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Predicting returns with financial ratios 
 

 
 
 
 
 

Abstract 
 

This paper reports new evidence on the predictive power of dividend yield, book-to-market, and the 
earnings-price ratio. I show that previous studies overstate the bias in predictive regressions, and 
consequently, understate the forecasting power of the three financial ratios.  Dividend yield predicts 
stock returns from 1946 – 1997, as well as in various subperiods.  Book-to-market and the earnings-
price ratio predict returns during the shorter 1963 – 1997 sample.  The evidence remains strong despite 
the ratios’ poor forecasting ability in recent years. 

 
 
 



Predicting returns with financial ratios 
 
1. Introduction 

Nearly fifty years ago, Kendall (1953) observed that stock prices seem to wander randomly over 

time.  Kendall, and the early literature on market efficiency, tested whether price changes could be 

predicted using past returns.  Empirical tests later expanded to other predictive variables, including 

interest rates (Fama and Schwert, 1977; Campbell, 1987), default spreads (Keim and Stambaugh, 1986; 

Fama and French, 1989), dividend yield and the earnings-price (Fama and French, 1988; Campbell and 

Shiller, 1988a), and more recently, the book-to-market ratio (Kothari and Shanken, 1997; Pontiff and 

Schall, 1998). 

The three financial ratios – DY, B/M, and E/P – share several common features.  First, each ratio 

measures price relative to ‘fundamentals.’  Because price is low when expected returns are high, and vice 

versa, the ratios should fluctuate positively with expected returns.  According to the mispricing view, 

prices are low when investors are too pessimistic; the ratios predict high returns because stocks are 

underpriced.  The efficient-markets view argues, instead, that prices are low when discount rates are high; 

the ratios predict returns because they track time-variation in the risk premium.  The financial ratios also 

share similar time-series properties.  At a monthly frequency, they have autocorrelations near one and 

most of their movement is caused by price changes in the denominator.  These statistical properties have 

important effects on empirical tests. 

 This paper re-examines the predictive power of DY, B/M, and E/P.  I focus primarily on DY because 

it has received the most attention in the literature.  I also focus exclusively on short-horizon tests – 

monthly returns regressed on lagged DY – to avoid the complications arising from overlapping returns.  

Previous research has produced little evidence that DY forecasts monthly returns.  Fama and French 

(1988) find that DY predicts monthly NYSE returns from 1941 – 1986, with t-statistics between 2.20 and 

3.21 depending on the definition of returns (equal- vs. value-weighted; real vs. nominal).  However, 

Stambaugh (1986, 1999) and Mankiw and Shapiro (1986) show that predictive regressions can be 

severely biased toward finding predictability.  Nelson and Kim (1993) replicate the Fama and French 
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tests, correcting for bias using bootstrap simulations, and estimate that the p-values are actually between 

0.03 and 0.33.  More recently, Stambaugh (1999) derives the exact small-sample distribution of the 

estimates (assuming that DY follows an AR(1) process).  He reports a one-sided p-value of 0.15 when 

NYSE returns are regressed on lagged DY from 1952 – 1996.1 

 In this paper, I show that Stambaugh’s (1999) analysis, as well as the Monte Carlo simulations 

common in the literature, can substantially overstate the bias in predictive regressions.  Stambaugh’s 

results are based on repeated sampling of both returns and DY, and they implicitly ignore information 

conveyed by the sample autocorrelation of DY.  The slope estimate in a predictive regression and the 

sample autocorrelation of DY are strongly correlated, so any information conveyed by the autocorrelation 

helps produce a more powerful test of predictability.  Incorporating this information into empirical tests 

has two effects:  (1) the bias in the predictive slope coefficient is often smaller than Stambaugh’s estimate; 

and (2) the standard error of the slope coefficient is much lower.  In combination, the two effects 

substantially raise the power of empirical tests. 

 To gain some intuition, consider the model of returns analyzed by Stambaugh (1986, 1999) and 

Mankiw and Shapiro (1986): 

 rt = α + β xt-1 + εt, (1a) 

 xt = φ + ρ xt-1 + µt, (1b) 

where rt is the return during month t and xt-1 is the dividend yield at the beginning of the month.  The first 

equation is the predictive regression and the second equation specifies an AR(1) process for DY.  The 

residuals, εt and µt, are correlated because positive returns lead to a decrease in DY.  As a consequence, 

estimation errors in the two equations are closely connected: 

 η+ρ−ργ=β−β )ˆ(ˆ , (2) 

where η is a random error with mean zero and γ is a negative constant.  This equation shows that β̂  

                                                   
1 DY predicts long-horizon returns more strongly, but the statistical significance is sensitive to changes in the 

definition of returns and the time period considered.  See, for example, Hodrick (1992), Goetzmann and Jorion 
(1993), and Nelson and Kim (1993). 
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inherits many properties of sample autocorrelations.  For example, taking expectations, the downward 

bias in ρ̂  (Kendall, 1954) induces an upward bias in β̂ .  That observation underlies Stambaugh’s analysis 

and the simulations in other studies.  Notice, however, that taking expectations throws out the information 

contained in the observed ρ̂ .  The sample autocorrelation of DY is roughly 0.99 at the monthly 

frequency.  Assuming DY is stationary, so that ρ is at most one, we know immediately that ρ−ρ̂  > –0.01.  

In turn, eq. (2) implies that the ‘bias’ in β̂  is at most –0.01γ.  This upper bound is often less than the bias 

derived by Stambaugh.  In effect, the repeated-sampling inherent in Stambaugh’s analysis includes many 

samples in which ρ̂  is far below ρ, and we can eliminate these samples given the observed 

autocorrelation. 

 Empirically, exploiting the information in ρ̂  strengthens the case for predictability.  When NYSE 

value-weighted returns are regressed on log DY from 1946 – 1997, the OLS slope estimate is 1.21 with a 

standard error of 0.57.  Based on Stambaugh’s (1999) small-sample distribution, the bias-adjusted 

estimate is 0.51 with a one-sided p-value of 0.210.  However, conditioning on DY’s sample 

autocorrelation, the bias-adjusted estimate becomes 0.72 with a t-statistic of 4.09.  This t-statistic has the 

standard distribution, so DY is strongly significant.  We can also reject the null in shorter subperiods.  For 

the first half of the sample, 1946 – 1971, the bias-adjusted estimate is 0.81 with a p-value less than 0.002.  

For the second half of the sample, 1972 – 1997, the bias-adjusted estimate is 0.72 with a p-value again 

less than 0.001.  In short, by recognizing the upper bound on ρ, we obtain much more powerful tests of 

predictability. 

 As an aside, I also consider how the last few years of data affect the empirical results.  In May 1995, 

DY reached a new low for the sample, predicting that returns going forward should be far below average.  

Contrary to the model, the NYSE index nearly doubled over the subsequent three years.  When returns for 

1995 – 1997 are added to the regression, the OLS slope coefficient drops almost in half, from 2.19 to 

1.21, and the statistical significance declines from 0.061 to 0.210 using Stambaugh’s small-sample 

distribution.  Interestingly, the tests here are not sensitive to the recent data.  The bias-adjusted slope 



 4

drops from 0.95 to 0.72 and the p-value remains below 0.001.  The reason is simple:  the last few years 

have also lead to a sharp rise in the sample autocorrelation of DY, from 0.987 to 0.994.  This rise means 

that the maximum bias in the predictive slope declines from 1.24 to 0.49, offsetting most of the decline in 

the OLS estimate.  Regressions with the equal-weighted index are even more remarkable, finding stronger 

evidence of predictability after observing the recent data. 

