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Abstract

Rating systems not only provide information to users but also motivate
the rated agent. This paper solves for the optimal (effort-maximizing) rating
system within the standard career concerns framework. It is a mixture two-state
rating system. That is, it is the sum of two Markov processes, with one that
reflects the belief of the rater and the other the preferences of the rated agent.
The rating, however, is not a Markov process. Our analysis shows how the
rating combines information of different types and vintages. In particular, an
increase in effort may affect some (but not all) future ratings adversely.
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1 Introduction

Helping users make informed decisions is only one of the goals of ratings. Another
is to motivate the rated firm or agent. These two goals are not necessarily aligned.
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Excessive information depresses career concerns and distorts the agent’s choices.1

The purpose of this paper is to examine this trade-off. In particular, we ask the
following: how should different sources of information be combined? At what rate,
if any, should past observations be discounted? Finally, how do standard rating
mechanisms compare?

We demonstrate that the optimal rating system always confounds the different
signals yet never adds any irrelevant noise. To maximize incentives for effort, the
rater combines the entire history of signals in a one-dimensional statistic, which
neither is a simple function of the rater’s current belief (about the agent’s type) nor
enables the market to back out this belief from the rating history. It is not simply
a function of her latest rating and signal either.2 Furthermore, the time series of
ratings fails to satisfy the Markov property.3

However, the optimal rating system has a remarkably simple structure: it is a
linear combination of two processes, namely, the rater’s underlying belief and an
incentive state that reflects both the agent’s preferences and the determinants of the
signal processes. That is, the optimal rating process admits a simple decomposition
as a two-dimensional Markov mixture model.

The agent’s preferences determine the impulse response of the incentive state via
his impatience. That is, past observations are discounted in the overall rating at
a rate equal to the agent’s discount rate. Instead, the characteristics of the signal
processes determine the weights of the signal innovations in the incentive state; that
is, these characteristics determine the role and relative importance of the signals in
the overall rating. Hence, the optimal rating balances the rater’s information, as
summarized by the rater’s belief, with some short-termism that is in proportion to
the agent’s impatience.4 Signals that boost career concerns should see their weight

1In the case of health care, Dranove, Kessler, McClellan, and Satterthwaite (2003) find that, at
least in the short run, report cards decreased patient and social welfare. In the case of education,
Chetty, Friedman, and Rockoff (2014a,b) argue that the benefits of value-added measures of
performance outweigh the counterproductive behavior that it encourages—but gaming is also widely
documented (see Jacob and Lefgren (2005) among many others).

2This contrasts with several algorithms based on the principle that the new rating is a function
of the old ratings and the most recent review(s) (Jøsang, Ismail, and Boyd (2007)). However, there
is also significant evidence that, in many cases, observed ratings (based on proprietary rules) cannot
be explained by a simple (time-homogeneous) Markov model. See, among others, Frydman and
Schuermann (2008), who precisely argue that two-dimensional Markov models provide a better
explanation for actual credit risk dynamics. Such two-state systems are already well-studied under
the name of mixture (multinomial) models. See, among others, Adomavicius and Tuzhilin (2005).

3In credit ratings, this failure has been widely empirically documented; see Section 3.2.
4The ineffectiveness of irrelevant conditioning also resonates with standard principal-agent

theory; see, for instance, Green and Stokey (1983).
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amplified, while those that stifle career concerns should be muted.
These findings are robust to the informational environment. They hold irrespective

of whether past ratings can be hidden from the market (confidential vs. public ratings)
and of whether the market has access to additional non-proprietary information
(exclusive vs. non-exclusive ratings). However, these distinctions matter for the
particulars of the rating mechanism. For instance, if past ratings are observable,
then hiding information is only effective if the mechanism has access to diverse
sources of information (i.e., multidimensional signals). If it relies on a single source of
information, then the best public rating is transparent. Non-exclusivity also matters.
In the public case, the mechanism might release more information regarding its hidden
sources when others are freely available. Instead, in the confidential case, the free
information and that revealed by the rating can be substitutes.

Surprisingly, perhaps, we show that the rating system can count past performance
against it. That is, performing well at some point can boost the rating in the short
term but depress it in the long term. This is because the impact of a rating is
proportional to its scale, the market adjusting for its variance. However, when the
agent’s ability is not too persistent (low mean-reversion), the variance of the rating
is naturally high. By counting recent and older signals in opposing directions, the
rating counteracts this. Of course, there is also a direct adverse impact on incentives,
but this effect is smaller than the indirect positive effect if the agent is impatient.

Our analysis builds on the seminal model of Holmström (1999).5 An agent exerts
effort unbeknown to the market, which pays him a competitive wage. This wage
is based on the market’s expectation of the agent’s productivity, which depends on
instantaneous effort and his ability, a mean-reverting process. This expectation is
based on the market’s information. Rather than directly observing a noisy signal
that reflects ability and effort, the market obtains its information via the rating set
by some intermediary. The intermediary potentially has many sources of information
about the agent and freely chooses how to convert these signals into the rating. In
brief, we view a rating system as an information channel that must be optimally
designed. We focus on a simple objective that in our environment is equivalent to
social surplus: to maximize the agent’s incentive to exert effort or, equivalently, to
solve for the range of effort levels that are implementable. (We also examine the

5Modeling differences with Holmström (1999) include the continuous-time setting, mean-reversion
in the type process, and a multidimensional signal structure. See Cisternas (2015) for a specification
that is similar to ours in the first two respects.
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trade-off between the level of effort and the precision of the market’s information.)6,7

We allow for a broad range of mechanisms, imposing stationarity and normality
only.8 As we show, a rating mechanism is equivalent to a time-invariant linear filter,
mapping all the bits of information available to the intermediary into a (without loss)
scalar rating. In general, such mechanisms are infinite-dimensional.

