting processes such as Ornstein-Uhlenbeck

processes can also be implemented, by choosing appropriate tri-diagonal matrices.?

'In fact, Lemma 1 below also holds when © is countable and not only finite. Since in this case the set © could
be dense in the real line, it can approximate well a continuous-state model. I keep the set finite for convenience
in the asset pricing part of the paper, but I am confident that those results too readily extend to the case where

© is countable. I nonetheless leave the generalization to future work.
Indeed, it is known that even under a standard state-independent iso-elastic utility function it is not possible

to solve for prices in closed form when the underlying drift € (¢) follows a simple Ornstein-Uhlembeck process

(see e.g. Yan (1999) and Brennan and Xia (2001)). Numerical solutions must always be implemented. The
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Let investors’ subjective probability that the state is 8; at time ¢ given their past observation
of (D (7))!_, be denoted by
i (t) =Pr(0(t) = 0:|F (1))

Assuming that investors use Bayes law to update their beliefs, we have the following result:

Lemma 1: The probabilities 7; (¢) evolve according to the system of n stochastic differential

equations
dr; = [, dt + w0 (w) AW (12)
where
= 1 ~ 1 (dD dD

dW is a Wiener process defined on the probability space (€2, P,F) where F is the filtration
generated by dD/D.
Proof: See Liptser and Shyriaev (1974). B

I can also rewrite the original dividend process under the new filtration

dD —~
o = Hp () dt + o pdW (14)

where pp (m) = Y1 m;0;. Since the probabilities 7 (¢) are “known” to the investor at time
t and the information filtration generated by {D (¢)} is equivalent to the one generated by
{W (t)}, one can take the processes (12) and (14) as primitive of the analysis. However, the
interpretation of the state-variables 7 (t) = (71 (t),..., 7, (t)) as the time ¢t posterior distrib-
ution on the underlying unknown drift 6 (¢) is key to understand the next assumption about
investors’ preferences.

Assumption 3: As in section 2, the representative investor utility function is belief-

dependent and it has the following form?

n

Ule,t,m) =Y m; () u(c,tlf)) (15)

J=1

approach taken here offers a viable alternative, where the approximation is on the state-space and simple closed

form solutions can then be obtained.
3We could use the more general form as in (10) but it turns out it has no consequences on the price of assets.

In order to limit the amount of notation, we set ki (6) = 0.

11



where
01_7(9)

u(c, t|f) = e Pk (0) 0

(16)

This form nests the two possibilities of constant relative risk aversion (just set v (0) =
for all # € ©) and belief dependent relative risk aversion. In addition, setting k (6) = 1 for
all 6 yields the standard iso-elastic utility function. This assumption also further clarifies
the concept of “belief-dependent utility function” if we notice that investors know the level
of consumption today c(t) but they do not know under what “state” (#) was c(t) generated.
In this case, the heuristic idea of the model is that if the same level of consumption c(t) is
generated under different “regimes” (say, recessions or booms) then the investors will have
different levels of (cardinal) utility. However, investors do not know whether the economy is

in a boom or a recession itself and so his/her utility is belief-dependent.

3.1 Long-Term Risk Aversion and Habit Formation

One question that arises at this point is why should the utility function of an investor depend
on the (unknown) drift rate of dividends. For example, if the investor does not invest in the
stock, why should his/her utility be affected by his belief on the drift rate of dividends? To
better understand the set up proposed here, consider first the maximization problem of an

investor at time ¢ :

{E(Igi}((T)}Et Utoo U (c(s),m(s),s) ds} (17)

subject to the dynamic budget constraint

dP + Ddt

Az =7
(=5

+(1—2) rdt) — cdt (18)

where P (t) denotes the price of the asset and x (¢) the fraction of wealth invested in stock.

Notice that problem (17) subject to (18) given the dividend process (14) and the “state-
variables” (12) defined with respect to the filtered Brownian motion W obtained in (13) is
a rather standard problem. Inded, since markets are complete, it is known that optimal
consumption is given by

c(t) =Ty (Cx (1), 7 (1) ,1)

12



where Ty (., 7 (t),t) is the inverse of the marginal utility function U, (., 7,t), (is a constant
and x () is the state-price density defined by the interest rate and the return process in the
usual way (see e.g. Karatzas and Shreve (1998), Ch. 3.9). Hence, one can conjecture that the

optimal consumption will be an Ito’s process of the form

d _

f = pi, (t) dt + o (£) AW

where g, (t) and o, (t) are some (F-adapted) processes. At this point, we can use the defin-
ition of W in (13), that is dW = ot (dD/D — E[dD/D]) = o' (0 — pup (7)) dt + dW, and
substitute it back in the optimal consumption process to obtain

%: (@ (t)- 0+ B () dt + oo (£) AW (19)
where a (t) = o.(t)op" and B(t) = . (t) — pp (1) oc(t)op'. Equation (19) shows that
the drift rate of optimal consumption depends on the unobservable state variable @, over
which the investor has only a dispersed distribution 7 (t) = (71 (¢), ..., 7y (t)).* The notion of
state uncertainty now becomes more apparent: A rational agent who maximizes utility over
future consumption paths must recognize that the optimal drift rate of his/her consumption
is determined by the value of the (unobserved) drift of dividends (which affect the sequence of
innovations dW) It is for this reason that his/her utility may be belief-dependent: Changes
on the current belief on the drift rate of the (optimal) consumption process may change the
utility from consuming a given amount of consumption good.

To further the intuition it could be helpful to strike a parallel with habit formation models.

Consider the case where vy (0) = 7. Then, the instantaneous marginal utility of consumption

*Indeed, in equilibrium we must have that the optimal consumption follows the process
de " —~
— =) b +opdW
¢ i=1
which can then be rewritten as

%Z@-i—O’DdW

under the original Brownian motion W. Hence, a rational (representative) investors who can expect that ¢ = D
(because the good is perisheable) would also expect that the drift rate of his/her consumption be fully determined

by 0 alone.

13



is given by

Ue(c,t,m) = e 2By [k (0)] c(t)™” (20)

That is, for given consumption level ¢ (t) the marginal utility of consumption is time varying
where the time variation depends on the expectation Ey [k (0)] = > 7 m; (t) k (6;), which in
turn depends on past realizations of consumption (= dividends). This is a common feature
of external habit formation models: For example, the utility function postulated by Campbell

7s, 7 where

and Cochrane (1999) leads to a marginal utility function given by U, (¢, st) = ¢;
st = log ((¢t — Xt) /et) (the surplus) follows a slow mean reverting process that depends on
past realizations of consumption (here X; denotes the “habit” level). In their model a positive
innovation in current consumption ¢; leads to an increase in s; because consumption in now
further away from the habit, and hence a reduction in the marginal utility of consumption.
Since in the model outlined in Assumptions 1-2 a positive innovation in consumption increases
its expected drift rate po (m) = Ey¢[0], by postulating that k () is decreasing in 6 we obtain
that a positive innovation in consumption decreases E; [k (#)]. Hence, the model yields the
same intuitive implication as Campbell and Cochrane (1999) and, in general, external habit
formation models (see also Abel (1990)). However, the interpretation is different. While in
habit formation models good news in consumption decrease the marginal utility because they
increase the distance of current consumption from a slow moving “habit,” in my set-up positive
innovations in consumption reduce the marginal utility because the investor now expect even
better times for his/her future.
In addition, given assumption 3 with () =y > 1, we also have

n

Ul(c,t,m) =Y () k(6;) e

J=1

=

1—vy

Hence, if k (0) is also assumed convex, then a mean preserving spread on the distribution 7 (t)
decreases the belief dependent utility U (c,t,7) (recall that ¢!=7/(1 —+) < 0) thereby yielding
the aversion to state uncertainty characteristics. From (20) aversion to state-uncertainty also
leads to an increase in the marginal utility of consumption: in other words, during periods
of higher uncertainty about the drift rate of future dividends investors value of one unit of

current consumption more. Since I argued above that uncertainty on 8 implies uncertainty on

14



the drift rate of the investor’s optimal consumption path, one can term the aversion to state
uncertainty more intuitively as “aversion to long-term risk,” that is, to the dispersion of the
average path of optimal consumption.

To summarize, I make the following assumption:

Assumption 4: The function k () is positive, monotonically decreasing and convex and
such > | 7k (#;) = 1 where T is the unconditional distribution on © implied by the matrix

A. If it does not exist (e.g. A =0) then 7 = 7 (0), investors’ prior at time ¢ = 0.

Before turning to the asset pricing implications, it is important to remark that this type of
utility function takes the posterior probabilities as given: The signals that investors receive are
outside their own control. In particular, the choice of the consumption plans does not affect

per se the evolution of the investors’ posterior distribution on the state of the economy.

