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Abstract

A central economic idea is that an asset’s risk premium is determined by its ability to

insure against fluctuations in consumption (i.e., by consumption beta). Consistent with

this intuition, we show that a model with constant consumption betas does extremely

well in capturing cross-sectional differences in risk premia. More specifically, we present

a dynamic general equilibrium model where cross-sectional differences in an asset’s

consumption beta are determined by cross-sectional differences in the exposure of the

asset’s dividends to aggregate consumption – that is, by the consumption leverage of the

asset’s dividends. We measure this consumption leverage in one case as the stochastic

cointegration parameter between dividends and consumption, and in another, by the

covariance of ex-post dividend growth rates with expected consumption growth rate.

Cross-sectional differences in this consumption leverage parameter can explain up to

65% of the cross-sectional variation in risk premia across 31 portfolios—which include

the market, 10 momentum-, 10 size-, and 10 book-to-market-sorted portfolios. The

consumption leverage model can justify much of the observed value, momentum, and

size risk premium spreads. For this asset menu, empirical three factor models (size, BM,

and market factors, for example) can justify about 17% of the cross-sectional differences

in risk premia. Time varying beta asset pricing models also have considerable difficulty

justifying the cross-section of risk premia for these assets.
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1 Introduction

The idea that differences in exposure to systematic risk should justify differences in risk

premia across assets is central to asset pricing. Sharpe (1964), Lintner (1965), and Black

(1972) show that assets’ exposures to aggregate wealth should determine cross-sectional

differences in risk premia. The influential work of LeRoy (1973), Lucas (1978), and Breeden

(1979) underscores the intuition that the risk premium on an asset is determined by its

ability to insure agents’ consumption in the economy. Consequently, the exposure of an asset

to consumption fluctuations (i.e., the consumption beta) should determine cross-sectional

differences in risk premia. Empirically, however, neither of these approaches seems to do

well in explaining cross-sectional variation in observed risk premia. Hansen and Singleton

(1982, 1983), and a wide array of subsequent papers1, show that parametric versions of

consumption based models have great difficulty in capturing risk premia across assets. Given

these difficulties, Fama and French (1993) (FF) provide an empirical specification where

differences in the cross-section of risk premia are related to size, book-to market, and market

portfolio risk factors. This specification can be motivated via Ross (1976)’s Arbitrage Pricing

Theory.

In this paper, we show that the intuition provided by the consumption based models does

extremely well in explaining cross-sectional variation in risk premia. Our focus will be 10 size,

10 book-to-market, and 10 momentum sorted portfolios, as well as the market portfolio itself

(31 in all). More specifically, we present a dynamic general equilibrium model which provides

a precise mapping from the consumption leverage (exposure to aggregate consumption) of the

asset’s dividends to an asset’s constant consumption beta. Dividend cash flows which have

larger consumption leverage must, as shown in the paper, also carry a higher risk premium.

We show that the cross-sectional dispersion in this degree of consumption leverage (and

hence the consumption beta) explains up to 70% of the cross-sectional variation in observed

risk premia. Further, the estimated market price of consumption risk is sizable and positive

in all cases. Our estimated model can duplicate much of the spread in the mean returns of

the extreme momentum portfolios (winner minus loser), the size spread (small capitalization

minus large), and the value spread (high book-to-market minus low). For the same collection

of assets, the benchmark FF factor model can explain only about 17% of the cross-sectional

differences in the risk premia. This is primarily due to our inclusion of the challenging

1For an extensive recent survey see Campbell (2000). In addition, Fama and French (1993), Jagannathan
and Wang (1996), and others also demonstrate the empirical failings of the static market based CAPM.

1



momentum portfolios in the asset menu. Our motivation for the choice of these 31 portfolios

is that they form the basis of common risk factors typically relied upon to explain cross-

sectional differences in risk premia (see Fama and French (1993) and Carhart (1997), for

example).

We measure the exposure of a portfolio’s dividend stream to consumption (consumption

leverage) in the time-series via the stochastic cointegrating relationship between portfolio

dividends and aggregate consumption (for the notion of stochastic cointegration, see Camp-

bell and Perron (1993) and Ogaki and Park (1998)). The stochastic cointegration regression

entails a time series regression of the log level of the dividends on a constant, a deterministic

time trend, and the log level of consumption; the parameter estimate on the log level of ag-

gregate consumption is the stochastic cointegration parameter and the consumption leverage

parameter, which we use to explain the cross-sectional differences in risk premia. Addition-

ally, we also entertain the possibility that consumption and dividends are not stochastically

cointegrated. In this case, we measure the consumption leverage, consistent with the dynamic

general equilibrium model, by the projection coefficient of future ex-post dividend growth

rate on the current expected aggregate consumption growth rate. Given the consumption

leverage, we rely on the dynamic general equilibrium to map this into the consumption beta

of the asset. As argued in Campbell and Mei (1993)) an asset’s beta is not exogenous, but is

intimately related to underlying cash flows. Our approach of deriving the asset’s consump-

tion beta via the relationship between dividends and consumption makes the origins of the

consumption beta clear.

To compare our empirical results to alternative models, we also report results on the

three factor FF model, and market and human capital augmented versions of the CAPM.

We also report results for the time-varying beta specifications of the market and human

capital augmented CAPM (Jagannathan and Wang (1996)) and the consumption based C-

CAPM specification considered in Lettau and Ludvigson (2001b). The constant consumption

beta, based on consumption leverage developed in the paper can capture about 70% of

the cross-sectional variation in risk premia on the monthly and about 65% on the annual

frequency. In general, beta’s associated with unconditional factor models cannot explain the

cross-sectional variation in observed risk premia. However, certain specifications that permit

time-varying beta’s do somewhat better. The time-varying consumption β model considered

in Lettau and Ludvigson (2001b) captures roughly 15% of the cross-sectional return variation

for data measured at both monthly and annual frequencies. The human capital augmented

CAPM (see Jagannathan and Wang (1996) and Campbell (1996)) with time-varying beta’s
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explains about 40% of the cross sectional variation at an annual frequency. While these

specifications generally do somewhat better than their unconditional counterparts, the signs

and significance of the estimated risk prices vary across specifications and data frequency,

making economic interpretation somewhat difficult. In addition, these specifications typically

do not provide the mapping from the relationship between risk sources and cash flows to

time-varying asset betas.

In all, our empirical evidence suggests that there is a small predictable and fairly persis-

tent component in aggregate consumption growth rates. Small changes in this predictable

component have long lasting effects on asset valuation (see Barsky and DeLong (1993) and

Bansal and Lundblad (2000)) and equilibrium asset returns (see Bansal and Yaron (2000)).

Dividends on different assets have different exposures to this predictable component in con-

sumption, which represents the non-diversifiable risk in the economy; quantifiable differences

in this exposure determine the consumption leverage and asset beta, and consequently the

cross-section of risk premia. We show that the strong empirical support for the consumption

leverage model is consistent with this economic interpretation.

Section 2 provides the solution for the consumption leverage model, as well as an ana-

lytical expression for the fundamental consumption beta (risk exposure). Section 3 provides

data description and empirical evidence for the degree of stochastic cointegration between

portfolio dividends and aggregate consumption. Section 4 details the ability of the con-

sumption leverage model to explain cross-sectional variation in risk premia in comparison to

standard factor and consumption based models. Finally, Section 5 concludes.

2 Modeling Asset Returns

2.1 Preferences

In this section, we present a dynamic general equilibrium model which relates an asset’s con-

sumption beta, and the hence the asset’s risk premium, to the fundamental relation between

dividends and consumption. First, consider the preference specification that facilitates the

separation of the intertemporal elasticity of substitution and risk aversion in Epstein and

Zin (1989) and Weil (1990):

Ut =
{

(1− δ)C
1−γ
θ

t + δ
(

Et
[

U1−γ
t+1

])

1
θ

}

θ
1−γ

(1)
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where δ is a time preference parameter, ψ denotes the intertemporal elasticity of substitution,

and θ = 1−γ

1− 1
ψ

, where γ represents the coefficient of relative risk aversion.2 At date t, the

wealth of the agent is Wt, and we can write the budget constraint of the agent as follows:

(Wt − Ct) ∗Rc,t+1 = Wt+1 (2)

whereWt−Ct is the amount of capital invested in the asset market, and Rc,t is the return on

the portfolio that pays the aggregate dividend stream. Under the preferences in (1), Epstein

and Zin (1989) show that the Intertemporal Marginal Rate of Substitution (IMRS) is

Mt+1 = δθG
− θ
ψ

t+1(1 +Rc,t+1)
−(1−θ) (3)

where Gt+1 is the aggregate gross growth rate of consumption and Rc,t+1 is the return on the

asset that in each period delivers aggregate consumption. All asset returns in this economy

must satisfy the standard asset pricing condition that

Et[Mt+1Ri,t+1] = 1 (4)

The one step ahead innovation in the log of the IMRS (that is, ln(Mt+1)− Et[ln(Mt+1)]), is

given by

ηM,t+1 = − θ
ψ
ηt+1 − (1− θ)ηc,t+1 (5)

where ηt+1 is the innovation in aggregate consumption growth and ηc,t+1 is the innovation in

the return rc,t+1. Risk premia are determined by computing an asset return’s covariance with

the innovation in equation (5). It is well recognized that rc,t+1 is endogenous to the model

(see Cochrane and Hansen (1992)), and the innovation ηc,t+1, as shown below, depends only

on the consumption growth innovation, ηt+1. Hence, all risk premia are determined by the

assets’ exposures to the uncertainty in aggregate consumption.

2The representative agent’s budget constraint can also be stated as:

Ct + P ′
tht+1 = D′

tht + P ′
tht ≡Wt

where Pt is a vector of asset prices that pay a dividend stream of Dt+j for j = 1, . . . ,∞. ht is a vector of
asset holdings at the end of time period t− 1. Note that, as in Campbell (1996), we assume that the labor
income of the agent is a traded asset that is included in the asset holdings. This ensures that the aggregate
consumption will equal financial market dividends plus labor income.
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2.2 Aggregate Consumption

We refer the log of aggregate consumption as c, we will assume that teh log level of con-

sumption follows an ARIMA(1,1,1) process. 3 Beveridge and Nelson (1981) show that the

univariate process for ct can be stated as the sum of a deterministic trend, a stochastic trend

(permanant componant), and a stationary component. We refer to ηt as the consumption

news at time t, as the aggregate consumption is modeled as an univariate process, this also

represents the economic uncertainty.

The growth rate of consumption, given that the level is an ARIMA(1,1,1), gt+1 = ct+1−ct,
can then be represented as an ARMA(1,1),

gt+1 = µc(1− ρ) + ρgt + ηt+1 − ωηt (6)

where gt is stationary, and consequently, ρ and ω are less than one in absolute value. The

above growth rate process can be stated in terms of xt, a variable that determines the

conditional mean of the consumption growth rate:

xt = (ρ− ω)
gt

(1− ωL)
(7)

gt+1 = µc + (xt − µx) + ηt+1, (8)

where µx = µc
(ρ−ω)
(1−ω)

is the unconditional mean of x. Substituting equation (8) into (7), it

follows that xt evolves as an AR(1) process,

xt+1 = (1− ρ)µx + ρxt + (ρ− ω)ηt (9)

From equation (7), it is evident that xt is proportional to an exponential weighted average

of the past growth rates.4

3In the context of the market based static-CAPM, Bansal and Lundblad (2000) show that the ARMA(1,1)
specification for growth rates has considerable cross-country support. They show that the small but persistent
predictable component in growth rates in conjunction with market risk premium shocks can justify cross
country return volatility and cross-correlation.