In Section 4, we study two extensions. First, we allow for ratings that are not
exclusive. That is, the market has access to independent public information. We
show how the optimal rating reflects the content of this free information. Second,
we discuss how our results extend to the case of multiple actions.9 We show that
it can be optimal for the optimal rating system to encourage effort production in
dimensions that are unproductive, if this is the only way to also encourage productive
effort. Third, we apply our techniques to compare existing methods, showing that
exponential smoothing dominates a moving window.

Related Literature. Foremost, our paper builds on Holmström (1999). (See
also Dewatripont, Jewitt, and Tirole (1999).) His model elegantly illustrates why
neither perfect monitoring nor a lack of oversight cultivates incentives. His analysis
prompts the question raised and answered in our model: what type of feedback
stimulates effort? Our interest in multifaceted information is similar to Holmstrom
and Milgrom (1991), who consider multidimensional effort and output to examine
optimal compensation. Their model has neither incomplete information nor career
concerns. Our work is also related to the following strands of literature.

Reputation. The eventual disappearance of reputation in standard discounted models

6These two objectives feature prominently in economic analyses of ratings according to practi-
tioners and theorists alike. As Gonzalez et al. (2004) state, the rationale for ratings stems from their
ability to gather and analyze information (information asymmetry) and affect the agents’ actions
(principal-agent). To quote Portes (2008), “Ratings agencies exist to deal with principal-agent prob-
lems and asymmetric information.” To be sure, resolving information asymmetries and addressing
moral hazard are not the only roles that ratings play. Credit ratings, for instance, play a role in
a borrowing firm’s default decision (Manso (2013)). Additionally, ratings provide information to
the agent himself (e.g., performance appraisal systems); see Hansen (2013). Moreover, whenever
evaluating performance requires input from the users, ratings must account for their incentives to
experiment and report (Kremer, Mansour, and Perry (2014), Che and Hörner (2015)).

7Throughout, we ignore the issues that rating agencies face in terms of possible conflict of
interest and their inability to commit, which motivates a broad literature.

8Our focus on such mechanisms nonetheless abstracts from some interesting questions, such as
the granularity of the rating (the rating’s scale) or its periodicity (e.g., yearly vs. quarterly ratings),
as well as how ratings should be adjusted to account for the rated firm’s age.

9With multidimensional product quality, information disclosure on one dimension may encourage
firms to reduce their investments in others, harming welfare (Bar-Isaac, Caruana, and Cuñat (2012)).
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(as in Holmström (1999)) motivates the study of reputation effects when players’
memory is limited. There are many ways to model such limitations. One is to simply
assume that the market can only observe the last K periods (in discrete time), as in
Liu and Skrzypacz (2014). This allows reputation to be rebuilt. Even more similar
to our work is Ekmekci (2011), who interprets the map from signals to reports as
ratings, as we do. His model features an informed agent. Ekmekci shows that, absent
reputation effects, information censoring cannot improve attainable payoffs. However,
if there is an initial probability that the seller is a commitment type that plays
a particular strategy every period, then there exists a finite rating system and an
equilibrium of the resulting game such that the expected present discounted payoff
of the seller is approximately his Stackelberg payoff after every history. As in our
paper, Pei (2015) introduces an intermediary in a model with moral hazard and
adverse selection. The motivation is very similar to ours, but the modeling and the
assumptions differ markedly. In particular, the agent knows his own type, and the
intermediary can only choose between disclosing and withholding the signal, while
having no ability to distort its content. Furthermore, in Pei (2015), the intermediary
is not a mediator in the game-theoretic sense but a strategic player with her own
payoff that she maximizes in the Markov perfect equilibrium of the game.

Design of reputation systems. The literature on information systems has explored the
design of rating and recommendation mechanisms. See, among others, Dellarocas
(2006) for a study of the impact of the frequency of reputation profile updates on
cooperation and efficiency in settings with pure moral hazard and noisy ratings. This
literature abstracts from career concerns, the main driver here.

Design of information channels. There is a vast literature in information theory on
how to design information channels, and it is impossible to do it justice. Restrictions
on the channel’s quality are derived from physical rather than strategic considerations
(e.g., limited bandwidth). See, among many others, Chu (1972), Ho and Chu (1972)
and, more related to economics, Radner (1961). Design under incentive constraints is
recently considered by Ely (2015) and Renault, Solan, and Vieille (2015). However,
these are models in which information disclosure is distorted because of the incentives
of the users of information; the underlying information process is exogenous.
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2 The Model

2.1 Exogenous Information

The relationship involves a long-lived agent (he) and a competitive market (it),
mediated by an intermediary (she). We first abstract from the intermediary’s ob-
jective by treating the information transmitted by the intermediary to the market
as exogenous. We then turn to optimizing over information structures in Section 3.
Time is continuous, indexed by t ≥ 0, and the horizon is infinite.

There is incomplete information. The agent’s ability, or type, is θt ∈ R. We
assume that θ0 has a Gaussian distribution. It is drawn from N (0, γ2/2). The law of
motion of θ is mean-reverting, with increments

dθt = −θt dt+ γ dZ0,t, (1)

where Z0 is an independent standard Brownian motion (BM), and γ > 0.10 The unit
rate of mean-reversion is a mere normalization, as is its zero mean.11 Mean-reversion
ensures that the variance of θ remains bounded, independent of the market information,
thereby accommodating a large class of information structures.12 The noise Z0 ensures
that incomplete information persists and that the stationary distribution is nontrivial.
The specification of the initial variance precisely ensures that the process is stationary.

The type affects the distribution over output and signals. Specifically, given some
real-valued process At (the action of the agent), cumulative output Xt ∈ R solves

dXt = (At + θt) dt+ σ1 dZ1,t, (2)

with X0 = 0. Here, Z1 is an independent standard Brownian motion, and σ1 > 0. We
allow for but do not require additional signals of ability.13 We model such sources of

10Throughout, when we refer to an independent standard Brownian motion, we mean a standard
Brownian motion independent of all the other random variables and random processes of the model.

