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Abstract

We study the impact on asset prices of illiquidity associated with
search and bargaining in an economy in which agents can interact only
when they find each other. Even when market makers are present,
investors’ abilities to meet directly is shown to be important. Prices
are higher and bid-ask spreads lower if investors can find each other
more easily. Prices approach the Walrasian price if investors’ search
intensity increases or if market makers, who do not have all bargaining
power, search more intensely. Endogenizing search intensities yields
natural implications. Lastly, we show that information can fail to be
revealed through prices when search is difficult.
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1 Introduction

Many assets cannot, for lack of a counterparty, be traded immediately. An
investor who, for instance, wants to sell must search for a buyer, and incurs
the delay costs until such a buyer is found. When two investors meet, their
bilateral relationship is inherently strategic. Prices are set through a bar-
gaining process, which reflects the investors’ alternative trading possibilities.
Furthermore, when bargaining, the potential buyer takes into account that
he will pay the cost of waiting when, in the future, he wants to sell, and so
on for all future owners.
While finding an investor with whom to trade may pose difficulties, in

many settings there exist intermediaries who reduce search-related frictions.
This does not mean, however, that investors’ abilities to meet directly are no
longer relevant. They play a central part in the determination of reservation
values, whence of prices.
We build a dynamic model in which we capture these phenomena in a

natural fashion. We study allocations, prices between investors, and market-
makers’ bid and ask prices. We show how these equlibrium features depend
on investors’ search abilities, marketmaker accessibility, and bargaining pow-
ers. We determine endogenously the intensities with which marketmakers
search. Further, we show how search frictions may prevent information from
being revealed through trading.
Our model of search is a variant of the coconuts model of Diamond (1982).

There is a continuum of investors, each of whom contacts an agent from a
given group of fixed mass µ at random arrival times with intensity λµ, where
λ is a parameter reflecting search ability. Similarly, a marketmaker contacts
an agent from a given group of fixed mass µ at random arrival times with
intensity ρµ, for a parameter ρ reflecting dealer availability. We also consider
a case in which a marketmaker can be approached instantly.
We assume that investors’ discount rates fluctuate randomly, generating

gains from trade. An interpretation of this is that an agent with a high
discount rate is in financial distress. Relatedly, Huang (1998) considers a
competitive model in which agents must sell at random times. Trade moti-
vated by both financial distress and asymmetric information is studied in a
repeated-auction model by Gârleanu and Pedersen (2000).
This paper extends the literature addressing whether equilibria in search

economies approach their Walrasian counterpart as search frictions are re-
duced. Rubinstein and Wolinsky (1985) find that prices do not become Wal-
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rasian as search frictions diminish. Gale (1987) argues that the result of
Rubinstein and Wolinsky (1985) stems from the fact that they have an in-
finte mass of agents flowing through the economy, causing the Walrasian
price to be undefined. Gale (1987) shows that, as search costs become negli-
gible, prices do converge to those of a competitive “flow” equilibrium. These
papers diminish frictions by reducing agents’ rates of time preference.1 In
contrast, we consider the limit as agents’ search intensities increase, show-
ing that equilibrium masses converge to the efficient Walrasian masses, and
prices converge to the Walrasian prices. This extends previous results by
dealing with steady-state masses as well as prices, by being able to compare
the steady-state to a standard Walras equilibrium, and by having an economy
which may include marketmakers.
Our results further imply that marketmakers’ bid-ask spreads approach

zero as investors’ search frictions become negligible. This is the case even if
the marketmaker executes all trades, by being immediately accessible, and
even if he is a monopolist who can extract all gains from trade. This pro-
vides a precise sense in which marketmakers’ bid-ask spreads are limited by
investors’ search capacities. The study of Lamoureux and Schnitzlein (1997)
establishes this result experimentally, while Gehrig (1993) and Yavaş (1996)
show in one-period models that the bid-ask spread declines with increasing
investor search. These one-period models cannot, however, yield convergence
to the Walrasian equilibrium because, when an investor is matched randomly
with another agent, there may be no associated gains from trade, and hence
more than one round of matching is required.
We consider both the case of a monopolistic marketmaker and the case

of atomistic competitive marketmakers. Since all interactions are bilateral,
however, the only difference between monopolistic and competitive market-
makers is their respective bargaining powers. The monopolist has all bar-
gaining power, whereas the competitive marketmaker has only part of the
bargaining power.
Increasing the marketmakers’ ability to contact agents leads to the Wal-

rasian equilibrium when marketmakers are not monopolistic. Although all
negotiations are bilateral, an implicit sequential competition among mar-
ketmakers arises because investors take into account the option of leaving

1Gale (1986a), Gale (1986b), McLennan and Sonnenschein (1991) consider a limit econ-
omy in which there is no time discounting (but which is rich in terms of preferences and
goods). They show in this setting that the search equilibrium is the Walrasian one.
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a trading partner during negotiation and searching for another. If market-
making is monopolistic, on the other hand, increasing the marketmaker’s
effectiveness leads to the optimal allocation but not to Walrasian pricing,
since all gains from trade are kept by the intermediary.
Search implies indirect costs associated with delays in trading. Search

may also have direct costs, such as effort and the opportunity cost of time,
which depend on the intensity of search. Such direct costs may lead to an
endogenous determination of contact intensities We show that marketmakers
search more if they have higher bargaining power, and further that a monop-
olistic marketmaker searches less than competitive marketmakers with full
bargaining power, since the monopolist takes into account how his search
intensity affects equilibrium allocations.
Suppose that investors have asymmetric information about future divi-

dends. When all investors can observe prices, these prices may reveal all or
part of the private information through a rational-expectations equilibrium
(Grossman (1981) and Grossman and Stiglitz (1980)). In search economies
in which investors do not observe prices, however, information can only be
revealed through bargaining when investors meet. Lower search intensities
limit the speed with which information can be learned. A low search intensity
has an additional effect: When investors meet they may be so desperate to
trade that they trade at “pooling prices,” at which no information is revealed.
We show that this can happen only for low search intensities. In a related set-
ting of search and bargaining with asymmetric information, Wolinsky (1990)
constructs a steady-state partially-revealing equlibrium.

2 Trade among Investors

In this section we consider an economy in which agents can trade only when
they meet each other. Transaction prices are determined through bargaining.
We compare allocations and prices to those prevailing in a perfect Walrasian
market. Later, in Section 3, we study the implications of introducing mar-
ketmakers .

2.1 Model

We fix a probability space (Ω,F , P ) and a filtration {Ft : t ≥ 0} of sub-
σ-algebras satisfying the usual conditions as defined by Protter (1990), rep-
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resenting the resolution over time of information commonly available to in-
vestors. (Asymmetric information is briefly considered later in the paper.)
A single non-storable consumption good is used as a numeraire. A single

asset pays a strictly positive dividend process, X, progressively measurable
with respect to the filtration. This asset is available in a fixed supply of s < 1.
For simplicity, we suppose a constant conditional expected dividend growth
rate of c, so that, for any times t and s > t, we have Et(Xs) = Xte

c(s−t),
where Et denotes expectation conditional on the information Ft available at
time t. This includes the special case of a consol bond, for which Xt = 1
for all t. Agents are required to hold no more than 1 unit of the asset, and
no less than zero. Because their preferences are linear, (and because there
is a continuum of agents) we restrict attention to equilibria in which, at any
given time and state of the world, an agent holds either 0 or 1 unit of the
asset.
Each of a continuum of agents is risk-neutral and infinitely lived, with

some stochastic process describing a short-term rate of time preference, which
we will call a discount-rate process.2 The discount-rate process r for any
particular agent is a Markov chain with two possible outcomes, rl and rh,
with c < rl < rh. There is an intensity λu of switching from rl to rh, and an
intensity λd of switching from rh to rl. The different agents’ discount-rate
processes are pairwise independent, and independent of X. Differences in
agents’ discount rates generate gains from trade.3

The set of agent types is T = {ho, hn, lo, ln}, with the letters “h” and “l”
designating whether an agent has a high or a low discount rate, respectively,
and the letters “o” and “n” indicating whether the agent owns the asset or
not, respectively. We let µσ(t) denote the fraction at time t of agents of type

2A discount-rate process r is predictable, with
∫ T
0
|r(t)| dt < ∞ almost surely. A

cumulative consumption process is a finite-variation process C with the property that

E
[∫∞
0 exp

(∫ t
0 −r(s) ds

)
(dC+(s) + dC−(s))

]
<∞, where C can be decomposed as C =

C+ − C−, with C+ and C− increasing adapted processes. Consumption processes are
ranked by an agent with discount rate r according to the utility function that assigns to

each cumulative consumption process C the utility E
[∫∞
0 exp

(∫ t
0 −r(s) ds

)
dC(t)

]
.