4Using equation (7), it follows that xt = (ρ−ω) gt

(1−ωL) = (ρ−ω)
(1−ω) [

(1−ω)
(1−ωL) ]gt, the second equality shows that

x is proportional to an exponentially weighted average of the growth rate.
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2.3 Equilibrium

The equilibrium for the above economy is provided in Epstein and Zin (1989). The general

equilibrium model presented below relates to that developed in Bansal and Yaron (2000).

Using the standard Campbell and Shiller (1988) approximation for the return, we derive

the fundamental solution for the log price of consumption stream to consumption ratio,

ln(Pc,t/Ct) = zc,t. In the appendix, it is shown that the solution for zc,t given the above

consumption process is as follows:

zc,t = z̄c +
1− 1

ψ

(1− κc,1ρ)
[xt − µx] (10)

zc,t+1 − Et[zc,t+1] =
1− 1

ψ

(1− κc,1ρ)
[(ρ− ω)ηt+1] (11)

and the innovation in the return rc,t+1 is

rc,t+1 − Et[rc,t+1] = Bcηt+1 (12)

Bc = [1 + κc,1
1− 1

ψ

(1− κc,1ρ)
] (13)

Substituting equation (12) into the innovation for the IMRS, leads to the

−ηM,t+1 = −[− θ
ψ
− (1− θ)Bc]ηt+1 ≡ BMηt+1 (14)

where BM = [ θ
ψ
+(1−θ)Bc]. The risk premium on any asset, where the return and the IMRS

are log-normally distributed, satisfy Et[ri,t+1 − rf,t] = −vart(ri,t+1)/2 + covt(−ηM,t+1, ri,t+1).

The term vart(ri,t+1)/2 is the Jensen’s inequality effect, and shifting this term to the left

hand side leads to the usual arithmetic risk premium restriction:

Et[Ri,t+1 −Rf,t] = βi[BMσ
2
η] (15)

where,

βi =
covt(ri, η)

σ2
η

(16)

The risk premium on an asset that has an exposure of ηt+1 to consumption innovation risk,

equals BMσ
2
η, the market price of consumption uncertainty risk. Throughout, it is assumed
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that BM is positive, reflecting the fact that the market price of consumption uncertainty is

positive. The parameter BM is determined by the agent’s preferences and the parameters

that determine consumption growth, as shown above.

In general equilibrium, the risk premium on any asset will depend on preferences, the

dynamics of aggregate consumption, and the dynamics of the dividend process associated

with the asset under consideration. The variable x that governs the evolution of the condi-

tional mean of consumption growth will be an important state variable in determining the

volatility and risk premium on all assets. It is important to note that the β of an asset is

not an exogenous variable, but determined in equilibrium by the exposure of the underlying

dividends to aggregate consumption risk. In what follows, we derive an analytical expres-

sion for an asset’s β, providing links to the exposure of the asset’s cash flow to aggregate

consumption. In particular, we will exploit this connection in our empirical exercise. The

cross-section of risk premia are related to assets’ β’s, which in turn are determined by the

exposure of the assets’ dividends to aggregate consumption.

Before we derive the risk premium on all assets, we first characterize the dynamic rela-

tionship between consumption and dividends. This relationship is important in determining

the exposure of different assets to consumption risk, and hence their risk premia.

2.4 Consumption Leverage Model

Abel (1999) argues that the risk premium on different assets can be viewed as a result of

differences in their consumption leverage. He considers risk premia on assets where dividends

(in logs) are expressed as di,t = φict; φi is the leverage of the asset. Assets with φ larger

than one should have larger risk premia than the consumption risk premia, and assets with

negative leverage potentially reflect negative risk premia. To begin with, we measure this

leverage via stochastic cointegration.

It is well recognized that if two variables are cointegrated, then modeling their growth

rates directly leads to loss of information. We specify the dynamics for asset-specific real log

cash flows, di,t, in relation to log consumption, ct:

di,t+1 = µi + δi · (t+ 1) + φict+1 + εi,t+1 (17)

where φi describes their long-run stochastic relationship and measures the consumption

leverage of the asset. It is assumed that di,t and ct are I(1), but stationary departures

from this relationship, εi,t, are I(0). This specification implies that asset-specific cash flows

7



and aggregate consumption are stochastically cointegrated; that is, asset cash flows share a

common permanent component with aggregate consumption controlling for a deterministic

relationship embodied in δi. Note that the inclusion of the term δi · (t + 1) allows for the

deterministic trends in the dividends to be different from that in the level of consumption.

Differently stated, the stochastic cointegration parameter φi can also me measured by first

removing a determistic time trend from the level of both c and di and then utilizing the

resulting detrended series for measuring φi. The notion of stochastic cointegration says that

di,t+1 − µi − φict+1 = δi · (t + 1) + εi,t+1, may contain only a deterministic trend and a

stationary component. It is well recognized (see Ogaki and Park (1998)) that the parameter

φi captures a stochastic trend relationship, even in the presence of stationary and correlated

measurement errors in ct and di,t. Further, this parameter, as emphasized in Engle and

Granger (1987) and Stock (1987), is superconsistent; that is, converges to its population

value at a rate faster than
√
T .

While the common trend specification describes a long-run relationship, the fundamental

solution for prices will be specified in terms of growth rates:

di,t+1 − di,t = gi,t+1 = δi + φigt+1 + εi,t+1 − εi,t (18)

It can be seen that δi facilitates a portfolio specific average rate of growth, and φi is essentially

determined by the exposure of di,t to the stochastic trend component in ct. Substituting for

the assumed consumption growth rate process (8), it follows that

gi,t+1 = δi + φixt + φiηt+1 + εi,t+1 − εi,t (19)

where xt is the conditional expected aggregate consumption growth rate, and ηt is the in-

novation in aggregate consumption growth. Further, we assume that εi,t+1 = ξiεi,t + ei,t+1,

and ηi,t is independent of ηt. This assumption is equivalent to assuming that the stochastic

cointegration parameter φi captures the exposure of di,t to all consumption news. Note that

if we considered the more general specification, where ei,t+1 = τiηt+1 + ui,t+1, the model’s

risk premia implications for all practical purposes are largely unchanged and coincide with

assuming τi = 0. Using cointegration to measure the exposure of dividends to consumption

is particularly valuable when one considers the likelihood that both consumption and divi-

dends are measured with stationary measurement error. Asymptotically, the presence of such

measurement errors will not affect the estimates of the stochastic cointegration parameter
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(the consumption leverage parameter) φi.

We first solve for the log price-dividend ratio of an asset with a dividend stream as in

equation (18). We show in the appendix that an asset’s log price dividend ratio, zi,t, is linear

in the state variables:5

zi,t = z̄i + Ai,1[xt − µx] + Ai,2εi,t (20)

ri,t+1 − Et[ri,t+1] = [φi + κi,1Ai,1(ρ− ω)]ηt+1 + (1 + κi,1Ai,2)ui,t+1 (21)

where z̄i is the mean of zi,t, and

Ai,1 =
φi − 1

ψ

1− κi,1ρ
, Ai,2 =

ξi − 1

1− κi,1ξi
(22)

The exposure of the ex-post return to the consumption shock is magnified by the term Ai,1—

assets with large φi will have a larger degree of magnification, and consequently, the ex-post

return will carry a larger compensation for consumption risk. The arithmetic risk premium

on the asset will be determined by the risk premium expression (15), where the consumption

β of the asset is

βi = [φi + κi,1Ai,1(ρ− ω)] (23)

The cointegration approach pursued above provides one economic model for dividends

where it is assumed that ct and di,t are I(1) and stochastically cointegrated. An alternative

is to assume that ξi = 1, so that di,t is not cointegrated with ct even though both c and d

are I(1). In this case, the relationship between dividends and consumption can instead be

modeled using a growth projection, and the key to deriving an asset’s β is its exposure to

the predictable variation in the expected consumption growth rate xt. In this case, one can

model the dividend growth rate, gi,t, directly as

di,t+1 − di,t = gi,t+1 = δi + ϕixt + ηi,t+1 (24)

where ϕi, measures the covariance between dividend growth and expected consumption

growth.6 In this case, it follows that (see Appendix) the risk premium on any asset is

5The parameter κi,1 is an approximation constant that comes out of the Campbell-Shiller linearization
of the log return and is typically very close to 1 (see Appendix).

6We can assume that the asset specific shock, ηi,t, is related to the aggregate consumption shock as
follows, ηi,t = τiηt + ui,t.
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determined by equation (15), with

βi = (τi + Ai,1κi,1(ρ− ω)) (25)

The asset’s risk is determined by its dividend growth exposure to expected consumption

growth. Note that ϕi is an alternative way of measuring the aggregate consumption leverage

of the dividend stream when di,t and ct are not stochastically cointegrated.

The asset’s consumption beta, in conjunction with the restriction on the asset risk pre-

mium (see equation (15)), leads to sharp cross-sectional implications for risk premia. Typ-

ically these cross-sectional restrictions are tested by regressing the average return on an

constant and the beta on the asset. Given the link between the consumption leverage and

the beta of the asset—the same theoretical restrictions can be tested by a cross-sectional

regression on consumption leverage. Assuming that κi,1 is identical across all assets (in the

data, these differences are very small), it follows that the cross-sectional correlation between

βi and φi is one. This perfect correlation between φi and βi implies that the cross-sectional

regression of the average return on a constant and φi (i) provides the same predicted (i.e,

theoretical) mean return as a cross-sectional regression of the average return on βi, and

(ii) the R2 is the cross-sectional regression based on φi is equal to that from using βi di-

rectly. Consequently, substituting the consumption beta (23) into the expression for the risk

premium (15) leads to the following cross-sectional regression,

E[Ri,t] = λ0 + φiλc. (26)

If the above cross-sectional regression used βi instead of φi, then λ0 would equal the mean

risk-free rate and λc the risk-premium on the asset with unit consumption beta, that is BMσ
2
η.

When φi is used, then the estimated λ0 = E[Rf ]− 1
ψ
q, and λc = (1+q)BMσ

2
η, with q =

ρ−ω

1−κ1ρ
.

Our estimates of λ0 and λc correspond to these quantities. Using the consumption leverage

directly obviates the need to estimate additional preference and consumption growth rate

parameters that go into the constriction of βi–these, as stated above do not alter the predicted

(theoretical) mean return for various assets. A similar result also obtains for the case in which

the consumption leverage is estimated via the growth rate projection. Equation (26) will be

used extensively to evaluate the empirical plausibility of the consumption leverage model.
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3 Cash Flow Dynamics

3.1 Data

3.1.1 Aggregate Cash Flows and Factors

In our empirical tests, we consider the performance of the general equilibrium model of this

paper, as well as alternative pricing models, in capturing cross-sectional variation in average

returns. The models differ on the source(s) of priced risk. The first model, to which we

refer as the consumption leverage model, is the equilibrium model developed in this paper.

The priced risk in this model is aggregate consumption uncertainty. Following many past

studies [e.g. Hansen and Singleton (1983)], we define aggregate consumption as seasonally

adjusted real consumption of nondurables plus services. The aggregate consumption data

are taken from the NIPA tables available from the Bureau of Economic Analysis.

The second set of models that we investigate are referred to as unconditional factor

models. The particular models that we consider are the Consumption Capital Asset Pricing

Model (C-CAPM), the Capital Asset Pricing Model (CAPM), the (human capital) CAPM

with labor income (LCAPM), and a Three-Factor Model. The factor in the C-CAPM is the

growth rate of consumption, defined as the first difference in log real aggregate consumption.