4 Equilibrium Asset Prices

In this section I characterize asset prices under a rational expectation equilibrium defined as

follows:

Definition: A Rational Ezpectations Equilibrium is given by a set of prices P (t), con-
sumption ¢ (t), asset allocation x (t) such that investors solve the intertemporal maximization
problem (17) subject to (18) and the market clearing conditions are satisfied, i.e. D (t) = ¢ (t)
and z (t) = 1.

For comparison with later results, it is useful to first find the value of stocks under the
stronger assumption of belief independent utility functions.
Proposition 3: Let the utility be belief-independent, that is, U (c,t,7) = U (¢, t) =

1—y
e_¢tlc . Then: (a) The stock price is given by
-7

with



where A = A + (1 — ) diag (01,...,0,) — 37 (1 —7) 0% and e; is the i-th row of the identity
matrix.

(b) The real rate of interest is
= 1
P () = 6+ 7D M (1)6: — 2y (1+) 0 (23)
i=1
Proof: Special case of Proposition 4. See also Veronesi (2000). B

A few comments are in order: First, for v > 1 we typically have that B}, are decreasing with
k, i.e. a higher growth rate of the economy is associated with a lower price-dividend ratio.’
This effect stems from the interplay of income and substitution effect for the power utility case.
A low growth rate of dividends implies that future consumption is lower than today and hence
the desire to smooth consumption make investor increase their savings and hence demand for

assets. This pushes the real rate down and the price of stocks high.

To state my main result, I need a last piece of notation that will be used in the propositions

below. For all i =1,...,n let

X = A + diag (5?, En) (24)
with
~j 1
9j =(1—19,)0; - ) (1=1,) %’Ug (25)

and where 7; = 7 (6;). The following is my main result.%

Proposition 4: For each k = 1,...,n and for given 7 (t) ,c(t) let

71'* c _ k’i’ﬂ'l’ (t)C(t)irYi 2%
S S ORI )
1 & —\ 1,

>This is not absolutely true and depends on the transition probabilities Aij. However, this holds under the

assumptions made in section 6, where the model is taken to the data. See also Figure 1.
% Along the lines of the proof of Proposition 4, it is equally possible to obtain closed form solutions for bond

prices of any maturity. In the interest of space, I omit the formulas in this case and leave the investigation of

bond returns and the term-structure of interest rates under belief-dependent utilities to future work.
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with k’l =k (91) Then:

(a) the price of the asset is

P(t)=D(t) iﬂf () Bi (28)
(b) The real rate of interest is o
AU S TPV E S o1 PHCRIPE I e e Yot B
i=1 i=1 j=1
where .
Ci (0) = Zl /\jiZ—;C” o

Proof: See Appendix B

These asset pricing formulas have a number of properties that I discuss in the next few
pages. In the sequel, I will refer to the constants B;’s appearing in (27) as conditional price-
dividend ratios, because each of them is the price-dividend ratio that would occur at time t
if there was perfect certainty on the underlying state. Indeed, from (26) we see immediately
that if 7; (t) = 1 for some 4, then 7} (¢) = 1 and hence P (t) /D (t) = B,. In addition, a “*” on
an expectation operator E; (.) implies that the expectation is computed using the distribution

(26) rather than  (¢).

I point out immediately two properties stemming from proposition 4: First of all, suppose
that the state 6(t) was constant and known equal to 6 (i.e. m; = 1 and A\g; = 0 for all j),
then the formulas (28) and (29) reduce to

D ()
P(t) =
Sy RV RN R, pogee
D
=T

1
ro o= ¢+7k9k—§7k(1+7k)‘73

Hence, perfect certainty reduces the model to the usual Lucas (1978) model, where the risk
premium is simply given by yo2. This emphasizes that the main implications of the belief-
dependent utility function specification stem from the very uncertainty of investors on the true

drift rate of dividends.
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Second, if we let k() = k = 1 and 7; = 7; = 7 we obtain 7} = 7; and hence we obtain
back the price Pg and the interest rate r as in Proposition 3. As already commented, all the
implications of this asset pricing formula have been detailed in Veronesi (2000).

I now turn to the implications of Proposition 4 in the two cases of constant and belief-

dependent coeflicient of relative risk aversion.

5 Asset Prices and Returns under CRRA

In this paper I only concentrate on the case where the relative risk aversion is constant. As we
will see below, this gives already many interesting results that are then easier to interpret if 1
depart from the standard state-independent utility framework only in one dimension. I leave

the study of returns under belief-dependent risk aversion to future work.

5.1 Asset Prices

In the case of constant relative risk aversion, we have 7, = 7; = 7 and hence we obtain the

following corollary to Proposition 4.

Corollary 1: Let v; = v; = so that now

. ki (t)
RACES Sy (30)
BZ' = k‘iz ; kjej <¢I—K,) - e; (31)

i=1
(b) The interest rate is given by
- * 1 - * *
r(t) = ¢+v) 7 (t)Qz'—gv(VJrl)Uz—Zﬁj(t)Cj (33)
i=1 j=1
= rp(t)+2Vu - 7 (1) C; (34)
j=1
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where 7 (t) is given in (23) and C} =37, %)\ji and

Sy ki (0= S35 w05 )

Vo = ST ik (35)
— BB (36)

The effect of a belief-dependent utility function shows itself in two terms in the pricing
function (32) compared to the benchmark case (21): First, it affects the “conditional price-
dividend ratios” B; as it can be seen by comparing (31) with (22). Intuitively, from (20)
the current marginal utility of consumption is now belief-dependent. Hence, even when we
condition on a particular state (i.e. we set m; = 1 for some 7), the state-dependent marginal
utility affects the comparison between current and future marginal utilities, thereby affecting
the conditional price-dividend ratio B;. Second, when 7 (¢) is a non-degenerate distribution,
the conditional price-dividend ratios B; are weighted by the probability distribution 7} (t)
rather than the original 7 (¢). Intuitively, the probabilities 7} (t) are now adjusted for the
impact that each state 6; has on the marginal utility of consumption, namely for k;. In other
words, if k; > kj, then 77 (t) becomes relatively bigger than 7} (¢): Stock prices now reflect
more those states characterized by higher marginal utility of consumption.

Turning to part (b) of the corollary, we find that also the interest rate is affected by the

state-dependent utility function formulation. Specifically, the term

Vi = Ef 0] — Ey [0]

directly enters into the formula, where a “*”

denotes an expectation taken with respect to the
distribution 7* (¢). This term will play an important role also in the expected return formula
for stocks. Intuitively, Vi; measures two important components of the belief-dependent utility
function formulation: First, the behavior of the function & (6) (i.e. the degree by which various
states are pulled apart) and second the extent of the “uncertainty” contained in the posterior
distribution 7 (¢). In fact, we can readily see that Viy = 0 if either k(0) = k for all 6 or if

m; (t) = 1 for some i. In order to characterize V7 further, I need to use the assumption that

k (0) is decreasing and convex, as in assumption 4. We then have the following;:
Lemma 2: Let Assumption 4 hold.
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(a) If 7 (t) is a non-degenerate distribution, then Vi < 0;

(b) Let k(A) = k(0) x (6 —6y). If & (§) <0, then a mean preserving spread on the distrib-

ution 7 (t) decreases Viy.

Proof: See Appendix. B
We then have the following implications:

Corollary 3: Let Assumption 4 hold.

(a) For non-degenerate probability distributions, the real rate of interest is always lower than

the benchmark interest rate. That is, Viy < 0 and %, 7} (t) C5 > 0.

(b) Let k() = k(0)(0 — 61). If K (#) < 0 and there are no regime shifts (A\;; = 0 for
all 4,7), then higher uncertainty decreases the real rate of interest. That is, if 7 is a

mean-preserving spread of 7, then 7 (t) < r (¢).

Proof: Immediate from Lemma 3. B

Part (a) of the corollary shows that belief-dependent utility generates lower interest rates
compared to the usual Lucas economy implication. This effect goes in the direction of weak-
ening the risk-free rate puzzle (the interest rate being too high for high levels of risk aversion).
The reason why higher uncertainty generates lower interest rates is intuitive: With a belief-
dependent utility function higher uncertainty increases the volatility of future marginal utility
of consumption, thereby increasing the demand for bonds to at least reduce the variability of
future consumption. The second term Z?:l T (t) C7 also goes in the proper direction to lower
interest rates, and the effect stems now from the term C7 = oy llz_;)‘ji' Since Aj; gives the
probability of moving from state 6; to a different state 0; characterized by the marginal utility
weight k (6;), this forecasted probability to move to different marginal utility level make again
the investor increase his/her demand for bonds to decrease the fluctuations in consumption.
Indeed, if we set k (6) = k for all 6, then we have C7 =0 for all j, eliminating this effect.

Part (b) of Corollary 3 shows that if & (#) has sufficient curvature, then increases in un-

certainty lower the real rate of interest when the underlying unobservable drift 6 (¢) is in fact
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constant. The latter assumption is very loose, and the same can happen when 6 (¢t) moves over
time as in Assumption 2 but whether this occurs or not should be studied on a case-by-case

basis.