 I also find that B/M and E/P have significant predictive power.  The tests with B/M and E/P are 

restricted to 1963 – 1997 because of data requirements.  Using the value-weighted NYSE index, B/M is 

positively related to expected returns in both the full sample (p-value of 0.062) and the truncated sample 

ending in 1994 (p-value of 0.012).  Similarly, E/P predicts returns with p-values of 0.053 and 0.032 for 

the two periods.  Again, these results are much stronger than previous studies.  Kothari and Shanken 

(1997) and Pontiff and Schall (1998) find that B/M has little predictive power during this period, and 

Lamont (1999) finds no evidence that E/P (by itself) predicts quarterly returns from 1947 – 1994.  I 

should mention, however, that the results for B/M and E/P are sensitive to the definition of returns; B/M 

and E/P forecast nominal returns on NYSE equal- and value-weighted indices, but they have little power 

to predict excess returns. 

 

2. Predictive regressions 

 Predictive regressions are ubiquitous in the finance literature.  They have been used to test whether 

past prices, financial ratios, interest rates, and a variety of other macroeconomic variables can forecast 

stock and bond returns.  This section reviews the properties of predictive regressions, borrowing liberally 

from Stambaugh (1986, 1999). 

 
2.1. The return-generating process 

 The paper focuses on the regression 

 rt = α + β xt-1 + εt, (3a) 

where rt is the return during month t and xt-1 is a predictive variable known at the beginning of the month.  

It is easy to show that β must be zero if expected returns are constant.  In many cases, including all of the 
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ones discussed here, the alternative hypothesis is that β > 0, so we will be concerned only with one-sided 

tests.  To complete the model, assume that xt follows a stationary AR(1) process: 

 xt = φ + ρ xt-1 + µt, (3b) 

where –1 < ρ < 1.  An increase in stock prices leads to a decrease in DY, so the residuals in (3a) and (3b) 

are negatively correlated.  Therefore, εt and xt are correlated in the predictive regression, violating one of 

the assumptions of OLS (which requires independence at all leads and lags).  For simplicity, I assume that 

all variables are normally distributed. 

 Before continuing, I should briefly discuss the stationarity assumption.  The empirical tests depend 

on the assumption that ρ cannot be greater than one.  Statistically, the tests actually remain valid if ρ = 1 

(we just need an upper bound on ρ).  I often assume that ρ is strictly less than one to be consistent with 

prior studies.  It also makes little sense to predict returns with a nonstationary variable.  Economically, xt 

should be stationary unless there is an explosive bubble in stock prices.  Suppose, for example, that xt 

equals log DY.  xt will be stationary if log dividends and prices are cointegrated, implying that deviations 

from ‘fundamental’ value are not expected to grow forever.  That assumption seems reasonable.  There is 

a vast literature that argues against explosive bubbles and much direct evidence that DY is stationary 

using data over long sample periods.2 

 
2.2. Properties of OLS 

 Denote the sample matrix of regressors as X, the coefficient vectors as b = (α, β) and p = (φ, ρ), and 

the residual vectors as ε and µ.  The OLS estimates of eqs. (3a) and (3b) are then 

 ε′′+= − X)XX(bb̂ 1 , (4a) 

 µ′′+= − X)XX(pp̂ 1 . (4b) 

In the usual OLS setting, the estimation errors are expected to be zero.  That is not true here.  It is well-

                                                   
2 See Blanchard and Watson (1982), Tirole (1982, 1985), and Loewenstein and Willard (1999) for theoretical 

arguments and Hamilton and Whiteman (1985), Flood and Hodrick (1986, 1990), Diba and Grossman (1988), and 
West (1988) for empirical evidence. 



 6

known that autocorrelations are biased downward in finite samples, and this bias feeds into the predictive 

regression through the correlation between εt and µt.  Specifically, note that we can write εt = γ µt + νt, 

where γ = 2/ µεµ σσ .  Given our earlier assumptions, νt is independent of both µt and X.  Substituting into 

(4a) yields 

 bb̂ − η+−γ= )pp̂( , (5) 

where η ≡ (X′X)-1X′ν  has mean zero and variance 12 )XX( −
ν ′σ .  This equation provides a convenient way 

to think about predictive regressions. 

Consider, first, the distribution of β̂  based on repeated sampling of both ρ̂  and η.  This is the 

distribution studied by Stambaugh.  Eq. (5) shows that β̂  inherits many of the statistical properties of 

autocorrelations.  For example, taking expectations yields 

 ]ˆ[E ]ˆ[E ρ−ργ=β−β . (6) 

The downward bias in ρ̂ , approximately equal to –(1+3ρ)/T, induces an upward bias in the predictive 

slope.  Further, autocorrelations are negatively skewed and more variable than suggested by OLS.  These 

properties imply that β̂  is positively skewed and also more variable than suggested by OLS.  Stambaugh 

discusses these properties in detail. 

 Eq. (5) tells us more directly about the ‘conditional’ distribution of β̂ , where conditional means the 

distribution given ρ̂  (and X).  The correlation between β̂  and ρ̂  is strong, so information about ρ−ρ̂  

provides a lot of information about the predictive slope.  The conditional expectation of β̂  is 

 )ˆ(]ˆ[E ˆ ρ−ργ=β−βρ . (7) 

I refer to γ )ˆ( ρ−ρ  as the realized bias in β̂ .  The strong correlation between β̂  and ρ̂  implies that the 

conditional variance of β̂  is substantially less than the unconditional variance.  Also, β̂  is normally 

distributed conditional on ρ̂  and X.  The irregularities in the sampling distribution of β̂  are caused by its 

correlation with ρ̂ , not by the independent component. 
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 The tests in this paper are based on the conditional distribution of β̂ .  The idea is simple.  Even 

though we do not know ρ−ρ̂ , we can put a lower bound on it by assuming ρ ≈ 1.  In turn, this 

assumption gives us an upper bound on the bias in β̂ .  Define the bias-adjusted estimator: 

 )ˆ(ˆˆ
adj ρ−ργ−β=β . (8) 

This estimator is normally distributed with mean β and variance 12 )XX( −
ν ′σ .  I will show later that the 

parameter γ can be estimated very precisely and, therefore, treated as known.  Although we do not know 

the true autocorrelation, ρ ≈ 1 is the most conservative assumption we can make for testing predictability:  

the bias in eq. (7) is maximized, and the estimator in eq. (8) is minimized, if we assume ρ ≈ 1.  If β̂  is 

significantly different from zero given this assumption, then it must be even more significant given the 

true value of ρ. 