3There exist alternative ways of introducing gains from trade between different in-
vestors. For instance, we could have assumed that when a given investor owns an asset,
he enjoys the dividend stream φtXt, where φt is a Markov chain that characterizes the
investor’s preference for this asset. This model can be solved in a similar manner to that
presented here.

4



σ ∈ T . We normalize the total mass of agents to be 1 at any time t, so

µho(t) + µhn(t) + µlo(t) + µln(t) = 1. (1)

Because the total mass of owners must equal the fixed asset supply s, we also
have

µho(t) + µlo(t) = s. (2)

Any two agents are free to trade the asset whenever they meet, for a
mutually agreeable number of units of current consumption. (The determi-
nation of the terms of trade is to be addressed later.) Agents meet, however,
only at random times, in a manner idealized as follows. Each agent has a
given personal location on the unit interval [0, 1]. The agents are distributed
over the interval according to some non-atomic measure with total mass 1,
say Lebesgue measure. At an exponentially distributed time with some pa-
rameter λ that may vary with the type of agent, an agent contacts another
location, chosen at random. The exponential delay-time distribution can
arise, for example, as an idealization of a large sequence of independent at-
tempts for a successful contact, with a probability of λ∆ of successful contact
during a contact-time interval of length ∆, in the limit as ∆ goes to zero.
Conditional on a contact, the probability of contacting an agent who is a
member of a set of agents of mass µ is µ. This is an idealization of the
notion that agents are equally likely to be contacted. Assuming that the
law of large numbers applies in our setting (see Footnote 6), it follows that,
for a set of independently searching agents of current mass µA(t) and with
common contact intensity4 λA(t), contacts with another group of agents of
current mass µB(t) and with common contact intensity λB(t) occur contin-
ually at the current rate (λA(t) + λB(t))µA(t)µB(t). Our dynamic-matching
formulation and appeal to a steady-state equilibrium are typical approaches
of the recent monetary literature (for instance, Trejos and Wright (1995) and
references therein).

2.2 Dynamic Bargaining Equilibrium

We derive a dynamic bargaining equilibrium in two steps. First, we derive
the equilibrium steady-state masses of the different investor types. Then, we
compute agents’ value functions and transaction prices.
4If search intensities vary across agents, then contact between a group, A, of agents

and a group, B, occurs continually at the rate µ(B)
∫
A
λ(x)µ(dx) + µ(A)

∫
B
λt(x)µ(dx).
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It is anticipated that, in equilibrium, an agent wishes to trade if the agent
has a long asset position and a high discount rate, or if the agent does not
own the asset and has a low discount rate. That is, trade happens only
between pairs of agents of respective types ho and ln, since only this pairing
allows gains from trade. We prove this to be the case in the appendix. When
two agents with gains from trade meet, they trade instantly. This is the
outcome of standard bargaining models and is also justified in Section 4.1,
which models the bargaining game explicitly.5

Let us first derive the equilibrium masses of agent types. The mass of
agents of a particular type may change over time due to random changes in
investors’ discount rates and due to trade. Trade happens at a frequency that
depends on agents’ search intensity. We assume that the contact intensity of
all agents is a fixed constant, λ. The rate of change of µho(t) is thus

µ̇ho(t) = −2λµln(t)µho(t)− λdµho(t) + λuµlo(t). (3)

The first term reflects the fact that agents of type ln contact those of type
ho at total rate λµln(t)µho(t), while agents of type ho contact those of type
ln at the same total rate λµln(t)µho(t). At both of these types of encounters,
the agent of type ho becomes one of type hn. This implies a total rate of
reduction of mass due to these encounters of 2λµln(t)µho(t). The last two
terms reflect the migration of owners from high to low discount rates, and
from low to high discount rates.
The rate of change of µln is likewise

µ̇ln(t) = −2λµln(t)µho(t)− λuµln(t) + λdµhn(t). (4)

When agents of type ln and ho trade, they become of type lo and hn,
respectively. Using this we have,

µ̇lo(t) = 2λµln(t)µho(t)− λuµlo(t) + λdµho(t) (5)

and

µ̇hn(t) = 2λµln(t)µho(t)− λdµhn(t) + λuµln(t). (6)

5In general, bargaining leads to instant trade when agents do not have asymmetric
information, otherwise there can be strategic delay. In our model, however, it does not
matter whether agents have private information about their own type for it is common
knowledge that either there are no gains from trade or the agents are of types ho and ln.
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We note that Equations (1)–(4) imply Equations (5)–(6).
We consider stationary equilibria, that is, equilibria in which the masses

are constant.

Proposition 1 There is a unique constant solution µ = (µho, µhn, µlo, µln) ∈
[0, 1]4 to equations (1)–(6). From any initial condition µ(0) ∈ [0, 1]4 satisfy-
ing (1) and (2), the unique solution µ(t) to this system of equations converges
to µ as t→∞.

A particular agent’s type process {σt : −∞ < t < +∞} is, in steady-state,
a Markov chain with state-space T , transition generator determined in the
obvious way by the steady-state population masses µ and the intensities λ,
λu, and λd, and with a steady-state probability distribution that is the same
as the equilibrium constant cross-sectional distribution µ of types found in
Proposition 1.6

We now turn to the determination of transaction prices. For this, we need
to simultaneously determine any agent’s values for owning and for not owning
the asset. We conjecture, and show shortly, that the steady-state equilibrium
utility at time t for remaining lifetime consumption for a particular agent
depends only on the agent’s current type σt and the current dividend rateXt,
so that we may write V (Xt, σt) for that utility. The function V : IR+×T → IR
determined in this way is called the value function. Likewise, we conjecture
that the trade price at time t is of the form P (Xt) for some P : IR+ → IR+.
In order to calculate V and P , we consider a particular agent and a

particular time t, let τr denote the next (stopping) time at which that agent’s
discount rate changes, let τm denote the next (stopping) time at which a

6 Intuitively, this follows from the law of large numbers. Formally, we use Theorem C
of Sun (2000), to construct our probability space (Ω,F , P ) and agent space [0, 1], with an
appropriate σ-algebra making Ω×[0, 1] into what Sun calls a “rich space,” with the proper-
ties that: (i) for each individual agent in [0, 1], the agent’s type process is indeed a Markov
chain in T with the specified generator, (ii) the unconditional probability distribution of
the agents’ type is always the steady-state distribution µ on T given by Proposition 1,
(iii) agents’ type transitions are almost everywhere pair-wise independent, and (iv) the
cross-sectional distribution of types is also given by µ, almost surely, at each time t. This
result settles the issue of existence of the proposed equilibrium joint probabilistic behavior
of individual agent type processes with the proposed cross-sectional distribution of types.
This still leaves open, however, the existence of a random matching process supporting
the proposed type processes.
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counterparty is met, and let τ = min{τr, τm}. Then, by definition,

V (Xt, ho) = Et

[ ∫ τ
t

e−rh(u−t)Xu du+ e−rh(τr−t)V (Xτr , lo)1{τr<τm}

+e−rh(τm−t) (V (Xτm , hn) + P (Xτm)) 1{τr≥τm}

]
(7)

V (Xt, hn) = Et
[
e−rh(τr−t)V (Xτr , ln)

]
(8)

V (Xt, lo) = Et

[∫ τr
t

e−rl(u−t)Xu du+ e−rl(τr−t)V (Xτr , ho)
]

(9)

V (Xt, ln) = Et
[
e−rl(τr−t)V (Xτr , hn)1{τr<τm}+ (10)

e−rl(τm−t) (V (Xτm , lo)− P (Xτm)) 1{τr≥τm}
]
.