5.2 Stock Returns

Define first the following quantity, that will be important below:

>icy kiBimi (91' — i1 773'99')

Ve =
” S kB,

The subscript “B” in Vp is mnemonic for “benchmark”: This quantity was introduced in
Veronesi (2000) which is the benchmark case with state independent utility, with the only
important caveat that in that case k; = k = 1, a constant. Once again, as V7 introduced in
(35) in the previous section, the quantity Vp is sensitive to the dispersion of beliefs 7 (¢), being
equal to zero when 7; (t) = 1 for some 7. Additionally, it is sensitive to the dispersion of the
conditional price-dividend ratios B; weighted now by k;. For example, if k(§) = k = 1 and
v =1 (i.e. log utility), then B; = B; and Vg = 0. For later reference, notice that as in Lemma
3, if k; B; is decreasing in ¢, then Vg < 0. This is typically the case in the benchmark case when
v > land k () = k, as I already mentioned in the previous section (see Proposition 3). In the
case of belief-dependent utility, whether Vg > 0 or Vg < 0 depends on the parametrization of

the model.

Let us denote the excess return as

_ dP+Ddt

d
R P

rdt
I then obtain the following result:
Proposition 5: (a) The excess return dR follows the process

dR = pupdt + o rdW

with
nr =7 (0% + Vi = Vo) = Vi (1+ 53, (Vs — V) (37)
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UR:UD+hD(VB_VU) (38)

where hp = 1/0p.

(b) The risk-free rate evolves according to the process
dr = p,, (z) dt + o (1) dW (39)
where p,. is given in the appendix and
e 7) = 1l (Vs ) = (6 37 (v 1)02) o, (40

where

_ > Oim (91' -2 7Tj9j)

Vr = -
Y i1 mi (1) O

and C] = k;0; — C.
Proof: See Appendix. B

From the above formulas, it is clear that returns are characterize mainly by the quantity
VB — Vir. Before interpreting the results, recall that under Assumption 4, Lemma 2 shows that
Vu < 0. However, the same assumption may imply that k;B; is also decreasing, which would
lead to Vg < 0. In this case it is hard to gauge whether (Vi — Vj;) is positive or negative.
However, the next result shows that if we have that the conditional price-dividend ratio B; is
increasing in #;, then we can sign unambiguously (Vg — V). As we shall see in Section 6, an

increasing conditional price-dividend ratio is to be expected for most parameter values.

Lemma 3: Let k (0) be decreasing in 6 and B; increasing in #;. Then Vg — Vi > 0.
Proof. See the appendix. B

Equation (37) shows that the expected excess returns with belief-dependent utility are
affected by the two measures Vi and Vg, which for given posterior distribution 7 (t) =
(m1(t), ..., (t)), measure the extent of aversion to state uncertainty (V7) and its effect on
the conditional price-dividend ratios (V). In case of perfect certainty, then both Vi = Vg =0
and we have the usual result that the instantaneous expected returns are equal to 70%. Un-

certainty with a high degree of uncertainty aversion makes Vyy < 0 and Vg — Viy > 0, which
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increase the expected return substantially. From (38), the same effect increases the volatility
of stock returns. Recall from the previous section (equation (34)) that the same assumption
entails a lower interest rate with respect to the standard case. Finally, from (40) we see that
the volatility of the interest rate is affected by state-uncertainty. The quantity V,. has the same
form as the other Viy and V. However, it is difficult to say whether the volatility of interest
rates decreases or not with uncertainty aversion, because the form of C} is rather complex.
Rather than commenting further these formulas, I now turn the empirical implications,

calibration and estimation for a tightly parametrized version of the model discussed so far.

6 Empirical Implications

In this section I specialize the model for dividends (consumption) to a very parsimonious set-up
which also yields simple formulas for the conditional price-dividend ratios B;. Together with
next subsection where an empirical analysis of the model for consumption is carried out, this
section also demonstrates the flexibility of the approach of discretizing the state-space, as in
Assumption 2 in Section 3. Indeed, this assumption not only makes it possible to obtain closed
form solutions for asset prices, but it also makes it relatively easy to implement the model
from an econometric standpoint.

Suppose for example that the drift rate of dividends (consumption) follows the pure jump

process

do, = (J;, — 0,) dQP®)

where dQ} @) denotes the increment of a Poisson process with intensity p(6;) and J; is a
random variable with any density f (/).” We can transform this process into a process satisfying
Assumption 2 as follows: Let us first select a fine grid © = [4, ..,0,,] with boundaries #; and 6,,
chosen such that P (J; < 01) = P (J; > 0,) ~ 0. Given the grid ©, let us also define p; = p (6;)
and f; = F(0; + h/2) — F (0; — h/2), where h is the interval size of the grid and F'(.) is the
cumulative distribution on f(.).. Finally, one can then obtain the n x n infinitesimal matrix

A as \ij = p;ifj for j # i and A\;; = p;fi — pi. In this case we have the following corollary:

"See Veronesi (2000) and Timmerman (2001) for similar models applied to stock prices.
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Corollary 5: Let \;; = p;f; for j # i and A\;; = p; fi — pi. Define the two constants
n n
m=3 P g, =y P
= o+ 0 +p ¢+ 0;+p;
where 0; = (1—7)0; — 3 (1 —v)yo2. Then, forall i =1,...,n:
1—Hy+ %Hl
(¢+pi+(1=7)0:—5(1—)702) (1~ Ha)
Proof: See Appendix. B

Notice that if k; = 1 for all ¢ (i.e., no belief dependent utility), then the price dividend ratio
conditional on state ¢ is decreasing with #; unless also p; is increasing with ¢. This is due to
the well-known wealth effect for power utility functions. The function k; that enters into the
utility function U (c,m) = Y°_; mikict~7/ (1 — ) has the effect of increasing the conditional
price-dividend ratio B; as ; increases as long as p; > 0.8

Before describing further the properties of the conditional price-dividend ratios B;, I need
to specify the form of the function k; = k (6;) which determines the time variation in marginal
utility as the distribution 7 (¢) change and the form of the distribution f = (fi, ..., f) from
which new drifts are chosen if a jump arrives. In addition, we must also bound above and
below the possible drifts rates 8 to ensure that all the expectations that lead to the pricing
formula (32) actually exist.

I start from the form of f = (fi,..., fn) and choose f as the discretization of a normal

distribution on the fine grid © = [0y, ..., 0,,] of possible drifts. That is, let

f /eﬁ% 1~k a—pw?
A

e e [} d{L’ 41
917% V2moy ( )

In the calibration I will set ¢« = 0.0195 which is the unconditional annual consumption growth

in the data I use below, while oy = .01, that is, new drifts would be chosen in the interval

[—.0005,.0395] with 95% probability. I also set the boundaries of ; and 6,, so that f; and

®Indeed, even in the more general case (27) we can see that if \;; = O for all 4j, then the form of the
conditional price-dividend ratios B; collapses to the one with state independent utilities. However, this does
not imply that uncertainty has no effect on returns, volatility or interest rates themselves. As it is clear from

(37)-(38), we still have Vg < 0 and Viy < 0 generating some action on returns and interest rates.
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fn < 1le®. In the results below I shall assume p; = p, a constant, which I vary between p = .1
(a shift every ten years) and p = .2 (a shift every five year) to check how results depend on
the probability of shifting away from a particular state. I also set 0. = 0.0165, which is the
annual volatility of consumption growth. Finally, to approximate well the interval between 6,
and 6,, without losing in numerical efficiency, I choose n = 200.

Turning to the function k (), I choose a simple parametrization of the function k (0),
specifically:

k@) =Fx (01 +1+6)"

where £ is set so that the unconditional expected k (#) equals one, that is k = 1/ S fi(r+14+0)7").
This specific form ensures that & (0) > 0 for every § € © as required by the characterization

in Section 2.2. The parameter p defines the curvature of k(#). p = 0 corresponds to the
state-independent utility function investigated in Veronesi (2000) which will help making com-

parisons. Figure 1 plots the conditional price-dividend ratios B; for the parameters p = .1,

¢ = .025, 09 = .01, p = .0195, 0. = .0165 and v = 2 and for three values of p = 0,10, 20.

We can see that as the aversion to state uncertainty increases, the conditional price-dividend

ratio moves from being negatively sloped with respect to 6; to being positively sloped. Hence,

increases in consumption growth would reduce the price-dividend ratio in the base case p =0

but it would increase it for p = 20.

Table 1 below shows the effect of belief-dependent utilities on expected returns, the interest
rate level and their volatilities.” In the calibration, investors’ posterior distribution 7 (¢) is also
assumed normal as in (41) with center ;1 = 0.0195, but I vary its dispersion, call it o, between
or = .01 and o, = .005 to show the effect of higher or lower uncertainty. Notice in the table
that negative entries for the “volatility” simply imply a negative correlation with consumption
growth.