Previous studies focus on the unconditional distribution of β̂ .  Implicitly, their tests assume that we 

have no information about ρ−ρ̂  other than its unconditional distribution.  That assumption will be true in 

many cases:  given the sample autocorrelation of DY, we have no way of knowing whether it is above or 

below ρ.  However, when the sample autocorrelation is close to one, the unconditional distribution throws 

out useful information.  Suppose, for example, that ρ̂  = 0.99 and T = 300.  In this case, the unconditional 

bias in ρ̂  is approximately E[ ρ−ρ̂ ] = –0.016.  However, given the observed sample autocorrelation, the 

minimum possible value of ρ−ρ̂  is actually –0.010.  It follows that the unconditional distribution 

overstates the bias in β̂  by at least 60%. 

 Figure 1 illustrates these ideas.  Panel A plots the unconditional distribution of β̂  and Panel B plots 

the conditional distribution given two different values of ρ̂ , one above and one below the true ρ.  For the 

simulations, β = 0, ρ = 0.99, the correlation between εt and µt is –0.92, and T = 300.  (The correlation 

between εt and µt is similar to its empirical value.) 

Panel A approximates Stambaugh’s small-sample distribution.  It clearly shows the strong bias and 
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skewness in β̂ :  the mean is 0.30, the median is 0.24, and the skewness is 1.29.  In contrast, the 

conditional distributions in Panel B are symmetric and approximately normal.3  Comparing the two 

panels, it is clear that high values of β̂  must correspond to samples in which ρ̂  is far below its true value.  

For example, in Panel A, β̂  is greater than 0.40 roughly 30% of the time.  However, if we eliminate 

samples with low ρ̂  (more than 0.0075 below the true value), Panel B shows that β̂  will rarely be that 

large. 

 The discussion here should not be interpreted as a criticism of Stambaugh’s (1999) analysis.  In 

general, his small-sample distribution will give the best estimate of β.  It will only be misleading when the 

sample autocorrelation is close to one.  Also, Stambaugh actually advocates Bayesian methods.  In some 

of his Bayesian analysis, he imposes the constraint that ρ < 1 and recognizes that this can lead to stronger 

rejections of the null.  My contribution is to show that the constraint can also improve inferences in a 

frequentist setting.  In fact, the approach here is similar in many ways to Stambaugh’s Bayesian analysis, 

in that both condition on observed data in deriving the distribution of β (or β̂  here).  The tests are 

essentially identical if the Bayesian approach starts with a perfectly informative prior that ρ ≈ 1 (but no 

information about β).  Any other prior that places zero weight on ρ > 1 would produce even stronger 

rejections of the null.4 

 

3. Data and descriptive statistics 

 I use the methodology outlined above to test whether DY, B/M, and E/P forecast stock returns.  

Return, market value, and dividend data come from the Center for Research in Security Prices (CRSP).  

                                                   
3 The distributions in Panel B condition only on the sample autocorrelation of DY, not on the full matrix X.  The 

mathematical analysis conditioned on both, so the graphs are not exactly comparable to the discussion above.  The 
variances of the two conditional distributions differ because the sample autocorrelation of DY is correlated with the 
sample variance. 

4 Several readers have questioned whether the tests in this paper are truly frequentist.  They are.  The tests are 
simply based on the repeated-sampling distribution of )1ˆ(ˆˆˆ

adj −ργ−β=β .  (We do not know the exact distribution of 
this statistic, because it depends on ρ, but we can put an upper bound on the p-value.)  The test can also be 
interpreted as a joint test of the hypothesis that β ≤ 0 and ρ ≤ 1. 
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Earnings and book equity come from Compustat.  The tests focus on NYSE equal- and value-weighted 

indices, primarily to be consistent with prior research.  Also, the composition of the overall CRSP index 

changes considerably over time as AMEX and NASDAQ firms enter the database, which would 

complicate empirical tests. 

 DY is calculated monthly on the value-weighted NYSE index.  It is defined as dividends paid on the 

index over the prior year divided by the current level of the index.  Thus, DY is based on a rolling 

window of annual dividends.  Similar to the approach of Fama and French (1988), DY is actually backed 

out of the ‘with dividend’ and ‘without dividend’ returns provided by CRSP (see their paper for details).  

I use value-weighted DY to predict returns on both the equal- and value-weighted indices, primarily 

because it is easier to compare slope coefficients across regressions when the independent variables are 

the same.  The predictive regressions use the natural log of DY, rather than the raw series, for reasons 

discussed below. 

 The empirical tests with DY use returns from January 1946 – December 1997.  I omit the Depression 

era because the properties of returns and DY are much different before and after 1945.  Returns were 

extremely volatile in the 1930s and this volatility is reflected in both the variance and persistence of DY 

(see Fama and French, 1988).  As a robustness check, I split the sample in half and look at the two 

subperiods, 1946 – 1971 and 1972 – 1997.  Further, I investigate the influence of the last few years 

because recent stock returns have been so unusual. 

 The tests with B/M and E/P are restricted to 1963 – 1997 when Compustat data is available.  B/M is 

calculated as the ratio of book equity in the previous fiscal year to market equity in the previous month.  

E/P is measured as the ratio of operating earnings before depreciation to market value.  I use operating 

earnings because Shiller (1984) and Fama and French (1988) suggest that net income is a noisy measure 

of fundamentals; preliminary tests suggest that operating earnings are a better measure.5  To ensure that 

                                                   
5 Log E/P ratios are highly autocorrelated using either measure:  0.990 for operating earnings and 0.987 for net 

income.  However, the residuals in an AR(1) regression are more variable when E/P is calculated from net income 
(standard deviation of 0.068 for net income compared with 0.049 for operating earnings).  In addition, the residuals 
are less highly correlated with returns, –0.60 vs. –0.85.  Net income seems to vary independent of price movements 
more than operating earnings, which might indicate additional noise in the process.  In any case, the predictive 
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the tests are predictive, I do not update accounting numbers until four months after the fiscal year.  Also, 

to reduce possible selection biases, a firm must have three years of accounting data before it is included in 

the sample (see Kothari, Shanken, and Sloan, 1995).  The regressions use log B/M and log E/P, both 

measured on the value-weighted NYSE index. 

 Table 1 provides summary statistics for the data.  The table shows that volatility is bit lower in the 

first half of the sample, but most of the time-series properties of returns seem to be stable across the two 

subperiods.  The same observation applies to DY.  DY averages 3.92% over the full sample and tends to 

be positively skewed, which is not terribly surprising since it is measured as a ratio.  In principal, log DY 

should better approximate a normal distribution.  The table confirms that log DY is more symmetric in 

the full sample; the skewness is somewhat positive in the first half of the sample and negative in the 

second half.  The properties of B/M and E/P are similar to those of DY.  The B/M ratio averages 0.56 and 

the E/P ratio averages 0.21.  The raw series for both B/M and E/P are positively skewed, while the log 

series are nearly symmetric.  (The average E/P ratio is relatively high because earnings are measured as 

operating earnings before depreciation.  In comparison, the E/P ratio based on net income averages 0.07 

over the period.) 

 Table 1 also shows that the financial ratios are extremely persistent.  The first-order autocorrelations 

range from 0.986 to 0.996 for the various series.  The autocorrelations diminish as the lag increases, 

consistent with a stationary process.  (Nelson and Plosser, 1982, point out that the same pattern would be 

expected even with a unit root.)  The table shows that log DY, B/M, and E/P tend to be a bit more highly 

autocorrelated than the raw series. This is important for the empirical tests because the maximum bias 

depends on 1 – ρ̂ . 