11 Going from a mean-reversion rate of 1 to ρ requires the following changes of variables: t 7→ ρt,
γ 7→ γ/

√
ρ, r 7→ r/ρ, (αk, βk, σk) 7→ (αk/ρ, βk/ρ, σk/

√
ρ).

12An alternative approach that we leave unexplored is to allow for some background learning.
13In the case of a company, besides earnings, there is a large variety of indicators of performance

(profitability, income gearing, liquidity, market capitalization, etc.). In the case of sovereign credit
ratings, Moody’s and Standard & Poor’s list numerous economic, social, and political factors that
underlie their rating (Moody’s Investor Services (1991), Moody’s Investor Services (1995), Standard
& Poor’s (1994)); similarly, workers are evaluated according to a variety of performance measures,
both objective and subjective (see Baker, Gibbons, and Murphy (1994)).
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information as processes {Sk,t}, k = 2, . . . , K, which are solutions to

dSk,t = (αkAt + βkθt) dt+ σk dZk,t, (3)

with Sk,0 = 0. Here, αk ∈ R, βk ≥ 0 (wlog), σk > 0 and Zk is an independent standard
Brownian motion. For convenience, we set S1 := X (and α1 = β1 = 1), as output also
plays the role of a signal. Alongside some initial (for now, exogenous) sigma-algebra
G0, the random variables S := {Sk}Kk=1 are the only sources of information. We
refer to the corresponding filtration as G, where Gt is (the usual augmentation of)
G0∨σ ({Ss}s≤t). This is the information of the intermediary. The agent observes these
signals but also knows his own past effort choices. Note that, like the intermediary,
the agent learns about his type over time by observing G. On path, his belief coincides
with the intermediary’s assessment.

The information available to the market at time t is modeled by a sigma-algebra
Ft ⊆ Gt. We do not impose that F be a filtration, an important point for the sequel.
An (agent) strategy is a bounded process A that is progressively measurable with
respect to G. Let A denote the collection of strategies.14 Neither the market nor the
intermediary observe the process A. Instead, the market forms a conjecture about
A, denoted A∗ ∈ A, from which a “belief” PA∗ is derived. This belief defines the
law of motion of the signals and output processes as if the agent exerted effort A∗t at
time t, instead of At. Expectations relative to this measure are denoted E∗[·]. This
contrasts with the belief PA of the agent, which captures the actual law of motion.

14This is intuitive, but heuristic. Formally, as in continuous-time principal-agent models, to avoid
circularity problems where actions depend on the process that they define, (2) and (3) are to be
interpreted in the weak formulation of stochastic differential equations (SDE), where Z is a BM
that generally depends on A. Specifically, signal processes are defined for a reference effort level
(say, 0); one defines Sk as the solution to

Sk,t = βk

∫ t

0

θs ds+ σkZk,t,

and then G as the natural augmented filtration generated by the processes Sk alongside G0, with
associated probability measure P 0. Thus, the agent actions do not define the signal process itself,
which is fixed ex ante. Instead, they define the law of the process: given A ∈ A, define ZAk by

ZAk,t := Zk,t − αk

σ2
k

∫ t
0
As ds. By Girsanov theorem, there exists a probability measure PA such that

the joint law of (θ, ZA1 , . . . , Z
A
K) under PA is the same as the joint law of (θ, Z1, . . . , ZK) under P 0.

Given A ∈ A, the signal Sk satisfies

dSk,t = (αkAt + βkθt) dt+ σk dZAk,t,

with ZAk,t a BM under PA. These are the signals that the intermediary observes.
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Expectations relative to PA are denoted E[·].15

We now turn to payoffs. Given a (cumulative) real-valued transfer process to the
agent (a continuous, F -adapted process) π, the market retains∫ ∞

0

e−rt(dXt − dπt),

whereas the agent receives ∫ ∞
0

e−rt(dπt − c(At) dt).

Here, r > 0 is the common discount rate.16 The cost of effort c(·) is twice differentiable,
with c′(0) = 0, and c′′ > 0. The transfer π does not matter for efficiency (joint surplus
maximization), which demands setting At at the constant solution of c′(At) = 1.

The equilibrium definition has three ingredients. The first is how transfers are set.
We assume that the market is competitive and that there is no commitment, in the
sense that output-contingent wages are not allowed. Given the market conjecture A∗,
it pays a flow transfer dπt equal to E∗[dXt | Ft] “upfront” (note that this transfer
can be negative). Second, the agent chooses his strategy A to maximize his expected
payoff. Third, the market has rational expectations, and hence, its belief about A
coincides with the optimal strategy. Because our focus will be on equilibria with
deterministic effort, we assume throughout that A∗ is a deterministic function of time.

Definition 2.1 Fix an information structure F . An equilibrium is a profile (A,A∗, π),
A,A∗ ∈ A, such that:

1. (Zero-profit) For all t,

πt =

∫ t

0

E∗[A∗s + θs | Fs] ds.

15Formally, we use the star notation when we refer to the law on (θ, S1, . . . , SK) induced by PA
∗

(see ft. 14), i.e., the law of motion of the ability and signal processes from the perspective of the
market. We use the no-star notation when we refer to the law on (θ, S1, . . . , SK) induced by PA,
i.e., the law of motion of the agent according to his own belief. The belief of the market is given by
the law of the joint process (θ, S1, . . . , SK), but as the mean ability is all that is payoff-relevant, we
abuse language and often call belief the mean ability. The same remark holds for the agent’s belief.
We drop the star notation for variance and covariance, for which the distinction is irrelevant.

16Only the agent’s impatience is relevant for equilibrium analysis, and this is how we interpret
the parameter r. However, equal discounting is necessary for transfers to be irrelevant for efficiency.
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2. (Optimal effort)

A ∈ argmax
Â∈A

E

[∫ ∞
0

e−rt(dπt − c(Ât) dt)

]
.

3. (Correct beliefs) It holds that
A∗ = A.

This paper is concerned with the optimal design of the information structure. An
important special case is obtained for F = G such that the market observes all
there is to observe, save for the actual effort. We refer to this case as the model of
Holmström (with obvious abuse), or as transparency. However, many more structures
are considered. The following are two important properties of information structures.