With the conjectured value functions, a low-discount-rate non-owner has a
reservation value ∆Vl(Xt) = V (Xt, lo)− V (Xt, ln) for buying the asset, and
a high owner has a reservation value ∆Vh(Xt) = V (Xt, ho) − V (Xt, hn) for
selling the asset. The gains from trade between these agents are ∆Vl(Xt)−
∆Vh(Xt). We assume that the seller gets a fixed fraction, q, of the gains from
trade, in that

P (Xt) = ∆Vh(Xt)(1− q) + ∆Vl(Xt)q . (11)

This means that the seller’s bargaining power is q. We note that in some
other models of bargaining the outcome does not depend on agents’ outside
options, as is the case here.7 We show in Section 4.1, however, that (11) is
the outcome of an alternating-offers bargaining game, and compute q as an
explicit function of the model parameters. With a fixed q, (11) is the outcome
of Nash (1950) bargaining, and any q can be justified by the simultaneous-
offer bargaining game described in Kreps (1990).
Because of the assumption that X has a constant expected growth rate

and the fact that the stopping times considered are the first jump times of
counting processes with constant intensities, there exists an equilibrium in
which the value functions and prices are proportional to X. That is, there

7This is known as the outside-option principle. Intuitively, the outside-option principle
does not apply here because there is a risk of a breakdown of bargaining due to changes
in discount rates (Binmore, Rubinstein, and Wolinsky (1986)), and because the value
stems from dividends paid during bargaining. The matter is complicated, however, by the
complex nature of the outside option, which is given by several factors: change in discount
rate, meeting another trading partner, and dividends.
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is an equilibrium with V (Xt, σ) = vσXt and P (Xt) = pXt, for constants
(v, p) = (vho, vhn, vlo, vln, p). With this, (8)–(11) imply the following system
of linear equations in the coefficients (v, p):

vho = (λdvlo + 2λµln(p+ vhn) + 1)
1

rh + λd + 2λµln − c

vhn = λdvln
1

rh + λd − c

vlo = (λuvho + 1)
1

rl + λu − c
(12)

vln = (λuvhn + 2λµho(vlo − p))
1

rl + λu + 2λµho − c
p = (vho − vhn)(1− q) + (vlo − vln)q.

As the coefficient matrix associated with these equations is non-singular,
the equations have a unique solution, denoted (v, p). Because rl > c by
assumption, it is then easily verified that V (Xt, σ) = vσXt is indeed the
utility of the consumption stream for an agent with current type σ determined
by the proposed trading behavior when the price is given by pXt, and it is
indeed the case that P (Xt) = pXt is the price determined by the above
bargaining-power-based price equation (11), assuming that V (x, σ) = vσx.
Finally, a dynamic-programming argument, to be found in the appendix,

confirms that the the proposed investor strategies constitute an (infinite-
agent, infinite-time) subgame-perfect Nash equilibrium. That is, if two agents
with gains from trade meet at time t, the potential buyer tenders the price
P (Xt), the potential seller tenders the same price P (Xt), and both immedi-
ately trade at that commonly announced price. The allocations associated
with this equilibrium are efficient among all mechanisms that re-allocate the
asset, pair-wise, at contact times, but is obviously not efficient among all
mechanisms that can allocate at any time to any agents. (The Walrasian
competitive market equilibrium allocation is efficient in this stronger sense.)
We call the coefficients (µ, p) of the above equilibrium the “unique station-

ary bargaining equilibrium.” The game and equilibrium could be modified
to allow for an exogenous fractional loss of price at each trade as an admin-
istrative transactions cost, with solutions of a similar linear form. We could
also allow the discount rates, rl and rh, to be themselves Markov chains, and
get a richer class of linear equilibria in which there are “regimes” for prices.
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2.3 Walras Equilibrium

A Walrasian equilibrium is characterized by a single price process at which
agents may buy and sell instantly, such that supply equals demand at each
state and time. Because trade occurs instantly and Walrasian allocations are
efficient, in equilibrium all objects are held by agents with a low discount
rate if there are enough such agents. We focus our discussion on the case in
which the steady-state mass of agents with a low discount rate is higher than
the supply of objects, restated by the following condition.

Condition 1 (Excess Demand)

λd

λu + λd
> s.

Our results, however, apply generally.
Under Condition 1, the unique Walras equilibrium has agent masses

µ∗lo = s

µ∗ln =
λd

λu + λd
− s (13)

µ∗ho = 0

µ∗hn =
λu

λu + λd
,

and the price, Pt, is

Pt = Et

[∫ ∞
0

e−rlsXt+s ds
]
= p∗Xt,

where p∗ = (rl − c)−1. The Walras equilibrium price is the value of holding
the asset forever for a hypothetical agent who always has a low discount
rate. In this equilibrium, an owner whose discount rate becomes high trades
immediately. Agents with a low discount rate and no object are indifferent
between not trading and trading at the equilibrium price.
When Condition 1 is not satisfied, the marginal investor has a high dis-

count rate, and the price, p∗Xt, is the expected value of holding the asset
indefinitely for a (non-existing) agent who always has a high discount rate.
In this case µ∗ln = 0 and the other masses are determined in the obvious way.
The Walrasian equilibrium is approached by bargaining equilibria as agents

meet increasingly frequently in the following sense.
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Theorem 2 Suppose that either q > 0 and Condition 1 applies, or q < 1 and
Condition 1 does not apply. Let (λm) be a sequence such that λm →∞, and
let (µm, pm) be the corresponding sequence of stationary bargaining equilibria.
Then (µm, pm)→ (µ∗, p∗).

Contrary to our result, Rubinstein and Wolinsky (1985) find, in a model
similar in spirit to ours, that the bargaining equilibrium does not converge
to the competitive equilibrium as trading frictions approach zero. In their
model, however, agents disappear after they trade, and new agents enter the
economy such that the masses, which are exogenous, of buyers and sellers
stay constant.8 Gale (1987) argues that this failure is due to the fact that
the total mass of agents that enter their economy is infinite, which makes
the competitive equilibrium of the total economy undefined. Gale (1987)
shows that when the total mass of agents is finite, the economy (which is
not stationary) has the desired limiting property, and suggests that, when
considering stationary economies, one should compare the bargaining prices
to those of a “flow equilibrium” rather than a “stock equilibrium.” Our
model has a natural determination of steady-state masses, even though no
agent enters the economy. This is accomplished by letting agents switch
types randomly. Theorem 2 shows that both masses and prices converge to
competitive levels. We are able to reconcile a steady-state economy with
convergence to Walrasian outcomes (in both a flow and stock sense). In
Section 3.1 we shall see when a Walrasian equilibrium can also be approached
by increasing the amount of intermediation offered by broker-dealers.9

2.4 Numerical Example

We consider an illustrative example. Table 1 contains the exogenous param-
eters, Table 2 contains the implied stationary masses, and Table 3 contains
the solution coefficients for the value functions and prices. For these param-
eters, agents contact other agents at an expected rate of more than once
per week (λ = 60), have a “normal” discount rate of rl = 5%, and are in

8Binmore and Herrero (1988) consider a similar model, in which they vary the mass of
agents that enters the economy. They find that prices do converge to competitive prices
when there is no entry.
9Gale (1986a), Gale (1986b), and McLennan and Sonnenschein (1991) show that a

bargaining game implements Walrasian outcomes in the limiting case with no frictions
(that is, no discounting) in much richer settings for preferences and goods.
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λ λu λd s rh rl c q

60.00 0.10 1.00 0.20 0.25 0.05 0.03 0.499

Table 1: Base-case parameters.

µho µhn µlo µln
0.0002 0.0907 0.1998 0.7093

Table 2: Steady-state masses corresponding to base-case parameters.

financial distress, with a high discount rate of rh = 25%, 1 year out of ev-
ery 11 years, on average. An agent of type ho has a fraction qh = 0.499
of the bargaining power when bargaining with an agent of type ln. At any
time, s = 20% of the agents have the asset. (See Section 4.1 regarding the
equilibrium determination of this bargaining power.)
Table 2 shows that almost all of the assets are held by agents with a low

discount rate. In fact, only about 1 unit per thousand of the asset is held
by agents with high discount rate. Table 3 shows, however, that the price is
discounted by almost 3% from to the Walrasian price of 50.
Figure 1 shows how prices depend on the intensity, λ, with which agents

meet, holding other base-case parameters fixed. (We hold bargaining powers
fixed as we vary λ.) We see that prices are increasing in λ. If agents can meet
more easily, allocations become more efficient and bargaining becomes “less
fierce” given the outside option of quickly finding other trading partners.
Recall that in Section 2.3 we showed that prices generally converge to the
Walrasian price as the intensity λ of meeting grows large.
In Figure 2 we see that prices are sensitive to the supply, s, of the as-

set. In steady state the fraction 10/11 of agents have the low discount rate,
explaining the big drop in prices as s becomes close to this level.
Figure 3 shows that prices are increasing in the seller’s bargaining power,

vho vhn vlo vln p

48.57 0.07 48.81 0.08 48.62

Table 3: Base-case coefficients for value functions and prices.
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and Figure 4 confirms the intuition that an increase in the severity of a
personal liquidity shock drives down the price.
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Figure 1: Dependence of the price-
dividend ratio, p, on the search in-
tensity, λ.