The priced source of risk in the CAPM is a value-weighted index of stocks, obtained from

CRSP. As in Jagannathan and Wang (1996), the LCAPM augments the standard CAPM

with a return on labor income.7 The three-factor Fama and French (1993) model posits

that the priced risk factors are market, size, and value factors. The market risk premium

is the excess return (over the return on a Treasury Bill with one month to maturity) on the

value-weighted market return. The size factor is the difference in the return on a portfolio

of small capitalization stocks and the return on a portfolio of large capitalization stocks.

The value factor is the difference between the return on a portfolio of high book-to-market

stocks and the return on a portfolio of low book-to-market stocks.8 Market capitalization

and return data are taken from CRSP, and book values are formed from Compustat data.

7As in Lettau and Ludvigson (2001b), labor income is defined as real per capita wage and salary income
plus transfer payments, less payments for social insurance, less taxes. Taxes are calculated by taking the
ratio of wage and salary income to total income, and multiplying by personal taxes paid. The return on
labor income is then computed as the difference in log real per capita labor income. These data are also
obtained from the NIPA tables.

8For more detail on the formation of these factors, please see Fama and French (1993). Thanks to
Kenneth French for making these data available.
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The final set of models that we investigate mirror the unconditional models, but incor-

porate conditioning information. The conditioning variable, as in Lettau and Ludvigson

(2001b), in these conditional factor models is the fitted residual, kt, in the cointegrating

relationship

ct = b0 + b1at + b2yt + kt

where ct denotes log real aggregate consumption, at denotes log real aggregate wealth, and

yt denotes log real labor income. The consumption and labor series are defined as above;

the wealth series is taken from the NIPA tables item “Household Net Worth.” The resulting

residual, kt, is used as a conditioning variable in the models.9 We estimate three conditional

models: a conditional C-CAPM, a conditional CAPM, and a conditional LCAPM. These

conditional models are formed by augmenting the factors in each model with the cross-

product of the factors and the lagged kt variable.
10

3.1.2 Benchmark Portfolios

We focus on assets that are considered challenging and form the basis of empirical factors

used to explain the cross-sectional risk premia on a wider set of assets. Indeed, the size, book-

to-market, and the market return form the basis of the factor model in Fama and French

(1993). Further, Carhart (1997), for example, has argued that this set of common factors

should be augmented to include the momentum factor. Consequently, understanding the risk

premia on these assets is an important step towards understanding the risk compensation

of a wider array of assets. The data sets that we employ sort portfolios on the basis of

various characteristics that generate dispersion in expected returns. We form portfolios

on one-dimensional sorts on the basis of three characteristics. An additional advantage of

pursuing this approach is that typically there are over 150 firms in each portfolio—this in

addition to providing reasonably well diversified portfolios returns also helps in measuring

the dividends in a reasonable manner by diversifying across the firm specific components in

them.

9For further detail on the construction of this variable, please see Lettau and Ludvigson (2001a). Thanks
to Martin Lettau for making these data available. Due to data constraints, the highest frequency with which
kt can be constructed is quarterly. Consequently, in our analysis of monthly data, we take the kt realization
as fixed throughout a given quarter.

10Menzly (2001) explores the ability of Lettau and Ludvigson (2001b)’s “scaled” models to explain the
cross-sectional variation in average returns. Menzly both challenges the informational content of the k

variable, and argues that influential data points are driving the model’s apparent cross-sectional power.
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Market Capitalization Portfolios

Banz (1981) finds that firms’ market capitalization provides incremental power in ex-

plaining the cross-section of expected returns. Consequently, as in numerous past papers,

[e.g. Campbell (1996)], we form a set of 10 portfolios on the basis of market capitalization.

Firms are ranked on the basis of their market capitalization at the end of June of each year

using NYSE capitalization breakpoints. CRSP returns and market value data are used to

calculate value-weighted returns for these portfolios. As shown in Table 1, the data evi-

dences a small size premium over the sample period. The mean real return on the lowest

decile firms is 77 basis points per month, contrasted with a return of 69 basis points per

month for the highest decile. The mean and standard deviations of these portfolios are

similar in magnitude to those reported in previous work, such as Fama and French (1996).

Book-to-Market Portfolios

Our second data grouping is a set of ten portfolios sorted on the basis of the ratio

of their book-to-market values. Fama and French (1992) find that the “book-to-market”

ratio possesses incremental explanatory power for returns beyond CAPM β and market

capitalization. Book value data is constructed from Compustat data.11 The book-to-market

ratio at year t is computed as the ratio of book value at fiscal year end t−1 to CRSP market

value of equity at calendar year t−1. Firms are ranked on the basis of their book-to-market

ratios at the end of June of each year using NYSE capitalization breakpoints, and value-

weighted returns are calculated for these groups. This construction is the same as that in

Fama and French (1993).

Sample statistics for these data are also presented in Table 1. The means of the portfolio

returns are nearly monotonically increasing in book-to-market, consistent with the findings

of Fama and French (1992). The highest book-to-market firms earn average real monthly

returns of 100 basis points, whereas the lowest book-to-market firms average 65 basis points

per month. These mean and standard deviations returns are similar to that found in the

Fama-French data for our sample time period.

Momentum Portfolios

The third set of portfolios investigated are portfolios sorted on the basis of past returns.

Jegadeesh and Titman (1993) sort NYSE and AMEX listed firms into decile portfolios on the

11As in FF, we define the book value as the Shareholders’ Equity plus Balance Sheet Deferred Taxes and
Investment Tax Credits, minus the value of Preferred Stock. Firms with nonpositive book values are deleted
from the sample
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basis of their returns over the past 3 to 12 months. The authors find that a “momentum”

strategy that purchases the top decile and shorts the bottom decile of these firms earns a

substantial profit after adjusting for CAPM beta. We sort firms into deciles based on their

performance (i.e., cumulative return) over months t − 12 through t − 1 using CRSP. We

then form value-weighted portfolios of these firms at time t. This approach of constructing

the momentum portfolios is identical to Fama and French (1996).12

Summary statistics for the momentum portfolios are also presented in Table 1. As shown,

this sort provides the highest dispersion in mean returns for the firm characteristics. The

highest decile firms earn an average real return of 123 basis points per month, whereas the

lowest decile firms lose 31 basis points per month on a real basis. This spread of 154 basis

and the reported volatility of returns is comparable to Fama and French (1996). Additionally,

consistent with Jegadeesh and Titman, we include only NYSE and AMEX firms.

3.1.3 Portfolio Dividends

To explore the long-run relationships between portfolio cash flows and consumption, we also

need to extract dividend payments associated with these portfolios. In order to accurately

characterize these dividend payments, consider the implications of a value-weight denoted

by wi, so that the portfolio total return is specified as follows:

∑

i

(wiRi,t+1) =
∑

i

{
[

Pi,t
∑

i Pi,t

]

(
Pi,t+1

Pi,t
)}+

∑

i

{
[

Pi,t
∑

i Pi,t

]

(
Di,t+1

Pi,t
)}

where Pi,t and Di,t are the market value and dividends of firm i, respectively. The above

expression simplifies to

∑

i

(wiRi,t+1) =

[∑

i Pi,t+1
∑

i Pi,t

]

+

[∑

iDi,t+1
∑

i Pi,t

]

Hence, if
∑

i Pi,t is the value of the investment today (the sum of all market values of firms

in the portfolio), then the underlying aggregate dividend for the portfolio is the sum of

dividends across all firms in the portfolio. Our focus on dividends is consistent with the

economics of the model, where the consumption exposure of dividends is important for risk

12Jegadeesh and Titman find that skipping a month between the portfolio sorting and holding period
accentuates the magnitude of the strategy profits.
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premia. Campbell and Shiller (1988), along with others, also focus of dividends to address

issues regarding asset prices.

As in Campbell and Shiller (1988), we proceed to compute dividends as follows. The

total return for each firm i, Ri,t+1, is defined as:

Ri,t+1 =
Pi,t+1 +Di,t+1

Pi,t
(27)

Pi,t is the equity price and Di,t represents the dividend payment, the firm’s current dividend

payment divided by its current price. For each firm i, we observe Ri,t+1, as well as the

market value of outstanding equity, Pi,t, in CRSP. We extract dividends for a firm via the

computation

Di,t+1 = Pi,t[Ri,t+1 −
Pi,t+1

Pi,t
],

Since portfolios are value-weighted, this implies that the dividend payment for an entire

portfolio over that period is just the sum of dividend payments across all firms in the portfolio.

It is well known there are strong seasonals in this raw dividend series. As in Hodrick (1992),

Heaton (1993), and Bollerslev and Hodrick (1995), we deseasonalize the raw dividend series

by using a trailing 12-month moving average of the portfolio’s aggregate dividends; the

deseasonalized dividend series for a portfolio is Dt =
1
12

∑11
j=0

∑

iDi,t−j .

Table 2 (Panel A) presents summary statistics on dividend growth rates for the 30 port-

folios under consideration.13 Dividend growth rates are quite variable for the momentum

and value sorted portfolios. This is due to considerable turnover of firms in these portfolios.

Firms paying dividends in one period in a particular portfolio may subsequently shift to an-

other portfolio. For brevity, figure 1 displays real dividend levels for a somewhat coarser grid

within the characteristic sorts. It is clear that the extreme portfolios in the momentum and

13We have calculated the fraction of firms that pay cash dividends in the different portfolios. We find
that dividend payers generally represent in excess of 60% of the market value of the portfolios. For example,
dividend payers make up 67 and 88 percent of the market value of the winner and high book-to-market
portfolios, respectively. While the average number of firms in the portfolio paying dividends is some what
lower, their value-weighted proportion, which is a better measure, is still quite high. This is particularly
true for the momentum and book-to-market sorted portfolios. Since our portfolios are value-weighted, these
proportions indicate that the dividend series that we construct are representative of the overall portfolio.
Additionally, Campbell and Shiller (1998) show that changes in the level of share repurchases, a source for
mismeasuring the observed dividend series is not as large once increased share issuance is accounted for.
Finally, Jagannathan, Stevens, and Weisbach (2000) show that share repurchases are highly cyclical—this
implies, that their inclusion should not alter our cointegration results which is all driven by the permanant
componants in consumption and dividends.
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value sorted portfolios exhibit negative correlation. This can be clearly seen in Panel B of

Table 2, where correlations among the coarser portfolio dividend growth rates are provided.

In the momentum and value cases, the correlations between the extreme growth rates are

−0.70 and −0.13, respectively. This suggests that the characteristic sorts distinguish not

only along the magnitude of mean returns, but also along cash flow dimensions—we discuss

this further below. Finally, in Panel C of Table 2, we demonstrate summary statistics for the

aggregate dividend growth rate, as well as the sum of all dividends within each portfolio sort.

While the members across the portfolio sorts differ somewhat (for example some firms are

excluded from the value portfolios because of Compustat data availability), it is clear that

these sums generally match the characteristics of the aggregate CRSP dividend stream. For

example, the resulting time-series from summing the dividends across the size portfolios is

nearly identical to the aggregate dividend measure obtained directly from the value weighted

market portfolio.

