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Abstract

We ask whether �rms' �nancing constraints are quantitatively important in explaining
stock returns. To answer this question we �rst show that, for a large class of theoretical
models, �rms' �nancing constraints have a parsimonious representation amenable to
empirical analysis. We �nd that �nancing frictions play a negligible role in asset
pricing. This happens because �nancing costs both lower both the Sharpe ratio on the
pricing kernel and its correlation with returns. These �ndings question whether the
asset pricing 
uctuations, induced by the presence of the �nancing constraints, provide
a realistic channel for the propagation mechanism in several macroeconomic models.
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1 Introduction

Several authors have examined the role of �nancing constraints in determining the optimal

investment behavior of �rms, while many others have incorporated these frictions into

aggregate models to study their implications for typical macroeconomic phenomena.1

Unfortunately, research on their consequences for asset pricing has been, by and large,

neglected. Since 
uctuations in asset prices often play a crucial role in the dynamic behavior

of these models this is an important oversight. In addition, asset prices may convey important

additional information, above and beyond the restrictions imposed by the behavior of typical

macroeconomic aggregates.

In this paper we ask whether �nancial constraints are quantitatively important in

explaining asset market phenomena. Although models can di�er substantially on the exact

foundations of the frictions (such as asymmetric information, costly state veri�cation, \lemon

problems" with issuing stocks and so on), they share a common general structure for

the �rm's optimal investment decision, that we explore in this study. In particular, we

formally establish the equivalence between the original, structural, optimization problem

with �nancing constraints and a reduced form problem where the frictions are simply

summarized by a cost function that increases in the amount of external �nance raised by

the �rm. By explicitly linking the relation between pro�ts and investment to the costs of

external �nance, this formulation provides a simple and tractable framework to study the

quantitative role of �nancial frictions on the behavior of �rms.

1Some of the earlier studies on the impact of �nancing constraints on �rm behavior include Fazzari,
Petersen and Hubbard (1988), Hayashi and Inoue (1991), Hoshi, Kashyap and Scharfstein (1991), Blundell,
Bond, Devereaux and Schiantarelli (1994), Kashyap, Lamont and Stein (1994) Gertler and Gilchrist (1994)
and Kaplan and Zingales (1997).
The aggregate implications of models with �rm based �nancing constraints have been explored by, among

others, Bernanke and Gertler (1989), Bernanke, Gertler and Gilchrist (2000), Cooley and Quadrini (1999,
2000), Den Haan, Ramey, and Watson (1999), Kiyotaki and Moore (1997), and Holmstrom and Tirole (1997).
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Following Cochrane (1996), our empirical analysis investigates whether a stochastic

discount factor based on the returns generated from the model prices assets correctly. In

particular, we are interested in examining to what extent the presence of �nancing constraints

improves the ability of such a model to price a cross-section of asset returns, including stocks,

bonds and the returns to physical investment. Speci�cally, we use the Generalized Method

of Moments (GMM) to formally test the asset pricing restrictions of �nancing frictions. By

parameterizing the stochastic discount factor in the economy as a linear function of physical

investment returns (and bonds) we incorporate the e�ects of �nancing constraints into the

pricing kernel.

Our analysis shows, as in Cochrane (1991, 1996), that investment based models can

account well for asset returns. More importantly however, our results strongly suggest that

the role of �nancing frictions in pricing asset returns is negligible. Without exception, all

our model speci�cations deliver economically insigni�cant values for the level of �nancing

frictions. These �ndings are robust to several alternative formulations of our model,

particularly the form of the �nancing cost function. They also appear robust to the speci�c

macroeconomic data used and the set of returns used in our GMM implementations.

What drives these results? We show that the presence of �nancing costs both reduces

the correlation between investment returns and asset returns and lowers the market price of

risk. In addition, looking at the model's implied beta representation for excess returns, we

�nd that �nancing costs consistently increase the implied pricing errors.

Our �ndings cast serious doubt on whether the presence of �nancial frictions improves

the asset pricing performance of investment based models. They also question whether the

asset pricing 
uctuations, induced by the presence of the �nancing constraints, provide a

realistic channel for the propagation mechanism in several macroeconomic models. While
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these constraints may indeed help generate more interesting dynamics for the typical

macroeconomic aggregates, they seem to strain the model's ability to match �nancial data.

This work is most closely related to earlier research by Cochrane (1991, 1996), that �rst

addressed the issue of constructing and testing production based asset pricing models, and

to work by Restoy and Rockinger (1994) who generalize some of the results in Cochrane

(1991) to an environment with investment constraints and taxes.

More recently, Lamont, Polk, and Sa�a-Requejo (2000), using an index of �nancing

constraints as a pricing factor in a reduced form model of returns, document that while

�nancing constraints may impact unconditional returns, there is no evidence that they react

to macroeconomic conditions. They also conclude that the cyclical 
uctuations in asset

returns do not appear to be linked to �nancial frictions.

The remainder of this paper is organized as follows. Section 2 shows that much of the

existing literature on �rms' �nancing constraints can be characterized by specifying a simple

dynamic problem to describe �rm behavior. It also derives the expression for returns to

physical investment, and their relation to stock and bond returns, that can be used to

evaluate the asset pricing implications of the model. The next section describes our data

sources and econometric methods, and section 4 reports the results of our formal GMM

tests and examines both the performance of the model and the role of �nancing constraints.

Section 5 examines the robustness of our results to the use of alternative data or modelling

assumptions. Finally, section 6 o�ers some concluding remarks.
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2 A General Representation of Firm Level Financing

Frictions

In this section we show that the majority of the existing literature on �rms' �nancing

constraints leads to a fairly simple characterization of the optimal investment decisions of

the �rm with an appropriately speci�ed adjustment cost function. In addition, we derive

a set of easily testable asset pricing conditions that can shed light on the role of �nancing

frictions.

2.1 Firm's Problem

We begin by examining the problem of a representative �rm that maximizes the value to

existing shareholders, denoted V (�), by solving the following dynamic programming problem:

V (Kt; Bt; Xt) = max
Dt;Bt+1;
Kt+1;Nt

fDt �W (Nt=Kt)Nt + Et [Mt;t+1V (Kt+1; Bt+1; Xt+1)]g (1)

s:t: Dt = C(Kt; Kt+1; Xt) +Nt +Bt+1 �R(Bt=Kt)Bt (2)

Dt � �D; Nt � 0

where Mt;t+1 is the stochastic discount factor (of the owners of the �rm) from time t to time

t+1, and Xt summarizes all sources of uncertainty in the model. Dt denotes dividends, Nt is

the value of new equity issues, Bt+1 denotes new debt issues, and �D is the �rm's steady state

dividend target.2 W (�) is the unit cost of outside equity and R denotes the gross interest

rate of outstanding debt Bt:
3

Dividends are described by the resource constraints (2) where C(Kt; Kt+1; Xt) denotes

2Note that we allow for negative debt, hence �rms can e�ectively accumulate �nancial assets
3In many models the functions W (�) and R (�) may also be state-dependent. As it will become clear

below however, this dependence is essentially unimportant for our modeling purposes here.
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the current period cash 
ow de�ned as follows:

C(Kt; Kt+1; Xt) � �(Kt; Xt)�Kt+1 + (1� Æ)Kt �H(Kt+1; Kt) (3)

where �(Kt; Xt) and H(Kt+1; Kt) are the current period pro�ts and physical adjustment

costs respectively.4 We assume that: (i) �1�@�=@Kt>0, (ii) �(�) is homogenous of degree

one in Kt, and (iii) H(�) is homogenous of degree one in both Kt and Kt+1.
5 It follows that

C(Kt; Kt+1; Xt) is also homogenous of the same degree in Kt and Kt+1:

2.2 Financing Frictions

Financial market imperfections are entirely captured by the two functions W (�) and R(�).