Definition 2.2 An information structure Ft(⊆ Gt) is public if F is a filtration.

Hence, an information structure is public if all information available to the market in
the past remains available at later times. We say that the information structure is
confidential to insist that we do not require, but do not rule out, that it is public.17

Definition 2.3 An information structure Ft(⊆ Gt) is non-exclusive (w.r.t. signals
K ′ ⊆ {1, . . . , K}) if

σ ({Sk,t}k∈K′) ⊆ Ft.
Informally, non-exclusivity means that some signals are observed by the market over
time. When such a restriction is not imposed, the information structure is exclusive
(with further abuse, as non-exclusive information structures are instances of exclusive
ones). Non-exclusivity with respect to X is a natural case to consider because this
information can be backed out from the payoff process of the market.18

Because the payments received by the agent reflect the market belief concerning
his type, the agent has incentives to affect this belief via his effort. Hence, given the
equilibrium payment, the agent maximizes his discounted reputation, net of his cost
of effort, as formalized below in (4). Fixing the conjecture A∗, a sufficient statistic for
F is the conditional expectation E∗[θt | Ft]. This is all the information that matters
for equilibrium analysis.19 Unless stated otherwise, all proofs are in the appendix.

17Confidentiality can be defined in a stronger sense: market participants at time t could receive
different information. As long as they still pay expected output, this does not change the results.

18The relative importance of exclusive vs. non-exclusive information varies substantially across
and within industries: in the credit rating industry, solicited ratings are based on both public and
confidential information; unsolicited ratings, by contrast, rely exclusively on public information.

19Note that, unlike F , the information structure {E∗[θt | Ft]}t refers to the market conjecture.
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Lemma 2.4
1. Given a payment process that satisfies the zero-profit condition, the effort strategy

A maximizes the agent’s payoff if and only if it maximizes

E

[∫ ∞
0

e−rt(µt − c(At)) dt

]
(4)

over A, where µt := E∗[θt | Ft] is derived using A∗ as the market conjecture.
2. If (A, π) is an equilibrium given F , then it is an equilibrium given {σ (E∗[θt | Ft])}t.

2.2 Ratings

The intermediary selects an information structure F . A priori, such a structure
can be arbitrarily complex. However, given Lemma 2.4, the equilibrium effort when
the market observes Ft at time t is identical to the equilibrium effort when the market
observes the scalar E∗[θt | Ft] only. Hence, without loss, it can be assumed that the
intermediary releases a scalar rating to the market, Yt, at time t. Figure 1 summarizes
how participants interact.

We focus on stationary environments. This requires defining G0 such that the
environment is as if time began at −∞. One way to do so is to regard signals Sk
and θ as two-sided processes.20,21Rating processes are a special class of scalar ratings,
defined as follows.

Definition 2.5 A (two-sided) process Y is a rating process if, for all t ∈ R, Yt is
Gt-measurable, and, when the agent’s effort is constant over time,

(1) for all τ > 0, (Ȳt,St − St−τ ) is jointly stationary and Gaussian, where Ȳt :=
Yt − E[Yt] is the mean-normalized rating;

20A two-sided process is defined on the entire real line, as opposed to the nonnegative half-line. In
particular, we call two-sided standard Brownian motion any process Z(= {Zt}t∈R) such that both
{Zt}t≥0 and {Z−t}t≥0 are standard Brownian motions.) Let {Gt}t∈R be the natural augmented
filtration generated by {Sk}k, which induces the filtration G on the nonnegative real line.

21Formally, for all t ∈ R,

θt = e−tθ̄ +

∫ t

0

e−(t−s)γ dZ0,s,

where θ̄ ∼ N (0, γ2/2), and Z0 is two-sided. Similarly, let X = S1 and, given the two-sided BM Zk,
Sk be the two-sided process defined by (see ft. 14),

Sk,t = βk

∫ t

0

θs ds+ σkZk,t.
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(2) for all k, τ 7→ Cov[Yt, Sk,t−τ ] is absolutely continuous, with integrable and
square integrable generalized derivative.

We restrict attention to information structures induced by rating processes. A rating
process Y induces an information structure F via Ft = σ(Yt). We say that Y
is a confidential/public rating process when F is a confidential/public information
structure. Unless stated otherwise, Y is not deterministic and we assume throughout
Var [Yt] > 0 for all t.

Rating processes preclude some interesting practices. Normality rules out coarse
ratings, for instance.22 Still, it encompasses a variety of rating practices. In the
case of a one-dimensional signal, for instance, the process can involve exponential
smoothing (as allegedly used by Business Week in its business school ranking), which
involves setting

Yt =

∫
s≤t

e−δ(t−s) dXs,

for some choice of δ > 0. The rating system can be a moving window (as commonly
used in consumer credit ratings or Better Business Bureau (BBB) grades) when

Yt =

∫ t

t−T
dXs,

for some T > 0. (In both cases, the choice of G0 ensures that this is also well defined
for s ≤ 0.) A comparison between these two ratings is given in Section 4.3.

Both the stationarity and normality inherent to rating processes are severe restric-
tions. Yet, without it, one can conceive of ratings that make the problem trivial in
some environments. Suppose, for instance, that one of the signals perfectly reveals the
agent’s effort. Then, it suffices for the rating system to raise a “red flag” (ostensibly
ceasing to provide any rating in the future) as soon as it detects a deviation from the
desired effort level to ensure that any deviation is unattractive in the first place.23 We
consider such a system unrealistic: in punishing the agent, the rating also “punishes”
the market by worsening the information it provides. The history should affect the
content of the rating but not the quality of the information that it conveys or the
equilibrium effort. Focusing on (Gaussian, stationary) rating processes rules out such
constructions.24

22The restriction to adapted processes also rules out the use of extraneous noise by the intermediary.
This is merely a modeling choice, as white noise can be modeled as one of the signals.