3.2 Measuring Consumption Exposure of Dividends

As discussed earlier we use stochastic cointegration to measure the consumption exposure

of dividends. In particular, log dividends and consumption satisfy the following stochastic

cointegrating relationship:

di,t = µi + δi · (t) + φict + εi,t (28)

Following Engle and Granger (1987), we test the stochastic cointegration hypothesis by

applying the augmented Dickey Fuller test on the residuals, εi,t (see Hamilton (1994), Chapter

19). We estimate the stochastic cointegration relationship using dynamic ordinary least

squares (DOLS) as suggested by Stock and Watson (1993), that is we estimate;

di,t = µi + δi · (t) + φict +
K
∑

k=1

(α−k∆ct−k + αk∆ct+k) + εi,t (29)

where ∆ct−k denotes the first difference of log aggregate consumption, ct, at the kth lag;

∆ct−k denotes the vector of lags and ∆ct+k denotes the vector of leads. Standard OLS

obtains when α−k = αk = 0. We select K so that we account for one year’s worth of lags

at any frequency considered; however, the estimates of the relevant consumption leverage

parameter, φi, are not very sensitive to this choice. As discussed in Stock and Watson

(1993) the inclusion of additional leads and lags removes the potential small-sample biases
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associated with standard OLS estimates.

Second, we explore the growth rate based specification, where di,t+1 − di,t = gi,t+1 as,

gi,t+1 = δi + ϕixt + ηi,t+1 (30)

where ϕi measures, roughly speaking, the covariance between portfolio dividend growth

and the expected consumption growth rate, xt. Given xt, this relationship is estimated by

standard OLS.

To explore the growth rate based methodology, we first estimate an ARMA(1,1) process

for the consumption growth rate. Our results show that both the AR and MA parameter

estimates are highly significant at the monthly frequency. The autoregressive coefficient is

0.969 (S.E. 0.024) and the moving average coefficient is 0.920 (S.E. 0.034).14 The autore-

gressive coefficient is fairly large, and exceeds the moving average coefficient, suggesting

that shocks to consumption growth significantly affect agents’ expectations of future con-

sumption growth. Persistence in expected consumption growth rates is intimately related to

the growth rate of the stochastic trend in consumption. Indeed, a stochastic trend can be

identified from the estimated parameters of the ARIMA process (see Bansal and Lundblad

(2000)). In Figure 2 (Panel A), the expected consumption growth rate, xt (see equation (7)),

implied by the estimated ARIMA parameters for the monthly frequency is plotted against

the growth rate of the stochastic trend extracted from a standard two-sided Hodrick and

Prescott (1997) (HP) filter. The HP filter is a frequently used alternative to decompose

the level of a series into trend and cyclical components.15 It is evident from the figure that

the differences in the HP trend growth rate and the ARIMA-implied expected consumption

growth rate are small. Further, there appears to be a cyclical nature to the two series,

falling during observed recessions. This evidence suggests that there is a small component

in consumption growth rates related to a stochastic trend in the level of consumption. Also,

note that the predictable variation in the consumption growth rate is quite small; the R2 in

the ARMA(1,1) regression is only about 4%. However, as is evident from the size of ρ, the

predictable variation component, xt, in consumption is very persistent.

14The Andrews and Ploberger (1996) test of the hypothesis that ρ = ω is strongly rejected with a critical
value of 15.51 (p-value 0.000). Estimates of the ARIMA(1,0,1) process using quarterly consumption data
are comparable (for quarterly data), with estimates of ρ and ω equaling 0.788 (0.068) and 0.601 (0.099),
respectively. For the quarterly data, the implied R2 is about 9 percent, and the Andrews-Ploberger test is
also soundly rejected with a p-value of 0.000.

15The HP trend is very extensively used in the real business cycle literature. See, for example, Kydland
and Prescott (1982).
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Portfolio Dividends and Consumption

We begin by exploring the nature of the relationships between relevant aggregate quan-

tities. Namely, we consider the long-run relationship between aggregate consumption and

aggregate dividends paid on all CRSP stocks. Table 3 reports the estimates of the cointe-

grating relationships between aggregate log consumption and aggregate log dividends, using

the dynamic OLS procedure at the monthly frequency (the estimated coefficients are similar

at lower frequencies). Aggregate dividends and consumption appear to share a long-run

stochastic trend. To test whether the residual series from this estimation procedure is in-

deed stationary, we employ an augmented Dickey-Fuller test. While persistent, the null

hypothesis that the residual series contain a unit root is rejected at the 5% level at adjusted

critical values (Phillips and Ouliaris (1990)).16 We conclude that aggregate dividends and

consumption are stochastically cointegrated.

For the sorted 30 portfolios, Table 3 also presents estimated cointegration relationships

at the monthly frequency (estimates at lower frequencies are similar). We estimate the long-

run relationships between portfolio-specific dividends and aggregate consumption using the

DOLS procedure described above. Robust standard errors are reported in parentheses, and

as can be seen, many of the long-run relationships are estimated with precision. Generally

speaking, the estimated φi’s appear to increase as we move from low average return to high

average return portfolios. For example, the long-run relationship between the extreme loser

portfolio (M1) is estimated at -11.55 against aggregate consumption, whereas the long-run

relationship between the extreme winner portfolio is estimated at 10.52. Similar relationships

are observed among low and high book-to-market and market capitalization sorted portfolios,

although the latter is much more muted in line with the less pronounced size premium.

Since the cointegration specification facilitates a constant and a deterministic trend, the

relationship described by φi reflects the degree to which portfolio dividends and consumption

are stochastically cointegrated. We also consider similar cointegration measures using the

raw (not deseasonalized) portfolio dividend series. The results are nearly identical, with the

cross-sectional correlation between the two cointegration measures being almost 97%, hence

the deseasonalization procedure is not important for our cointegration based evidence.

To test for cointegration, we conduct augmented Dickey-Fuller tests on the estimation

residuals. Specifically, we test the hypothesis that the residuals from the cointegrating re-

16As developed in Phillips and Ouliaris (1990), adjusted critical values for standard unit root tests on
the cointegration residual are appropriately adjusted for the error associated with the pre-estimation of the
cointegration parameters.
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lationship contain a unit root. Nearly all of the hypotheses are rejected at the 5% level.

Given the overall evidence suggested by these tests, we conclude that the portfolio-specific

dividends appear to share a common stochastic trend with aggregate consumption. Alter-

native growth rate based estimates of the projection coefficient ϕi (not shown) are highly

correlated, corr(φi, ϕi) = 0.81, with φi based on the cointegration regression.

4 Equity Risk Premia in the Cross-Section

In this section, we examine the relative performance of our consumption leverage model,

standard unconditional factor models, and scaled conditional factor models in explaining

the cross-section of equity risk premia. We perform standard cross-sectional regressions,

utilizing the set of 31 portfolios detailed above (10 size, 10 momentum, 10 book-to-market,

and the value-weighted market). Coefficients and standard errors are calculated via GMM in

which all the risk exposures (the beta’s) and cross-sectional risk prices are jointly estimated

in one step (see Appendix for details).

4.1 Performance of Consumption Leverage Model

We begin our exploration by examining the ability of our consumption leverage model pre-

sented above to explain the cross-section of equity returns. Recall, the cross-sectional risk

premia restriction is stated in equation (26), with the cross-sectional parameters of interest,

given the consumption leverage, being λ0 and λc.
17

Tables 4 and 5 (Panel A) document the cross-sectional performance of the consumption

leverage model at the monthly and annual frequencies. First, in both cases, the associated

risk prices are positive and significant. Further, the adjusted R2 is 48% (66%) at the monthly

(annual) frequency, suggesting, as also exhibited in Figure 3, that the fundamental model can

explain a considerable portion of the equity risk premia associated with this set of portfolios.

In particular, the model is capable of explaining much of the variation across momentum

returns, which we will see are particularly challenging for the alternative models considered.

These results are particularly intriguing since the model’s estimates of risk sensitivity are

based solely upon the cash flows associated with a particular portfolio. That is, the high

adjusted R2’s are associated only with measures of the relationship between portfolio cash

17Note that in the case where the consumption leverage is estimated via the co-integration approach,
based on Engle and Granger (1987), we ignore the estimation error in estimating the superconsistent leverage
parameters φi’s.
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flows and aggregate consumption. Estimates of the relationship between dividend growth

and expected consumption growth, ϕi, yield similar cross-sectional patterns, and they can

explain a comparable degree of the variation in average returns across our portfolios. Indeed,

they explain, as reported in 4 (Panel A), about 70% of the cross-sectional variation in risk

premia at the monthly frequency.

To provide an economic interpretation to these findings, we again employ the Hodrick

Prescott (HP) filter to extract stochastic trends in each of the individual portfolio dividend

series for comparison with the HP trend in consumption. This approach allows each portfolio

dividend trend growth to be extracted free of information about aggregate consumption. In

Figure 2, Panels B, C, and D display growth rates for the stochastic trend (first difference

of the trend) for the six extreme decile portfolios in comparison to the consumption trend

growth rate. For consumption, we again employ the growth rate of the HP-filtered stochastic

trend also shown in panel A. Interestingly, several of the portfolio trend growth rates vary

negatively with the consumption trend growth; see the extreme loser and low book-to-market

portfolios, for example. Indeed, the negative stochastic cointegration coefficient estimate,

φi, for the loser momentum portfolio reflects this observation. Most important, as suggested

above, these portfolios are also those with generally lower average returns. Indeed, the cor-

relation between the low book-to-market and loser momentum trend growth rates with the

consumption trend growth rate are -0.23 and -0.51, respectively; in contrast, the correlation

between the high book-to-market and winner momentum trend growth rates with the con-

sumption trend growth rate are 0.53 and 0.54, respectively. These differences mirror those

both in the cointegration parameter (consumption leverage) and in the risk premia. For ex-

ample, the extreme loser and low book-to-market portfolios have negative exposures to the

consumption stochastic trend movements, and hence low risk premia. In general, we observe

that the cash flow trends appear to vary with the trend in consumption in concert with their

average returns. Small shocks to the consumption trend growth (which as discussed earlier

is close to the predictable variation in consumption growth rates) have large and differing

implications, determined by the size and sign of consumption leverage, on different asset

prices and risk premia. Assets with positive consumption leverage see their cash flows and

asset valuations rise with the aggregate consumption (the economy) and hence carry a large

positive risk premia.

One intriguing result from the regressions and indicated by the HP filter plots is the

negative risk measure for high book-to-market portfolios. As shown in Figure 2, while

the low book-to-market portfolio filtered cash flow displays a strong positive trend with
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consumption growth, the high book-to-market portfolio cash flow does not. This result is

somewhat surprising in light of the interpretation of high book-to-market firms as those

with high growth prospects. The results suggest that, although these firms may have strong

growth prospects, these opportunities bear little relation to systematic risk. That is, the

risk inherent in these growth opportunities does not covary strongly with the permanent

component in consumption. As a result, this risk is not priced, which is reflected in the

relatively low average returns.

As additional evidence, much of the value and momentum premia are duplicated by the

growth rate based model, shown for example. These results are broadly similar across both

the cointegration and growth rate based estimation methodologies, as well as data frequency.

For the observed data, the value and momentum spreads are 35 and 154 basis points per

month. Given the estimates of the consumption leverage and λc, their counterparts in the

model are 34 and 112 basis points per month. Further, the size premium is close to zero

both in the observed data and in the model. In this sense the estimated model can duplicate

the size, momentum, and value premium spreads.