We make the following assumption concerning these functions:

Assumption 1 W (�) satis�es:(
W (Nt=Kt) > 1 for Nt > 0

W (Nt=Kt) = 1 for Nt � 0
(4)

and W1(�) � 0. Moreover, R(�) satis�es:(
R(Bt+1=Kt+1)Et[Mt;t+1] > 1 for Bt+1 > 0

R(Bt+1=Kt+1)Et[Mt;t+1] = 1 for Bt+1 � 0
(5)

and R1(�) > 0.

4Alternatively, we can also write cash 
ows in terms of investment It as:

bC(Kt; It; Xt) = �(Kt; Xt)� It � bH(It;Kt)

where

It = Kt+1 � (1� Æ)Kt

5We use Fi to denote the �rst derivative of F with respect to its ith argument and Fij to denote the
derivative of Fi with respect to its jth argument.
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Equation (4) captures the notion that new issues are costly to existing shareholders not

only because they reduce claims on future dividends, but perhaps also due to the presence of

additional transaction or informational costs that further reduce value. Equation (5) implies

that debt �nancing exceeds the risk free rate, 1=Et[Mt;t+1], which is also the rate of return

on any liquid assets (negative debt). Note also that we allow for the possibility that these

\�nancing costs" are increasing in the amount of �nance used. Finally by assuming that

W (�) and R(�) are homogenous of degree zero, we also allow for the possibility of size e�ects

in the \�nancing costs".

Theoretical arguments for each of these assumptions have been provided by several

researchers over the years and we do not derive them explicitly here. Rather we seek to

provide a useful parsimonious representation that summarizes the common ground across

almost all models of �nancing frictions. By capturing the essential notion that internal funds

are the least costly source of funds, our assumptions capture the essence of the \�nancing

hierarchies" structure proposed by Myers (1984) and provide a suitable environment to study

the role of �nancing frictions on �rm behavior.6

2.3 Optimality Conditions

De�ne �t to be the multiplier on the resource constraint (2) and �dt and �nt to be the

(non-negative) multipliers on the inequality constraints on dividends and new equity issues,

respectively. The optimality conditions with respect to Kt+1; Dt; Bt+1; and Nt for the

6For our analysis it is also not important whether debt or new equity is the more expensive form of
external �nancing, and we can safely abstract from it.
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Bellman equation (1) are given by, respectively:

[Kt+1] : �tC2(Kt; Kt+1; Xt) + Et [Mt;t+1V1(Kt+1; Bt+1; Xt+1)] = 0 (6)

[Dt] : 1� �t + �dt � 0

[Bt+1] : �t + Et [Mt;t+1V2(Kt+1; Bt+1; Xt+1)] = 0 (7)

[Nt] : �W1 (Nt=Kt) (Nt=Kt)�W (Nt=Kt) + �t + �nt � 0

where the partial derivatives of V (�) are provided by the Envelope Theorem:

V1(Kt; Bt; Xt) = W1 (Nt=Kt) (Nt=Kt)
2 + �t

�
C1(Kt; Kt+1; Xt) +R1(Bt=Kt)(Bt=Kt)

2
�
(8)

V2(Kt; Bt; Xt) = ��t [R(Bt=Kt) +R1(Bt=Kt)(Bt=Kt)] (9)

Our assumptions guarantee that V1(�) > 0 and V2(�) < 0 as expected. In addition, the

solution must satisfy the resource constraint (2) the non negativity constraints and the

usual complementarity slackness conditions (omitted for simplicity).

2.4 Optimal Financing Decision

The hierarchical �nancing structure was �rst put forward by Myers (1984) in a static

framework. The following proposition shows that a similar structure holds in our dynamic

model.

Proposition 1 (Financing Hierarchy) It is never optimal for �rms to pay out dividend

while issuing new debt or raising new equity. Formally,(
Bt+1 > 0 or Nt > 0 =) Dt = D

Dt > D =) Bt+1 � 0 and Nt = 0
(10)

Proof. See Appendix A.
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2.5 Testable Implications

The asset pricing implications of the model are summarized by combining the optimality

conditions with respect to Kt+1 and Bt+1 with the two envelop conditions to obtain:

Et[Mt;t+1R
I
t+1] = 1 (11)

Et

�
Mt;t+1R

B
t+1

�
= 1 (12)

where RI
t+1 denotes investment return and RB

t+1 denotes the corporate bond return, and are

given by, respectively:

RI
t+1 � �

V1(Kt+1; Bt+1; Xt+1)

�tC2(Kt; Kt+1; Xt)
(13)

RB
t+1 � �

V2(Kt+1; Bt+1; Xt+1)

�t
(14)

where the two numerators are given by (8) and (9), respectively.

Equations (11) and (12) provide a very powerful set of asset pricing restrictions that must

be satis�ed by optimal �rm behavior. In addition, Proposition 3 establishes that similar asset

pricing implications also exist for the behavior of stock returns:

RS
t+1 =

V e(Kt+1; Bt+1; Xt+1) + [Dt+1 �W (Nt+1=Kt+1)Nt+1]

V e(Kt; Bt; Xt)
(15)

where

V e(Kt+1; Bt+1; Xt+1) � V (Kt+1; Bt+1; Xt+1)� [Dt �W (Nt+1=Kt+1)Nt] (16)

is the (current period) value of the �rm to shareholders after new issues take place and

dividends are paid.
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As a preliminary step proposition 2 shows that investment returns equal a weighted

average of stock and bond returns, with the weight on bonds equal to the leverage ratio,

!t =
�tBt+1

V e(Kt; Bt; Xt) + �tBt+1

(17)

Proposition 2 (Return Decomposition) Investment returns must equal:

RI
t+1 = (1� !t)R

S
t+1 + !tR

B
t+1 (18)

Proof. See Appendix A.

With this result established it follows immediately that stock returns are also priced by

the stochastic discount factor Mt;t+1:

Proposition 3 (Pricing Stocks) The stock return RS
t+1 satis�es the Euler equation

Et[Mt;t+1R
S
t+1] = 1 (19)

Proof Combining the Euler equations (11) and (12) with Proposition 2 yields:

1 = Et

�
Mt;t+1R

S
t+1(1� !t)

�
+ Et

�
Mt;t+1R

B
t+1!t

�
= (1� !t)Et

�
Mt;t+1R

S
t+1

�
+ !t

or, simply

Et

�
Mt;t+1R

S
t+1

�
= 1 (20)
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2.6 Investment Returns with Financing Constraints

The asset pricing implications in (11), (12), and (20) provide a simple but powerful summary

of the role of �nancing constraints for the optimal behavior of �rms. For empirical purposes

however, our characterization of investment returns requires detailed assumptions about the

nature of the cost functions W (�) and R(�), as well as an explicit solution for the multiplier

�t. In this section we derive an alternative approach to construct returns that requires only

the solution to an equivalent optimization problem without �nancing frictions, but with an

appropriately speci�ed adjustment cost function, G(�); capturing the role of the frictions. By

allowing us to characterize investment returns, RI
t+1; only in terms of the general �nancing

cost function G(�), this formulation will provide a very powerful tool for empirical analysis.

In addition, this characterization also o�ers a straightforward measure of the magnitude of

the �nancing costs.

Consider the following \frictionless" problem

eV (Kt; Xt) = max
Kt+1

n eC(Kt; Kt+1; Xt) + Et

h
Mt;t+1

eV (Kt+1; Xt+1)
io

(21)

where we de�ne the adjusted cash 
ow function

eC(Kt; Kt+1; Xt) = �(Kt; Xt)�Kt+1 + (1� Æ)Kt � �(Kt; Kt+1; Xt) = (22)

= C(Kt; Kt+1; Xt)�G(Kt; Kt+1; Xt) (23)

and the adjustment costs function �(�) captures the total (including �nancing) costs of

adjusting the capital stock.