 

4. Empirical results 

 I estimate predictive regressions using DY, B/M, and E/P in the full sample and various subperiods.  

                                                                                                                                                                    
power of the two series is similar and, for simplicity, I report only the tests using operating earnings (the results for 
net income are marginally weaker). 
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The influence of the last few years receives special attention because it highlights important properties of 

the conditional tests.  The tests initially focus on DY since it has received the most attention in the 

literature. 

 
4.1. Predicting with dividend yield 

 Table 2 explores the predictive power of DY in the full sample, 1946 – 1997 (624 months).  The 

table reports estimates of the model analyzed in Section 2: 

 rt = α + β xt-1 + εt, (9a) 

 xt = φ + ρ xt-1 + µt, (9b) 

where rt is the return during month t and xt-1 is the dividend yield at the beginning of the month.  As 

mentioned earlier, all of the predictive regressions use DY calculated for the value-weighted NYSE index.  

I estimate predictive regressions for NYSE equal- and value-weighted returns and for nominal and excess 

returns (measured net of the one-month Tbill rate). 

The table reports a variety of statistics.  The row labeled ‘OLS’ shows the least-squares slope and 

standard error, along with the corresponding p-value.  These estimates are reported primarily as a 

reference point.  The row labeled ‘Stambaugh’ reports estimates based on Stambaugh’s (1999) small-

sample distribution.  The slope coefficient is the OLS estimate minus the unconditional bias and the p-

value is based on the unconditional distribution.  Although Stambaugh derives the exact distribution of 

the slope estimate, the moments of the distribution are difficult to evaluate analytically.  Therefore, the 

values in Table 2 are actually based on Monte Carlo simulations.  The distribution of β̂  depends on the 

unknown parameters ρ and Σ, for which I substitute the OLS estimates. Stambaugh notes that the 

distribution is relatively insensitive to small changes in the parameters, so this substitution should not be 

too important. 

 The final row, labeled ‘ρ ≈ 1,’ reports estimates based on the conditional distribution of β̂ .  I assume 

that the true autocorrelation is approximately one (operationalized as ρ = 0.9999).  The slope coefficient 

is the bias-adjusted estimator 
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 )ˆ(ˆˆ
adj ρ−ργ−β=β , (10) 

with ρ ≈ 1.  Recall from Section 2 that γ = 2/ µεµ σσ .  Again, this parameter is required to compute the 

bias-adjusted estimate, and I substitute the OLS estimate for the true value.6  The conditional variance of 

β̂  equals 12 )XX( −
ν ′σ  and a t-statistic can be calculated in the standard way.  Under the null, this t-statistic 

is truly a t-statistic – that is, it has a Student t distribution with T – 2 degrees of freedom.  Therefore, the 

p-value for ‘ρ ≈ 1’ can be calculated directly without simulation.  This is one of the attractive features of 

the conditional tests. 

 Table 2 provides strong evidence of predictability.  Consider, first, the nominal return on the value-

weighted index.  The OLS slope estimate is 1.21 with a standard error of 0.57.  Since the standard 

deviation of DY is 0.28, the point estimate implies that a one-standard-deviation change in DY is 

associated with a 0.34% (1.21 × 0.28) change in monthly expected return.  Of course, the slope coefficient 

is biased upward.  Based on Stambaugh’s (1999) distribution, the bias-adjusted estimate is 0.51 with a 

one-sided p-value of 0.210.  The conditional test, in the third row, gives a much different picture.  

Assuming that ρ ≈ 1, the maximum bias in the predictive regression is only 0.49, or approximately 30% 

lower than the unconditional bias.  The bias-adjusted slope is 0.72 and the conditional test rejects the null 

hypothesis at the 0.000 level.  Notice that the conditional standard error of β̂  is much lower than the 

standard error estimated from Stambaugh’s distribution, 0.18 vs. 0.75.7  The strong significance in the 

conditional test is largely attributed to this difference. 

 These results show that the small-sample distribution analyzed by Stambaugh (1986, 1999) and 

Mankiw and Shapiro (1986) can greatly understate the significance of DY.  Their tests ignore the 

                                                   
6 The appendix shows that estimation error in γ is easily incorporated into the tests.  It has little effect on the 

results because γ can be estimated very precisely.  For example, γ equals –88.03 for nominal VWNY; simulations 
suggest that γ̂  is unbiased and has a standard error of 1.16.  The appendix also shows that γ̂  does not depend on the 
assumed value of ρ. 

7 Note that the standard error is relevant only for testing a lower bound on the predictive slope (i.e., for testing the 
null of no predictability). The standard error on the upside is higher because I only impose a one-sided bound on the 
sample autocorrelation.  Thus, β might be substantially larger than suggested by a symmetric confidence interval 
around the conditional estimate. 
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information contained in the observed autocorrelation of DY, which inflates both the bias and the 

standard error of the slope.8  Surprisingly, the conditional tests in Table 2 actually find that DY is more 

significant than suggested by OLS.  Although the bias-adjusted slope is substantially lower than the OLS 

estimate, the additional information conveyed by ρ̂  has an even greater effect on the standard error.  

Indeed, for the regressions in Table 2, we would do better by ignoring small-sample biases than by using 

the unconditional distribution; the stochastic properties of DY actually strengthen the case for 

predictability. 

 The regressions for equal-weighted NYSE returns confirm these findings.  The bias-adjusted slope 

for EWNY, 1.05 (p-value of 0.001), is larger than the estimate for VWNY.  The standard error of the 

estimate is also higher, 0.33, primarily because equal-weighted returns are not as highly correlated with 

shocks to DY.  The table also shows that nominal and excess returns produce very similar estimates.  

Also, in all regressions, the explanatory power of DY is low as measured by the adjusted R2.  Thus, while 

DY forecasts significant time-variation in expected returns, it can only explain a small fraction of total 

variability. 

 Table 3 reports results for the first and second halves of the sample, 1946 – 1971 and 1972 – 1997 

(each 312 months).  Even with a fairly short sample, the tests strongly reject the null in many cases.  For 

1946 – 1971, DY predicts value-weighted, but not equal-weighted, returns.  Focusing on the value-

weighted index, the bias-adjusted estimates for nominal and excess returns, 0.81 and 1.12 (p-values of 

0.002 and 0.000), are similar to the full sample.  In the second half of the sample, DY predicts nominal 

returns on both indices, as well as excess returns on the equal-weighted index (p-values less than 0.001).  

The slope coefficients are especially large on the equal-weighted index in this period.  For example, the 

bias-adjusted slope for excess EWNY, 1.51, implies that a one-standard-deviation change in dividend 

                                                   
8 I should mention that conditioning on the sample autocorrelation would not have helped in Stambaugh’s paper, 

primarily because DY is not as highly autocorrelated in his sample.  There are two reasons: (1) Stambaugh uses raw 
DY, which is slightly less persistent than log DY, and (2) DY is not as highly autocorrelated during his sample 
periods (e.g., 1926 – 1996).  I have repeated the tests in Table 2 using raw DY, or using Stambaugh’s post-War 
sample of 1952 – 1996, and find that the conditional tests strongly reject the null in both cases.  However, using raw 
DY and 1952 – 1996, the conditional tests reject only for nominal returns.  During this period, raw DY has little 
power to predict excess returns using either the conditional or unconditional distribution. 
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yield is associated with a 0.44% increase in monthly expected return. 