First of all, consider the results for p = 0: This corresponds to set-up also studied in
Veronesi (2000) and may set the benchmark. In all cases, we see that as the coefficient of risk

aversion <y increases, the equity premium first increases but then decreases turning negative

9The reported numbers are obtained using the formulas for expected returns, volatilities and interest rates

obtained in closed form in the previous section. Monte Carlo simulations confirmed the results in the table.
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for high levels of y. Similarly, the level of volatility is first decreasing and then increasing in v,
when equilibrium returns become negatively correlated with consumption growth. Both these
effects are due to the well-known wealth effect of the power utility function: When investors
do not know the growth rate of dividends, they learn about it thereby inducing a positive
(instantaneous) autocovariance in their expected growth rate of consumption. As it is well
known (see e.g. Campbell (2000)), as we increase the coefficient of risk aversion, the increase
in the desire to smooth consumption make investors dump stocks when they obtain good news
on dividends and buy stock when they obtain bad news about dividends. This generate a weak
or even negative covariance between returns and consumption growth, thereby yielding the low
or even negative risk-premia.

In the following, I will fix the coefficient of risk aversion v = 2, so that the elasticity of
intertemporal substitution is about .5, as many studies show. We can now see that as we
increase p, i.e. the curvature in k () that measures the “aversion to state-uncertainty,” the
equity premium increases, the volatility of stock returns increases, the risk-free rate decreases
but its volatility level is U-shaped. So, for example, in case I where p = .2 and o, = .01 we
find that for p = 0 we have FE [R] = .03%, og = 3%, r = 3.46% and o, = .003, while the
numbers become E [R] = 8.1%, or = 24%, r = 5.3% and o, = —.05 for p = 50. We can also
see that decreasing the frequency of shifts to p = .1 (case II) we obtain a lower equity premium
of 6.2%, a lower volatility 18.7%, the same interest rate but with higher interest rate volatility
or = —.019% (but lower in absolute value). Decreasing the dispersion o of the distribution
7 (t) has also similar effects (case III and IV): Both the equity premium and the volatility

decline, the interest rate decreases but its volatility increases (but decreases in absolute value).

6.1 Fitting Real Consumption Data

In this section I estimate the simple model in the previous section using quarterly data on
real consumption growth from 1946-1999. Consumption data are from the NIPA tables and
include only non-durables and services. Nominal per-capita data have been deflated using

the CPI index. Estimates are obtained by Maximum Likelihood by applying standard regime
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switching methods to the “discretized” model discussed above.'?:!! The results are reported in
Table 2. To gain in estimation efficiency, the mean p of the jump distribution f ~ N (;L, (rg)
has been set equal to the long-run mean consumption growth.!?

Table 2 shows that the (annualized) switching probability p = 0.1816, implying a “jump”
every five years approximately. This is quite in line with the average length of a boom and
recession. The annualized volatility of consumption growth has been estimated at 0. = 0.0134,
slightly below to the sample standard deviation of consumption growth, which is equal to
0.0165. Of course, this is to be expected when there are jumps in the drift as part of the
variability of consumption is now captured by the jumps themselves. Finally, we see from Table
2 that if a “jump” occurs, the new drift is chosen according with the distribution f ~ N (u, O'g)
with op = 0.0533. This is a rather large value which implies that given the average growth
rate of consumption equal to g = 0.0195 the new drift is in the range [—.0871,0.1261] with
probability 95%. Figure 2 plots the density distribution. Although such a wide range in the
stationary distribution of the drift parameters is probably due to the first few years in the
sample, they still indicate that a somewhat large “uncertainty” may ensue due to “jumps” in
the drift rate of consumption. Notice also that the parameter oy is significant at the 5% level,

even after correcting the standard errors for heteroskedasticity and autocorrelation. Finally, it

Y Compared to standard regime switching models as in Hamilton (1989), discretizing the state-space with a
large number of states makes it more “likely” the need to deal with the singularities. The Likelihood function
tends to 400 as p — 1 or 9 — 0. As recommended in the literature (see Hamilton (1994)), these problems
are typically avoided by restricting the parameters to lie in a compact set that does not include the singular

point.
1T should notice that the model described in this paper is set in continuous time, while the econometric

methodology is set in discrete time. I acknoledge that a bias may result in the estimates, but keep nontheless
the present approach for simplicity. In addition, the main point is to show how uncertainty changes over time
and how this affects asset prices because of “uncertainty aversion.” I am confident that using continuous time
estimation methods to correct for the bias would result in second order implications for the empirical results

described below.
12T also estimated the full model including the mean g of the distribution f. The estimates of the other

parameters were very similar to the ones obtained in Table 2, while 4 = —0.0025 (annualized) was found to
be not significant (t-stat around 2). The same implications about stock returns and prices were obtained as in

Table 3 by assuming the higher discount rate ¢ = 0.06.
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is known indeed that consumption growth was much more variable and volatile for the pre-war
sample, which unfortunately is not available at the quarterly frequency. However, if agents
used past data to determine the jump distribution f, they would have probably estimated a
distribution even more dispersed than the one I obtained.

Figure 3 reports the evolution of the posterior distribution 7 (t) = (w1 (t), ..., 7y (t)) from
1946-1999.13 It is rather interesting to note the wide fluctuations in the dispersion of the
posterior distribution over time. The intuition is rather simple: When a jump occurs (or
agents believe it occurred) it takes some time to learn the new drift. During this period of
time the posterior distribution widens. This effect is even more evident in Figure 4, which
plots the time series of mean drift rate E'[0] = > 7" | m; (t)0; (panel A) and the root mean
square error of agents distribution RMSE = \/V () where V (§) = E (0%) — (E (0)2) (Panel
(B)). The figure clearly shows a high variability of expected drift in the first two years of the
sample accompanied by a high root MSE. The “uncertainty” decreased in the 50s and 60s but
recovered in the 70s and especially the beginning of the 80s. Higher uncertainty was again
realized in the 90s. It is to this uncertainty that the agents in the economy are averse to.

Given the estimated parameters for the underlying consumption process, we need to assess
the size of the equity risk premium, volatility, risk-free rate and its volatility. By choosing the
parameter values p = 10, v = 1.8 and ¢ = 0.04 I obtained the unconditional moments for stock
returns and interest rate as reported in Table 3. The expected excess return is about 5.26%,
slightly below the equity premium in actual data of about 6.8%, while the fitted value of the
volatility is about 17.7%, which is slightly above the actual value of 15.96%. The average level
of the interest rate is about 1.2%, which is rather close to the standard 2% level considered
“reasonable,” although the volatility of (changes) in interest rates is about 0.0557, which is

somewhat above the realized one of 0.0226.

13 Given the discretization methodology used to estimate the model, the posterior distribution can be computed

easily by Bayes law (see e.g. Hamilton (1989)):

e~ Tz At =00 [ () £]

(3

T (t + 1) = P}
Z;:l e—ﬁg(AC(tﬂ)—aj) 7 (t) AL-
where Ac(¢) =1In(c(t+1)) — In(c(t)) is the real consumption growth and A is now the transition probability

matrix for the discrete time case.
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To emphasize the model ability to match also conditional moments, Figures 5 plots the
actual ex-post stock return volatility from 1946 to 1999 and the one implied by the model from
consumption data. The ex-post volatility is computed as the standard deviation of daily stock
returns in the relevant quarter while the model volatility is the one implied by formula (38)
for the posterior probability 7 (¢) in the same quarter. Clearly, the model overpredicted the
volatility at the beginning of the sample and underpredicted the volatility at the end of the
sample. However, over the 50 years of sample, the volatility moved in a similar fashion as the
one in the data. Figure 6 plots the time series of price-dividend ratios implied by the model.
Although the match is not as good as in the case of volatility, I notice that the model generated
price-dividend ratio has the same dispersion (at least until the mid 90s) of the realized one
as it fluctuate between 15 and 42. One of the problems with this price-dividend ratio as is
evident from the plot is that it is too variable compared to the realized one. It turns out that
this is due to the rather high value of the jump probability p (= .1816). As p moves closer to

0.1, the match of the price-dividend ratio improves substantially.

7 Conclusions

In this article I re-interpreted standard axioms in the theory of choice delivering a state-
dependent utility in order to give a foundation to a “belief-dependent” utility function, that is, a
utility function representing preferences such that changes in subjective beliefs on an underlying
state generate changes in preference orderings over prizes. I show that this interpretation
naturally leads to a notion of “aversion to state-uncertainty” and then characterized the (belief-
dependent) utility functions displaying constant relative and absolute risk aversion. Since
posterior probabilities enter linearly in the utility function, this approach is particularly useful
to study dynamic systems where agents update their subjective probability distribution on a
an external state (which they cannot control).