Proposition (4) establishes the equivalence between this frictionless formulation to the

problem of the �rm in (21) and the more fully speci�ed version (1) for the simple case where
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there is no debt.7 Proposition (3) in Appendix A establishes a similar result for the case of

debt �nance.8

Proposition 4 (Investment Returns) When there is only equity �nancing, investment

return can be written as:

RI
t+1 =

eC1(Kt+1; Kt+2; Xt+1)

� eC2(Kt; Kt+1; Xt)

where eC is de�ned by (22).

Proof 9

When �rms issue only new equity, Bt=Bt+1=0; hence (13) reduces to:

RI
t+1 =

�t+1C1(Kt+1; Kt+2; Xt+1) +W1 (Nt+1=Kt+1) (Nt+1=Kt+1)
2

��tC2(Kt; Kt+1; Xt)
=

Now de�ne the �nancing cost function:

G(Kt; Kt+1; Xt) = (W (Nt+1=Kt+1)� 1)Nt � 0 (25)

Taking derivatives and using (2) as well as the �rst order condition for new issues, it follows

7Models with equity �nance only were studied in Fazzari, Hubbard, and Petersen (1988) and Gomes
(2001).

8See Bernanke and Gertler (1989) and Cooley and Quadrini (1999), among several others.
9An alternative proof can be constructed by simply replacing the resource constraint (2) in the objective

function (1) to obtain

V (Kt; Xt) = max
Kt+1;Nt

fC(Kt;Kt+1; Xt)� (W (Nt=Kt)� 1)Nt +Et [Mt;t+1V (Kt+1; Xt+1)]g (24)

since

eC(Kt;Kt+1; Xt) = C(Kt;Kt+1; Xt)� (W (Nt=Kt)� 1)Nt

the result follows immediately.
In this case the value function V (Kt; Xt) is identical in both cases. For the debt case, however, the relevant

value function for the dynamic program (21) will capture the total value of the �rm for both stock and bond
holders.

11



that

G1(Kt; Kt+1; Xt) = �(�t � 1)
@Nt

@Kt

�W1(Nt+1=Kt+1)
N2
t

K2
t

=

= �(�t � 1)C1 (Kt; Kt+1; Xt)�W1(Nt+1=Kt+1)
N2
t

K2
t

G2(Kt; Kt+1; Xt) = �(�� 1)
@Nt

@Kt+1

= �(�t � 1)C2 (Kt; Kt+1; Xt)

Now using in (13) yields

RI
t+1 =

C1(Kt+1; Kt+2; Xt+1)�G1(Kt+1; Kt+2; Xt+1)

�(C2(Kt; Kt+1; Xt)�G2(Kt; Kt+1; Xt))
=
eC1(Kt+1; Kt+2; Xt+1)

� eC2(Kt; Kt+1; Xt)

The �nancing cost function (25) provides a very simple characterization of the �nancing

costs. It implies that they can be e�ectively summarized by the product of two terms, one,

Nt, that captures the amount of external �nance raised, and the other, W (Nt+1=Kt+1)� 1,

summarizing the premium on external funds. As we show in Appendix A this intuitive

description is quite general, and holds even in the more realistic case where debt issues are

available to the �rm.

Finally this formulation also suggests a useful measure of the size of the �nancing costs.

By looking at the share of costs in total investment spending, we can obtain a simple but

meaningful measure of the size of these costs. Thus we will use the shares:

�1t � H(Kt; Kt+1)=It

�2t � G(Kt; Kt+1; Xt)=It

as our economic measures of the relative importance of physical and �nancing costs of

adjusting investment, respectively.
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3 Investment Based Factor Pricing Models

This section is devoted to describing our methodology as well as the data used and its sources.

We begin by describing the functional form restrictions to our general pro�t, physical and

�nancing cost functions above. We then brie
y discuss our econometric methodology for a

formal examination of the role of �nancing frictions for investment based asset pricing and

conclude with an overview of the data sources and the construction of the series of investment

returns from the available macroeconomic aggregates.

3.1 Functional Forms

We begin by specifying the following pro�t function:10

�(Kt; Xt) = AX1tKt (26)

where X1t summarizes shocks to the production technology. Physical adjustment costs are

quadratic and equal to

H(Kt; Kt+1) =
a

2
[Kt+1=Kt � (1� Æ)]2Kt (27)

with a > 0: These speci�cations are fairly standard and require little explanation.

Proposition (4), (and Proposition (3) in Appendix A) imply that the �nancing cost

function, G(�); has the following simple linear structure:

G(Kt; Kt+1; Xt) = b(X2t)1fEt�0g � Et (28)

where Et = RtBt � [�(�)�H(�)� It] denotes the amount of external �nance used by the

10This functional form for the pro�t function holds as long as underlying technology exhibits constant
returns to scale.
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�rm, b(X2t) > 0 is the premium on external �nance, that is subject to shocks X2t; and 1fEt>0g

is an indicator function. All that remains is a speci�cation for the premium on �nance b(�):

Given much of the literature on the subject, a natural assumption is to assume that this

premium is simply increasing in the default premium, DFt. A simple way to implement this

is to assume that

b(X2t) = b�DFt

Equations (26){(28) imply that the return on investment can be written as:

RI
t+1 =

(1 + b(X2t+1)1fEt+1�0g)(�t+1it+1 +
a
2
i2t+1 + (1 + ait+1)(1� Æ))

(1 + b(X2t)1fEt�0g)(1 + ait)
(29)

where i � (I=K); is the investment to capital ratio and, � � (�=I); is the pro�t to investment

ratio. It is clear that investment returns are completely driven by these two fundamental

factors.

Thus, our approach to modeling �nancing frictions is not only theoretically appropriate,

as we have showed in section 2.6, but also appealing from an empirical point of view. By

explicitly linking the relation between pro�ts and investment to the costs of external �nance,

equation (28) delivers a simple, yet informative, framework to study the role of �nancial

frictions on the behavior of �rms.

3.2 Econometric Methodology

3.2.1 Pricing Kernel

The asset pricing implications are summarized by the Euler equations:

E(Mt;t+1R
s
j;t+1) = E(Mt;t+1R

I
n;t+1) = E(Mt;t+1R

B
l;t+1) = 1 (30)
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for asset returns Rs
j;t+1, j = 1; 2; ::Js, investment returns,R

I
n;t+1, n = 1; 2; :::JI; and corporate

bonds RB
l;t+1, l = 1; 2; :::JB.

The essence of our strategy is to use the information contained in the optimal investment

decisions of �rms to formally investigate the importance of �nancing constraints for asset

prices. Following Harrison and Kreps (1979) and Hansen and Richard (1987), the absence

of arbitrage opportunities implies that a (positive) stochastic discount factor:

Mt;t+1 =
X
j

ljR
s
j +

X
n

lnR
I
n +

X
l

llR
B
l (31)

satis�es equation (30).

In the context of our model however, equation (18) implies that only two of these returns

are independent and this allows us to simplify the stochastic discount factor, without loss

of generality, to be linear in investment and corporate bond returns only. In addition, we

further specialize this pricing kernel by focusing solely on two such aggregate factors { the

return to aggregate investment and the return on a corporate bond index,

Mt;t+1 = l0 + l1R
I
a;t+1 + l2R

B
a;t+1= f 0

t+1
l (32)

This specialization of the kernel, M , to aggregate investment and corporate bond returns,

rests on the assumption that individual portfolio investment returns are approximately linear

in the aggregate investment return and correspondingly for the corporate bond return11.

Provided the level of portfolio disaggregation is not too �ne, this assumption appears

reasonable. Our estimation strategy then allows us to estimate factor loadings, l; as well as

the cost parameters, a and b; by utilizingM as speci�ed in (32) in conjunction with moment

conditions (30).