 The subperiod results reveal striking differences between the conditional and unconditional tests.  

Consider, for example, the VWNY regressions in the second half of the sample.  The bias-adjusted 

estimate from the unconditional tests is –0.50 with a standard error of 1.38.  In contrast, the estimate from 

the conditional tests is significantly positive, 0.72, with a standard error of 0.23.  The p-values for the two 

tests are 0.577 and 0.001, respectively.  Thus, incorporating the information is ρ̂  can be critical when the 

autocorrelation is close to one and the sample is relatively short.  The AR(1) regressions for DY, at the 

top of the table, show why.  The expected bias in ρ̂  is approximately –0.017 while the realized ‘bias’ is at 

most –0.004.  As a consequence, the maximum bias in the predictive slope is nearly 75% lower than the 

unconditional estimate. 

 I also emphasize that the conditional tests are quite conservative.  The assumption that ρ ≈ 1 is the 

weakest assumption we can make for testing the null.  Although it is difficult to justify any other upper 

bound on ρ, it might be useful to evaluate alternative values.  Consider, for example, raw EWNY from 

1946 – 1971.  The p-value drops from 0.335 if we assume ρ ≈ 1 to 0.008 if we assume instead that ρ = 

0.991 (the sample autocorrelation).  The p-value would be less than 0.050 for any ρ < 0.994.  For excess 

EWNY, the reported p-value is 0.124, but this would drop below 5% for any ρ < 0.998.  I am not 

suggesting that DY is truly statistical significant in these regressions, since there is no rigorous 

justification for imposing a bound on ρ other than one, but the reported p-values do appear to be quite 

conservative. 

Bayesian methods provide a more rigorous way to incorporate uncertainty about ρ.9  In particular, 

suppose an investor begins with no information about β, and consider three different beliefs about ρ.  If 

the investor believes ρ equals one with certainty, the conditional tests reported in the table equal the 

posterior probability that β ≤ 0.  If, instead, the investor begins with a flat prior for ρ ≤ 1, the posterior 

                                                   
9 The Bayesian posterior probability can be found by integrating the conditional p-value (conditional on a given 

autocorrelation) over the posterior distribution of ρ.  The analysis here is similar to Stambaugh (1999).  
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probability (for β ≤ 0) drops to 0.041 for nominal EWNY and 0.011 for excess EWNY (compared with 

0.335 and 0.124, respectively, if the investor believes ρ = 1).  Finally, suppose we arbitrarily shift the 

investor’s posterior belief about ρ upward by one standard deviation and truncate at one.  This posterior 

represents fairly strong beliefs that ρ is close to one.  It is roughly the lower tail of a normal distribution 

with mean one and standard deviation 0.008 (the standard error of ρ̂ ).  In this case, the posterior 

probability equals 0.092 for nominal EWNY and 0.027 for excess EWNY.  Once again, the p-values in 

Table 3 seem to be quite conservative. 

 
4.2. The influence of 1995 – 1997 

 The tests in Tables 2 and 3 include data for 1995 – 1997.  Returns during these years moved opposite 

to the predictions of the model:  DY was extremely low, but the NYSE indices performed far above 

average.  For example, DY at the end of 1994 was 2.9% and dropped to 1.7% by the end of 1997.  Over 

the same period, the value-weighted NYSE index returned 118%.  Because this period is so unusual, I 

briefly consider its effect on the results. 

 Table 4 shows regressions for both the full sample (the same as Table 2) and the truncated sample 

1946 – 1994.  I report only regressions with nominal returns for simplicity.  Focusing on the value-

weighted index, the OLS slope coefficient in the truncated sample is 82% greater than it is for the entire 

period, 2.19 compared with 1.21.  The slope coefficient is significant at the 0.061 level of the truncated 

sample, but only at the 0.210 level for the full regression, using the small-sample distribution of 

Stambaugh (1999).  Interestingly, however, the estimate does not change much in the conditional tests.  

The bias-adjusted slope drops from 0.95 to 0.72 and remains significant at the 0.000 level.  The t-statistic 

only drops from 4.65 to 4.09.  Thus, the statistical significance of DY remains strong even though the 

model has performed terribly from 1995 – 1997. 

The relative insensitivity of the conditional tests is explained by the sample autocorrelation of DY.  

Table 4 shows that the sample autocorrelation of DY increases from 0.986 to 0.994.  The increase in ρ̂  

means that the sampling error in ρ must have gone up (become less negative or more positive).  The 
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conditional tests implicitly recognize that the sampling error in β has correspondingly decreased.  

Although the OLS estimate declines by 0.99, the conditional test attributes 76% of the drop to sampling 

error, which shows up in a much lower estimate of the bias. 

Table 4 also reports a remarkable result:  the bias-adjusted slope coefficient for EWNY does not 

change with the addition of 1995 – 1997 and the statistical significance actually increases.  Again, this 

counterintuitive result can be explained by the sharp increase in the sample autocorrelation of DY.  Given 

the sharp drop in DY from 1995 – 1997, and the associated increase in ρ̂ , we would expect to see 

contemporaneously high returns. 

 The truncated sample is interesting for another reason.  The unconditional bias-adjusted slopes are 

higher than the conditional estimates, but their statistical significance is much lower.  Focusing on value-

weighted returns, the unconditional bias-adjusted slope is 1.53 with a p-value of 0.061; the conditional 

bias-adjusted slope is 0.95 with a p-value of 0.000.  This combination is a bit awkward.  The higher 

unconditional estimate suggests that the conditional tests are too convervative.  The true autocorrelation is 

probably lower than one, which would imply that the conditional estimates of β are too low.  But without 

the extreme assumption, we cannot reject the null as strongly.  This finding points out an odd property of 

the tests, and it suggests one advantage of a Bayesian approach. 

 
4.3.Predicting with book-to-market and earnings-price 

Table 5 explores the predictive power of B/M.  I report predictive regressions both for the full 

sample, 1963 – 1997, and the truncated sample ending in 1994.  The regressions suggest that B/M 

forecasts nominal, but not excess, returns.  Focusing on nominal returns in the full sample, the OLS slope 

coefficient is 0.89 for the value-weighted index and 1.61 for the equal-weighted index.  The bias-adjusted 

slopes, 0.46 and 1.13, are significant with p-values of 0.062 and 0.008, respectively.  In the truncated 

sample, the statistical significance is similar but the slope estimates are a bit larger.  The bias-adjusted 

estimate is 0.77 for VWNY (p-value, 0.012) and 1.20 for EWNY (p-value, 0.014).  The evidence for 

excess returns is uniformly weaker, with marginal significance (0.077 p-value) only for excess EWNY in 
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the full sample. 

Like the results for DY, Table 5 shows that conditional tests provide much stronger evidence of 

predictability than unconditional tests.  The differences are dramatic for nominal returns in the full 

sample.  Incorporating the information in ρ̂ , the p-value for nominal VWNY drops from 0.476 to 0.062 

and the p-value for EWNY drops from 0.288 to 0.008.  For both indices, the conditional bias is less than 

half the unconditional bias.  The difference between the two tests is also revealed by comparing the full 

and truncated samples.  The regressions for excess EWNY are especially interesting.  The OLS slope 

estimate drops from 1.93 for the sample ending in 1994 to 1.16 for the sample ending in 1997.  However, 

the conditional bias-adjusted slope actually increases slightly, from 0.65 to 0.67.  That result mirrors the 

evidence for DY in Table 4. 