Figure 2: Dependence of the price-
dividend ratio, p, on the total asset
supply, s.
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3 Marketmakers

We now introduce marketmakers, studying how the bid-ask spread depends
on investors’ abilities to trade with each other and on investors’ abilities to
trade with marketmakers. We study the determinants of the differences be-
tween the Walrasian price and the bid price, ask price, and the inter-investor
price, respectively. We focus on the implications of search and bargaining and
abstract from other considerations related to marketmakers, such as asym-
metric information, risk-aversion, and inventory management. In Section 3.1
we study a monopolistic marketmaker. Section 3.2 addresses competitive
marketmakers.

3.1 Monopolistic Market Making

The simplest way of introducing a monopolistic marketmaker is to assume
that any agent may instantly trade with the marketmaker. In order to keep
things simple, avoiding the need to take a stance on the marketmaker’s in-
trinsic value for the object through a discount rate, for instance, we assume
that the marketmaker has no inventory. We assume that the marketmaker
can commit to an ask price, a∗X, and a bid price, b∗X, which means that
he has all of the bargaining power. This assumption is natural because the
marketmaker’s profit is not affected by any one “infinitesimally” sized trade,
so his threat to not trade at less favorable prices with a particular non-atomic
agent is credible. Given equilibrium masses, investors are indifferent to trad-
ing with the marketmaker. The marketmaker does not affect their utilities,
except through the impact of the marketmaker on the masses of agents of
each type. Since all investors trade with the marketmaker instantly, the equi-
librium masses are those of the Walrasian equilibrium. Hence, the investor
value-function coefficient vector is the solution to system (12) of equations,
where the Walrasian masses are taken as given. The marketmaker quotes a
bid price, b∗X = (vho − vhn)X, and an ask price, a∗X = (vlo − vln)X, which
are the reservation values of sellers and buyers, respectively.
We next relax the assumption that investors can trade instantly with the

marketmaker. Instead, we suppose that investors can trade with the market-
maker only when they meet one of the marketmaker’s non-atomic “dealers.”
We assume that there is a unit mass of such dealers who contact potential
investors randomly and pair-wise independently. We let ρ be the intensity
with which a dealer contacts a given agent. (As they are symmetrically de-
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fined and move independently, like agents, it would be equivalent to have a
mass k of dealers with contact intensity ρ/k, for any k > 0.)
We assume that dealers can instantly balance their positions with their

market-making firm. The market-making firm, as a whole, does not hold
inventory. When an investor meets a dealer, the dealer is assumed to have
all of the bargaining power, and quotes an ask price, aX, and a bid price, bX,
equal to a seller’s, respectively a buyer’s, reservation value. As argued above,
a marketmaker with all bargaining power affects investors’ value functions
only through his effect on equilibrium masses. Hence, given the equilibrium
masses, these value functions can be computed from (12). Pairs of investors
can trade with each other at prices strictly inside the marketmaker’s bid-ask
spread when they meet, provided the two investors split the gains from trade.
That is, we have the inequalities

b ≤ p ≤ a.

Let us derive the equilibrium masses in the presence of the dealers. In
the case we examine in detail there are more agents willing to own the asset
at the dealer-market price than there are assets to be shared (the converse
obtains in the complementary case). Rationing will thus occur, but agents are
indifferent to being rationed, as monopolistic dealers quote their reservation
prices for trade. Specifically, in steady state, because the fraction of low-
discount agents is λd(λu + λd)

−1, we have

µln =
λd

λu + λd
− s+ µho.

Under Condition 1, this implies that the total contact rate of dealers with
potential buyers, ρµln, is strictly larger than the total contact rate ρµho of
dealers with potential sellers. As a result, all potential sellers trade when
in contact with dealers, while potential buyers are rationed by dealers. (To
settle the issue, one can assume random rationing, or some other symmetric
mechanism.) Analogously, when Condition 1 is not satisfied, the sell side is
rationed.
The equilibrium is calculated as before, replacing the steady-state equi-

librium masses with the constant solution to (1), (2), and
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µ̇ho(t) = − (2λµln(t)µho(t) + ρµm(t))− λdµho(t) + λuµlo(t) (14)

µ̇ln(t) = − (2λµln(t)µho(t) + ρµm(t)) + λdµhn(t)− λuµln(t) (15)

µ̇lo(t) = (2λµln(t)µho(t) + ρµm(t)) + λdµho(t)− λuµlo(t) (16)

µ̇hn(t) = (2λµln(t)µho(t) + ρµm(t))− λdµhn(t) + λuµln(t), (17)

where µm(t) = min{µho(t), µln(t)}.10 The first terms in (14)–(17) reflect the
total rates of trade, both directly between investors and through dealers.

Proposition 3 There is a unique constant solution µ = (µho, µhn, µlo, µln) ∈
[0, 1]4 to (1), (2), and (14)-(17). From any initial condition µ(0) ∈ [0, 1]4
satisfying (1) and (2), the unique solution µ(t) to this system of equations
converges to µ as t→∞.

Having computed equilibrium masses, we know the investors’ reservation
values, and hence bid and ask prices. As the dealers’ meeting intensity ρ
approaches infinity, the equilibrium prices and allocations tend toward those
that characterize equilibrium in the case of a monopolistic marketmaker who
can be approached instantly.

Theorem 4 Let (ρm) be an increasing sequence of positive real numbers con-
verging to ∞. Let (µm, bm, am, pm) be the corresponding sequence of unique
stationary bargaining equilibria with a monopolistic marketmaker. Then (µm, bm, am)→
(µ∗, b∗, a∗). Moreover, the bid-ask spread, am − bm, is increasing.

It is intuitive that a larger mass of dealers (or, equivalently, higher ρ)
means that the marketmaker executes more trades. It follows from Theorem
4 that the bid-ask spread increases with the mass of dealers, as well. The
spread is higher with more marketmakers because, as ρ increases, investors’
outside option of trading with each other diminishes in value.
We have seen that the existence of an effective (large-ρ) monopolistic

marketmaker leads to efficient allocations and a large profit earned by the
marketmaker. A natural question is whether a monopolistic marketmaker
can sustain this large profit in an economy in which investors have little
need for intermediation, that is, when λ is high. This question is not trivial
because, for any finite λ, all trades are made using the marketmaker, when

10The minimum operator is used to determine whether the buy or sell side is rationed.
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the marketmaker can be approached instantly. The following theorem shows
that the marketmaker’s profit indeed vanishes when investors’ potential for
bilateral trade increases. We denote the situation in which the marketmaker
can be approached instantly by ρ =∞.

Theorem 5 Let (λm) be a sequence of positive real numbers such that λm →
∞, and let (µm, bm, am, pm) be the corresponding sequence of stationary bar-
gaining equilibria for a monopolistic marketmaker with intensity ρ ∈ [0,∞].
Then bm and am converge to p∗.

This highlights the importance of the search market among investors, even
when considering marketmaking.