4.2 Performance of Unconditional Models

We continue our exploration by examining the ability of several standard unconditional

(constant) β-representations to explain the cross-section of equity returns. Tables 4 and 5

(Panel A) document cross-sectional regressions, using our 31 portfolios, in the context of

standard unconditional models at the monthly and annual frequency: the C-CAPM, the

CAPM, Jagannathan and Wang (1996) labor income (human capital) model, and Fama and

French (1993) three factor model. The tables report estimated risk prices, λk, associated

with each risk source. Since the GMM estimation is performed in one step, standard errors

(reported in the parentheses) reflect first stage time-series estimation of risk exposures. The

tables also report cross-sectional R2’s, adjusted for degrees of freedom. To explore the ability

of standard unconditional models to explain the cross-section of equity returns, the factors

explored are gt, the consumption growth rate, Rvw,t, the excess return on the CRSP value-

weighted index, Ry,t, the return on labor income, RSMB,t, the return on the size factor from

Fama and French (1993), and RHML,t, the return on the book-to-market factor from Fama

and French (1993).

The first model we consider is the consumption based C-CAPM, for which the associated
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risk premia restriction is as follows:

E[Ri,t+1] = λ0 + βg,iλg (31)

where βg,i describes as asset’s exposure to aggregate consumption risk; for all models, the

betas are estimated using a standard time series regression of the portfolio return on the

fundamental risk factors. At both the monthly and annual frequencies, the estimated price

of consumption risk, λg, is not statistically significant. Indeed, at the monthly frequency, the

estimated risk price is negative, clearly inconsistent with theory. However, the adjusted R2

(for the annual frequency) for this regression is 18%, suggesting that this model explains some

portion of the cross-sectional variation in average returns. For the monthly estimates, Figure

4 also demonstrates the inability of the unconditional C-CAPM to explain the portfolio

returns.

We next consider the static CAPM, where risk is embodied entirely in the portfolio

return’s exposure to market risk. This model implies the following cross-sectional risk premia

restriction:

E[Ri,t+1] = λ0 + βvw,iλvw (32)

where βvw,i describes an asset’s exposure to market risk, and λvw describes the price of market

risk. In both cases, the estimates of λvw are not statistically significant. Further, the ability

of the model to explain cross-sectional risk premia is limited at the monthly frequency, as

demonstrated in the relatively low adjusted R2. The general inability of the static CAPM

to explain the cross-section of equity market returns is displayed graphically in Figure 4.

An alternative unconditional model which includes sensitivity to both aggregate mar-

ket risk and labor income (human capital), posited by Jagannathan and Wang (1996), is

considered next. The cross-sectional restriction implied by this specification is as follows:

E[Ri,t+1] = λ0 + βvw,iλvw + βy,iλy (33)

where λy reflects the risk price associated with labor income growth. At the annual frequency,

the addition of this second risk factor adds little at the monthly frequency. Further, while

the adjusted R2 is 39% at the annual frequency, it is much smaller at the monthly, suggesting

a great deal of the cross-sectional variation in risk premia is still left unexplained. This can

also be seen clearly in Figure 4, where pricing errors are quite large.

Finally, we present results for the Fama and French three-factor model. The cross-
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sectional risk premia restriction implied by the formulation is as follows:

E[Ri,t+1] = λ0 + βvw,iλvw + βSMB,iλSMB + βHML,iλHML (34)

While the cross-sectional R2 is 17% at the monthly frequency, the ability of the model to

explain the cross-section of equity returns in our menu is quite poor at the annual frequency.

In particular, while the model does quite well in explaining the risk premia associated only

with 10 size plus the 10 value-sorted portfolios (The R2 at the monthly frequency is 63% if

we foscus only on these 20 portfolios), the addition of momentum portfolios is particularly

challenging for their three factor model. Fama and French (1996) also demonstrate that the

model cannot explain momentum portfolio returns. (see also Figure 4)

4.3 Performance of Conditional (Scaled) Models

Despite the difficulty the simple constant-β models have in explaining the cross-section of

risk premia for our challenging assets menu, there is evidence that conditional (scaled) factor

models, which essentially facilitate time-varying risk exposures, are capable of describing the

cross-section of equity returns (see Ferson and Harvey (1991), Jagannathan andWang (1996),

and Lettau and Ludvigson (2001b), for example). We augment the C-CAPM, CAPM and

labor income models with a single scaling variable, kt.

We explore the effects of including scaled factors in explaining the cross-section of risk

premia. As before, the factors are gt, the growth rate of aggregate consumption, Rvw,t, the

return on the CRSP value-weighted index, and Ry,t, the return on labor income. In addition

we multiply these primitive factors by kt−1 to create additional scaled factors.18 Tables 4

and 5 (Panel B) document cross-sectional R2’s associated with these specifications.

We first consider a conditional (scaled) version of the C-CAPM, for which the risk premia

restriction associated with this model is as follows:

E[Ri,t+1] = λ0 + βg,iλg + βgk,iλgk (35)

At both the monthly and annual frequencies, the cross-sectional R2’s suggests that the con-

ditional C-CAPM can explain about 15% of the variation in cross-sectional risk premia.

18The k data are obtained from Lettau’s web page; the k observation used in determining risk measures
for the monthly frequency remains constant throughout a given calendar quarter. At the annual frequency,
we utilize the c, a, and y data available on Lettau’s webpage to estimate cointegrating parameters for the
consumption-wealth relationship, and retrieve k.
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Relative to the performance of the unconditional C-CAPM, the addition of the k condition-

ing argument appears to be important in explaining expected returns for this broader menu

of asset (at least at the monthly frequency). However, the sign and significance of the esti-

mated risk prices vary over the specifications and frequencies making economic interpretation

somewhat difficult.

Next, we consider a conditional (scaled) version of the standard CAPM, for which the

cross-sectional risk premia restriction is as follows:

E[Ri,t+1] = λ0 + βk,iλk + βvw,iλvw + βvwk,iλvwk (36)

The improvement in terms of the ability of the model to explain cross-sectional variation in

risk premia over the unconditional CAPM is apparent in terms of the adjusted R2 (again, at

least at the monthly frequency). At the monthly frequency, the “scaled” model can explain

about 11% of the cross-sectional variation in risk premia, which is an improvement over the

static CAPM. Also, the signs and significance of the risk prices vary across specifications.

Nevertheless, this suggests that a conditional version of the CAPM can only capture a small

portion of the dispersion in observed risk premia (see Figure 5).

Finally, we consider a scaled version of the two-factor labor income (human capital)

model, for which the cross-sectional risk premia restriction is as follows:

E[Ri,t+1] = λ0 + βk,iλk + βvw,iλvw + βRy ,iλy + βvwk,iλvwk + βRyk,iλyk (37)

At both the monthly and annual frequency, the model appears to explain some of cross-

sectional variation in returns, where the adjusted R2 is over 35% at the annual frequency

(see Figure 5).

In sum, scaled conditional factor models (the C-CAPM, CAPM, and labor income) gen-

erally perform better than their unconditional counterparts, particularly at the monthly

frequency, when forced to confront this collection of asset returns. However, the signs and

significance of the estimated risk prices are extremely sensitive to the precise specification

employed, thus making economic interpretation is somewhat difficult. In sharp contrast,

the cross-sectional implications of the consumption leverage model are consistent across the

frequency considered. The scaled models capture the intuition that in addition to average

beta risk, unconditionally, the covariation between the conditional beta of the asset and the

aggregate risk premium also influences the risk premium. Our consumption leverage model
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has constant consumption beta’s, and hence does not rely on the second channel to explain

risk premia. The time-varying beta models typically do not provide the equilibrium mapping

between the variables that lead to variation in the asset’s beta and it underlying cash flows.

It is worth noting that standard consumption based models, unconditional or conditional,

obtain the asset’s beta by projecting returns on the ex-post consumption growth in the time-

series. As is well recognized, and reinforced above, this approach has considerable difficulties

in explaining risk premia in the cross-section. In contrast, our consumption leverage model

does quite well in capturing risk premia. If there are considerable measurement errors or

other difficulties in measuring the appropriate level of consumption (see Campbell (1996)),

then indeed the usual consumption beta may be a poor estimate of the true consumption

beta that is needed to explain risk premia. The consumption leverage model, based on

the cointegration approach which utilizes the levels of consumption and dividends, is fairly

robust to stationary measurement errors in consumption and dividends as these should not

alter the cointegration relationship. Even the growth rate approach which extracts a smooth

exponential trend (see equation 7), due to the exponential smoothing, may mitigate the

contaminating effects of mis-measuring consumption. This indeed seems to be the case as

the correlation between the two measures of consumption leverege across assets is in excess

of 80%.

In Table 6, we report results which give a sense of the relative merits of the different factors

in explaining the cross-section of risk premia. In particular, we augment the consumption

leverage model to include additional factors and inquire if the consumption leverage continues

to be important in their presence. First, note that the risk premium on consumption in highly

significant and positive in all cases. With the inclusion of the consumption leverage, none of

the size, book-to-market, or market factors are significant. Further, the cross-product terms

between consumption growth, labor income growth, or the market returns and the lagged

consumption wealth ratio are not statistically significant as well. Finally, the overall adjusted

R2’s are not considerably larger than the growth rate based consumption leverage model

at the monthly frequency. Hence, the risk-premia implications based on our consumption

leverage model seem very robust to the inclusion of additional risk factors.
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5 Robustness Checks

5.1 Alternative asset menus

In our investigation, we have focused on portfolios sorted on the basis of past return, market

capitalization, and book-to-market ratio. However, there are many alternative selections of

portfolios that could be considered. To evaluate the robustness of our results we augment

the asset menu with an additional 10 portfolios sorted on the basis of industry. We find that

the consumption leverage model explains 44% of the cross-sectional variation in returns.

Moreover, the risk premium, λc continues to be positive and significant (estimate=0.026,

standard error=0.005). For this asset menu, the consumption CAPM explains 12% of the

cross-sectional variation in average return, the market based CAPM explains 8% of this

variation, and the three-factor model explains 0.1%. These results indicate that the con-

sumption leverage model continues to perform much better than the alternative models when

the industry portfolios are included in the asset set.

An alternative selection of 25 portfolios is the bi-variate sort along size- and book-to

market dimensions used in Fama and French (1993). Although this selection produces high

dispersion in mean returns, it ignores the important dimensions of momentum and industry.

Further, the bi-variate sort in some cases yields very few firms, as few as 20 in some of

the portfolios. This issue is problematic in terms of analyzing risk-premia of reasonably

diversified portfolios, and is even more problematic in determining the dividends (or earnings)

associated with the portfolio. The relevant cash-flow information for the portfolio in this

case loses the benefits of cross-sectional diversification, which mitigates the effects of fairly

volatile firm specific components in cash-flows. Because of this issue, in addition to the fact

that our single dimensional portfolio sorts form the basis for key empirical factors designed

to explain risk-premia on a wider range of assets, we focus on one-dimensional portfolio

sorts. Our view is consistent with Cochrane (2000), who argues that empirical work on the

cross-section of assets should focus on important cross-sectional dimensions, which may be

well characterized by single dimensional sorts.

5.2 Measures of Payoffs

We have chosen to focus on dividends as a measure of payouts, the present value of which

determines asset prices. We recognize that payoffs could also include payment by firms to

shareholders in forms other than cash dividends. Despite this issue, we think dividends mea-
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sure the exposure of payouts to the permanent component of consumption quite well. That

is, we believe that the objects that we wish to measure, the long-run component in payouts

and its exposure to the permanent component in consumption, are not contaminated by our

use of dividends. Stated differently, payouts and dividends are co-integrated with a cointega-

tion parameter of one. The issue of the differences between payouts and dividends in perhaps

most relevant from the late 1980’s due to increased volume in repurchases. However, at an

aggregate level, ?) show that the use of share repurchases is highly procyclical. Since our

focus is on the permanent component in consumption, repurchases are unlikely to affect the

co-integration results that we report. Further Ziv ** (fortcoming JOF) argue that dividends

provide information regarding corporate profits and earnings. This finding indicates that

dividends contain valuable economic information. Deriving a clean measure of payouts at

an firm level is typically not feasible; as pointed out by Campbell and Shiller, many firms in

the 90’s issue below market price stock options.