In an exchange economy where the “state” is the underlying drift rate of the economy, I argue
that aversion to state uncertainty can be naturally interpreted as aversion to long run risk. This
is because the drift rate of consumption is responsible for the long-term average consumption

path. As a consequence, an “uncertainty averse” investor is averse to the dispersion of long-
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term average consumption paths. In other words, while “risk aversion” applies to the local
volatility of consumption, “uncertainty aversion” applies also to the dispersion of drifts, which
by their own nature have a longer term connotation.

In this set up, 1 obtain closed form solutions for asset prices. Specifically, I obtained
interpretable formulas for stock returns and interest rates, showing that higher uncertainty
tends to raise the equity premium and the average volatility, decrease the interest rate and
generate volatility clustering. The reason for this behavior is that uncertainty changes the
marginal utility of investors (for given coefficient of relative risk aversion), making stock returns
react more to news on consumption. This increases the equity premium and the demand for the
risk-free asset (which decreases the interest rate). I finally show that a simple and parsimonious
parametrization of the model makes it possible to match the unconditional first and second
moments of stock returns and the risk-free rate. In addition, when fitted to real consumption
data, I show that posterior distributions contain a good deal of uncertainty on the current
drift of consumption, a finding which strengthen the notion that investors may be “averse” to
this dispersion. I also show that the time-series of model-generated conditional volatility and
price-dividend ratios are broadly consistent with the ones observed in the data.

A final remark is in order: The asset pricing model presented in the previous pages assumes
that the “state” is the drift rate of consumption for the economy. The model can be readily
extended to account for many other sources of uncertainty, such as inflation rates or political
outcomes. The key ingredient to solve the model is that probabilities update in a linear fash-
ion if the underlying environment is Markovian. Hence, computing expectations is relatively
simple. Other potentially interesting applications of the set-up proposed in this article are left

for future research.
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9 Appendix A: Axiomatic Foundation of State-dependent Util-
ity

I start by introducing some notation: For every finite set Z, let A (Z) be the set of probability

distributions over Z, that is

A(Z)=14q:Z—=R?Y q(y)=1and q(y) >0

Let C be the set of possible prizes (= consequences = consumption) the decision maker could
get. Let © be the set of possible states. I define a lottery to be any function f that specifies a
nonnegative real number f (c|0) for every ¢ € C and for every 6 € ©, such that )" .. f (c[d) = 1.
That is

L=1{f:0-A@C)}

I will denote by [c] the lotteries giving probability one to the prize ¢ € C.

I will assume that conditional on each event S € O, the agent will be able to rank lotteries
conditional on the event S being true. That is, given any two lotteries f and g € L, I will
denote f =g g to mean that the agent strictly prefers the lottery f to the lottery g if the event
S were true. Similarly, f =g g denotes weak preference. I will denote = the set of all events in
0.

Finally, for every two lotteries f and g and scalar a € [0,1] I will denote by fag = af +
(1 — @) g the lottery assigning probability a.f (¢|f)+ (1 — «) g (¢|f) to every ¢ € C and for every
0 cO.

The following are Myerson (1991) axioms

Axiom 1.1: (a- Completeness) f =g gor g =g f and (b - Transitivity) f =g gand g =g h
then f >g h.

Axiom 1.2: (Relevance) If f(.|0) = ¢ (.|0) for all § € S, then f ~g g.

Axiom 1.3: (Monotonicity) If f =g h and 0 < 3 < a <1, then fah =g fSh.

Axiom 1.4: (Continuity) If f »=g g and g =g h, then there exists a € [0, 1] such that
fah~gg.

Axiom 1.5: (a - Objective Substitution) If e =g f and g =g h and a € [0,1], then
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eag =g fah. (b - Strict Objective Substitution) If e =g f and g =g h and «a € (0, 1], then
eag =g fah.

Axiom 1.6: (a - Subjective Substitution) If f =g g and f »=p g and SNT = &, then
f =sur g; (b - Strict Subjective Substitution) If f >g g and f =7 g and SNT = &, then
[ =sur g;

Axiom 1.7: (Interest) For every state in # € ©, there exist prizes y and z such that
] =0 []

Before stating the representation theorem, I need the following definition:

Definition: A Conditional Probability Function on O is any function 7 : = — A (0) such
that for every S € Z, 7 (.|9) is a well defined probability function, such that = (0|S) = 0 if
6 ¢S and ) yoqm(0)S)=1.

The following representation theorem is proved by Myerson (1991), among others.

Theorem 1: Axioms 1.1 - 1.7 are satisfied if and only if there exists a utility function
u:C x © — R and a conditional probability function 7 : 2 — A (©) such that

(I) maxcec u (c,0) =1 and mineccu (c,0) =0

(IT) For all R,S,T such that RC S CT C © and S # & we have
7w (R|T) =m (R|S) 7 (S|T)
(III) For all f,g € L and for all S € = we have

frsge= Y m(01S)Y  f(clf)u(cld) > w(01S))  g(clo)u(clo) (42)

9cS ceC e ceC

Proof: See Myerson (1991). W

For completeness, 1 also state the axiom that provides state-independent utility functions
and the representation theorem:

Axiom 1.8: (State Neutrality) For every two states 6 and ¢', if f(.|0) = f (.|¢'), g (.|0) =
g (.|¢') and f =g g then f =y g.

In this case, we have the following:

Theorem 2: Axioms 1.1 - 1.8 are satisfies if an only if there exists a utility function
u : C — R and a conditional probability function 7 : = — A (©) such that (I) and (II) in

Theorem 1 are satisfied and in addition
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(IV) For all f,g € L and for all S € E we have

Frsge ) m(019)Y f(edf)ulc) =) n(6]5) g(clo)ulc)

0cS ceC 0cS ceC

Proof: See Myerson (1991). W

One important caveat is that the representation (42) is not unique in the sense that also a
conditional probability system 7 (.|.) and a state dependent utility function @ (.|.) represents
the same conditional preferences over lotteries if (and only if) there exists a positive number

A and a function B : S — R such that
7 (0)S)u(c|f) = Am (0]S) u (c|0) + B ()

(see Myerson (1991, Theorem 1.2)). However, Skiadas (1997) provides a set of axioms able to
uniquely identify the conditional probability and the state-dependent utility function (see his
Theorem 1, point (a) for a representation as in (42) and point (b) for the uniqueness of the

probability and utility representation).

10 Appendix B: Proofs of Propositions

Proof of Proposition 1: (a) Using the definition we have

O*U (¢e,m) _A8U (c,m)
oz dc

Since U (¢, 7) = > pce U (c|@) w (0) we have

(43)

oU (e, ) ZW 0) ou (c|f)

dc 5 oc
ou (e,m) 0%u (c|f)
Oc N 29: ™ (6) Oc?

Hence, we can rewrite (43)

2u C u\lc
> 0) (ol 42 o

0

This is true for all 7 (6) if and only if
0%u (c|f) _A(?u (c|0)

oc? Oc
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This is simple second order differential equation, whose solution is
w(clf) = ky (0) + ko () e=4¢

(b) Using the definition we have

2
_Ca U (e,m)

oU (c, )
!

- Oc

Hence, (44) can be rewritten

>0 (24ehn + S50 =

0

Since this must hold for all 8, we must have

Ou (c|f) O*u(cl)
A

Let V (c|f) = aLécw—) so that

c Y

oV () _ V()

oc c

The solution to this differential equation is
V(c|0) =ka(0)c

Hence, integrating V (c|f) over ¢ we obtain

k k =
U(clo) = v |
k1 (0) + ko (0)In(c) if ~=

|
Proof of Proposition 2: From the proof of proposition 1 (b) it is immediate to see that

we could let v be function of 0, i.e. 7 = v (0), obtaining the representation

ey =4 O +ROSE i 10 #1

k1 (0) 4+ ko (0)In(c) if ~(0)=1

Proof of Proposition 4. To prove this proposition, I need the following lemma first:
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Lemma 2: Let n; = ¢®nm; and define the matrix K/g =

A + diag (9?, ...,eg) with 07 = 36; + 13 (8 — 1) 2. Then for u > t we have

B [ni (w) |F (8)] = 3 e () D _w (B) wig (8) e @0

where w; () are the eigenvalues of Klﬁ and w; () are associated eigenvectors and w (3);;} =

ij
(Wi
Proof of Lemma 2: By Ito’s lemma
dn;, = Pdr;+ 3" ride + %B (B-1) P 2de? + B’ Ldmde
= A rA];dt + FPriocidW + BE  micp (x) dt + B’ 'micocdW