 Table 6 replicates the tests using E/P.  The results are remarkably similar to those of B/M, both 

qualitatively and quantitatively.  E/P appears to forecast nominal returns, but again there is little evidence 

that it forecasts excess returns.  The p-values for nominal returns range from 0.023 to 0.053 for the 

different time periods and stock returns.  The bias-adjusted slope coefficients are relatively large, 

implying economically meaningful changes in expected returns (a one-standard-deviation increase in E/P 

maps into a 0.19% increase in expected return for VWNY and a 0.30% increase for EWNY).  Table 6 

also confirms the influence of 1995 – 1997 on the regressions.  The OLS slope estimate declines when the 

final three years are included in the regressions, but the conditional bias-adjusted slope remains 

approximately the same.  For both nominal and excess EWNY, the addition of 1995 – 1997 strengthens 

the case for predictability. 

 

5. Summary and conclusions 

 The literature on stock return predictability has evolved considerably over the last twenty years.  

Empirical tests initially produced strong evidence that returns are predictable, especially over long 

horizons. Research later showed that predictive regressions are subject to small-sample biases. Correcting 

for bias weakens, and often reverses, conclusions about predictability.  The accumulated evidence 
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suggests that DY does not predict monthly returns, although it may predict annual and multiple-year 

returns.  Existing results for B/M and E/P are similar. 

 This paper presents new evidence on the predictive power of the three financial ratios.  The paper 

makes four main points: 

 

(a) Stambaugh (1999) and Mankiw and Shapiro (1986) consider the ‘unconditional’ distribution of β̂ .  

Unlike standard OLS, this distribution does not condition on the observed regressors.  Most importantly, 

the tests do not condition on the sample autocorrelation of the predictive variable, which throws out 

useful information when the autocorrelation is close to one.  The unconditional distribution can 

substantially understate the significance of DY, B/M, and E/P. 

 
(b) The conditional tests in this paper are intuitive.  If we know ρ and γ, then the best estimate of β is the 

bias-adjusted estimator )ˆ(ˆˆ
adj ρ−ργ−β=β .  This estimator is normally distributed with mean β and 

variance 12 )XX( −
ν ′σ .  The parameter γ can be estimated very precisely from the data and, consequently, 

treated as known.  Although we do not know true autocorrelation, ρ ≈ 1 is the most conservative 

assumption we can make because it yields the lowest estimate.  The conditional tests are also easy to 

apply:  all of the necessary statistics can be estimated from OLS and, under the null, the test statistic has a 

Student t distribution.  When ρ̂  is close to one, the conditional bias-adjusted slope can be higher than the 

unconditional estimate.  Further, when β̂  and ρ̂  are highly correlated, the conditional variance is much 

lower than the unconditional variance.  Both of these effects produce more powerful tests of 

predictability. 

(c) Empirically, incorporating the information ρ̂  can be quite important.  I find strong evidence that DY 

predicts returns.  The tests examine NYSE equal- and value-weighted indices over the period 1946 – 

1997.  In the full sample and various subsamples, DY is typically significant at the 0.001 level, with many 

t-statistics greater than 3.0 or 4.0.  The evidence for B/M and E/P ratios is weaker than for DY, but 

stronger than previous studies.  B/M and E/P appear to forecast nominal returns on both the equal- and 
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value-weighted indices, but not excess returns.  Even when the statistics cannot reject the null, the 

conditional bias-adjusted slopes look much different than the unconditional estimates. 

 
(d) The last few years of the sample, 1995 – 1997, have a large impact on the results.  Adding these 

years to the VWNY regressions reduces the OLS slope on DY by 45%, the slope on B/M by 53%, and the 

slope on E/P by 21%.  However, the bias-adjusted estimates are much less sensitive to the recent data, and 

the statistical significance of the three variables remains strong.  Remarkably, the bias-adjusted estimates 

for EWNY actually increase with the addition of 1995 – 1997, even though returns over this period move 

strongly against the model.  These results reveal an important property of the conditional tests:  the tests 

recognize that changes in the sample autocorrelation of the financial ratios convey a lot of information 

about the predictive slope. 

 
The conditional tests presented in this paper are based on a frequentist approach.  The methodology 

is similar to the Bayesian tests of Stambaugh (1999).  Both approaches condition on the observed sample 

when deriving the distribution of β (in Bayesian tests) or β̂  (in frequentist tests).  The main advantage of 

the frequentist approach is that it assumes only that ρ is less than one; a Bayesian approach requires 

additional assumptions about investors’ beliefs.  On the other hand, the Bayesian approach is applicable 

even when the sample autocorrelation is not close to one. 

The conditional tests show that information about the sampling error in ρ can be important.  The 

only information we used here is the stationarity of the predictive variable.  The approach could be 

generalized to incorporate additional information about ρ into the tests.  For example, suppose we have a 

sample of DY beginning prior to the period in which we want to test for predictability.  If the 

autocorrelation is constant over the entire history, we can use the earlier data to help us infer whether the 

within-sample autocorrelation is above or below the true value.  This approach, similar to Stambaugh’s 

(1997) analysis of returns with differing histories, could be used when the sample autocorrelation is not 

close to one. 
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Appendix 

 Estimation error in γ is easily incorporated into the conditional tests.  Estimating γ absorbs one 

degree-of-freedom and slightly increases the standard error of the estimate.  To show this, we can think 

about estimating β in a slightly different way than presented in the text.  In particular, re-write the 

predictive regression using εt = γ µt + νt: 

rt = α + β xt-1 + γ µt + νt. (A.1) 

Given a value of ρ, this equation can be estimated because µt is observable.10  I show below that the 

estimate of β from (A.1) is identical to the bias-adjusted estimator in eq. (10).  That observation 

immediately provides the sampling distribution of adjβ̂ :  eq. (A.1) satisfies OLS since E[νt | xt-1, µt] = 0, so 

the estimate of β from (A.1) has all the usual properties. 

From regression analysis, the multiple-regression estimate of β from (A.1), denoted Mβ̂ , and the 

simple-regression estimate from the predictive regression, denoted Sβ̂ , are related as follows: 

Mβ̂ = Sβ̂ – γ̂  λ, (A.2) 

where λ is the slope coefficient in an auxiliary regression of µt on xt-1: 

µt = c + λ xt-1 + ωt. (A.3) 

λ is the second element of (X′X)-1X′µ.  Comparing this to eq. (4b) in the paper, we find that λ = ρ̂  – ρ.  

Substituting into (A.2) yields 

Mβ̂ = Sβ̂  – γ̂ ( ρ̂  – ρ). (A.4) 

Also, the estimate of γ from (A.1) is the same as the estimate of γ from a regression of tε̂  (the sample 

residuals from the predictive regression) on tµ̂  (the sample residuals from an AR1 model for DY).  