3.2 Competitive Market Making

We now turn to the case of competitive marketmakers. If marketmakers can
be approached instantly by investors, the Walrasian outcome obtains with
two or more marketmakers playing a Bertrand game.
The case in which marketmakers cannot be approached instantly is more

interesting, and captures the idea that an investor must bargain with each
marketmaker sequentially. We assume that there is a unit mass of inde-
pendent non-atomic marketmakers with a fixed intensity, ρ, of meeting an
investor. To avoid considering marketmaker inventory, we assume that there
is an inter-dealer market in which marketmakers can buy and sell instantly at
price mX, and that marketmakers do not hold inventory. Each marketmaker
has a bid price, bX, and an ask price, aX. As opposed to the monopolistic
case, we assume that marketmakers have a fixed fraction, z ∈ [0, 1], of the
bargaining power when faced with an investor.
An equilibrium under Condition 1 is as follows. (The case when Con-

dition 1 fails to apply is analogous.) The steady-state equilibrium investor
masses, µ, are found using (14)–(17) as in the case of a monopolistic market-
maker. The computation of the investors’ value functions must be modified
to account for the presence of marketmakers with limited bargaining power.
This computation is analogous to that of the basic model, and is outlined in
the appendix. The inter-dealer price, mX, is equal to the ask price, aX, and
to any buyer’s reservation value, (vlo − vln)X, since both dealers and buyers
must be indifferent between trading with each other and not trading. The
bid price is bX, where b = (1 − z)m + z(vho − vhn), reflecting the power of

17



marketmakers to extract a fraction z of the difference between the interdealer
market price and a seller’s reservation value.
If investors have all of the bargaining power (that is, z = 0), the bid-ask

spread is zero at all times, and the equilibrium approaches the Walrasian
equilibrium, in both prices and allocations, as marketmaking becomes more
intense (that is, for increasing ρ). This situation can be interpreted as one
in which investors meet different marketmakers at the same time.
On the other hand, if marketmarkers have all of the bargaining power

(that is, z = 1), the equilibrium is the same as the equilibrium with a monop-
olistic marketmaker. It might seem surprising that having many “competing”
non-atomic marketmakers is equivalent to having a monopolistic market-
maker. The result follows from the fact that a search economy is inherently
un-competitive, in that each time agents meet a bilateral relationship ob-
tains. We emphasize that the monopolistic rents to “competitive” dealers
depend on the credibility of the bargaining power, and not on “collusion”
among dealers.
For the natural intermediate case, in which z ∈ (0, 1), there is a strictly

positive bid-ask spread, which is increasing in the marketmakers’ bargaining
power, z. As the level of intermediation increases (ρ→∞), the equilibrium
approaches the Walrasian equilibrium. This, too, may seem surprising since
an investor trades with the first marketmaker he meets, and this marketmaker
could have almost all bargaining power (z close to 1). The reason that
Walrasian prices are approached is as follows. As ρ increases, the investor’s
outside option, when bargaining with a marketmaker, improves because he
can more easily meet another marketmaker. This results in a better price for
the investor. Further, the investor anticipates being able to get a better price
from the next potential marketmaker, which further increases his outside
option, and so on indefinitely. This effect drives prices to their Walrasian
levels as the intensity ρ approaches infinity.
The limit results stated in the previous paragraphs follow from Theorem

4 and from the next result.

Theorem 6 Let (ρm) be a sequence of positive real numbers such that ρm →
∞, and let (µm, bm, am, pm) be the corresponding sequence of stationary search
equilibria with non-atomic marketmakers. Then µm → µ∗. If, z < 1, then
both bm and am converge to p∗.
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3.3 Numerical Example, Continued

We illustrate some of the effects of marketmaking discussed in this section by
extending the example of Section 2.4. We consider the exogenous parameters
of Table 1, as well as an intensity, ρ = 100, of agents meeting a marketmaker.
Figure 5 shows how the investor price and the dealer’s bid and ask prices
depend on the bargaining power of the marketmaker. We see that all prices
are decreasing in the marketmaker’s bargaining power. Moreover, the bid-ask
spread is increasing in the marketmaker’s bargaining power.
Figure 6 shows how prices depend on the intensity, ρ, of meeting dealers in

the cases of z = 1 and z = 0.80, respectively. Since allocations become more
efficient as ρ increases, in both cases, all prices increase with ρ. Interestingly,
the spreads are increasing with ρ in the case of z = 1 but decreasing in
the case of z = 0.80. The intuition for this difference is as follows. When
the dealers’ contact intensity increases, they execute more trades. Investors
then find it more difficult to contact other investors with whom to trade.
If dealers have all of the bargaining power, this leads to wider spreads. If
dealers don’t have all of the bargaining power, however, then higher market-
maker intensity leads to a narrowing of the spread because of any investor’s
improved threat of waiting to trade with the next marketmaker.
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Figure 5: The solid line shows the price at which investors trade with each other. The
dashed lines show the bid (b) and ask (a) price coefficients used when investors trade with
a marketmaker. The prices are functions of the bargaining power (z) of the marketmaker.
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Figure 6: The solid line shows the price coefficient used when investors trade with each
other. The dashed lines show the bid (b) and ask (a) price coefficients used when investors
trade with a marketmaker. The prices are functions of the intensity (ρ) with which an
investor meets a dealer. The bargaining power of the marketmaker is z = 0.8 in the left
panel, and z = 1 in the right panel.

4 Analysis and Extensions

In this section, we explore several. We consider two explicit bargaining
games, and endogenize investors’ and marketmakers’ search intensities. Also,
we extend the model so that investors have asymmetric information about
the conditional expected growth of the dividend, and show that this infor-
mation may fail to be revealed in the market, even slowly, when search is
sufficiently difficult. Further, we show how investor valuations can be written
as present values of future dividends using a liquidity-adjusted discount rate.
We show that such a discounting formula applies in a framework which is
more general than the dynamic bargaining model considered here.

4.1 Explicit Bargaining Games

The setting considered here is the same as that of Section 2, with two ex-
ceptions. First, agents can interact only at discrete moments in time, each
δ apart from the previous one. Second, the bargaining game is modeled
explicitly. Later, we return to continuous time by letting δ go to zero.
We follow Rubinstein and Wolinsky (1985) and others in modeling an

alternating-offers bargaining game, making the adjustments required by the
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specifics of our set up. When two agents are matched, one of them is chosen
randomly with probability 1/2 to make a suggestion for the trading price.
The other either rejects or accepts the offer, immediately. If the offer is
rejected, the owner receives the dividend from the asset during the current
period. At the next period, δ later, one of the two agents is chosen at random,
independently, to make a new offer. The bargaining may, however, break
down before a counteroffer is made. First, a breakdown may occur because
either of the agents changes discount rate, whence there are no longer gains
from trade. Second, a breakdown can occur if one of the agents meets yet
another agent, and leaves his current trading partner. The latter reason for
breakdown is only relevant if agents are allowed to search while engaged in
negotiation.
We consider first the case in which agents cannot search while bargaining.

The offerer suggests the price that leaves the other agent indifferent between
accepting and rejecting it. In the unique subgame perfect equilibrium, the
offer is accepted immediately (Rubinstein (1982)). The value from rejecting
is associated with the equilibrium strategies being played from then ownards.
Letting Pσ(X) = pσX be the price suggested by the agent of type σ, with
σ ∈ {ho, ln}, and p̄ = (pho + pln)/2, we have

pln + vhn = e−(rh−c)δ
(
δ + e−(λu+λd)δ(p̄+ vhn)

+e−λdδ(1− e−λuδ)vho + (1− e−λdδ)vlo
)

−pho + vlo = e−(rl−c)δ
(
e−(λd+λu)δ(−p̄ + vlo)

+e−λuδ(1− e−λdδ)vln + (1− e−λuδ)vhn
)
.

These prices, pln and pho, have the same limit p = limδ→0 pln = limδ→0 pho.
Using (12), we obtain

p = ∆vh (1− q) + ∆vl q, (18)

where

q =
rl − c+ λd + λu + 2λµho

rl + rh − 2c+ 2(λd + λu) + 2λµho + 2λµln
. (19)

This formula (19) for the bargaining power highlights the fact that an agent’s
ability to meet alternative trading partners makes him more impatient, de-
creasing his bargaining power. A high ability to meet alternative trading
partners increases the outside option, however, which gives an indirect ad-
vantage.
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Suppose now that agents can search for alternative trading partners dur-
ing negotiations, and that, given contact with an alternative partner, they
leave the present partner in order to negotiate with the newly found one.
This model is solved similarly to the previous one. In the limit, as δ → 0,
the price is given by (18), where

q =
rl − c+ λd + λu + 2λµho + 2λµln

rl + rh − 2c+ 2(λd + λu + 2λµho + 2λµln)
. (20)

Here, one agent’s intensity of meeting other trading partners influences the
bargaining power of both agents in the same way. This is because one’s
own ability to meet an alternative trading partner: (i) makes oneself more
impatient, and (ii) also increases the partner’s risk of breakdown.
One can model explicitly the interaction between marketmakers and in-

vestors in a similar alternating-offers game. For this, one must define the
marketmakers’ discount rate. We do not document the results here, since
they are quite messy and do not shed much additional light, but we remark
that the solution is of the form stipulated in Section 3.
In this section, we have found a subgame-perfect bargaining equilibrium

and derived explicit formulae for the bargainig power, q. Importantly, the
results ensure that such a bargaining power actually makes sense, by proving
that the transaction price depends on agents’ outside options in the linear
way that we specify. (See Footnote 7 for further discussion.) Qualitatively,
most of our results with exogenous bargaining power are unchanged if the
bargaining power is endogenized as in (20), and we will not extend them here.
It is interesting to note that, if we use (19) to endogenize the bargaining
power, then, for instance, q approaches 0 or 1 as λ increases. Furthermore,
q tends to 0 (respectively, 1) precisely when convergence to the Walrasian
equilibrium requires it to be bounded below away from 011 (respectively,
1), so that the limit as λ tends to infinity is different from the Walrasian
equilibrium.