To ensure the robustness of our results, we also report the evidence based on the use of

earnings to measure payouts instead of dividends. Earnings are computed for each portfolio

from Compustat. The consumption leverage model continues to perform reasonably well

when dividends are replaced with earnings. The market price of consumption risk is still

significant and positive, and the model explains about 36% of the cross-sectional variation

in mean asset returns. The difference in results between the earnings and dividends is due

to the fact that earnings include physical investment by firms; the inclusion of investments

which have a different exposure to the permanent components in aggregate consumption

and hence distorts the exposure relative to payouts. We have also tested (not reported) the

cointegration relation between portfolio dividends and earnings. While we find that these

series are cointegrated for almost all of the portfolios that we investigate, the cointegration

parameter is not equal to one. Hence, the permanent component exposure of the two series

to consumption is different. In all, it seems that the long run permanent components of

payouts are reasonably measured by dividends, our ability to explain the cross-sectional

differences in the observed risk-premia, indicates this.

5.3 Long Horizon Results, 1926-1999

Since co-integration captures co-movements in long-run or permanent components of cash

flows and consumption, we consider a longer sample period as an additional robustness

check. We repeat the cross-sectional analysis using a set of 21 portfolios, sorted on the basis
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of past return and market capitalization, augmented by the value-weighted index.19 These

portfolios are constructed using CRSP data and are sampled at an annual frequency over

the period 1926-1999. Table 7 presents summary statistics for these data in Panel A. As

shown in the table, these data exhibit a strong momentum premium (13.68%), as well as

a large size premium (5.77%). These premia are also reflected in the consumption leverage

risk measures displayed in the table.

Table 7 indicates that the consumption leverage model performs quite well. The adjusted

R2 for the model over the sample period is 0.69, and the consumption risk premium is

large and precisely measured (Coefficient=0.534, Standard Error=0.081). In contrast, the

alternative unconditional models do not fare as well in capturing cross-sectional variation

in returns. The consumption CAPM performs the best of the three unconditional models

analyzed, with an adjusted R2 of 0.169. The market-based CAPM and three-factor model

do not perform as well; the CAPM explains a limited amount of the variation in returns

across these portfolios (R̄2 = 0.059), and the three-factor model also explains a relatively

small portion of return variability (R̄2 = 0.120).

These results confirm the results in Table 5 and suggest the strength of the consumption

leverage model in capturing cross-sectional variation in mean returns. The results suggest

that the findings are robust to the use of a longer sample, which is particularly important in

light of the co-integration technology. Further, the results indicate that the model captures

the size premium when it is present in the data; over the longer sample the size premium is

more pronounced and reflected in the consumption leverage risk measures.

6 Conclusion

The idea that differences in exposures to sources of systematic risk should justify differences

in risk premia across assets is fundamental to financial economics. We present a simple,

parsimonious general equilibrium model, in which consumption betas are directly linked

to the consumption leverage of dividends. We show that this consumption based model

with constant consumption beta’s does very well in terms of explaining the cross-sectional

differences in the risk premia on 31 portfolios comprised of 10 size, 10 momentum, and 10

book-to-market portfolios, in addition to the value-weighted market portfolio. We measure

the consumption leverage of a given dividend stream either by relying on the stochastic

19Since the Compustat data are not available prior to the 1950s, we omit the book-to-market sort.
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cointegration between dividends and consumption or, as an alternative approach, by the

projection coefficient of ex-post dividend growth on the expected consumption growth rate.

Our consumption leverage model can account for about 65% of the cross-sectional dif-

ferences in the risk premia across the 31 assets, and the risk premium associated with the

consumption risks is positive and highly significant. This performance compares very favor-

ably against standard factor and time-varying beta models which account for about 20-30%

of the cross-sectional variation in risk premia. The Fama-French three factor model can

justify about 20% of the cross-sectional differences in the risk premia. Our evidence suggests

that there is a small predictable, and very persistent, component in consumption. Small

shocks to this component have very long lasting effects for future expected growth rates, and

hence these shocks have a large impact on asset prices. Dividends of different assets have

varying exposures to this aggregate source of non-diversifiable risk requiring different risk

compensation. We show that the extreme loser and low book-to-market portfolio dividends

have negative consumption leverage and low risk premia. In sharp contrast, the winner

portfolio and the high book-to-market portfolio have large positive consumption leverage

and large positive risk premia. We show that our specification can duplicate much of the

value spread (high book-to-market less low book-to-market), the momentum spread (winner

firm less looser firms), and the close to zero size spread (small firm less large firm return)

Bansal and Yaron (2000) show that a similar economic model can also justify the observed

market risk premia, the low risk free rate, market volatility, and key aspects of predictable

variation in returns and return volatility. This evidence, along with the strong support

we find for the related consumption leverage model in justifying the cross-section of risk

premia, suggests that risks contained in cash flow growth rates are important in interpreting

the behavior of financial markets.
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7 Appendix

We have defined preferences (Epstein-Zin) and consumption/aggregate cash flow dynam-

ics (ARIMA) for the economy. An equilibrium will then be a price function that, given

preferences and consumption dynamics, will clear the market. In order to move to this

equilibrium, we begin by noting that, by definition, the return on any asset is given by

Ri,t+1 =
1 +

Pi,t+1

Di,t+1

Pi,t
Di,t

Di,t+1

Di,t

(38)

Let Gi,t+1 =
Di,t+1

Di,t
and Zi,t =

Pi,t
Di,t

. Campbell and Shiller (1988a) derive a Taylor series

approximation to (38), which is expressed in log form as

ri,t+1 = κi,0 + κi,1zi,t+1 − zi,t + gt+1 (39)

where lowercase letters represent logs of their uppercase counterparts.20 Thus, the return on

any asset at time t+ 1 is a function of its price-dividend ratio at times t and t+ 1, and the

growth rate in its cash flows.

7.1 Equilibrium

We make two assumptions in order to solve for the wealth consumption portfolio as functions

of the expected consumption growth. First, we conjecture that the log wealth consumption

ratio, zc,t, is linear in the state variable, xt:

zc,t = Ac,0 + Ac,1xt (41)

Our second assumption is that the return on the portfolio that pay consumption and the

IMRS are joint lognormally distributed. We then observe that, as shown in Bansal and

Yaron (2000), we can solve for the coefficient Ac,1 and Ai,2 using the relationship

Et [exp(mt+1 + rc,t+1)] = 1

20κi,0 and κi,1 are constants from the Taylor series approximation:

κi,1 =
exp(z̄i)

1 + exp(z̄i)
, κi,0 = − log(κi,1)− (1− κi,1)z̄i (40)
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and the fact that, for a normally distributed random variable X,

E
[

eX
]

= eE[X]+ 1
2
V ar[X]

Aggregate consumption growth follows an ARMA(1,0,1) process as follows:

ct+1 − ct = gt = (1− ρ)µc + ρgt + ηt+1 − ωηt (42)

xt+1 = (1− ρ)µx + ρxt + (ρ− ω)ηt+1 (43)

where xt is the expected consumption growth rate. Using the Epstein-Zin equilibrium pricing

restriction and the approximated definition of return:

θ ln δ − θ
ψ
((1− ρ)µc + xt + xt)

+(θ)[κc,0 + κc,1{Ac,0 + Ac,1((1− ρ)µx + ρxt)} − Ac,0 − Ac,1xt + (1− ρ)µc + xt] (44)

Isolate the terms related to the expected consumption growth, xt,

− θ
ψ

+ (θ)[κc,1Ac,1ρ− Ac,1 + 1] = 0 (45)

By solving for the coefficients, the solution for the log wealth consumption ratio is given by

Ac,1 =
1− 1

ψ

1− κc,1ρ
(46)

This implies the following for the innovations to the wealth portfolio return:

rc,t+1 − Et[rc,t+1] = ηc,t+1 = Bcηt+1 (47)

where Bc = 1 + κc,1(ρ− ω)Ac,1.

Given the solution for the log wealth consumption ratio, the pricing kernel innovation

can be rewritten solely as a function of the consumption growth rate innovation:

ηM,t+1 = − θ
ψ
ηt+1 − (1− θ)ηc,t+1 = −[− θ

ψ
− (1− θ)Bc]ηt+1 ≡ BMηt+1 (48)
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where BM = −[− θ
ψ
− (1− θ)Bc]. The geometric risk premium on any asset is given by

Et [ri,t+1 − rf,t] = covt (−ηM,t+1, ri,t+1)− var(ri,t+1)/2 (49)

Substituting the form of the solution coefficients, and converting to the arithmetic risk

premium yields

Et [Ri,t+1 −Rf,t] = βi[BMσ
2
η] (50)

where the fundamental βi =
cov(ri,η)

σ2
η

.

7.2 Consumption Leverage Model

To solve for individual equilibrium asset prices, we conjecture that zi,t is linear in the state

variables, xt and εi,t:

zi,t = Ai,0 + Ai,1xt + Ai,2εi,t (51)

As with the log wealth consumption ratio, we can solve for the coefficients Ai,1 and Ai,2.

Asset dividend and aggregate consumption are stochastically cointegrated as follows:

di,t+1 = µi + δi · (t+ 1) + φict+1 + εi,t+1 (52)

Using the solution for the log wealth consumption ratio and the approximated definition of

the return, we isolate the terms in the Epstein-Zin first order condition Et [exp(mt+1 + ri,t+1)] =

1 related to the expected consumption growth, xt,

− 1

ψ
+ φi − Ai,1[1− κi,1ρ] = 0 (53)

Second, isolate the terms related to the asset specific cyclical component, εi,t,

κi,1Ai,2ξi − Ai,2 + ξi − 1 = 0 (54)

By solving for the coefficients, the solution for the log price dividend ratio is given by

Ai,1 =
φi − 1

ψ

1− κi,1ρ
Ai,2 =

ξi − 1

1− κi,1ξi
(55)

36



From the equilibrium solution, the geometric risk premium on any asset is given by

Et [Ri,t+1 −Rf,t] = βi[BMσ
2
η] (56)

Substituting the solution for zi in to the expression for the ex-post return implies that the

return innovation is

ri,t+1 − Et[ri,t+1] = [φi + κi,1Ai,1(ρ− ω)]ηt+1 + (1 + κi,1Ai,2)ui,t+1 (57)

The asset’s beta is, βi =
covt(ri,t+1,ηt+1)

σ2
ηt+1

, given the return innovation it follows that βi =

φi + κi,1Ai,1(ρ− ω).