23More sophisticated schemes can be devised that apply when there is some small noise in the
signal regarding effort while inducing efficient effort at all times.

24This is not the only way to rule them out, but it is a natural way to do so. The restriction is
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Intermediary

Market

Agent
At, θt dSt

dπt Yt

{dZk,t}k

Figure 1: Flow of information and payments between participants.

Gaussian processes make the model tractable. It allows to apply linear filtering
techniques. In addition, stationarity ensures that equilibrium effort is a scalar,
facilitating comparisons. From now on, A∗ is taken to be constant on R+ and the
equilibrium to be stationary (set by convention As = A∗s = 0 if s < 0).

Rating processes can represent beliefs for both confidential and public information
structures. The following is an immediate and intuitive characterization.

Proposition 2.6 Let Y be a rating process. Then, Y is as follows:
1. A belief for a confidential information structure if and only if, for all t,

E∗[θt | Yt] = Yt.

2. A belief for a public information structure if and only if, for all t,

E∗[θt | {Ys}s≤t] = Yt.

The following provides a simple criterion to decide whether a rating process is equal
to a market belief of a confidential or a public information structure.25

decisively weaker than assuming the rating to be a Markov function of the intermediary’s belief.
25The characterization is helpful to compute the optimal ratings, as it allows us to restrict

attention to ratings that are belief processes. The optimization is then performed under a set of
constraints that we relax by internalizing them in the objective function.

As a alternative approach, we could optimize over the general, unconstrained family of rating
processes Y , and compute the associated beliefs E[θt | Yt] or E[θt | {Ys}s≤t]. This can be done for
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Lemma 2.7 (Confidential Belief) A rating process Y is a belief for a confidential
information structure if, and only if, for all t,

E∗[Yt] = 0 and Cov[Yt, θt] = Var[Yt].

Hence, the lemma implies that any rating process with mean zero is proportional to
the mean belief that it induces.

Lemma 2.8 (Public Belief) A rating process Y is a belief for a public information
structure if and only if it is a belief for a confidential information structure and in
addition, for all t and all τ ≥ 0

Corr[Yt, Yt+τ ] = Corr[θt, θt+τ ] (= e−τ ).

Instead of focusing on beliefs, it is often convenient to work with a slighter broader
class of rating processes. Scaling a rating process by a nonzero constant does not
affect its informational content. Hence, we may select as convenient a rating process
within the equivalence class that this constant of proportionality defines.

2.3 Characterization of Equilibrium

Lemma 2.9 Fix a rating process Y . Under the information structure it induces,
F = {σ(Yt)}t≥0, there exists a unique equilibrium.

We now turn to the characterization. This is done in two stages. First, the restriction
to rating processes leads to a convenient analytic representation.

Lemma 2.10 (Representation Lemma) Fix a rating process Y . Given any mar-
ket conjecture A∗, there exist essentially unique26 integrable and square-integrable
functions uk, k = 1, . . . , K, such that

Yt = E∗[Yt] +
K∑
k=1

∫
s≤t

uk(t− s)(dSk,s − αkA∗s ds). (5)

confidential information structures (with or without exclusive information). However, for public
information structures, the computation of beliefs is not tractable. In particular, since Y is not
required to have a Markovian structure, common linear filters such as Kalman-Bucy cannot be used.
Instead, the computation of beliefs involves the determination of a continuum of variables associated
with conditional variances of ratings that solve a continuum of equations, the analytic solution to
which can only be written in some special cases.

26Unique up to measure zero sets.
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The coefficient uk(s) is the weight that the current rating Yt attaches to the innovation
(the term (dSk,s−αkA∗s ds)) pertaining to the signal of type k and vintage s. Following
information-theoretic terminology, we refer to {uk}k as the linear filter defined by
Y . When the filter is a sum of exponentials (e.g., uk(t) =

∑
` c`e

−δ`t), the coefficients
(resp., exponents) are the weights (resp., impulse responses) of the filter. Conversely,
given some filter {uk}k, (5) uniquely defines a rating process.

The decomposition of Lemma 5 can be interpreted as a regression of Yt on
the infinite continuum of signal increments dSk,s, s ∈ (−∞, t].27 It is an infinite-
dimensional version of the familiar result that a Gaussian variable that is a dependent
function of finitely many Gaussian variables is a linear combination thereof.28 It
turns the optimization problem into a deterministic one. There is an explicit formula
for uk in terms of the covariance of the rating, which shows how uk captures not only
the covariance between the rating and a weighted average of the signals of a given
vintage but also how this covariance decays over time for signal k. For all t ≥ 0,

uk(t) =
βkγ

2

σ2
kκ

(
sinhκt+ κ coshκt

1 + κ

∫ ∞
0

e−κs df̄(s)−
∫ t

0

sinhκ(t− s) df̄(s)

)
− f ′k(t)

σ2
k

,

with κ :=
√

1 + γ2
∑

k β
2
k/σ

2
k (> 1), and

fk(s) := Cov[Yt, Sk,t−s], and f̄(s) :=
K∑
k=1

βk
σ2
k

fk(s).

Second, we express equilibrium effort in terms of the filter given by Lemma 5.

Lemma 2.11 Let Y be a rating process with normalized variance, Var[Yt] = 1.29

The unique equilibrium effort level A is constant and determined by

c′(A) =
γ2

2

[
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

][
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

]
, (6)

27Determining the coefficients of such continuous-time regressions is often achieved via a linear
filtering argument. Here, the lack of Markovian structure with the infinite fictitious history, together
with the stationarity condition, makes the problem non-trivial because it prevents the use of the
Kalman-Bucy filter and involves finding a continuum of terms of the form Var[Yt | Gt−s] that solve
a continuum of equations. To obtain the closed-form solution for the coefficients uk, we write the
equations that link f to uk; then, via algebraic manipulation and successive differentiation, we
obtain a differential equation that uk must satisfy, the solution of which is found explicitly.