11That is RI
d;t+1 = 
0d + 
1dR

I
t+1 + �d;t+1 for individual portfolio d and the �d;t+1 are i:i:d.
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3.2.2 Moment Conditions

We closely follow Cochrane's (1996) estimation techniques for assessing the asset pricing

implications of our model. Speci�cally, three alternative sets of moment conditions in

implementing (30) are examined. We look �rst at the relatively weak restrictions implied

only by the unconditional moments. The second set focuses on the conditional moments

by adding instruments to the returns, while the third set allows for time variation in the

factor loadings. We now provide some details on each of these. For a detailed description

see Cochrane (1996).

For the unconditional factor pricing we apply standard GMM procedures to estimate the

cost parameters, a and b, and loading factors, l; to simply minimize a weighted average of the

sample moments (30). Letting
P

T denote the sample mean we can rewrite these moments,

gT as:

gT � gT (a; b; l) �
X
T

[MR� p] =
X
T

[(Rf 0) l� p]

where p is a vector of prices. One can then choose (a; b; l) to minimize a weighted sum of

squares of the pricing errors across assets:

JT = g0TWgT (33)

Note that a convenient feature of our problem is that given a and b, the criterion function

above is linear in l | the factor loading coeÆcients. Standard �2 tests of over-identifying

restrictions follow from this procedure. This also provides a natural framework to assess

whether the loading factors or technology are important for pricing assets.

It is straightforward to include the e�ects of conditioning information by scaling the

returns and/or scaling the factors by instruments. The essence of this exercise lies in
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extracting the conditional implications of (30) since, for a time-varying conditional model,

these implications may not be well captured by a corresponding set of unconditional moment

restrictions as noted in Hansen and Richard (1987).

To test conditional predictions of (30) we expand the set of returns to include returns

scaled by instruments to obtain the moment conditions:

E [pt 
 zt] = E [Mt;t+1 (Rt+1 
 zt)]

where zt 2 It, is some instrument, It is the information set at time t and 
 denotes the

Kronecker product.

A more direct way to extract the potential non-linear restrictions embodied in (30) is to

let the stochastic discount factor be a linear combination of factors with weights that vary

over time. That is, the vector of factor loadings l is a function of instruments z that vary

over time:12

Mt;t+1 = l (zt)
0
ft+1

Therefore, to estimate and test a model in which factors are expected only to price assets

conditionally, we simply expand the set of factors to include factors scaled by instruments.

The stochastic discount factor utilized in estimating (30) is then,

Mt;t+1 = l0 (ft+1 
 zt)

3.3 Data

This section provides an overview of the data used in our study. A more detailed description

is provided in Appendix B and in Cochrane (1996). Our data comes from NIPA and

12With suÆciently many powers of z's, the linearity of l can actually accommodate nonlinear relationships.
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the Flow of Funds Accounts for the macroeconomic aggregates suitable to construct the

series of investment returns, and CRSP and Ibbotson for information about �nancial assets.

Construction of investment returns requires three macroeconomic aggregates: pro�ts (we try

both before and after taxes), investment and capital. In addition, capital consumption data

is used to compute the time series average of the depreciation rate and pin down the value of

Æ; the only technology parameter that we do not formally estimate. To avoid measurement

problems due to chain weighting in the earlier periods our sample starts in the �rst quarter

of 1952 and ends in the last quarter of 2000. Since versions of our model are generally used to

describe the non-�nancial sector we construct information on investment, capital and pro�ts

of the Non-Financial Corporate Sector alone. For comparison purposes however, results for

the aggregate economy (the level of aggregation used in Cochrane (1996)) are also reported.

In order to implement the estimation procedure we require a suÆcient number of moment

conditions. As described above we limit ourselves to examining the model's implications for

aggregate investment and bond returns. This means that we need to look at more than

just the aggregate stock returns. Here we focus on the ten size portfolios of NYSE stocks.

Corporate bond data comes from Ibboson's index of Long Term Corporate Bonds. The

default premium is de�ned as the di�erence between the yields on AAA and Baa corporate

bonds, from CRSP. Table 1 reports the summary statistics of the asset returns used in our

GMM implementation.

Conditioning information comes from two sources: the term premium, de�ned as the

yield on 10 year notes minus that on three-month Treasury bills, and the dividend-price

ratio of the equally weighted NYSE portfolio. Finally, as in Cochrane (1996), we limit the

number of moment conditions and scaled factors in three ways: (1) we do not scale the

Treasury-bill return by the instruments since we are more interested in the time-variation
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of risk premium than that of risk-free rate. (2) Instruments themselves are not included as

factors. (3) We use deciles one, two, �ve, and ten only in the conditional estimates.

4 Results

4.1 GMM Estimates

Table 2 reports the results of our GMM estimation for all three moment conditions tested

(unconditional, conditional, and scaled). The results come from iterated estimates, after

convergence is achieved. First-stage estimates are quite similar, most notably concerning

the role of �nancing costs. In all cases we report the value of the parameters a and b as well

as the estimated loadings l and corresponding t-statistics. Also included are the result of J

tests on the model's overall ability to match the data and corresponding p-values.

Despite some di�erences between our model and data and that in Cochrane (1996), our

results are essentially comparable, particularly regarding the performance of our model. In

spite of the inclusion of the last few years of stock market data, our model performs quite

well and the hypothesis that all factor loadings are zero is almost always rejected at standard

5% signi�cance levels.13 Moreover, estimated adjustment costs (�̂1) seem economically

reasonable (in most cases around 2-8% of investment spending).14

Although our model requires the use of two pricing factors we observe that our results are

essentially unchanged when using investment returns as the only pricing factor. This �nding,

combined with the estimated loadings, l; demonstrates that the corporate bond return's role

in pricing �nancial assets is fairly minor. Loading factors also exhibit very similar patterns

across the di�erent versions estimated, with a positive intercept and a negative loading on the

13Since p-values rise quite signi�cantly once we drop the last 2, 3 or even 5 years of data from the sample,
the reported values provide a lower bound on the overall performance of the model.

14In the cases where the t-statistic on a is insigni�cant, the p-values of the Wald test on the null hypothesis
that a=0 are generally less than 5%.
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investment return. In the scaled model, only the conditional loading on the term-premium

in the one factor model is consistently signi�cant.

The focus of our analysis, however, is the role of the �nancing cost parameter b. Here

the message from all the panels is even more clear. In all cases the actual point estimate of

b is zero!

4.2 The E�ect of Financing Constraints

Why are the �nancing constraints not priced? Alternatively, why do they seem irrelevant for

the construction of the stochastic discount factor? Table 3 describes the e�ects of increasing

the value of b in each set of moment conditions, while a is kept constant at its optimal level

reported in columns 2-4 of Table 5.15

As we can readily observe, the presence of �nancing constraints e�ectively lowers the

market price of risk �(M)=E(M); as well as the (absolute) correlation between the pricing

kernel and value-weighted returns for all three models, thus deteriorating the performance of

the pricing kernel. Perhaps more direct evidence is given by examining the implied pricing

errors. A simple way of doing this is to compute the beta representation

Ri � Rf =�i + �1i(R
I �Rf ) + �2i(R

B � Rf)

Given the assumed structure of the pricing kernel this representation exists, with �i = 0 (see

discussion in Cochrane (2001)). Therefore, large values of � are evidence against the model.

Table 3 reports the implied �0s for the regressions on both decile 1 (small �rms) and value

weighted returns. It displays a clear pattern of increasing � as we increase the magnitude of

the �nancing costs. Indeed, while we can not reject that �=0 for the case of pure physical

15The results are virtually identical when we use the estimates from Table 2. We choose to focus on this
case, where we price the risk free rate, to make the beta-representation of returns more intuitive.
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adjustment costs, this hypothesis is rejected for most of the other parameter con�guration.