7.3 Alternative Dividend Growth Rate Specification

As an alternative, we directly specify the dynamics for asset-specific real log cash flow growth,

gi,t, in relation to the expected growth rate of consumption, xt:

di,t+1 − di,t = gi,t+1 = δi + ϕixt + ηi,t+1 (58)

Given this specification, we conjecture that zi,t is linear in the state variable, xt:

zi,t = Ai,0 + Ai,1xt (59)

Again, using the solution for the log wealth consumption ratio and the approximated defini-

tion of the return, we isolate the terms in the Epstein-Zin first order condition Et [exp(mt+1 + ri,t+1)] =

1 related to the expected consumption growth, xt:

− 1

ψ
+ ϕi − Ai,1[1− κi,1ρ] = 0 (60)

The solution for the coefficient is given by

Ai,1 =
ϕi − 1

ψ

1− κi,1ρ
(61)

As above, the arithmetic risk premium on any asset is given by

Et [Ri,t+1 −Rf,t] = βi[BMσ
2
η] (62)
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Since the return innovation is

ri,t+1 − Et[ri,t+1] = [τi + κi,1Ai,1(ρ− ω)]ηt+1 + ηi,t+1, (63)

it follows that the consumption beta of the asset, βi = τi + κi,1Ai,1(ρ− ω).

7.4 GMM Estimation

Let the true parameter vector be given by:

Ψ0 =
[

α1 · · · αN β′1 · · · β ′N λ0 λ′
]

(64)

where the βi and λ vectors are determined by the model specification. Let Ri,t denote the

return on the ith portfolio. There are N portfolios in total. The basic regression that we

run for each portfolio’s return is

Ri,t+1 −Rf,t = αi + β′ift+1 + ei,t+1 (65)

for a vector of K risk factors, ft+1, determined by each model. fk,t represents the realization

of factor k at time t, and βk indicates the sensitivity associated with risk factor k. ei,t is

assumed to be conditionally mean independent of the risk factors fk,t. We formulate the

following moment conditions to estimate the risk sensitivities (βi’s):

E[ei,t+1] = 0 ∀i = 1, . . . , N

E[ei,t+1ft+1] = 0 ∀i = 1, . . . , N (66)

The β ′is are identified in the time series. We also identify the risk prices in the cross-section

by exploiting the following set of moment conditions:

E[Ri,t+1 − λ0 − β′iλ] = 0 ∀i = 1, . . . , N (67)

We can stack the sample counterparts to the moment conditions (66) and (67) as follows

(Hansen (1982)):

gT (Ψ) =
1

T

T
∑

t=1

f(Xt,Ψ) (68)
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This yields [N +N ·K+(K+1)] parameters to be estimated with [N +N ·K+N ] moment

conditions, where N > K + 1. We construct an exactly identified system by setting linear

combinations of gT , an [N(K + 1) +N ]× 1 vector, equal to zero. Specifically, we write the

moment conditions as

A′TgT = 0 (69)

Our choice of AT , an [N(K + 1) +N ]× [N(K + 1) + (K + 1)] matrix, is designed to ensure

that the estimates are consistent with OLS.

AT =

[

IN(K+1) 0N(K+1)×1 0N(K+1)×1 · · · 0N(K+1)×1

0N,N 1N×1 β̂1 · · · β̂K

]

(70)

where IN(K+1) is the identity matrix, 0N(K+1)×1 and 1N(K+1)×1 denote column vectors of

zeros and ones, respectively, and β̂k is an N × 1 vector of the estimated sensitivities to risk

factor k. We then estimate the parameters, ΨT , of the exactly identified system to ensure

that A′TgT (ΨT ) = 0. Based on Hansen (1982), we know that

√
T (ΨT −Ψ0) ∼ N(0, (AD)−1(ASA′)(AD)−1′) (71)

where D is the gradient of the stacked moment conditions in equation (68), and S is the

variance-covariance matrix of the moment conditions, for which the sample counterpart is

estimated using Newey and West (1987) with 12 lags.
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Table 1: Summary Statistics

Panel A: 30 Portfolios
Portfolio Mean Std. Dev. Portfolio Mean Std. Dev.

M1 -0.0031 0.0762 S6 0.0076 0.0528
M2 0.0023 0.0596 S7 0.0073 0.0521
M3 0.0037 0.0543 S8 0.0073 0.0502
M4 0.0057 0.0488 S9 0.0069 0.0474
M5 0.0048 0.0467 S10 0.0069 0.0428
M6 0.0055 0.0462 B1 0.0065 0.0517
M7 0.0068 0.0471 B2 0.0076 0.0493
M8 0.0081 0.0478 B3 0.0067 0.0498
M9 0.0100 0.0521 B4 0.0063 0.0503
M10 0.0123 0.0624 B5 0.0066 0.0459
S1 0.0077 0.0629 B6 0.0081 0.0466
S2 0.0078 0.0602 B7 0.0079 0.0451
S3 0.0076 0.0586 B8 0.0079 0.0442
S4 0.0085 0.0573 B9 0.0081 0.0451
S5 0.0079 0.0549 B10 0.0100 0.0499

Panel B: Aggregate Growth Rates
Mean Std. Dev.

VW Index 0.0069 0.0456
Consumption 0.0026 0.0037
Labor Income 0.0013 0.0081

Table 1 presents descriptive statistics for the 30 characteristic sorted portfolios and the
aggregate variables used in estimation. The portfolios examined are portfolios formed on
momentum (M1-M10), market capitalization (S1-S10), and book-to-market ratio (B1-B10).
The momentum portfolio returns at time t + 1 are formed by sorting NYSE and AMEX
firms into deciles on the basis of their returns over the period t − 12 through t − 1 and
value-weighting the returns on these firms within each decile. Capitalization portfolios are
formed by sorting NYSE, AMEX, and NASDAQ firms by their market capitalization as of
June of each year, and holding the capitalization decile constant for one year. Returns
are value-weighted and NYSE breakpoints are used in calculating a firm’s decile. Book-to-
market portfolios are formed by sorting NYSE, AMEX, and NASDAQ firms based on their
market capitalization as of June of each year divided by their book value as of the most
recent fiscal year end available. Returns are value-weighted. The VW Market represents
the return on a value-weighted portfolio of all NYSE, AMEX, and NASDAQ listed stocks.
Consumption is the aggregate per capita consumption of nondurables and services. Labor
income is aggregate per capita income less dividend income. Data are converted to real using
the CPI. The data cover the period 7/1966 through 12/1999, for a total of 402 monthly
observations.
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Table 2: Descriptive Statistics: Cash Flow Growth Rates

Panel A: Mean and Volatility of Growth Rates
Portfolio Mean Std. Dev. Portfolio Mean Std. Dev.

M1 -0.0029 0.1191 S6 0.0025 0.0199
M2 -0.0032 0.0955 S7 0.0024 0.0198
M3 -0.0004 0.0802 S8 0.0018 0.0249
M4 0.0005 0.0649 S9 0.0020 0.0212
M5 0.0018 0.0577 S10 0.0028 0.0170
M6 0.0037 0.0528 B1 0.0040 0.0398
M7 0.0041 0.0550 B2 0.0029 0.0500
M8 0.0049 0.0721 B3 0.0024 0.0505
M9 0.0068 0.0885 B4 0.0010 0.0650
M10 0.0076 0.1161 B5 0.0017 0.0677
S1 0.0032 0.0238 B6 0.0033 0.0623
S2 0.0039 0.0207 B7 0.0036 0.0683
S3 0.0037 0.0183 B8 0.0059 0.0694
S4 0.0035 0.0228 B9 0.0073 0.0609
S5 0.0029 0.0218 B10 0.0085 0.0586

Panel B: Growth Rate Correlations
Momentum Size Book-to-Market

M1-M4 M5-M6 M7-M10 S1-S4 S5-S6 S7-S10 B1-B4 B5-B6 B7-B10
M1-M4 1.00 0.16 -0.70 S1-S4 1.00 0.28 0.18 B1-B4 1.00 -0.11 -0.13
M5-M6 1.00 -0.07 S5-S6 1.00 0.23 B5-B6 1.00 -0.33
M7-M10 1.00 S7-S10 1.00 B7-B10 1.00

Panel C: Measures of Aggregate Dividend Growth
Portfolio Mean Std. Dev. Correlation with Aggregate

Aggregate 0.0019 0.0106 —
M1-10 0.0018 0.0108 0.955
S1-10 0.0019 0.0106 0.999
B1-10 0.0028 0.0138 0.830

Table 2 presents descriptive statistics for the real cash flow growth rates of the portfolios utilized in this study. In Panel A, we present means

and standard deviations of the growth rate in smoothed portfolio dividends over the period 1/1967 through 12/1999. In Panel B, we depict

correlations within characteristic sorts for coarser portfolio partitions. M1-M4 represents the dividend growth rate associated with the first

through fourth momentum decile, M5-M6 represents the fifth through sixth decile, and M7-M10 represents the seventh through tenth decile.

Labels for the size and book-to-market sorted portfolios are interpreted similarly. M1-10 represents the sum of dividends across all momentum

portfolios (same for size and value portfolios). Finally, Aggregate refers to the growth rate in the sum of dividends across all CRSP firms.
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Table 3: Stochastic Cointegration

Portfolio Cointegration ADF Portfolio Cointegration ADF

M1 -11.546 ( 3.074) -3.523 S6 1.220 ( 0.316) -3.861
M2 -10.729 ( 2.376) -3.714 S7 2.487 ( 0.297) -3.261
M3 -5.322 ( 1.494) -4.539 S8 4.644 ( 0.416) -4.662
M4 -0.855 ( 0.927) -5.407 S9 2.790 ( 0.439) -3.102
M5 1.522 ( 0.789) -6.151 S10 -0.760 ( 0.210) -2.318
M6 3.911 ( 0.796) -5.828 B1 -5.708 ( 1.074) -3.154
M7 0.683 ( 0.983) -5.425 B2 -0.501 ( 0.509) -4.127
M8 2.219 ( 1.493) -5.073 B3 -0.322 ( 0.563) -3.701
M9 1.577 ( 2.173) -4.700 B4 -1.772 ( 0.608) -4.305
M10 10.524 ( 2.795) -4.578 B5 -1.242 ( 0.776) -4.240
S1 5.056 ( 0.891) -2.682 B6 3.716 ( 0.635) -5.267
S2 0.841 ( 0.609) -3.961 B7 14.160 ( 0.591) -3.682
S3 -0.888 ( 0.472) -4.193 B8 14.385 ( 1.407) -3.605
S4 1.706 ( 0.358) -4.008 B9 15.641 ( 1.600) -3.342
S5 2.730 ( 0.429) -4.358 B10 15.842 ( 2.871) -3.173
Mkt 0.799 (0.133) -3.488

Table 3 presents estimates of stochastic cointegration for 31 portfolios relative to aggregate consumption. In the column labeled
“Cointegration,” the cointegration measure, φi, is retrieved by performing the following regression:

di,t = µi + δi · (t) + φict +
K

∑

k=1

(α−k∆ct−k + αk∆ct+k) + εi,t

where di,t denotes the cash flow for portfolio i at time t, and ct denotes aggregate per capita consumption of nondurables and

services at time t. The column labeled “ADF” presents Dickey-Fuller statistics for the test of the null hypothesis that the

cointegration residual contains a unit root. Data are converted to real using the CPI. The data are sampled at the monthly

frequency and cover the period 7/1966-12/1999, for 402 observations. Robust standard errors are reported in parenthesis.
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Table 4: Monthly Cross-Sectional Regressions

Panel A: Unconditional Models

Model λ0 λc λg λvw λy λSMB λHML R̄2

Leverage 0.623 0.028 0.475
(0.036) (0.005)

Leverage 0.685 0.022 0.701
(Growth) (0.254) (0.007)
CCAPM 0.946 -0.124 0.037

(0.328) (0.182)
CAPM 1.382 -0.674 0.045

(1.223) (1.514)
LCAPM 1.378 -0.680 -0.206 0.021

(0.746) (0.843) (0.588)
3-Factor 3.034 -2.295 0.025 -0.054 0.173

(0.958) (0.993) (0.231) (0.257)

se=

Panel B: Conditional Models

Model λ0 λg λvw λg·k λk·vw λk·y R̄2

Cond. CCAPM 1.117 -0.0286 -0.004 0.143
(0.620) (0.292) (0.006)

Cond. CAPM 1.552 -0.842 -0.038 0.106
(0.694) (0.791) (0.076)

Cond. LCAPM 1.714 -0.949 -0.176 -0.049 -0.008 0.196
(0.775) (0.885) (0.735) (0.053) (0.007)

Table 4 presents results for cross-sectional regressions, utilizing a set of 31 portfolios (10 size, 10
momentum, 10 book-to-market, and the value-weighted index). The results are obtained from a
regression of average returns on risk measures,

r̄i = λ0 + λ′βi + εi

where λ denotes a vector of risk premia. Parameters and robust standard errors are estimated in

a single step via GMM. The factors utilized in the analysis are: 1) The log level of per capita

consumption of nondurables and services, c, 2) Log rate of change in per capita consumption, g,

3) The value-weighted CRSP index return, vw, 4) The log rate of change in labor income, y, 5)

The excess return on a portfolio of low market capitalization stocks over high market capitalization

stocks, SMB, 6) The excess return on a portfolio of high book-to-market ratio stocks over a portfolio

of low book-to-market ratio stocks, HML, and 7)-9) Cross-products of the conditioning variable,

k, the consumption-wealth ratio with the growth in consumption, the value-weighted index return,

and the growth in labor income. R̄2 represents the regression R2 adjusted for degrees of freedom.