28Given the continuum, stronger assumptions are necessary. The restriction to stationary processes
is key to obtaining a linear representation. See Jeulin and Yor (1979) for a counter-example otherwise.

29The somewhat unwieldy statement of this constraint in terms of {uk}k is given in (15) below.
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where uk is defined by Lemma 2.10, given Y .

Hence, effort is proportional to the product of two covariances. The first pertains
to the agent: the impact of effort and his discount rate. The other pertains to the
type: the impact of ability and the mean-reversion rate. This formula assumes a
normalized variance. Alternatively, we may write (6) in a compact way as

c′(A∗) =

[
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
Cov[Yt, θt]

Var[Yt]
. (7)

The objective of Section 3 is to find the rating process that maximizes the right-hand
side of (6), under the constraints imposed by lemmas 2.7 and 2.8.

2.4 Transparency

Here, we consider the benchmark in which F = G. This case is close to the one
considered by Holmström (1999) in discrete time (specifically, his Section 2.2 solves
for the stationary equilibrium with one signal, and no mean-reversion). Define:

mα =
K∑
k=1

α2
k

σ2
k

, mαβ =
K∑
k=1

αkβk
σ2
k

, mβ =
K∑
k=1

β2
k

σ2
k

. (8)

The belief of the market µt = E∗[θt | Ft] is then equal to the intermediary’s belief
νt := E∗[θt | Gt]. The latter is a Markov process that solves

dνt = (κ− 1)
∑
k

1

mβ

βk
σ2
k

(dSk,t − αkA∗t dt)− κνt dt, (9)

where A∗ ∈ R+ is equilibrium effort. Explicitly, the belief is equal to

νt = (κ− 1)

∫
s≤t

e−κ(t−s)
∑
k

1

mβ

βk
σ2
k

(dSk,s − αkA∗s ds) . (10)

Innovations (dSk,s − αkA∗ ds) are weighted according to their type and their vintage.
A signal of type k is weighted by the signal-to-noise ratio βk/σ

2
k.

30 If it is noisy
(high σ) or insensitive to ability (low β), it matters little for inferences. Given that
ability changes, older signals matter less than recent ones: a signal of vintage t− s is
discounted (in the belief at time t) at rate κ. The market “rationally forgets.”

30Specifically, βk/σ
2
k is the inverse of the Fano factor (the signal-to-noise ratio is βk/σk).
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Theorem 2.12 The unique equilibrium effort level when F = G is the solution to

c′(A) =
1

κ+ r

mαβ

mβ

(κ− 1), (11)

if the right-hand side of (11) is nonnegative. Otherwise, A = 0.

Equation (11) is a standard optimality condition for investment in productive capital.
The market’s belief is an asset. Effort is an investment in that asset. We interpret the
three terms in (11) as persistence ((κ+ r)−1), substitutability (mαβ), and sensitivity
(κ − 1). The asset depreciates at rate κ, to be added to the discount rate when
evaluating the net present value of effort. Investment has productivity mαβ/mβ,
which measures the increase in belief given a (permanent) unit increase in effort. In
turn, sensitivity measures the increase in belief given a unit increase in the type.

Substitutability, sensitivity and persistence already appear in (9). Sensitivity
is the first coefficient, scaling the impact of a surprise in the signal on the belief;
substitutability appears in the sum, as the impact of effort on the surprise; and
persistence enters via the last term, capturing the rate of decay of the belief. Only
discounting is missing. The general formula given by (6) shows that, for an arbitrary
rating process, effort depends also on a fourth term, the ratio Cov[Y, θ]/Var[Y ],
which is equal to one under transparency. Persistence, sensitivity and substitutability
matter as well, and are all nested in the first term,

∫
t≥0

(
∑

k αkuk(t))e
−rt dt.

Effort can be too high or low, according to how (11) compares to one. If mαβ < 0,
the agent has perverse career concerns: to impress the market, lower effort is better.
As a result, equilibrium effort is 0. If mαβ = 0, effort has no impact on the market
belief, and equilibrium effort is also 0. Hereafter, we assume that mαβ > 0. A signal
for which αk = 0 is not irrelevant, as it enters both sensitivity and persistence. With
no signal beside output, effort is inefficiently low, even as discounting vanishes. This
is in contrast to Holmström and is due to mean-reversion, which eventually erases
the benefits from an instantaneous effort increase.31 The proof of the following is
immediate and omitted.

Lemma 2.13 Effort increases in γ and αk, k = 1, . . . , K. It decreases in σk if
signals are homogenous (αk, βk, σk independent of k). It admits an interior maximum
with respect to βk.

The comparative statics with respect to αk, γ need no explanation.32 The role of
βk is more interesting. If it is small, then the market dismisses signal k in terms

31See Cisternas (2012) for the same observation in a model with human capital accumulation.
32Effort need not decrease in σk if signals are heterogeneous.
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of learning. If it is high, then the small variation in the signal caused by an effort
increase is (wrongly) attributed to the type, but by an amount proportional to β−1

k ,
which is small and hence not worth the effort cost: a higher βk makes signal k more
relevant but less manipulable. The “best” signals are those involving intermediate
values of βk. Adding a signal has ambiguous consequences for effort, as should be
clear. Depending on parameters, it might reduce noise, and so bolster incentives, but
it might help tell apart effort and ability, and so undermine career concerns. Either
way, it improves the quality of the market’s information.

2.5 The Role of the Intermediary

The intermediary’s objective is to maximize equilibrium effort A. She chooses the
information structure F via a rating process Y , which, by our earlier results, we can
consider scalar and proportional to the market mean belief it induces. Recall from
Lemma 2.9 that the stationary equilibrium is unique, and hence that her choice of Y
determines A. She might face constraints: the information structure that the rating
defines might be public, non-exclusive, or both. She has commitment, in the sense
that Y is chosen once and for all, and it is common knowledge.33

Maximizing A does not always maximize efficiency. Even under transparency,
equilibrium effort can be too high (cf. (11)). However, solving for the maximum effort
is equivalent to solving for the range of implementable actions. If effort is excessive,
a simple adjustment to the rating process (adding “white noise,” for instance) scales
it to any desired lower effort, including the efficient level.