Finally we also report the implications of �nancing costs for the raw moments of

investment returns and their correlation with market returns. While both the mean and

the variance of investment returns are not much changed as b increases the main implication

of increasing �nancing constraints is to lower their correlation with asset returns. Since the

overriding e�ect on the properties of a factor model hinges on its covariance structure with

returns it is not surprising that �nancing costs are not important for the construction of the

pricing kernel as documented in Table 2.16

To understand the role of the �nancing frictions on the pricing kernel consider their

impact on investment returns in the simple case where a = 0: In this case equation (29)

simpli�es to:

RI
t+1 =

�t+1=Kt+1 + (1� Æ)� b(X2t+1)(�t+1=Kt+1 + (1� Æ))

1 + b(X2t)
(34)

The clear cyclical pattern of both pro�ts and the premium on external �nance (for which

the default premium is a proxy) has strong implications for the nature of the �nancing costs

and thus the behavior of investment returns. To see this suppose that the economy moves

into a recession between periods t and t+1. This implies that the marginal cost of external

�nance, with respect to next period's capital stock:

G1(�) = �b(X2t+1)(�t+1=Kt+1 + (1� Æ))

must fall, as both pro�ts fall and the default premium rises. It follows from (34) that

16An alternative way of representing the impact of �nancing constraints is to compare their e�ect on
the pricing kernels with the Hansen-Jagannathan (1991) bounds. Increasing b has the e�ect of moving the
estimated kernels farther way from the bounds
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investment returns become less procyclical as a result, and it is this that worsens their

correlation with asset returns, and hurts the performance of models with positive values for

the parameter b.

Note that this mechanism depends only on the fact that marginal �nancing costs are

countercyclical, a result that, in general, requires only a countercyclical premium on external

funds and a procyclical behavior for the actual amount of �nance raised.

5 Alternative Speci�cations

This section explores several alternatives to our benchmark approach thus examining the

robustness of our results in a variety of settings. We start by simply verifying the e�ects of

using alternative data. We then focus on alternative parametric speci�cations for the cost

function, G(�); by taking a progressively less structural approach to the problem.

5.1 Di�erent Macroeconomic Data

Table 4 shows the e�ects of using alternative data in the construction of the investment

returns. Columns 2{4 report the results of using after tax pro�ts in the construction

of investment returns, while columns 5-7 report similar results when data on overall

macroeconomic aggregates is used. Also included are the �2�statistic and corresponding

p-value for relevant Wald test when our estimate of b is non-zero. It is easy to see that these

alternative constructions have no impact on our main conclusions from Table 2. In the one

instance where b is slightly positive, the hypothesis that it is statistically zero can only be

rejected at extremely high signi�cance levels.
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5.2 Small Firms E�ects

Most, if not all, studies on �rm �nancing constraints emphasize that they are more likely

to be detected when looking only at the behavior of small �rms. Although our focus is on

the implications for aggregate asset prices an easy way to assess the models implications for

di�erent �rms is to test the moment conditions (30) for small only �rms. We investigate this

possibility in Table 5. Speci�cally columns 7{12 show the results of our GMM estimation

using only the lower 2 or 3 stock deciles. Still, even when focusing mainly on these �rms we

still can not �nd any evidence for a signi�cant role of �nancing frictions.

5.3 Alternative Cost Functions

The motivation for using the speci�cation for G(�) as given by (28) is based on our results in

section 2.6. This functional form followed naturally given our model's assumptions. However,

these may be unduly restrictive and one may wish to use our methodology to investigate

the consequences of using alternative functional forms for the �nancing cost function. While

these may not always correspond exactly to the underlying constrained problem in (1) they

may, nevertheless, provide a useful approximation for empirical purposes.

In this section we explore the implications of two simple alternative characterizations of

the cost function G(�): Speci�cally, we use

G(�) = b�DFt � Et �max[0; Et] = b�DFt �max[0; Et]
2

where the �rst term b�DFt�max[0; Et] now captures the premium which multiplies external

�nance, Et, and E = I + H(�) � �(�); as in the case when only equity is available, or

E = RB+ I+H(�)��(�); as in the case where debt �nance is also available. Quadratic cost

functions of this form correspond to some popular structural models of �nancing frictions,
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such as that in Stein (2001). Intuitively they correspond to the assumption that the premium

on external �nance, b(�) is linear in the amount of external �nance raised.

Table 6 con�rms that these modi�cations have little impact on our results. Only in one

case is the actual point estimate of b not zero, and even then the hypothesis that it di�ers

from zero is, again, easily rejected.

5.4 Non-Linear Pricing Kernels

The use of a linear factor representation may be restrictive, and several alternative

approaches modeling nonlinear pricing kernels have been recently advanced in the

literature.17 We also explore this possibility by re-estimating the moment conditions using

several non-linear pricing kernels. Speci�cally we consider examples where the pricing kernel

is quadratic in either RI alone or in both RI and RB. Again in either of these cases (not

reported) we �nd little or no evidence for �nancing costs.

6 Conclusion

In this paper we ask to what extent �nancing constraints are quantitatively important for

explaining asset returns. To address this question we �rst show that, for a large class

of theoretical models, �nancing costs have a common general representation amenable to

empirical analysis. By relating the degree of �nancing frictions to the amount of external

�nance used we are able to derive expressions for investment returns that are empirically

tractable.

Using formal GMM estimation and tests, we �nd that �nancing constraints play a

negligible role in the pricing of asset returns. This �nding casts doubt on whether the

asset pricing 
uctuations, induced by the presence of the �nancing constraints, provide a

17See Bansal and Vishwanathan (1993), Brandt and Yaron (2001), and Chapman (1997), for example.
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realistic channel for the propagation mechanism in several macroeconomic models. While

these constraints may indeed help generate more interesting dynamics for the typical

macroeconomic aggregates, they seem to strain the model's ability to match �nancial data.

Our �ndings are robust to several alternative formulations of our model, particularly the

form of the �nancing cost function. They also appear robust to the speci�c macroeconomic

data used and the set of returns used in our GMM implementations.

A few potentially important aspects of our empirical implementation suggest directions

for future research. First, investment may have an important time to build component. In

particular, �nancing procedures may precede the actual investment by a quarter or more, and

that may lead investors to look at lagged pro�t measures when making their decisions. In

that case, our speci�cation may require explicit examination of the potential time aggregation

implications. Second, there remains the issue of the proper level of aggregation. Despite

our results, one may still want to investigate the implications of our model using more

disaggregated data.18

18See Gomes,Yaron and Zhang (2001) for a similar study using �rm level data.
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A Proofs

Proof of Proposition 1. The proof is by contradiction. Suppose �rst that both Dt >D and
Nt > 0: Then the Kuhn-Tucker conditions imply that:

�t = 1

�t = W1(�)(Nt=Kt) +W (�) > 1

where the last equation follows from the fact that W(�) >1 and W1(�)Nt �0 when Nt>0. Clearly

they can hold simultaneously and we have a contradiction.
Now suppose that both Dt >D and Bt+1 > 0, then we must have

�t = 1 = Et

�
Mt;t+1�t+1(R(�) +R1(�)(Bt+1=Kt+1))

�
> R(�)Et

�
�t+1Mt;t+1

�
where the inequality follows from �t+1R1(�)(Bt+1=Kt+1) >0 when Bt+1 is positive. Now observing
that

Et[�t+1]Et[Mt;t+1] = Et

�
�t+1Mt;t+1

�
� covt

�
�t+1Mt;t+1

�
� Et

�
�t+1Mt;t+1

�
where the inequality follows from the fact that

covt
�
�t+1(Xt+1);Mt;t+1(Xt+1)

�
= covt

h
�dt+1(Xt+1);Mt;t+1(Xt+1)

i
� 0

since a positive shock to Xt+1 raises the probability of paying dividends next period and both �dt+1
and Mt;t+1 (at least with most standard kernels) weakly fall with Dt+1.