1
+§5 (B—-1) 772'6672020% + BcP o, (m) ocdt

= { A+ i () + 535 = 1) 0% + i () rc |

+n; (o; (7)) + 0¢) dW

where n = (n1, ...,ny). Notice that by Lemma 1:

n n
1
0'2'(71')0'0: 91'— E 71']'9]' EXO_C:Qi_ E 71']'9]'
=1 =1

Hence

dn; = {[nA]l + %ﬁz (B; — 1) no? + anlﬁz} dt +n; (0 (7) + o¢) AW

We can write this in vector form: let n = (ny,...,ny) be a 1 x N vector, we then have

dn = nAdt +nX (1) AW (45)
where

Ag = A + diag (9?, ...,Hﬁ)

n

00 = 36+ 56(5 1) o2

and X (7) is some bounded n x 1 vector.
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We can write (45) in integral form

n (u) :n(t)+/tun(s)K/gds—{—[un(s)E(W(s))dW(s)

Taking expectations on both sides and using the fact that the stochastic integral has zero

expectations, we then have
U
A (w) = n (t) +/ 7 (s) Ksds
t
This can we rewritten as

dn = nAgdt

The solution to this system of ordinary differential equations with initial condition 7 (t) = n (t)
is

N N
i () =Y g (1) Y w (B)7 wig () 2P0
k=1

J=1

where w; () are the eigenvalues of K?; and w;; () are associated eigenvectors and w (5);1 =

[W=1;;. This concludes the proof of the lemma.l

Proof of proposition 4: Since the good is perishable, it is always suboptimal to consume
less than D (t) and consuming more is not feasible. Hence, we can impose the market clearing
condition that ¢ (¢) = D (t) for all ¢ > 0. Usual arguments imply that we can use the marginal
utility of consumption to discount future consumption. For notational convenience, let me
write ; = v (0;) and k; = k (0;) . Hence, the price of an asset must satisfy

P = B[ RGP

/ _¢Sch ) i ( )D(s)ds]
/‘ —ME:kc )i (s )d%

1
ACOREA0)

1
Ue[C (1), 1,7 ()]

t

The consumption process follow
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where po (1) = Z?:l m;0; and 0 = op. Hence, we can use the result in Lemma 2 to obtain

the value of P (¢)
PO = G [/ 2 k(o) ”8]
N e¢t2?1ki7lri(t)0(t) {/ o ZkEt[ HZW()MS}
- L EROHT {/ e_d)s;k"ﬁ"(s)ds}

We now apply the result of Lemma 2 and substitute for each

N N
s) = 2 () 3w (B wiy (By) e/ P00
k=1 j=1

where for all i = 1,...,n we have 3; = 1 —~, and w;; (5;) and w; (3;) are the eigenvectors and
eigenvalues of the matrix

Ay = A+ diag </9\11, ,/0\;)
with 5; = (1—,)0; — % (1 —~;)v;02. This yields

1 " 4s wi(B:)(s—
Pl = e PN ki () e (t) {/ ’ ;k gn’“ Z Bi)j wij (B;) €1 t)dS}

7=1

N

/ Z ks an Zw D ( e(wxﬂi)@(st)ds}
ti=1 =

Zz lkﬂ-@ {

N
Z’%an )30 G5 (50, | e<wﬂ<ﬂi>¢><st>ds}

Zl 1 ki 7“ i=1 k=1 j=1
N
= k;
Z?:l k’i'/ri( ) ;nk ;]Zl ;W ﬁz ]]g w Bz)m ¢ wj (ﬁz) }

1 N R
B 2?21 kim; (t) c (t)*%' kz: N (t) By

>y e () e () ”’“Bk
iy kimi (8) ¢ ()

where

1
By = sz w(B3) 5 w (Bi)y; b=

i=1 j=1
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Let

kkﬁk (t) C (t) Tk

melhe) = S e
B = BE_Soyy g :
b DB

Then we can rewrite

k=1
We finally prove that
Bk = Z kzei (gf)I—AIB ) (&%
i=1
That is, that
n 3 1 _ -1
> w (B (B 5= = (61-T,) "

j=1
Let €23, be the he diagonal matrix with the eigenvalues w; (3;) of K/ﬁi on the principal diagonal.
Then we know that
(¢1-X5,) oW, (16— 0s) " W,
where Wg, is the matrix with the eigenvectors of K};i as columns. Let D (5;) = (I¢ — Qﬁi)_l:

Since this is a diagonal matrix, we finally obtain

— \ 1 _ " w (By)y;w (ﬁi)'_kl
€ (¢I_A5i) ek = > w(B)yD(B)w B =) —o; (5»)3
j ¢ =0 J 7
as was to be shown.
(b) We know that the real rate of interest rate is given by
dm
)= —E, |22
o-a [t
where m (t) is the real pricing kernel given by
m(t) = 0U/dc = e Z ki (t) e (t) 7
i=1
We then have
dm(t) = —¢m(t)+e ¥ Z kic Vidm; + e~ % Z kimi (—v;) e (t) " Lde
i=1 i=1
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+e” al ka ) (=v =1 e@) " 2d + e ¢t2k )¢ Vi Ydmde
i=1

n n n 1 L
= — t —ot k;c 7 [wA], dt —ot kic Vim; | 0; — 0| —d
om(t) +e Z ¢ VimAl;dt+e Z ¢ Tim ;7@] > w

i=1 i=1 ¢

n
—e Z kimivyse (8) ™7 pe ( — ¢t Z kimivyie ()™ oedW

Ll i g2 BN o o ;
HeTHg Dk O+ @) ol =T Y e | 6= it
i=1 =1 '

= —¢m(t)+e” ¢t2kc i [, dt+ 3¢ ¢tZk7T,% (v; + D) c(t) Miolat
i=1

n n -
1 —~
e M D ke Mmlbudt + ey ke | = 3wy | —-dW
i—1 =1 = ’

—e Z kimivie ()7 o dW

Hence

Z?:l k:nr,- (t) c(t
3 Sk (i D) e () 02 = Y e [WAL)

i=1 i=1

r(t) = —E [d%] = o+ . O (+§;kmc— mif

By redefining variables we obtain expression (29). B

Proof of Corollary 1: (a) is immediate and (b) stems from the following manipulation:

n

r(t) = ¢+72w (Do = > me

n n

1
~ om0 (zw 3w 0] - jr6e -3
i—1 j=1
= a0+ - s
[
Proof of Lemma 2: The proof is analogous (albeit with different interpretation) to Lemma

3 in Veronesi (2000). W
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Proof of Proposition 5: The price of the asset in the constant relative risk aversion case
is

n
> =17 (t) k;B;
iy K (0i) i (1)

P(t) = D(t)

Let X (t) =), kim; (t). Hence,

n 1 —
:zi:kidmzzi:ki [WA]idt—l—zi:kim 91'—;%'93' U—ch

or
X Xik()m () >k (0:) mi (t) oe
= pxdt+oxdW

It is convenient to define
n
t) Z Wzszz
i=1
We then have

dpP

=1 =1 i=1

= Zﬂ—ikiBiﬂDdt -+ Z WikiBi()'DdW + D Z k; B; [T(A]Z dt
i=1 i=1 i=1

—|—Dzn:k‘lBl7Tl Qi—zn:w]ﬂj —dW+DZk‘BﬂT1 Qi—zn:w]ﬂj dt
=1

i=1 j=1 i=1

_ > iy kiBi [wA]; + 370 ki By (92' -2 7Tj9j)

- p +
Hp Sor mikiB;
P . > iy kiBim; (9@' — i 7Tj9j) L\ g
O_ —
b Z?:l ’ﬂ'zlez Oc
= Plpdt + PépdW

Notice that since P = P/X we have

- PdX Pdx? ~dX
dp = —dP——— — d —_—
X X +X X2 XX

= Plipdt + PopdW — Puydt — PoxdW + Po%dt — Po po xdt
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So that, we obtain

dP - - - ~
- = (MP — px —{—(rg( — (rp(rX) dt + (op —ox)dW

The equilibrium condition requires that

_ dP+Ddt

d
r P

rdt

is such that
d
E,[dR] = —Cov <dR, —m>
m

In this case

m(t) = 0U/dc = e~ Zk (0;) i (t)c(t)”

i=1
and hence
Z' ki [WA} i 2 Zﬁ—l ki 0;dt
dn = m|—o+=ZFz—+7(y+ 1) o - | dt
( 225 ki 0+ D iy kimidt
> i kimi (Qi - Wjej) L\
B R 3 1)
= mu,,dt + Mo dW
Hence
E[dR} = —((}P—(Tx)(fmdt
B Z?:l szz’ﬂ'z <91 — Z;'Lzl Wjej) 1 Zz ki’ﬂ'i <91 — Z?:l Wjej) 1
N oD+ Z?:l Wzlez Oc¢ Zz k’ﬂ(’i O¢
. . 2 i kimi (91' — 21 7Tj9j) 1
—~o, _ -
) D i1 ki Oc
B ), > iz kiBim (92' — > 7Tj9j)
RN > i1 TikiBi

> kam (9@' — > Wjej) > iy ki <9i — > 7Tj9j)
—y

> kimi Yoy ki
i ki (9@' — 21 7Tj9j) >y kB (9@- -3 wjej) 1

n n
> iy kimi > i1 Tiki B} o2
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2