Therefore, Mβ̂  is identical to the bias-adjusted estimator in eq. (10).  These results imply that the test 

statistic has a t-distribution with T – 3 degrees of freedom.  Notice, also, that if γ is unknown, the t-

                                                   
10 More precisely, if we know ρ, then we observe µt + φ = xt – ρ xt-1.  The value of φ does not affect the estimate 

of β or γ (it affects only the intercept), and I ignore it in the remainder of the discussion. 
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statistic should use the standard error of β from (A.1). 

 I should emphasize two other features of (A.1).  First, γ̂  does not depend on the assumed value of ρ.  

As we change ρ, we simply add or subtract xt-1 from the value of µt that enters the multiple regression.  

Doing so affects only β, not γ or the residual variance.  This observation is important because it means 

that the t-statistic is linearly related to ρ.  In turn, this implies that any ρ < 1 yields stronger significance 

than ρ = 1, as claimed in the text. 

 Second, the variance of β from eq. (A.1) will typically be very close to the variance used in the text 

(which ignores uncertainty about γ).  The variance from (A.1) is scaled up by 1 / (1 – R2), where R2 is the 

explained variance when µt is regressed on xt-1.  That R2 is approximately equal to (1 – ρ̂ ) / (1 + ρ̂ ), 

which is close to zero when ρ̂  is close to one.  Empirically, the two standard errors are almost identical, 

differing by about 0.1%.  In Table 2, for example, the standard error for nominal VWNY is 0.1761.  The 

standard error from (A.1) is 0.1763. 
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Table 1 
Summary statistics, 1/46 – 12/97 
 
The table reports summary statistics for monthly observations on stock returns, dividend yield, book-to-
market, and the earnings-price ratio. Market value and dividend data come from CRSP and accounting 
data come from Compustat. The variables are expressed in percent. EWNY and VWNY are returns on the 
equal- and value-weighted NYSE indexes, respectively. The financial ratio are all calculated for the 
value-weighted index. DY equals the dividends paid over the prior year divided by the current level of the 
index. B/M is the ratio of book-to-market equity. E/P is the ratio of operating earnings defore depreciation 
to market equity. Log(⋅) denotes the natural logarithm. 
 

    Autocorrelation 

Variable Mean S.D. Skew. ρ1 ρ12 ρ24 ρ36 

Returns and dividend yield 
Full sample: 1/46 – 12/97 
VWNY 1.05 4.05 -0.35 0.036 0.029 0.025 -0.013 
EWNY 1.17 4.84 -0.18 0.135 0.066 0.035 0.026 
DY 3.92 1.12 0.62 0.989 0.852 0.751 0.635 
Log(DY) 1.33 0.28 -0.00 0.994 0.892 0.797 0.705 

1st half: 1/46 – 12/71 
VWNY 0.97 3.72 -0.38 0.080 0.023 0.065 0.007 
EWNY 1.06 4.43 -0.28 0.146 0.015 0.024 0.001 
DY 4.09 1.20 0.82 0.991 0.867 0.762 0.625 
Log(DY) 1.37 0.28 0.55 0.991 0.858 0.773 0.670 

2nd half: 1/72 – 12/97 
VWNY 1.13 4.36 -0.34 0.002 0.031 0.003 -0.032 
EWNY 1.28 5.23 -0.13 0.123 0.095 0.057 0.002 
DY 3.75 1.01 0.13 0.986 0.802 0.702 0.676 
Log(DY) 1.28 0.29 -0.46 0.996 0.906 0.808 0.789 

Book-to-market and the earnings-price ratio 
Compustat: 6/63 – 12/97 
B/M 56.03 16.97 0.47 0.988 0.855 0.768 0.706 
Log(B/M) 3.98 0.30 0.04 0.995 0.914 0.825 0.752 
E/P 20.78 6.73 0.49 0.987 0.835 0.712 0.625 
Log(E/P) 2.98 0.32 0.09 0.990 0.856 0.713 0.623 
 
 



Table 2 
Dividend yield and expected returns, 1/46 – 12/97 
 
The table reports an AR(1) regression for dividend yield and predictive regressions for stock returns for 
the full sample period, Jan. 1946 – Dec. 1997 (624 months).  Observations are monthly.  DY is the 
dividend yield on the value-weighted NYSE index, equal to dividends paid over the prior year divided by 
the current level of the index.  Log(DY) is the natural logarithm of DY.  EWNY and VWNY are monthly 
returns on the equal- and value-weighted NYSE indexes, respectively.  Excess returns are calculated as 
EWNY and VWNY minus the one-month Tbill rate.  All data come from CRSP and returns are reported 
in percent. 
 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.994 0.006 -0.008 -0.006 0.976 0.044 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε, µ) 

 VWNY OLS 1.206 0.573 0.018 0.005 4.035 -0.952 
 Stambaugh 0.506 0.748 0.210    
 ρ ≈ 1 0.720 0.176 0.000    
        
 EWNY OLS 1.581 0.684 0.010 0.007 4.817 -0.879 
 Stambaugh 0.809 0.869 0.153    
 ρ ≈ 1 1.046 0.326 0.001    
        
 Excess VWNY OLS 1.191 0.576 0.019 0.005 4.056 -0.950 
 Stambaugh 0.478 0.762 0.215    
 ρ ≈ 1 0.704 0.179 0.000    
        
 Excess EWNY OLS 1.566 0.686 0.011 0.007 4.833 -0.879 
 Stambaugh 0.805 0.875 0.154    
 ρ ≈ 1 1.029 0.327 0.001    
 
 



Table 3 
Dividend yield and expected returns, 1/46 – 12/71 and 1/72 – 12/97 
 
The table reports AR(1) regressions for dividend yield and predictive regressions for stock returns for two subperiods, Jan. 1946 – Dec. 1971 and 
Jan. 1972 – Dec. 1997 (each 312 months).  Observations are monthly.  DY is the dividend yield on the value-weighted NYSE index, equal to 
dividends paid over the prior year divided by the current level of the index.  Log(DY) is the natural logarithm of DY.  EWNY and VWNY are 
monthly returns on the equal- and value-weighted NYSE indexes, respectively.  Excess returns are calculated as EWNY and VWNY minus the 
one-month Tbill rate.  All data come from CRSP and returns are reported in percent. 
 