4.2 Endogenous Marketmaker Search

Here, we investigate the search intensities that marketmakers would opti-
mally choose in the two cases considered above: atomic monopolistic mar-
ketmaker and non-atomic competing marketmakers. Our goal is to illustrate

11Namely, under Condition 1.
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how marketmakers’ choices of search intensity depend on: (i) marketmak-
ers’ influence on equilibrium allocations of assets, and (ii) marketmakers’
bargaining power.
In order to avoid changing search intensities over time, we assume that

a marketmaker chooses one search intensity and abides by it. This can be
motivated by interpreting the search intensity as a function of such factors
as the number of dealers the firm employs, the technology in place in the
firm, and so on, which are not particularly easy to change. Without the
assumption, marketmakers would have the incentive to change their search
intensities as Xt changes. For competitive marketmakers, this incentive can
be eliminated by assuming a cost that is proportional to the dividend. A
monopolistic marketmaker may still have the incentive to act strategically,
perhaps to choose a high intensity early in order to execute many trades
when profit is more valuable.
Consequently, marketmakers maximize their profit rate per unit of time

(assuming that they have a discount rate process that is independent of Xt).
We assume that the cost per time unit of choosing an intensity ρ is given by
some function Γ : [0,∞)→ [0,∞) assumed to be continuously differentiable,
strictly convex, with Γ(0) = 0, Γ′(0) = 0, and limρ→∞ Γ′(ρ) =∞.
The steady-state time rate of profit of the monopolistic marketmaker is:

π(ρ) = ρµm(ρ) (a(ρ)− b(ρ))− Γ(ρ), (21)

using the obvious notation to indicate dependence of the solution on ρ.
Non-atomic marketmakers do not influence either the equilibrium masses

of agents (µ), or the prices at which they trade. Their steady-state profit
rate, under Condition 1, is thus

π(ρ) = ρµho (a− b)− Γ(ρ).

The profit-maximizing strategy is Γ−1(µho(a− b)). An equilibrium intensity,
ρC , for competitive dealers is a solution to

ρC = Γ−1
(
µho(ρ

C)(a(ρC)− b(ρC))
)
. (22)

The following theorem characterizes equilibrium.

Theorem 7 There exists a unique number, denoted by ρM , that maximizes
the right-hand side of equation (21). For any z ∈ [0, 1], there exists a unique
number, denoted by ρC(z) ∈ R, that solves (22). It holds that ρC(0) = 0, that
ρC(z) is increasing in z, and that ρC(1) > ρM .
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In addition to providing the existence of optimal search intensities, this the-
orem establishes that: (i) competitive marketmakers search more intensely
when they can capture a higher proportion of the gains from trade, and (ii)
competitive marketmakers with full bargaining power search more than a
monoplistic marketmaker, since they do not internalize the consequences of
their search on the investor masses.

4.3 Asymmetric Information

It is natural that information about future dividends held privately by agents
may be transmitted through trading. If agents observe only their own trans-
actions, one would expect that the speed with which information is spread
is related to agents’ search intensities. According to this hypothesis, infor-
mation is always disseminated, although slowly, if search intensities are low.
We show, however, that this need not be the case. If meeting intensities are
low, agents are eager to trade when they meet since they know that failure to
trade is particularly costly. This leads to the existence of pooling equilibria in
which no information is revealed through trading. We show that such pooling
equilbria exist only for small search intensities. We do not study equilibria
in which information is disseminated through bargaining interaction, as did
Wolinsky (1990), although this would also be interesting.
We model asymmetric information as follows. The dividend process X

jumps with a known constant jump-arrival intensity λJ , so that at any jump
time τ , the relative jump size X(τ)(X(τ−))−1 is drawn independently of
X(τ−) and of agents’ types. The relative jump size is drawn with probabil-
ity 1 − γ from a distribution with mean J0, and with probability γ from a
distribution with mean J1 > J0. The unconditional mean jump size, conse-
quently, is Jm = γJ1 + (1 − γ)J0. Suppose further that, in the event that
the next relative jump is to be drawn with the high conditional mean, a pro-
portion ν ∈ [0, 1] of the agents, independently selected, are informed of this
fact immediately after the previous jump. The allocation of this information
is independent of X, of ownership status, and of personal discount rates.
In the event that the relative jump is to be drawn with the low conditional
mean, nobody receives information regarding this fact. Thus, each agent is
informed with probability γν, and an uninformed agent expects a relative
jump of mean

Ju =
γ(1− ν)J1 + (1− γ)J0

1− γν .
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Bargaining with asymmetric information is too complicated to model sat-
isfactorily. In order to keep this relatively simple, we assume that once two
agents meet, one of them is drawn randomly to make a take-it-or-leave-it
offer. We use the notation qσ for the probability that an agent of type σ
is the quoting agent. We are looking for conditions under which pooling
equilibria exist. In our candidate pooling equilibrium, sellers quote a price
at which both informed and uninformed buyers are willing to buy, rather
than a more aggresive price at which uninformed buyers would decline trade.
Likewise, buyers quote pooling prices. Before we determine these pooling
prices, we point out that our pooling equilibrium also requires that agents
with no gains from trade must not reveal information by trading with each
other. This is, however, consistent with optimal behavior. For instance, an
uninformed owner with a low discount rate does not sell to an informed agent
with low discount rate, since there are no gains from trade between the two.
If such a trade took place, then the uninformed would become informed, but
the expected utility of these agents would remain unchanged.12 Such trades
are ruled out, for instance, if there is an arbitrarily small cost of making an
offer.
We now turn to the determination of value functions and pooling prices.

We refine the notation of Section 2.2 by adding to the value coefficient vσ
a superscript “i” if the agent is informed, and a superscript “u” otherwise.
We also define the reservation-value coefficients for each of the four cases as
follows: ∆vih = viho − vihn, ∆v

u
h = vuho − vuhn, ∆v

i
l = vilo − viln, and ∆v

i
h =

vulo − vuln. We look for equilibria in which, naturally, informed agents have
higher reservation values than those of uninformed agents, and all efficient
trade can potentially happen, that is,

∆vil ≥ ∆vul ≥ ∆vih ≥ ∆vuh . (23)

Proposition 9 in Appendix A offers mild sufficient conditions for (23). A full
equilibrium analysis, including the system of linear equations analogous to
those of Section 2.2, is found in Appendix A.
Here, we present only the necessary and sufficient conditions for a pooling

equilibrium. First, a high-discount-rate owner, whether informed or not,
must prefer to quote a price which is accepted by all non-owners with a low
discount rate, rather than quoting a more aggresive price, which would only

12Note, however, that in a (partially) revealing equilibrium, where being informed would
be valuable for future behavior, there would exist strictly positive gains from such a trade.
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be accepted by informed non-owners. That is,

∆vul + v
i
hn ≥ Pr(i | i)

(
∆vil + v

i
hn

)
+ (1− Pr(i | i))viho , (24)

∆vul + v
u
hn ≥ Pr(i | u)

(
∆vil + v

u
hn

)
+ (1− Pr(i | u))vuho, (25)

where Pr(i | ξ) is the probability of the buyer being informed given that the
seller has information status ξ ∈ {i, u}. The left-hand side of (24) is the value
to an informed high-discount-rate owner of quoting the pooling price, ∆vul
(given that there are gains from trade with this counterparty). The right-
hand side is the value of quoting the most aggressive price, ∆vil , namely the
reservation value of an informed non-owner (again, given that there are gains
from trade with this counterparty). Similarly, (25) states that an uninformed
high-discount-rate owner prefers to quote the pooling price.
Also, a low-discount-rate non-owner, whether informed or not, must pre-

fer to buy at the pooling price with certainty rather than buying at a lower
price only from uninformed sellers, that is,

vilo −∆vih ≥ Pr(u | i)
(
vilo −∆vuh

)
+ (1− Pr(u | i))viln (26)

vulo −∆vih ≥ Pr(u | u) (vulo −∆vuh) + (1− Pr(u | u))vuln. (27)

It turns out that only the optimality conditions of the informed seller (24),
and of the uninformed buyer (27) need to be checked. If these two condi-
tions are satisfied, the other two optimality conditions follow automatically.
(Proposition 9 in Appendix A formalizes this claim.)
For a given set of parameters, either of the necessary and sufficient opti-

mality conditions (24) and (27) may or may not hold. Intuitively, the first
condition fails when, keeping all other parameters fixed, there are “so many”
informed agents (ν is sufficiently high) that a (informed) seller would ben-
efit by quoting an agressive price and risking the loss of a trade with an
uninformed agent. Similarly, the second condition fails when, keeping all
other parameters fixed, a (uninformed) buyer perceives the proportion of un-
informed agents as too large (ν is sufficiently small). When search is too
intense, there is no pooling equilibrium, and information must be revealed
through trading:

Theorem 8 For any set of parameters, there exists a search intensity λ̄ such
that, for all λ > λ̄, a pooling equilibrium cannot exist.