Lemma 2.14 Fix a confidential/public rating process Y such that stationary effort
is A.

For all A′ ∈ [0, A], there exists a confidential/public rating process Y ′ such that,
under the information structure defined by Y ′, equilibrium effort is A′.

However, under non-exclusivity, there can be a strictly positive lower bound on the
effort that the intermediary can induce. (The information structure that Y ′ defines
in Lemma 2.14 might violate non-exclusivity constraints satisfied by Y .) Surprisingly,
this lower bound is not typically achieved by silence (the intermediary disclosing no
information). Maximum and minimum effort are dual problems. In the presence of

33This intermediary can be regarded as a “reputational intermediary,” an independent professional
whose purpose is to transmit a credible quality signal about the agent. Commitment, then, results
from the professional’s incentive to preserve his reputation. Reputational intermediaries not only
include so-called rating agencies but also, in some of their roles, underwriters, accountants, lawyers,
attorneys and investment bankers (see Coffee (1997)).
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non-exclusivity, an optimized information structure can depress effort below what
silence achieves, just as it can motivate effort beyond what transparency achieves.
See Section 4.1 for further discussion.

Hence, our goal is primarily normative: to identify the range of implementable
actions. Yet, there are plausible scenarios in which a profit-maximizing rating agency
would find it optimal to induce the maximum effort level. For instance, if the agency
charges the market a commission (a set percentage of the value of output), then
maximizing effort is equivalent to maximizing revenue.

Depending on the context, it might be desirable to evaluate the performance of a
rating process along other dimensions, for instance, the quality of the information it
conveys (as measured by the variance of the type conditional on the belief), or its
stability over time (as measured by the variance of the belief).34 These properties
satisfy a simple relationship.

Lemma 2.15 Fix a rating process Y . It holds that

Var[θt | µt] + Var[µt] =
γ2

2
(= Var[θt]).

Precision and stability are perfect substitutes. If stability comes first, lower precision
is desirable. This also means that we can restrict attention to one of these measures
when evaluating the trade-off with maximum effort. A systematic analysis of this
trade-off would take us too far afield, but it can be done, as illustrated in Section 3.5.

3 Main Results

3.1 Persistence vs. Sensitivity: Two Examples

To build intuition, let us begin with a simple example: exponential smoothing as
a confidential rating. Suppose that the intermediary wishes to use the rating

Yt =
∑
k

βk
σ2
k

∫
s≤t

e−δκ(t−s) dSk,s,

where she freely selects δ > 0. The choice δ = 1 reveals her own belief, and
transparency results, as in Section 2.4. Any other choice of δ implies that the market

34These properties of ratings are often cited as being desirable (Cantor and Mann (2007)).
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is less well-informed than she is. Using the formula from Lemma 2.11, we obtain

c′(A) =
1

δκ+ r

mαβ

mβ

δ(κ+ 1)(κ− 1)

κ+ δ
.

In terms of the effects introduced before, the first factor ( 1
δκ+r

) is persistence. Future
returns on effort are discounted both because of impatience and because future
ratings discount past signals at rate δκ. Rating persistence increases the impact of
current effort on future ratings. However, increasing persistence decreases sensitivity.
This is clear from the last term, which increases in δ and goes to zero if δ does. If
δ is small, then the rating is very persistent, which means that it treats old and
recent innovations symmetrically. Because ability changes over time, this blunts
the impact of a one-time innovation in the belief. If, instead, δ is large, the rating
disproportionately reacts to recent innovations, heightening their relative importance.

What goes up must come down: in a stationary system, a blip in a signal cannot
simultaneously jolt the belief and have its impact linger. The intermediary must trade
off persistence with sensitivity. But she can do better than transparency. Taking
derivatives (with respect to δ) yields as optimal solution

δ =
√
r.

She chooses a rating process that is more or less persistent than Bayesian updating
according to r ≶ 1, that is, depending on how the discount rate compares to the
rate of mean-reversion. The best choice reflects agent preferences, which Bayes’ rule
ignores. If the agent is patient, it pays to amplify persistence, and δ is low.

Let us turn to a richer example. Departing from our convention regarding output,
assume that output is solely a function of ability, not of effort (β := β1 > 0, α1 = 0),
while the unique other signal purely concerns effort (α := α2 > 0, β2 = 0), and set
σ := σ1 = σ2.35 Consider the best rating system within the two-parameter family

u1(t) =
β

σ2
e−κt, u2(t) = d

β

σ2

√
δe−δt,

with d ∈ R, δ > 0. This family is special yet intuitive: because the agent cannot affect
output, the intermediary does not distort the corresponding innovations. However,
she adds to the resulting integral an integral over the innovations of the second signal.
The parameter d scales the weight on this term and δ is its impulse response. The

35In this example, efficiency requires A = 0: an efficient rating process should discourage effort, a
trivial endeavor. We seek the effort-maximizing scheme.

19



normalization constant
√
δ ensures that the choice of δ does not affect the variance

of the market belief.36 Using Lemma 2.11 here as well,

c′(A) =
1

δ + r

√
δmαβd

2

(1 + d2)(1 + κ)
. (12)

The first term is familiar by now: it is the impact on persistence of the choice of δ.
An effort increase at time t is reflected in the rating at time t+ τ > t but discounted
twice: at a rate e−rτ by the agent and e−δτ by the market. Integrating over τ ≥ 0
yields a boost to incentives proportional to 1/(r + δ), which is further amplified by
the factor

√
δ that scales substitutability. The constant d increases substitutability.