The data cover the period 7/1966-12/1999, or 402 months, and are converted to real using the

CPI.
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Table 5: Annual Cross-Sectional Regressions

Panel A: Unconditional Models

Model λ0 λc λg λvw λy λSMB λHML R̄2

Leverage 8.206 0.275 0.661
(0.349) (0.036)

CCAPM 13.065 1.111 0.179
(3.777) (0.668)

CAPM 6.116 2.968 -0.023
(6.957) (7.992)

LCAPM 14.875 -4.976 1.998 0.390
(7.101) (8.181) (0.583)

3-Factor 17.443 -8.214 1.446 -2.752 -0.043
(5.963) (6.529) (2.749) (3.007)

Panel B: Conditional Models

Model λ0 λg λvw λy λg·k λk·vw λk·y R̄2

Cond. CCAPM 13.672 0.939 -0.013 0.160
(3.479) (0.569) (0.013)

Cond. CAPM 8.551 0.342 0.187 0.009
(6.648) (7.679) (0.081)

Cond. LCAPM 11.282 -0.810 1.668 0.105 -0.205 0.363
(5.709) (6.608) (0.473) (0.077) (0.013)

Table 5 presents results for cross-sectional regressions, utilizing a set of 31 portfolios (10 size, 10
momentum, 10 book-to-market, and the value-weighted index). The results are obtained from a
regression of average returns on risk measures,

r̄i = λ0 + λ′βi + εi

where λ denotes a vector of risk premia. Parameters and robust standard errors are estimated in

a single step via GMM. The factors utilized in the analysis are: 1) The log level of per capita

consumption of nondurables and services, c, 2) Log rate of change in per capita consumption, g,

3) The value-weighted CRSP index return, vw, 4) The log rate of change in labor income, y, 5)

The excess return on a portfolio of low market capitalization stocks over high market capitalization

stocks, SMB, 6) The excess return on a portfolio of high book-to-market ratio stocks over a portfolio

of low book-to-market ratio stocks, HML, and 7)-9) Cross-products of the conditioning variable,

k, the consumption-wealth ratio with the growth in consumption, the value-weighted index return,

and the growth in labor income. R̄2 represents the regression R2 adjusted for degrees of freedom.

The data cover the period 1967-1999, or 33 years and are converted to real using the CPI.
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Table 6: Relative Merits of Consumption Leverage and Factor Models

Model λ0 λc λg λvw λy λg·k λk·vw λk·y λSMB λHML R̄2

FF 0.804 0.024 -3.206 -0.198 -0.221 0.819
(0.299) (0.006) (1.551) (0.785) (1.077)

Cond. CCAPM 0.726 0.023 0.054 -0.002 0.780
(0.275) (0.005) (0.101) (0.002)

Cond. CAPM 0.828 0.023 -0.132 -0.014 0.775
(0.451) (0.005) (0.516) (0.011)

Cond. LCAPM 0.704 0.024 -0.003 0.294 -0.015 0.000 0.776
(0.483) (0.005) (0.533) (0.188) (0.011) (0.002)

Table 6 presents results for cross-sectional regressions, utilizing a set of 31 portfolios (10 size, 10 momentum, 10 book-
to-market, and the value-weighted index). We augment the consumption leverage model (using the growth rate based
model) to include additional factors: 1) the FF factors, vw, SMB, and HML; 2) the conditional CCAPM, with both the
log rate of change in per capita consumption, g, and its cross product with the conditioning variable, k, the consumption-
wealth ratio; 3) the conditional CAPM, with the vw market factor and its cross product with k; and 4) the conditional
LCAPM, with the vw market factor, the log rate of change in labor income, y, and their cross products with k. All data
are converted to real using the CPI.
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Table 7: Long Sample: 1926-1999

Panel A: Summary Statistics

Portfolio Mean Return φi Portfolio Mean Return φi
M1 0.0065 -12.070 S1 0.1433 12.613
M2 0.0526 -11.440 S2 0.1283 8.373
M3 0.0493 -5.354 S3 0.1157 4.184
M4 0.0710 -1.685 S4 0.1219 4.063
M5 0.0835 0.961 S5 0.1108 3.694
M6 0.0945 2.861 S6 0.1147 3.763
M7 0.1158 2.869 S7 0.1021 2.852
M8 0.1322 1.785 S8 0.0974 2.693
M9 0.1603 1.057 S9 0.0982 2.435
M10 0.1433 3.306 S10 0.0856 1.697
Market 0.0952 1.855

Panel B: Unconditional Models

Model λ0 λc λg λvw λSMB λHML R̄2

Leverage 7.195 0.534 0.689
(0.466) (0.081)

CCAPM 7.305 2.959 0.166
(4.333) (1.257)

CAPM 2.632 6.392 0.059
(3.835) (4.766)

Three-Factor 19.720 -12.954 6.295 -10.325 0.120
(4.918) (5.560) (2.057)

Table 7 presents summary statistics and cross-sectional regression results for a sample of
21 portfolios over the period 1926 through 1999. The portfolios analyzed are ten portfolios
sorted on the basis of past return (M1-M10), ten portfolios sorted on the basis of market
capitalization (S1-S10), and the value-weighted CRSP index. Summary statistics for these
data are presented in Panel A. Regression results for the specification

r̄i = λ0 + λ′βi + εi,

where λ denotes a vector of risk premia, are presented in Panel B. The factors utilized in the
analysis are: 1) The log level of per capita consumption of nondurables and services, c, 2)
Log rate of change in per capita consumption, g, 3) The value-weighted CRSP index return,
vw, 4) The excess return on a portfolio of low market capitalization stocks over high market
capitalization stocks, SMB, and 5) The excess return on a portfolio of high book-to-market
ratio stocks over a portfolio of low book-to-market ratio stocks, HML. R̄2 represents the
regression R2 adjusted for degrees of freedom. The data cover the period 1926-1999, or 75
years and are converted to real using the CPI.
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Figure 1: Dividend Series

Figure 1 presents log dividend levels for the characteristic sorts over coarser portfolio partitions. M1-M4

represents the log dividend payment associated with the first through fourth momentum decile, M5-M6

represents the fifth through sixth decile, and M7-M10 represents the seventh through tenth decile. Labels

for the size and book-to-market sorted portfolios are interpreted similarly. Data are converted to real using

the CPI.
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Figure 2: Cash Flow Growth Trends

Figure 2 presents cash flow growth rates and trends for various series. The upper left panel presents Hodrick-
Prescott filtered growth rates and the conditional mean of consumption growth, xt, from estimation of the
ARIMA (1,0,1) process for consumption growth:

gt+1 = µc(1− ρ) + ρgt + ηt+1 − ωηt

where gt denotes log real consumption growth at time t. The upper right panel presents the HP-filtered

consumption growth rate series and HP-filtered 1st and 10th momentum decile cash flow growth. The

lower right panel presents HP-filtered consumption growth and HP-filtered 1st and 10th size decile cash

flow growth. The lower left panel presents HP-filtered consumption growth and HP-filtered 1st and 10th

book-to-market decile cash flow growth.

48



Figure 3: Consumption Leverage Model

Figure 3 presents a scatterplot for the consumption leverage model estimated in the paper, where each
point on the graph represents a portfolio with the realized average return on the horizontal axis and the
fitted expected return on the vertical axis. The realized average return for each portfolio i is the historical
time-series average of the portfolio return, and the fitted expected return is the fitted value for the expected
return using the following cross-sectional regression parameter estimates:

E[Ri] = λ0 + φiλc

Thue upper panel presents fitted expected returns when the consumption leverage is measured via cointe-

gration, whereas the lower panel estimates consumption leverage based on the ARMA (1,1) consumption

growth rate specification. The straight line is the 45◦ line from the origin. Fitted and realized average

returns are expressed in real terms.
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Figure 4: Unconditional Factor Models

Figure 4 presents scatterplots for the unconditional models estimated in the paper, where each point on the
graph represents a portfolio with the realized average return on the horizontal axis and the fitted expected
return on the vertical axis. The realized average return for each portfolio i is the historical time-series
average of the portfolio return, and the fitted expected return is the fitted value for the expected return
using the following cross-sectional regression parameter estimates:

E[Ri] = λ0 +
K

∑

k=1

βi,kλk

where βi,k represents the slope coefficient from a time series regression of the return on asset i on factor k.

The factors k used in estimation of the risk measures, βi,k vary by plot. Clockwise from the upper left,

the factors are: 1) The log rate of growth in per capita consumption, 2) The value-weighted market return

(Rvw,t), 3) The value-weighted market return (Rvw,t) and the return on labor income (Ry,t), and 4) The

market risk premium (rvw,t), a size factor (rSMB,t), and a value factor (rHML,t). The straight line in each

graph is the 45◦ line from the origin. Fitted and realized average returns are expressed in real terms.
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Figure 5: Conditional Factor Models

Figure 5 presents scatterplots for the conditional (scaled) models estimated in the paper, where each point
on the graph represents a portfolio with the realized average return on the horizontal axis and the fitted
expected return on the vertical axis. The realized average return for each portfolio i is the historical time-
series average of the portfolio return, and the fitted expected return is the fitted value for the expected return
using the following cross-sectional regression parameter estimates:

E[Ri] = λ0 +
K

∑

k=1

βi,kλk

where βi,k represents the slope coefficient from a time series regression of the return on asset i on factor k.

The factors k used in estimation of the risk measures, βi,k vary by plot. Clockwise from the upper left, the

factors are: 1) The log rate of growth in per capita consumption and the product of consumption growth and

the lagged consumption-wealth ratio, 2) The value-weighted market return (Rvw,t) and the product of the

value-weighted market and the lagged consumption-wealth ratio, 3) The value-weighted market return, the

return on labor income Ry,t, the product of the value-weighted market and the lagged consumption-wealth

ratio, and the product of the return on labor income and the lagged consumption-wealth ratio. The straight

line in each graph is the 45◦ line from the origin. Fitted and realized average returns are expressed in real

terms.
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