When search is less intense, however, pooling equilibria may exist. Figure 7
provides an illustrative numerical example. We use the parameters of Table 1
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and take J0 = 1, J1 = 1.1, λJ = 0.2, and γ = 0.8. We compute, for a range of
contact intensities (λ), the lowest and the highest values that the proportion
of informed agents, ν, can take in order for a pooling equilibrium to exist.
We see that, as λ increases, ν is confined to a smaller and smaller interval,
depicted as the shaded region of Figure 7, until the two optimality conditions
(24) and (27) can no longer be satisfied simultaneously. One can see that
the seller’s incentive constraint for pooling is more sensitive to λ than the
buyer’s. The explanation for this is that the buy side of the market is larger
than the sell side because Condition 1 is satisfied. Hence, as λ increases, a
seller’s meeting intensity converges to infinity, which makes it tempting for
the seller to quote agressive prices. The buyer’s meeting intensity, on the
other hand, is bounded as λ increases.
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Figure 7: The shaded area is the set of parameters for which a pooling equilibrium
exists. The solid line shows the highest value that ν can take, while preserving pooling
condition (24) for quotation by informed sellers. The dotted line shows the lowest value
of ν consistent with the pooling condition (27) of uninformed buyers.
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A Appendix: Proofs

Optimality of the proposed strategy:
We present here a sketch of the proof. The issue is to show that any

agent prefers to play the proposed equilibrium trading strategy, assuming
that other agents do. It is enough to show that an agent agrees to trade at
the candidate equilibrium prices when contacted by an investor with whom
there are potential gains from trade. Our calculations in Section 4, and the
assumption that c < rl, already imply that the value function is equal to
the utility of the consumption process generated by the candidate trading
strategy, at the candidate prices. We must now check that any other trading
strategy generates no higher utility.
The Bellman principle, when applied at a time when the dividend rate

is x, for an agent of type ho in contact with an agent of type ln, is that:
Selling the asset, consuming the price, and attaining the candidate value of
a non-owner with a high discount rate, dominates (at least weakly) the value
of keeping the asset, consuming its dividends and collecting the discounted
expected candidate value achieved at the next time τm of a trading oppor-
tunity or at the next time τr of a change to a low discount rate, whichever
comes first. That is, for an agent of type hn,

P (x) + V (x, hn) ≥ E

[ ∫ τ
0

xecte−rht dt

+ e−rhτ
[
(V (xecτ , hn) + P (xecτ)) 1{τ=τm} + V (xe

cτ , lo)1{τ=τr}
] ]
,

where τ = min(τr, τm). There is a like Bellman inequality for an agent of
type ln. Both of these inequalities are satisfied in our candidate equilibrium.
Consider any initial agent type σ0, any feasible trading strategy, N , an

adapted process whose value is 1 whenever the agent owns the asset and 0
whenever the agent does not own the asset. The cumulative consumption
process CN associated with this trading strategy is given by

dCNt = NtXt dt− πt dNt, (A.1)

where π describes the prices at which trades for that agent occur. The type
process associated with trading strategy N is denoted σN .
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By the usual stochastic-control calculations, it follows that, for any future
time T ,

V (x, σ0) ≥ E

[∫ T
0

e−
∫ t
0 R(σ

N
s ) ds dCNt

]
+ E
[
e−
∫ T
0 R(σ

N
s ) ds V (XT , σ

N
T )
]
,

where R(hn) = R(ho) = rh and R(ln) = R(lo) = rl. (This assumes without
loss of generality that a potential trading contact does not occur at time 0.)
Letting T go to ∞ and using c < rl, we have V (x, σ0) ≥ U(CN ). Because
V (x, σ) = U(C∗), where C∗ is the consumption process associated with the
candidate equilibrium strategy, we have shown optimality.

�

Proof of Propositions 1 and 3:
First note that Proposition 1 is a special case of Proposition 3 with ρ = 0.

Let

y =
λd

λd + λu
,

and assume that y > s. (This is Condition 1.) The case y ≤ s can be treated
analogously. Setting the right-hand side of Equation 3 to zero and substitut-
ing all components of µ other than µho in terms of µho from Equations (1)
and (2) and from µho+µhn = λu(λu+λd)

−1 = 1−y, we obtain the quadratic
equation

Q(µho) = 0,

where

Q(x) = 2λx2 + (2λ(y − s) + ρ+ λd + λu)x− λus. (A.2)

It is immediate that Q has a negative root (since Q(0) < 0) and has a root
in the interval (0, 1) (since Q(1) > 0).
Since µho is the largest and positive root of a quadratic with positive

leading coefficient and with a negative root, in order to show that µho < η
for some η > 0 it suffices to show that Q(η) > 0. Thus, in order that µlo > 0
(for, clearly, µlo < 1), it is sufficient that Q(s) > 0, which is true, since

Q(s) = 2λs2 + (λd + ρ)s.

Similarly, µhn > 0 if Q(1− y) > 0, which holds because

Q(1− y) = 2λ(1− y)2 + 2λ(y − s) + (λu + ρ)(1− s).
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Finally, since µln = y − s+ µho, it is immediate that µln > 0.
The proof of the claim that from any admissible initial condition µ(0)

the system converges to the steady-state µ is elementary, but somewhat ugly
and lengthy. The authors would be happy to provide it upon request.

�

Analysis of agents’ reservation values:
A simple modification of equations (8)-(7) allows for the treatment of

the case with non-atomic marketmakers, who have an arbitrary bargaining
power, z ∈ [0, 1]. Note that, as described in Section 3.1, special cases are the
case of no marketmakers, ρ = 0, and the case of a monopolistic marketmaker,
z = 1. Here, we derive some general results that are used in the proofs below.
Note that, under Condition 1, only a proportion, µho/µln, of the agents of

type ln buy from the marketmaker, when they meet him. Let ρ′ = ρµhoµ−1ln .
The equations for the coefficients of the value functions and prices are:

vho =
(λdvlo + 2λµlnp+ ρb+ (2λµln + ρ)vhn + 1)

rh + λd + 2λµln + ρ− c

vhn =
λdvln

rh + λd − c

vlo =
(λuvho + 1)

rl + λu − c

vln =
(λuvhn + (2λµho + ρ

′)vlo − λµhop− ρ′a)
rl + λu + 2λµho + ρ′ − c

p = (vho − vhn)ql + (vlo − vln)qh
a = vlo − vln
b = (vho − vhn)z + (vlo − vln)(1− z).

Define ∆vh = vho − vhn and ∆vl = vlo − vln to be the reservation-value
coefficients. The bargaining power of a seller who interacts with a market-
maker is 1− z, while buyers pay their reservation values. Appropriate linear
combinations of the equations above yield

W1ψ = 1, (A.3)

where 1 = (1, 1)>, ψ = (∆vh,∆vl)>, and

W1 =

[
rh − c+ λd + 2λµlnqh + ρ(1− z) − (λd + 2λµlnqh + ρ(1− z))

− (λu + 2λµhoql) rl − c+ λu + 2λµhoql

]
.
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It will be used repeatedly in what follows that

∆vl −∆vh =
rh − rl
det(W1)

> 0. (A.4)

Proof of Theorems 2 and 5:
Consider (A.3). In the context of Theorem 2, ρ = 0. In the context of

Theorem 5, z = 1, which implies that the term ρ(1− z) cancels (even when
ρ = ∞). First, (A.3) implies that ψ is bounded as λ → ∞. Second, the
first row of the matrix equation (A.3) implies that 2λµlnqh(ψh−ψl) remains
bounded as λ → ∞. Consequenly, since µln ≥ v − s > 0, and qh > 0
by assumption (that is, the buyer does not have all the bargaining power),
ψh−ψl → 0. Using the second row of the same matrix equation, one deduces
that ψh → (rl − c)−1 and that ψl → (rl − c)−1.
It is clear from (A.2) that µmho → 0, which implies that µm → µ∗.