> iy kim (92' =i 7Tj9j) 1

- Yo ki 0.
2, > iy kiBim; (01' — > Wjej)
= o
T % o mikiB;
) > ki (91' — >0 Wjej) . > i ki (91' — >0 Wjej) 1
~O+) > i ki > i ki e
2 i kit (9i — 2 7Tj9j) 2 i kiBii <9i — 2= 7Tj9j) 1
D imy kimi 2 imy ikiBi o2

= (02 + Vi) = (v +1) Vu +1/02VF = 1/02VVy
Or in a more concise way
1
EldR] =7 (0c+ Vi) = (v+ 1) Vo + —Vu (Vo = Vi)

where

>lizy kiBimi (92' — 21 7Tj9j)
Ve = and Vpy =

Sy ki (0= S35 w05

2 i1 mikiBi Doy ki
(b) The interest rate can be written
r (t) = const. + M = const. + %
where X =37 | kym; and CF = vk;0; — CF. We have
- - . 1 ~
dr = Zc [WA}idHZcim 0; —ijej U—ch
i 7 j
= f,dt+ GedW
dx Sk [wA], . 2k (91'—2]-%'93') 1~
— = - Ldt + = —dW
X Zz’:l k’ﬂ(’i Zz’:l k’ﬂ(’i O¢
= pxdt+oxdW

Hence,
1 FdX 7 (dX\® 1 dX
r i
X
= [ipdt + (7:dw —ruxdt — ro xdW + ro%dt — oo’y dt
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where

e Z@ Ccy [T(A]Z» and 5 — Z@ Cim; (Qi — Zj 7rj0j) i

/J/'f' n T mn
Zi:1 ki; Zi:1 ki Oc

Notice that

E?:l 7'(']{}1'92' _ 1

—_ — 2_
ro= ey EEL 27(7“)% e
momCroo1
= ¢+—E’}(’ : —57(7+1)0§

Hence
_ > i1 TiCY
r—¢+5y(y+1) 0?2

and therefore
» 2. Cimi (Qi =2 Wjej) 1
" 22;1 k(0;) m; (T_c
> Cim <9i - Zj 77]'9]') 1
ST Cl o

1
= <r—¢+§7(7+1)03>
1 1
= <T—¢+§7(7+1)03> (T—CVT
So that
1
or =rhp (Vr + Vi) — <¢>+§7(7+1)03> hpVy

|
Proof of Corollary 5: Define k; = k(0;) and k = kyq, .., k,. From the formula for By in
(27) and A, being independent of i in (24) we find

1< —n 1
Bj = ]{I_J ;]{7@6; <¢I—A,) ej
or
Bikj = K <¢I—K')71 e; = ¢ ($1-K) 'k

In vector notation

diag (k) x B = ($1-K) "k

which yields
(pI—A) diag (k) x B =k
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Recall now A = A + diag (/9\1, ,/Q\n) with /Q\j =(1—7)0; — 3 (1 —v) 02 Hence, we have
¢D (k) B — AD (k) B — D (5) D(k)B=k

or

Ok B; + 0:k;B; = ki + Z Aijk;Bj
j=1

Using the assumption on \;; we obtain

<¢ +§i) kiBi = ki+ Y pifikiB;+ (pifi — pi) kiB;
JFi

= ki+ Y _pifik;B; — pikiB;
=1
Taking the last term to the right hand side, we have
<¢ +0; +pi) kiB; = ki + p; Z fikiB;j
j=1

or

k; Pi ¢
¢+0;+p;  G+0;+p; ; S

Multiply each side by f; and sum across ¢ to obtain

> fikiBi > _ Sk +Y —— Jips Zf]k B;
im1

S o+0i+p T o+0i+p; =

n
= Hi+ H> ijk’ij
j=1

where Hy and Hj are defined accordingly. Hence, assuming 1 — Ha # 0 we obtain

Zfsz 1_H2

We can plug this back into (46) to obtain

1
¢+pi+ (1—7)0;i — (1 —7)702
Di < H, >
k(0:) (0+pi+ (1 =)0 —5(1—7)y02) \1—-H2
1 — Hy + g5~

(p+pi+(1—7)0 —3(1—7)v02) (1 — Hy)

B =

+
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Proof of Lemma 3: Fix the distribution (71, ..., 7,). By definition, we have

Vo = L Wlkgfl _ 2};?1 Wjej) = zn:ﬂ'?& - zn:mﬂi
i=1 i=1

j=1Tjlj
s > i1 TikiBi <9i — 2 i1 7Tj9j) z”: w5y Z": ,
B = n =) m 0= ) mb;
2 j—1 ik Bi i=1 i=1
where

k 7'('2']{}1' kB WikiBz'

T, == and T = —=f———

b ek DD Y 97,7727

Hence, we have Vg — Viy = Y. | 7¥Bg; — >  7¥0;. Notice that we can rewrite

n
48— gk [ =T
> j—1;k;B;

Since B; is increasing in ¢, and > | Wf =>", 7B = 1, it must be the case that there exists

i

¢ such that 78 > 7% if and only if i > «. Hence, 7¥? is giving higher weight to high 6,’s,

which implies Y7, 7880, > Y | 7%0;, yielding the claim.H
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Table 1: Calibration Exercise

Case 1 Case 11
p=0.2,0,=0.01 p=0.1,0,=0.01
v p  E[dR] OR r o v p  E[dR] OR r oy
0.5 0 0.00025 0.0306 0.0346  0.003 0.5 0 0.00035 0.0429 0.0346  0.003
05 1 0.0005  0.0362 0.0346  0.002 05 1 0.0007  0.0481 0.0346 0.0026
0.5 10  0.006 0.087 0.0341 -0.0077 0.5 10 0.0066 0.0956 0.0341 -0.0016
0.5 50 0.0981 0.3136 0.0321 -0.0668 0.5 50 0.0961 0.3074 0.0321 -0.0281
0.5 100 0.3699 0.5979 0.0296 -0.3072 0.5 100 0.3546 0.5732 0.0296 -0.1445
0.5 200 1.3891 1.1477 0.0247 -12.2504 0.5 200 1.3155 1.0869 0.0247 -6.1089
1 0 0.00027 0.0165 0.0442  0.0061 1 0 0.00027 0.0165 0.0442 0.0061
1 1 0.0005  0.0219 0.0441  0.005 1 1 0.0005  0.0214 0.0441 0.0056
1 10 0.0054 0.0704 0.0432 -0.0047 1 10 0.005 0.0651 0.0432 0.0014
1 50 0.0922 0.2872 0.0392 -0.0638 1 50 0.0835 0.2601 0.0392 -0.0251
1 100 0.3505  0.559  0.0342 -0.3043 1 100 0.3164 0.5048 0.0342 -0.1416
1 200 1.3221  1.085 0.0244 -12.2479 1 200 1.1919 0.9781 0.0244 -6.1064
2 0 -0.0003 -0.0084 0.0632 0.0121 2 0 -0.0009 -0.0259 0.0632 0.0121
2 1 -0.0001 -0.0034 0.063 0.0111 2 1 -0.0008 -0.0217 0.063 0.0117
2 10 0.0039 0.0414 0.0612 0.0014 2 10 0.0015 0.0163 0.0612 0.0075
2 50 0.0814 0.2413 0.0531 -0.0579 2 50 0.0627 0.1857 0.0531 -0.0192
2 100 0.3166 0.4921 0.043 -0.2986 2 100 0.2563 0.3984 0.043 -0.1359
2 200 1.2076 09778 0.0235 -12.2431 2 200 1.002  0.8113 0.0235 -6.1016
4 0 -0.0033 -0.0495 0.1003  0.0242 4 0 -0.0059 -0.0897 0.1003 0.0242
4 1 -0.0033 -0.0452 0.0999  0.0232 4 1 -0.0062 -0.0864 0.0999 0.0238
4 10 -0.0008 -0.0062 0.0963 0.0134 4 10 -0.0071 -0.0563 0.0963 0.0195
4 50 0.0622 0.1679 0.0802 -0.0464 4 50 0.0288 0.0779 0.0802 -0.0076
4 100 0.2614 03865  0.06  -0.2877 4 100 0.1664  0.246 0.06  -0.125
4 200 1.0289 0.8114 0.0209 -12.2345 4 200 0.7317 0.5771 0.0209 -6.093
6 0 -0.0083 -0.084 0.1363 0.0363 6 0 -0.0142 -0.1432 0.1363 0.0363
6 1 -0.0084 -0.0801 0.1357 0.0353 6 1 -0.0148 -0.1405 0.1357 0.0359
6 10 -0.0073 -0.0455 0.1303 0.0253 6 10 -0.0186 -0.1164 0.1303 0.0314
6 50 0.0439 0.1089 0.1061 -0.0351 6 50 -0.0042 -0.0105 0.1061 0.0036
6 100 0.2146 0.3026 0.0759 -0.2774 6 100 0.0839 0.1183 0.0759 -0.1147
6 200 0.8869 0.6817 0.0173 -12.2273 6 200 0.4883 0.3753 0.0173 -6.0857
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Table 1 (cntd.): Calibration Exercise