Log(DYt) = φ + ρ Log(DYt-1) + µt 
  1946 – 1971 1972 – 1997 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.991 0.008 -0.016 -0.013 0.979 0.040 0.996 0.009 -0.017 -0.013 0.973 0.047 
              

rt = α + β Log(DYt-1) + εt 
  1946 – 1971 1972 – 1997 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

 VWNY OLS 1.563 0.762 0.020 0.010 3.694 -0.933 1.030 0.875 0.120 0.001 4.360 -0.965 
 Stambaugh 0.154 1.428 0.373    -0.498 1.383 0.577    
 ρ ≈ 1 0.808 0.275 0.002    0.720 0.228 0.001    
              
 EWNY OLS 1.035 0.908 0.127 0.001 4.406 -0.883 2.350 1.042 0.012 0.013 5.196 -0.878 
 Stambaugh -0.571 1.712 0.565    0.694 1.582 0.263    
 ρ ≈ 1 0.182 0.425 0.335    2.014 0.498 0.000    
              
 Exc.VWNY OLS 1.876 0.763 0.007 0.016 3.701 -0.931 0.532 0.881 0.273 -0.002 4.390 -0.966 
 Stambaugh 0.455 1.461 0.299    -0.984 1.407 0.761    
 ρ ≈ 1 1.120 0.279 0.000    0.220 0.229 0.168    
              
 Exc.EWNY OLS 1.347 0.909 0.069 0.004 4.412 -0.882 1.852 1.050 0.039 0.007 5.231 -0.878 
 Stambaugh -0.299 1.732 0.483    0.216 1.528 0.360    
 ρ ≈ 1 0.494 0.428 0.124    1.514 0.502 0.001    

 



Table 4 
Influence of 1995 – 1997 
 
The table reports AR(1) regressions for dividend yield and predictive regressions for stock returns for two 
periods, Jan. 1946 – Dec. 1994 (588 months) and Jan. 1946 – Dec. 1997 (624 months).  Observations are 
monthly.  DY is the dividend yield on the value-weighted NYSE index, equal to dividends paid over the 
prior year divided by the current level of the index.  Log(DY) is the natural logarithm of DY.  EWNY and 
VWNY are monthly returns on the equal- and value-weighted NYSE indexes, respectively.  All data 
come from CRSP and returns are reported in percent. 
 

Without recent data: Jan. 1946 – Dec. 1994 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.986 0.007 -0.008 -0.007 0.970 0.044 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

 VWNY OLS 2.191 0.662 0.000 0.017 4.058 -0.951 
 Stambaugh 1.528 0.893 0.061    
 ρ ≈ 1 0.954 0.206 0.000    
        
 EWNY OLS 2.430 0.800 0.001 0.014 4.897 -0.881 
 Stambaugh 1.672 1.106 0.081    
 ρ ≈ 1 1.047 0.378 0.003    

With recent data: Jan. 1946 – Dec. 1997 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.994 0.006 -0.008 -0.006 0.976 0.044 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

 VWNY OLS 1.206 0.573 0.018 0.005 4.035 -0.952 
 Stambaugh 0.506 0.748 0.210    
 ρ ≈ 1 0.720 0.176 0.000    
        
 EWNY OLS 1.581 0.684 0.010 0.007 4.817 -0.879 
 Stambaugh 0.809 0.869 0.153    
 ρ ≈ 1 1.046 0.326 0.001    

 



Table 5 
Book-to-market and expected returns, 6/63 – 12/94 and 6/63 – 12/97 
 
The table reports AR(1) regressions for book-to-market and predictive regressions for stock returns for two subperiods, June 1963 – Dec. 1994 
(379 months) and June 1963 – Dec. 1997 (415 months).  Observations are monthly.  B/M is the ratio of book equity to market equity on the value-
weighted NYSE index. Log(B/M) is the natural logarithm of B/M.  EWNY and VWNY are monthly returns on the equal- and value-weighted 
NYSE indexes, respectively.  Excess returns are calculated as EWNY and VWNY minus the one-month Tbill rate.  Market equity and return data 
come from CRSP, book equity data come Compustat, and returns are expressed in percent. 
 
Log(B/Mt) = φ + ρ Log(B/Mt-1) + µt 
  1963 – 1994 1963 – 1997 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.986 0.009 -0.013 -0.010 0.971 0.047 0.995 0.008 -0.013 -0.010 0.977 0.046 
              

rt = α + β Log(B/Mt-1) + εt 
  1963 – 1994 1963 – 1997 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

 VWNY OLS 1.882 0.805 0.010 0.012 4.270 -0.906 0.889 0.688 0.098 0.002 4.209 -0.901 
 Stambaugh 0.866 1.231 0.203    -0.146 1.028 0.476    
 ρ ≈ 1 0.767 0.340 0.012    0.459 0.299 0.062    
              
 EWNY OLS 2.469 0.994 0.006 0.014 5.274 -0.834 1.607 0.838 0.028 0.006 5.124 -0.828 
 Stambaugh 1.287 1.550 0.178    0.467 1.200 0.288    
 ρ ≈ 1 1.201 0.548 0.014    1.126 0.470 0.008    
              
 Exc.VWNY OLS 1.342 0.811 0.049 0.005 4.304 -0.908 0.439 0.693 0.263 -0.001 4.235 -0.902 
 Stambaugh 0.303 1.268 0.335    -0.630 1.079 0.702    
 ρ ≈ 1 0.217 0.340 0.262    0.006 0.299 0.497    
              
 Exc.EWNY OLS 1.929 1.001 0.027 0.007 5.311 -0.836 1.156 0.843 0.085 0.002 5.154 -0.829 
 Stambaugh 0.751 1.535 0.259    -0.016 1.269 0.413    
 ρ ≈ 1 0.651 0.549 0.118    0.672 0.472 0.077    

 



Table 6 
Earnings-price ratios and expected returns, 6/63 – 12/94 and 6/63 – 12/97 
 
The table reports AR(1) regressions for earnings-price ratios and predictive regressions for stock returns for two subperiods, June 1963 – Dec. 
1994 (379 months) and June 1963 – Dec. 1997 (415 months).  Observations are monthly.  E/P is the ratio of operating earnings to market equity on 
the value-weighted NYSE index. Log(E/P) is the natural logarithm of E/P.  EWNY and VWNY are monthly returns on the equal- and value-
weighted NYSE indexes, respectively.  Excess returns are calculated as EWNY and VWNY minus the one-month Tbill rate.  Market equity and 
return data come from CRSP, earnings data come Compustat, and returns are expressed in percent. 
 
Log(E/Pt) = φ + ρ Log(E/Pt-1) + µt 
  1963 – 1994 1963 – 1997 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.987 0.008 -0.011 -0.010 0.977 0.049 0.990 0.007 -0.011 -0.010 0.977 0.049 
              

rt = α + β Log(E/Pt-1) + εt 
  1963 – 1994 1963 – 1997 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

 VWNY OLS 1.621 0.676 0.008 0.012 4.269 -0.860 1.279 0.642 0.023 0.007 4.197 -0.854 
 Stambaugh 0.776 1.087 0.196    0.460 0.990 0.269    
 ρ ≈ 1 0.639 0.345 0.032    0.540 0.334 0.053    
              
 EWNY OLS 2.045 0.836 0.007 0.013 5.276 -0.794 1.793 0.782 0.011 0.010 5.114 -0.784 
 Stambaugh 1.064 1.346 0.190    0.887 1.199 0.197    
 ρ ≈ 1 0.925 0.508 0.034    0.965 0.485 0.023    
              
 Exc.VWNY OLS 1.165 0.682 0.044 0.005 4.303 -0.862 0.833 0.647 0.099 0.002 4.228 -0.856 
 Stambaugh 0.309 1.133 0.321    0.030 0.998 0.410    
 ρ ≈ 1 0.173 0.346 0.308    0.087 0.334 0.398    
              
 Exc.EWNY OLS 1.589 0.842 0.030 0.007 5.312 -0.795 1.347 0.787 0.044 0.005 5.147 -0.786 
 Stambaugh 0.622 1.352 0.263    0.467 1.174 0.293    
 ρ ≈ 1 0.459 0.510 0.184    0.513 0.487 0.146    

 
 