�

Proof of Theorem 4:
It is immediate from (A.2) that, as ρ → ∞, µho → 0. The limit of ψm

is obtained from (A.3) with z = 1, µln = v − s, and µho = 0. This same
couple (A.2)–(A.3) of equations characterizes the prices set by a monopolistic
marketmaker that can be approached instantly. Therefore, the reservation-
value coefficients, and hence the bid and ask coefficients, converge to the
monopolistic bid and ask coefficients.
In order to show that a − b increases in ρ, it suffices to prove that the

determinant of W1 decreases in ρ, which is true because the masses µln and
µho do.

�

Proof of Theorem 6:
Since 1−z > 0, the fact that equation (A.3) implies that ρ(1−z)(ψh−ψl)

is bounded shows that ψmh − ψml → 0. As in the proof of Theorem 2, the
common limit of the two sequences is seen to be theWalrasian price coefficient
p∗.

�

Proof of Theorem 7:
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We are looking for a ρC ≥ 0 such that

Γ′(ρC) = µho(ρC)(a(ρC)− b(ρC)). (A.5)

Consider how both the left and right hand sides depend on ρ. The left hand
side is 0 for ρ = 0, increasing, and tends to infinity as ρ tends to infinity.
The right-hand side is strictly positive for ρ = 0, and can be seen to be
decreasing, using that µho is decreasing is ρ, and using the explicit expression
for the spread given by (A.4). This yields the existence of a unique solution.
For z = 0, b(ρ) − a(ρ) = 0 for all ρ, so clearly the solution to (A.5) is

ρC = 0. To see that ρC > ρM when z = 1, consider the first-order conditions
that determine ρM :

Γ′(ρM) = µho(ρM)(a(ρM )− b(ρM )) + ρM
∂

∂ρM
(
µho(ρ

M )(a(ρM)− b(ρM))
)
.

(A.6)

The first term of the right-hand side of (A.6) is the same as that of (A.5).
The second term of the right hand side of (A.6) can be seen to be negative.
Hence, the right-hand side of (A.6) is smaller than the right-hand side of
(A.5), implying that ρC(1) > ρM .
To see that ρC(z) is increasing in z, we use the Implicit Function Theorem

to compute the derivative of ρC(z) with respect to z, which is

µho(ρ
C)(az(ρ

C , z)− bz(ρC , z))
Γ′′(ρC)− µ′ho(ρC)(a(ρC , z)− b(ρC , z))− µho(ρC)(aρ(ρC , z)− bρ(ρC , z))

,

which is positive as claimed because both the denominator and the numerator
are positive.

�

Analysis of pooling equilibria with information: We work under con-
dition (23) in the text, which means that prices are set by the reservation
values of the informed seller and uninformed buyer, and that the bid is higher
than the ask. Under these conditions, one derives the equations:

32



viho =
(
λdv

i
lo + 2λµln(p+ v

i
hn) + λJJ1(γνv

i
ho + (1− γν)vuho) + 1

)
·

1

rh + λd + 2λµln + λJ − c

vihn = (λdv
i
ln + λJJ1(γνv

i
hn + (1 − γν)vuhn))

1

rh + λd + λJ − c

vilo =
(
λuv

i
ho + λJJ1(γνv

i
lo + (1− γν)vulo) + 1

) 1

rl + λu + λJ − c
viln =

(
λuv

i
hn + 2λµho(v

i
lo − p) + λJJ1(γνviln + (1 − γν)vuln)

)
·

1

rl + λu + 2λµho + λJ − c
vuho =

(
λdv

u
lo + 2λµln(p+ v

i
hn) + λJJ

u(γνviho + (1− γν)vuho) + 1
)
·

1

rh + λd + 2λµln + λJ − c
(A.7)

vuhn = (λdv
u
ln + λJJ

u(γνvihn + (1 − γν)vuhn))
1

rh + λd + λJ − c

vulo =
(
λuv

u
ho + λJJ

u(γνvilo + (1 − γν)vulo) + 1
) 1

rl + λu + λJ − c
vuln =

(
λuv

u
hn + 2λµho(v

u
lo − p) + λJJu(γνviln + (1 − γν)vuln)

)
·

1

rl + λu + 2λµho + λJ − c
p = (viho − vihn)(1− qh) + (vulo − vuln)qh.

Note that here p represents the expected price coefficient — the realized
price coefficient is viho − vihn or vulo − vuln.

Proposition 9 If J1 − J0 < 1/γν, the solution to the linear system (A.7)
satisfies ∆vil ≥ ∆vul and ∆vih ≥ ∆vuh. If the solution to the linear system
(A.7) satisfies ∆vil ≥ ∆vul ≥ ∆vih ≥ ∆vuh, then conditions (24) and (27)
ensure that this solution defines a pooling equilibrium.

Proof: Let us first prove the first part of the proposition, namely that the
solution to the system above satisfies viho − vihn ≥ vuho − vuhn and vilo − viln ≥
vulo−vuln. To that end, recall the definitions ∆vih = viho−vihn, ∆vuh = vuho−vuhn,
∆vil = v

i
lo−viln, and ∆vul = vulo−vuln. Let φh = ∆vih−∆vuh and φl = ∆vil−∆vul .

By adding and subtracting appropriately the equations above, one obtains

φh(rh − c+ λd + 2λµln + λJ) = φhγνλJ(J1 − Ju) + φlλd + λJ(J1 − Ju)∆vuh
φl(rl − c+ λu + 2λµho + λJ) = φlγνλJ(J1 − Ju) + φhλu + λJ(J1 − Ju)∆vul .
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This system of equations is guaranteed to have a positive solution when the
operator norm of the matrix

W2 =




γνλJ (J1−Ju)
rh−c+λd+2λµln+λJ

λd
rh−c+λd+2λµln+λJ

λu
rl−c+λu+2λµho+λJ

γνλJ (J1−Ju)
rl−c+λu+2λµho+λJ




is strictly less than 1. The proof also relies on the positivity of all the
coefficients of the system, which makes Brouwer’s Theorem applicable. Since
all entries ofW2 are positive, it suffices that the sums of the elements of each
row be smaller than 1 in order to get ‖W2‖ < 1. This condition follows when
J1 is not much larger than J0; for instance, J1 − J0 < 1/γν is sufficient for
our purposes.
Let us now turn to the second claim of the proposition. Consider a seller

with information status ξ ∈ {i, u}. The seller’s bargaining power does not
matter, since we assume that it is captured by an independent random draw
that determines which side makes the “take-it-or-leave-it” offer. This analysis
conditions on the event that the seller makes the offer. Equations (24) and
(25) can be written as

∆vul ≥ ∆vilPr(i | θ) + ∆vsh (1− Pr(i | θ)) .

In order to show that the constraint for θ = i is stronger than the constraint
for θ = u, it suffices to show that

∆vilPr(i | i) + ∆vihPr(u | i) ≥ ∆vilPr(i | u) + ∆vuhPr(u | u),

which is equivalent to

(∆vil −∆vih)Pr(u | i) ≤ (∆vil −∆vuh)Pr(u | u),

which in turn holds because ∆vih ≥ ∆vuh and Pr(u | i) ≤ Pr(u | u).
Analogously, one deduces that the uninformed-buyer condition is stronger

than the informed-buyer condtion. Consequently, if (24) and (27) hold, then
(25) and (26) also do, whence quoting pooling prices is optimal for all agents,
given that everybody else does the same. This proves that the solution to
(A.7) defines a pooling equilibrium.

�

34



Proof of Theorem 8: One shows, by considering appropriate linear com-
binations of the equations in the system (A.7), that

lim
λ→∞
∆vul = lim

λ→∞
∆vih = lim

λ→∞
∆vuh < lim

λ→∞
∆vil ,

which is inconsistent with (24).

�
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