Together these inequalities imply then that:

�t = 1 > R(�)Et

�
�t+1Mt;t+1

�
> R(�)Et[Mt;t+1]Et[�t+1] >

> Et[�t+1] = Et[1 + �dt+1] �1

and again this is a contradiction.

Lemma 1 The value of the �rm equals the sum of (cum-dividend) equity value and the value of

outstanding debt:

qtKt = V (Kt; Bt;Xt) + �tBt [R(Bt=Kt) +R1(Bt=Kt) (Bt=Kt)] (A1)

where qt = V1(Kt; Bt;Xt) denotes the marginal q. Moreover, (A1) implies that marginal q equals

Tobin's (average) q.

Proof For simplicity consider the case where D = 0: The proof for the case when D > 0 follows
immediately. Rewrite the value of the �rm as

V (Kt; Bt; Xt) = max
Dt;Bt+1;
Kt+1;Nt

�
(1� �t + �dt )Dt + [�t �W (Nt=Kt) + �nt ]Nt + �t[C(Kt;Kt+1;Xt)

+Bt+1 �R(Bt=Kt)Bt] + Et [Mt;t+1V (Kt+1; Bt+1;Xt+1)]

�

The complementarity-slackness conditions imply that the �rst term in the right-hand side is zero

and the second equals W1 (Nt=Kt) (Nt=Kt)Nt:
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Next, homogeneity of the value function and the envelope conditions imply that:

Et [Mt;t+1V (Kt+1; Bt+1;Xt+1)] = ��tC2(Kt;Kt+1; Xt)Kt+1 � �tBt+1

while homogeneity of C yields

C1(Kt;Kt+1;Xt)Kt = C(Kt;Kt+1; Xt)� C2(Kt;Kt+1;Xt)Kt+1

Hence the value function collapses to

V (Kt; Bt;Xt) =W1 (Nt=Kt) (Nt=Kt)Nt + �t [C1(Kt;Kt+1;Xt)Kt �R(Bt=Kt)Bt]

Rearranging, and using (8) we have:

V (Kt; Bt;Xt) + �t [R(Bt=Kt)Bt +R1(Bt=Kt) (Bt=Kt)Bt] = V1(Kt; Bt;Xt)Kt

Proof of Proposition 2. Again consider the simple case where D = 0: Starting from the
de�nition of investment returns (13), we have

RI =
V1(Kt+1; Bt+1;Xt+1)

��tC2(Kt;Kt+1;Xt)
=

V1(Kt+1; Bt+1;Xt+1)

�t [C1(Kt;Kt+1; Xt)Kt � C(Kt;Kt+1; Xt)]
(A2)

=
V (Kt+1; Bt+1;Xt+1) + �t+1Bt+1 [R(Bt+1=Kt+1) +R1(Bt+1=Kt+1) (Bt+1=Kt+1)]

V (Kt; Bt;Xt)� �tDt + �tBt+1 +Nt [�t �W1 (Nt=Kt) (Nt=Kt)]
(A3)

where the second equality follows from homogeneity of C, and the third from (3), (8) and Lemma

1. Next observe that the complementarity slackness conditions imply:

Dt(1� �t) = 0

Nt[�t �W1 (Nt=Kt) (Nt=Kt)] = W (Nt=Kt)Nt

Thus

RI
t+1 =

V (Kt+1; Bt+1;Xt+1) + �t+1Bt+1 [R(Bt+1=Kt+1) +R1(Bt+1=Kt+1) (Bt+1=Kt+1)]

V (Kt; Bt;Xt)�Dt + �tBt+1 +W (Nt=Kt)Nt

Using the de�nitions of RS
t+1, R

B
t+1 and !t it follows that:

RI
t+1 = (1� !t)R

S
t+1 + !tR

B
t+1

Lemma 2 When debt is positive the multiplier �t satis�es the following conditions:

@�t
@Kt

=
@�t
@Bt

= 0
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Proof. Di�erentiating (9) with respect to Kt and Bt, we have

V21(Kt; Bt;Xt) = �
@�t
@Kt

[R(Bt=Kt) +R1(Bt=Kt)(Bt=Kt)]

+�t
�
R1(Bt=Kt)(2Bt=K

2
t ) +R11(Bt=Kt)(B

2
t =K

3
t )
�

(A4)

V22(Kt; Bt;Xt) = �
@�t
@Bt

[R(Bt=Kt) +R1(Bt=Kt)(Bt=Kt)]

��t
�
R1(Bt=Kt)(2=Kt) +R11(Bt=Kt)(Bt=K

2
t )
�

Now homogeneity of the value function implies that

0 = V21(Kt; Bt;Xt)Kt + V22(Kt; Bt;Xt)Bt

= � [R(Bt=Kt) +R1(Bt=Kt)(Bt=Kt)]

�
@�t
@Kt

Kt +
@�t
@Bt

Bt

�

thus con�rming that �t is indeed homogeneous of degree zero in Kt and Bt.
Next Young's theorem implies that

V21(K;B;X) = V12(K;B;X) =
@�t
@Bt

�
C1(Kt;Kt+1;Xt) +R1(Bt=Kt)(Bt=Kt)

2
�

+�t
�
R1(Bt=Kt)(2Bt=K

2
t ) +R11(Bt=Kt)(B

2
t =K

3
t )
�

(A5)

Equating (A4) and (A5) and simplifying yields

�
@�t
@Kt

[R(Bt=Kt) +R1(Bt=Kt)(Bt=Kt)] =
@�t
@Bt

�
C1(Kt;Kt+1; Xt) +R1(Bt=Kt)(Bt=Kt)

2
�

Thus,

@�t
@Kt

R(Bt=Kt) +
@�t
@Bt

C1(Kt;Kt+1;Xt) =

�
@�t
@Kt

Kt +
@�t
@Bt

Bt

�
R1(Bt=Kt)(Bt=K

2
t ) = 0

Therefore, the derivatives of �t satisfy the following two conditions

@�t
@Kt

R(Bt=Kt) +
@�t
@Bt

C1(Kt;Kt+1;Xt) = 0�
@�t
@Kt

Kt +
@�t
@Bt

Bt

�
= 0

But since Bt>0

R(Bt=Kt)Bt + C1(Kt;Kt+1; Xt)Kt > 0

and we must have that

@�t
@Kt

=
@�t
@Bt

= 0

32



Proposition 3 When there is only debt �nancing, the investment return can be expressed as:

RI =
eC1(Kt+1;Kt+2;Xt+1)

� eC2(Kt;Kt+1; Xt)

where eC is de�ned by (22).

Proof of Proposition 3. In the case of debt �nancing only, investment returns can be written
as:

RI
t+1 =

�t+1
�
C1(Kt+1;Kt+2; Xt+1) +R1(Bt+1=Kt+1)(Bt+1=Kt+1)

2
�

��tC2(Kt;Kt+1;Xt)
(A6)

De�ne the function:

G(Kt; Kt+1; Xt)=(�t � 1)Bt+1 (A7)

it follows that

G1(Kt;Kt+1; Xt) = �(�t � 1)
�
C1(Kt;Kt+1; Xt) +R1(Bt=Kt)(Bt=Kt)

2
�

(A8)

G2(Kt;Kt+1; Xt) = �(�t � 1)C2(Kt;Kt+1;Xt) (A9)

Integration of (A9) says that

G(Kt;Kt+1;Xt) =

Z
G2(Kt;Kt+1;Xt) dKt+1 = �(�t � 1)C(Kt;Kt+1;Xt) + f1(Kt; Xt)

where f1(�) is independent of Kt+1: Using Lemma 2 we know that the integral of (A8) equals

G(Kt; Kt+1; Xt) = �(�t � 1)C(Kt; Kt+1; Xt)� (�t � 1)

Z
R1(Bt=Kt)(Bt=Kt)

2 dKt + f2(Kt+1; Xt)

where f2(�) is independent of Kt: Combining above two equations yields

G(Kt;Kt+1; Xt) = (�t � 1) [R(Bt=Kt)Bt � C(Kt;Kt+1;Xt)] = (�t � 1)Bt+1

where the second equality follows from (2) and the fact that Bt > 0 =) Dt = 0 (Proposition 1).