Case III Case IV
p=0.2, 0 =0.005 p=0.1, or =0.005

v p  E[dR] OR r o v p E[dR] OR r o
05 0 0.0002 0.02 0.0346 0.0008 0.5 0 0.0002 0.0231 0.0346  0.0008
05 1 0.0002 0.0214 0.0346  0.0005 05 1 0.0002 0.0244 0.0346  0.0006
0.5 10 0.0008 0.0342 0.0337 -0.0019 0.5 10 0.0009 0.0363 0.0341 -0.0004
0.5 50 0.0077 0.0912 0.0138 -0.0167 0.5 50 0.0076  0.0899 0.0239 -0.007
0.5 100 0.0265 0.1648 -0.0599 -0.0668 0.5 100 0.0258 0.1608 -0.0133 -0.0311
0.5 200 0.1005 0.3204 -0.6858 -0.9684 0.5 200 0.0998 0.3182 -0.3268 -0.48
1 0 0.0003 0.0165 0.0442 0.0015 1 0 0.0003 0.0165 0.0442 0.0015
1 1 0.0003 0.0179 0.0442 0.0013 1 1 0.0003 0.0177 0.0442 0.0014
1 10 0.001 0.03  0.0431 -0.0012 1 10 0.0009 0.0287 0.0436 0.0004
1 50 0.0079 0.0848 0.0228 -0.0159 1 50 0.0073 0.0785 0.0329 -0.0063
1 100 0.0265 0.1569 -0.0516 -0.0661 1 100 0.0248 0.1467 -0.0049 -0.0304
1 200 0.1011 0.3139 -0.6788 -0.9677 1 200 0.0986 0.3062 -0.3198 -0.4793
2 0  0.0003 0.0103 0.0632  0.003 2 0 0.0002 0.0089 0.0632  0.003
2 1 0.0004 0.0115 0.0631 0.0028 2 1 0.0002 0.007 0.0631 0.0029
2 10 0.0011 0.0228 0.0619 0.0003 2 10 0.0008 0.0166 0.0623 0.0019
2 50 0.0081 0.0739 0.0405 -0.0144 2 50 0.0066 0.0609 0.0506 -0.0048
2 100 0.0266 0.1434 -0.0352 -0.0646 2 100 0.0231 0.1248 0.0115 -0.029
2 200 0.1024 0.3026 -0.6648 -0.9663 2 200 0.0973 0.2875 -0.3059 -0.478
4 0 0 0.0002  0.1003  0.0061 4 0 -0.0006 -0.0089 0.1003 0.0061
4 1 0.0001 0.0013 0.1002 0.0058 4 1 -0.0005 -0.008 0.1002  0.006
4 10 0.0009 0.0112 0.0984 0.0033 4 10 0 -0.0003  0.0989  0.0049
4 50 0.0081 0.0569 0.0751 -0.0116 4 50 0.0053 0.037 0.0852 -0.0019
4 100 0.0267 0.1225 -0.0031 -0.0619 4 100 0.0209 0.0959 0.0436 -0.0262
4 200 0.106 0.2854 -0.6378 -0.9639 4 200 0.098  0.2637 -0.2789 -0.4755
6 0 -0.0008 -0.0076 0.1363 0.0091 6 0 -0.0019 -0.0192 0.1363 0.0091
6 1 -0.0007 -0.0067 0.1361  0.0088 6 1 -0.0019 -0.018 0.1361  0.009
6 10 0.0002 0.0022 0.1339 0.0063 6 10 -0.0014 -0.0119 0.1344 0.0079
6 50 0.0077  0.044 0.1085 -0.0087 6 50 0.0037 0.0213 0.1186  0.0009
6 100 0.0269 0.107  0.0279 -0.0593 6 100 0.0196 0.0779 0.0745 -0.0236
6 200 0.1104 0.273 -0.6119 -0.9617 6 200 0.1022 0.2527 -0.2529 -0.4733

This table reports the calibration exercise for the belief-dependent model para-

metrized as in section 6. The parameter v denotes the coefficient of relative risk

aversion while p denotes the coefficient of aversion to state uncertainty. The pa-

rameter p denotes the constant probability of shifting out of any state while o,

denotes the dispersion of the posterior belief distribution 7 = (7, ...,

50

7y defined



on the parameter space ©. Negative entries for the volatility imply a negative co-
variance with consumption growth. The mean of the probability distributions 7
and fis p = .0195, where f = (f1, .., fn) is the discretized normal distribution from
which new drifts are chosen upon a shift occurs. The dispersion of f is oy = .01
(new drifts would be in the interval [—.0005,.0395] with 95% probability) while the
volatility of consumption growth is set equal to o, = .0165. Finally, the utility

intertemporal discount rate is ¢ = .025.
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Table 2: ML Estimates of Jump Model

Parmeter P Oc Og I

Estimate 0.1816 0.0134 0.0533 0.0195
t-stat. 1.368  9.267  2.056 -

This table reports the Maximum Likelihood annaulized estimates of the statistical
model Alog (¢t41) = 0t + 0cetta,
0, with prob. 1—p

Orv1 =
§¢41 with prob. p

where &, ~ N (,u, 03). Estimates are obtained by discretizing the interval [—0.4, 0.4]
in n» = 200 intervals and applying standard ML estimation methods for regime-
switching models. Standard errors are (Newey-West) corrected for heteroskedas-
ticity and autocorrelation. The parameter p has been fixed to the long-run average

of consumption growth to gain in estimation efficiency.
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Table 3: Data and Model
Data Model
E[R] 0.0687 0.0526
ocr 0.1596 0.1770
r 0.02¢ 0.0122
or 0.0226 0.0557

This table reports the ex-post mean excess stock returns, its volatility, and the
volatility of the real-interest rate (assuming a constant risk premium). The table
also reports the moments implied by the model fitted in Table 2, with utility para-
meters p = 10, ¢ = .04 and v = 1.8. The posterior distribution used to compute the
unconditional expected returns is w ~ N (,u,ﬁfr) where g is the long-term average
of consumption growth and 7, = 0.0165 was the average Root Mean Square Error
obtained by simulating the process for beliefs for 5000 periods. All the moments

have been the computed using the formulas in the text.

a: The value of the real rate has not been estimated. A value approximately of 2%

is considered appropriate in the literature.
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Figure 1: Conditional Price-Dividend Ratios

Conditional Price-Dividend Ratios
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This figure plots the conditional price-dividend ratios obtained from the formula

1
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k (93) ej (¢I — K) 6;-
1

n
J=

where k (91) =k x (91 + 1+ gi)—p‘
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Figure 2: The Jump Distribution
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Figure 3: Time Series of Posterior Distribution on Consumption Drifts

Posterior Distribution on Drift Rate of Consumption
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Drift Rate of Consumption

This figure plots the time series of the posterior distribution 7 (¢) on the drift rate of con-
sumption 8; computed using real consumption growth data from 1946 to 1999 and the MLE esti-

mates in Table 2. Updating occurs by standard Bayes rule according to the formula 7; (t + 1) =
{ermr @ () AL {5 € AV 1)

7=

j} where the transition ma-

trix is given by A = pf + (1 —p)I and f = (fi1,..., fn) is the discrete version of a normal

distribution. The number of points in the discretized grid is n = 200.
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Figure 4: Expected Growth Rate of Consumption and its Root Mean Square Error
(A) Actual and Expected Real Consumption Growht

Actual and Expected Real Consumption Growth
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(B) Root Mean Square Error of Expected Consumption Growth
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Panel (A) plots the time series of real consumption growth from 1946 to 1999 and
the expected consumption growth obtained from the fitted posterior probabilities
7 (t) as described in text and in Figure 2. Panel (B) plots the time series of the

Root Mean Square Error of the expected consumption growth.
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Figure 5: Actual and Model-Implied Volatility
Actual and Fitted Volatility
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This figure reports the plot of the conditional volatility implied by the model (solid
line) and the ex-post integrated volatility computed from CRSP-data on stock
returns (dash-dotted line). The conditional volatility implied by the model is com-
puted applying the formula provided in the text and at every ¢ it only depends on

the posterior distribution 7 (t) in Figure 2.
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Figure 6: Actual and Model-Implied Price-Dividend Ratios
Model and Actual Price-Dividend Ratio
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This figure plots the time series of the price-dividend ratio obtained from CRSP-
data and the model-implied price dividend ratio. The latter is only a function of

past consumption and it is given by the formula P (t) /D (t) = > | 7} (t) B;.
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