Equation (A6) now implies that:

RI
t+1 =

C1(Kt+1;Kt+2;Xt+1)�G1(Kt+1;Kt+2;Xt+1)

�C2(Kt;Kt+1;Xt) +G2(Kt;Kt+1;Xt)
=

eC1(Kt+1;Kt+2;Xt+1)

� eC2(Kt;Kt+1; Xt)
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B Data Construction

Macroeconomic data comes from NIPA, published by the BEA, and the Flow of Funds Accounts,

available from the Federal Reserve System. These data are cross-referenced and mutually consistent,

so they form, for practical purposes, a unique source of information. Most of our experiments use

data for the Non�nancial Corporate Sector. Speci�cally Table F102 is used to construct measures

of pro�ts before (item FA106060005) and after tax accruals (item FA106231005). To these measures

we add both consumption capital (item FA106300015) and inventory valuation (item FA106020601)

adjustments to obtain a better indicator of actual cash 
ows. Investment spending is gross

investment (item 105090005). The capital stock comes from Table B102 (Item FL102010005).

Since stock valuations include cash 
ows from operations abroad we also include in our measures of

pro�ts the value of foreign earnings abroad (item FA266006003) and that of net foreign holdings to

the capital stock (items FL103092005 minus FL103192005, from Table L230) and investment (the

change in net holdings). Financial liabilities come also from Table B102. They are constructed

by subtracting �nancial assets, including trade receivables, (Item FL104090005) from liabilities in

credit market instruments (Item FL104104005) plus trade payables (Item FL103170005). Interest

payments come from NIPA Table 1.16, line 35. All these are available at quarterly frequency and

require no further adjustments. Series for the aggregate economy come from NIPA.

Financial data comes from CRSP and Ibbotson. We use the ten size portfolios of NYSE stocks

(CRSP series DECRET1 to DECRET10). Corporate bond data comes from Ibboson's index of

Long Term Corporate Bonds. The default premium is de�ned as the di�erence between the yields

on AAA and Baa corporate bonds, from CRSP. Term premium, de�ned as the yield on 10 year

notes minus that on three-month Treasury bills, and the dividend-price ratio of the equally weighted

NYSE portfolio (constructed from CRSP EWRETD and EWRETX).19

19Dividend-price ratios are also normalized so that scaled and non-scaled returns are comparable.
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Table 1 : Summary Statistics of the Assets Returns in GMM

This table reports the means, volatilities, Sharpe ratios, and �rst-order autocorrelations of excess returns of

deciles 1{10, excess value-weighted market return (vwret), and real t-bill rate (rtb)). These are the returns

data used in our GMM estimation and tests. Means and volatilities are in annualized percent.

Decile Returns vwret rtb

1 2 3 4 5 6 7 8 9 10

mean 12.57 10.05 9.55 9.83 8.86 9.01 8.21 8.60 7.71 6.92 7.42 1.87
std 19.73 17.60 16.86 16.21 15.60 15.29 14.57 13.82 12.93 11.45 11.97 1.33

Sharpe 0.64 0.57 0.57 0.61 0.57 0.59 0.56 0.62 0.60 0.60 0.62 {
�(1) 0.27 0.29 0.30 0.31 0.30 0.28 0.32 0.28 0.28 0.36 0.33 0.68
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Table 2 : GMM Estimates and Tests | The Benchmark

This table reports GMM estimates and tests of the benchmark model with linearG function where bt=b�DFt

and DFt is the default premium. Investment return series is constructed from 
ow of funds accounts using

non�nancial pro�ts before tax. t-statistics are reported in parenthesis to the right of parameter estimates.

Also included are the implied shares of physical and �nancial adjustment costs, �1 and �2, respectively.

Finally, we also report the �2 statistic and corresponding p-value for the JT test on over-identi�cation,

and p-values of Wald test on the null hypothesis that a = 0. We conduct GMM estimates and tests for

unconditional model, unscaled and scaled conditional model, for both one-factor and two-factor speci�cations

of the pricing kernel. The unconditional model uses as moment conditions the excess returns (over RB) of 10

CRSP size decile portfolio and one investment return and RB , the real corporate bond return (12 moment

conditions). The unscaled and scaled conditional model use the deciles 1, 2, 5, 10, and investment returns,

scaled by instruments, and the real corporate bond return (16 moment conditions). Instruments are the

constant, term premium (tp), and equally weighted dividend-price ratio (dp).

One Factor Model Two Factor Model

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 2.08 (1.65) 7.67 (2.81) 6.89 (1.32) 2.05 (1.26) 8.04 (1.96) 6.13 (0.70)

b 0.00 0.00 0.00 0.00 0.00 0.00

Loadings

l0 221.32 ( 2.77) 117.50 ( 2.22) 93.82 ( 1.14) 219.59 ( 2.73) 112.85 ( 2.18) 76.91 ( 1.23)

l1 -216.74 (-2.76) -114.77 (-2.21) -91.40 (-0.05) -215.41 (-2.74) -109.70 (-2.12) -78.36 (-1.20)

l2 -0.05 (-2.82) 0.38 ( 0.07) -0.52 (-0.06) 3.75 ( 0.36)

l3 0.04 ( 0.24) -0.25 (-1.12)

l4 3.19 ( 0.60)

l5 0.20 ( 0.88)

l6 -3.30 (-0.59)

Shares

�1 0.02 0.07 0.06 0.02 0.07 0.06

�2 0.00 0.00 0.00 0.00 0.00 0.00

JT Test

�2 6.80 16.52 7.74 6.86 16.46 7.63

p 0.56 0.17 0.65 0.44 0.12 0.37

Wald Test (a=0)

�2 7.16 31.51 13.59 4.15 27.14 2.82

p 0.01 0.00 0.00 0.04 0.00 0.09

36



Table 3 : Properties of Pricing Kernels, Jensen's �, and Investment Returns

This table reports, for each combination of parameters a and b, properties of the pricing kernel, including

market price of risk (�[M ]=E[M ]), the contemporaneous correlation between pricing kernel and real market

return (�M;RS ), Jensen's � and its corresponding t-statistic (t�), summary statistics of investment return,

including mean, volatility (�RI ), �rst-order autocorrelation (�(1)), and correlation with the real value-

weighted market return (�RI ;RS ). Jensen's � is de�ned from in the following regression: Rp � Rf =

�+ �1(R
I � Rf ) + �2(R

B � Rf ) where Rp is either real value-weighted market return (Rvw) or real decile

one return (R1), Rf is real interest rate proxied by real treasury-bill rate, RI is investment return, and RB

is real corporate bond return. The physical cost parameters a's used in generating investment returns and

corresponding pricing kernels are GMM estimates from unconditional, conditional, and scaled factor model.

The assets returns used in the unconditional estimates are the 10 CRSP size decile portfolio, one investment

excess return (over Rf ), one corporate bond excess return, and the real treasury-bill return. The assets

returns used in the conditional estimates, in both unscaled and scaled model, are the deciles 1, 2, 5, 10

returns, and investment and corporate bond excess returns (over Rf ), scaled by instruments, plus the real

Treasury-Bill return (Rf ). Instruments are the constant, term premium, and equally weighted dividend-price

ratio. �2 is the share of �nancing cost in investment.

Pricing Kernel Jensen's � Investment Return

b �2
�[M ]
E[M ] �M;RS �vw tvw� �d1 td1� mean �RI �(1) �RI ;RS

Unconditional Model

0.00 0.00 0.75 -0.42 0.23 0.48 0.77 0.92 6.04 2.43 0.09 0.35

0.10 0.02 0.68 -0.23 1.03 2.01 2.27 2.55 6.06 2.29 -0.01 0.11

0.20 0.04 0.42 -0.04 1.82 3.67 3.55 4.18 6.08 2.69 0.04 -0.11

Conditional Model

0.00 0.00 1.35 -0.38 0.03 0.05 0.50 0.55 6.23 2.01 0.15 0.36

0.10 0.02 1.19 -0.13 1.22 2.20 2.67 2.79 6.25 1.94 0.06 0.05

0.20 0.04 0.69 0.05 2.12 4.14 4.09 4.68 6.28 2.48 0.11 -0.18

Scaled Factor Model

0.00 0.00 1.16 -0.37 0.12 0.24 0.62 0.71 6.14 2.20 0.12 0.36

0.10 0.02 1.07 -0.26 1.11 2.08 2.45 2.65 6.16 2.09 0.03 0.08

0.20 0.04 1.01 -0.16 1.98 3.90 3.83 4.43 6.19 2.57 0.08 -0.15
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Table 4 : GMM Estimates and Tests | Alternative Measures of Pro�ts

This table reports GMM estimates and tests of the benchmark model with linear G (as in Table 2) using

alternative sources of data. Speci�cally, we consider two alternatives for pro�t series: non�nancial pro�ts

after tax and aggregate (both �nancial and non�nancial) pro�ts. t-statistics are reported in parenthesis to

the right of parameter estimates. Also included are the implied shares of physical and �nancial adjustment

costs, �1 and �2, respectively. Finally, we also report the �
2 statistic and corresponding p-value for the JT

test on over-identi�cation, and p-values of Wald test on the null hypothesis that a=0, as well as the Wald

test on the null hypothesis that b=0 where relevant. We conduct GMM estimates and tests for unconditional

model, unscaled and scaled conditional model, for both one-factor and two-factor speci�cations of the pricing

kernel. The unconditional model uses as moment conditions the excess returns (over RB) of 10 CRSP size

decile portfolio and one investment return and RB , the real corporate bond return (12 moment conditions).

The unscaled and scaled conditional model use the deciles 1, 2, 5, 10, and investment returns, scaled by

instruments, and the real corporate bond return (16 moment conditions). Instruments are the constant,

term premium (tp), and equally weighted dividend-price ratio (dp). For brevity, only results for two factor

speci�cations of the pricing kernel are presented.

Non�nancial After Tax Aggregate Pro�ts

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 2.42 (1.50) 6.43 (1.99) 3.63 (0.43) 3.74 (0.72) 17.07 (1.66) 9.59 (0.47)

b 0.00 0.00 0.00 0.00 0.03 (0.19) 0.00

Shares

�1 0.02 0.06 0.03 0.22 0.175 0.10

�2 0.00 0.00 0.00 0.00 0.005 0.00

JT Test

�2 6.29 18.04 9.76 12.12 18.48 10.03

p 0.51 0.08 0.20 0.10 0.07 0.19

Wald Test (a=0)

�2(1) 5.57 27.57 1.92 6.77 28.22 1.72

p 0.02 0.00 0.17 0.01 0.00 0.19

Wald Test (b=0)

�2(1) 0.26

p 0.61
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Table 5 : GMM Estimates and Tests | Alternative Moment Conditions

This table reports results of GMM estimates and tests of the benchmark model with alternative sets of

moment conditions. Under alternative one, the assets returns used in the unconditional estimates are excess

returns (over RB) of 10 CRSP size decile portfolio and one investment, one corporate bond excess return

(over Rf ), and the real Treasury-Bill return. The assets returns used in the conditional estimates, in both

unscaled and scaled model, are excess returns of the deciles 1, 2, 5, 10 and investment and corporate bond

excess returns (over Rf ), scaled by instruments, plus the real Treasury-Bill return. Under alternative two,

unconditional model uses the excess returns of CRSP size deciles 1, 2, and 3 portfolios and one investment

excess return (over RB), and RB is the real corporate bond return (5 moment conditions). The conditional

estimates, in nonscaled and scaled model, use the deciles 1 and 2 and investment excess returns (over RB),

scaled by instruments, and the real corporate bond return (10 moment conditions). We conduct GMM

estimates and tests for unconditional model, unscaled and scaled conditional model. Only results for two

factor speci�cations of the pricing kernel are presented. t-statistics are reported in parenthesis to the right

of parameter estimates. Also included are the implied shares of physical and �nancial adjustment costs, �1

and �2, respectively. Finally, we also report the �2 statistic and corresponding p-value for the JT test on

over-identi�cation, and p-values of Wald test on the null hypothesis that a=0.

Rf As Level Moment Condition Small Deciles

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 10.06 (4.05) 7.11 (4.42) 8.02 (2.03) 2.49 (0.22) 6.36 (1.44) 2.89 (0.29)

b 0.00 0.015 (1.24) 0.00 0.00 0.00 0.03 (0.12)

Shares

�1 0.09 0.063 0.07 0.02 0.06 0.027

�2 0.00 0.007 0.00 0.00 0.00 0.013

Panel B: JT Test

JT 14.72 18.74 14.09 - 5.77 0.81

p 0.06 0.18 0.17 - 0.33 0.37

Wald Test (a=0)

�2(1) 23.15 55.85 52.63 1.28 23.74 1.07

p 0.00 0.00 0.00 0.26 0.00 0.30

Wald Test (b=0)

�2(1) 1.30 1.05

p 0.25 0.31
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Table 6 : GMM Estimates and Tests | Alternative Forms of G Function

This table reports GMM estimates and tests of the benchmark model with two alternative forms ofG function

where bt=b�DFt and DFt is the default premium. Alternative one speci�es that G=bt (It +Ht ��t)
2
=Kt,

where �t is pro�ts, It is investment, and Ht denotes physical adjustment cost. Alternative two speci�es

that G=bt (RBt + It +Ht ��t)
2
=Kt, where RBt denotes outstanding debt including interest. Investment

return series is constructed from 
ows of funds accounts using non�nancial pro�ts before tax. t-statistics

are reported in parenthesis to the right of parameter estimates. Also included are the implied shares of

physical and �nancial adjustment costs, �1 and �2, respectively. Finally, we also report the �
2 statistic and

corresponding p-value for the JT test on over-identi�cation, and p-values of Wald test on the null hypothesis

that a=0, as well as the Wald test on the null hypothesis that b=0 where relevant. The unconditional model

uses as moment conditions the excess returns (over RB) of 10 CRSP size decile portfolio and one investment

return and RB , the real corporate bond return (12 moment conditions). The unscaled and scaled conditional

model use the deciles 1, 2, 5, 10, and investment returns, scaled by instruments, and the real corporate bond

return (16 moment conditions). Instruments are the constant, term premium (tp), and equally weighted

dividend-price ratio (dp).

G bt (It +Ht ��t)
2 =Kt bt (RBt + It +Ht ��t)

2 =Kt

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 2.05 (1.56) 6.66 (2.13) 6.54 (1.00) 2.05 (1.26) 7.90 (1.84) 6.26 (0.62)

b 0.00 0.00 0.00 0.00 0.00 0.03 (0.17)

Shares

�1 0.02 0.06 0.06 0.02 0.08 0.06

�2 0.00 0.00 0.00 0.00 0.00 0.05

JT Test

�2 6.86 12.94 9.14 6.86 16.28 7.67

p 0.44 0.30 0.24 0.44 0.13 0.36

Wald Test (a=0)

�2(1) 4.11 29.66 2.87 4.11 29.66 2.87

p 0.04 0.00 0.09 0.04 0.00 0.09

Wald Test (b=0)

�2(1) 0.27

p 0.60
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Figure 1: Financing Hierarchy
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