But increasing it also increases the belief variance, depressing sensitivity and, hence,
effort. This is reflected by the denominator 1 + d2. If d is too small, sensitivity
disappears, as δ is useless if the second signal does not enter the rating; if too large,
sensitivity vanishes because ratings no longer inform ability. An intermediate value
is best. The maximization problem is separable, as is clear from (12); d/(1 + d2) is
maximized at d = 1 and

√
δ/(r + δ) at δ = r. Independent of δ, the optimal weight

on the second term is 1; independent of d, the choice of impulse response is r.
Hence, the intermediary does not only wish to influence persistence, by distorting

via δ the weights assigned to signals of different vintages. Via d, she also manipulates
the weights assigned to signals of different types to influence substitutability.

3.2 Optimal Ratings

This section solves for the optimal exclusive rating processes. We assume through-
out that κ, κ2, r, and 1 are all distinct. Define

λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆, ∆ = (r+κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ.

Theorem 3.1 The optimal confidential rating process is unique and given by37,38

uck(t) =
βk
σ2
k

(
dck

√
r

λ
e−rt + e−κt

)
,

36Plainly, once u2 is squared and integrated over all τ ≥ 0, δ vanishes.
37Recall that we take ratings as proportional to the market mean belief. Throughout, uniqueness

is to be understood as up to such a transformation.
38For convenience, the formula here also assumes that λ 6= 0. The proof gives the general formula.
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with coefficients

dck := (κ2 − r2)mβ
αk
βk
− (κ2 − 1)mαβ.

Theorem 3.2 The optimal public rating process is unique and given by

upk(t) =
βk
σ2
k

(
dpk

√
r

λ
e−
√
rt + e−κt

)
,

with coefficients

dpk :=
κ−√r
κ− r dck + λ

√
r − 1

κ− r . (13)

Theorems 3.1 and 3.2 provide solutions that are remarkably similar. Because the
linear filter is the sum of two exponentials, the rating can be written as a sum of two
Markov processes. That is, in both cases, for some φ ∈ R,

Yt = φIt + (1− φ)νt,

where

dIt =
βk
σ2
k

√
r

λ

∑
k

dk(dSk,t − αkA∗t dt)− δIt dt,

with (d, δ) = (dc, r) in the confidential case and (d, δ) = (dp,
√
r) in the public one.

The intermediary combines her own belief νt with another Markov process, which
we denote I (for “incentive”). Its impulse response reflects the agent’s patience, as
in the second example in Section 3.1. If he is patient, the rating is persistent. If
not, performance is reflected in the rating more rapidly than under Bayes’ rule. This
common representation has several consequences:

- The optimal rating is not a Markov process. This echoes a large empirical literature
documenting that (bond and credit) ratings do not appear to satisfy the Markov
property (Altman and Kao (1992), Altman (1998), Nickell, Perraudin, and Varotto
(2000), Bangia et al. (2002), Lando and Skødeberg (2002), etc.).
- The optimal rating is not a function of the intermediary’s belief alone.39 At first
glance, this might be surprising, as the intermediary’s belief is the only payoff-relevant
variable (in the confidential case). However, there is no reason to expect the optimal
way of distributing the impact of an innovation over future ratings to be measurable
with respect to the intermediary’s future beliefs.

39This property is distinct from the first. The rating can be Markov without being a function of
the belief (this occurs in the first example in Section 3.1). The rating can be a function of ν without
being Markov, as functions of Markov processes typically fail to inherit the Markov property.
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- The optimal rating is a two-state mixture Markov rating—acombination of Markov
chains moving at different speeds (Frydman (2005)). Using an EM algorithm, Frydman
and Schuermann (2008) find that not only does such a two-state mixture Markov
model outperform the Markov model in explaining credit ratings, but it also allows
one to explain economic features of rating data.

What is most surprising is not that two Markov processes are needed to compute
the rating but that two suffice. The part of the proof establishing sufficiency, explained
in Section 3.3, sheds light on this. When regarded as a principal-agent model (the
principal is the intermediary), promised utility does not suffice as a state variable.
Utility is meted out via the market’s belief, and beliefs are correct on average. This
imposes a constraint on an auxiliary variable and hence demands a second state.

The incentive state is an abstract construct. Another way of understanding what
the intermediary does involves re-writing the rating in terms of another pair of states.
For instance, using (Y, ν) (the rating itself and the intermediary’s beliefs) leads to a
more concrete if less elegant prescription. Explicitly, in the confidential case,

dYt =
βk
σ2
k

√
r

λ

∑
k

(dck + 1) (dSk,t − αkA∗t dt)− rYt dt+
(κ+ 1)(r − κ)

γ2
νt dt,

and hence, the intermediary continues to incorporate some of her private information
(via her belief νt) into the rating. In terms of (Y, ν), Y is a hidden Markov process,
with ν as the hidden state. This is the formulation occasionally considered for
empirical purposes; see Giampieri, Davis, and Crowder (2005). Other representations
of the rating process are possible, of course (e.g., as a process with rating momentum;
see Stefanescu, Tunaru, and Turnbull (2006)).

Consider now the specific coefficients of the optimal rating processes. The following
holds for both the optimal confidential and public ratings. White noise is harmful :
if αk = βk = 0, then signal k’s weight in the rating is zero. Irrelevant noise has
no use, as it depresses effort. All signals enter the rating : except for a non-generic
parameter set, the rating involves them all. Some might be weighted negatively, when
innovations along that dimension adversely impact incentives. However, as long as a
signal is informative of at least type or effort, the rating takes it into account.

Among the differences between public and confidential ratings, two are notable.
First, the impulse response on the incentive state conspicuously differs across the
two environments: this state decays at the discount rate r in the confidential case,
whereas in the public case, it does so at a rate equal to the harmonic mean between
discounting and mean-reversion:

√
r = r

1
2 1

1
2 (the correct interpretation, using the

change of variables in ft. 11). The reason is simple. As the second example in
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Section 3.1 suggests, the impulse response that best trades off persistence with
sensitivity is r. Unfortunately, the resulting autocorrelation fails to align with that of
a public belief, which decays at the mean-reversion rate (Lemma 2.8). The optimal
public rating fixes this in two ways: it distorts the impulse response on the incentive
state away from the discount rate toward the mean-reversion rate, and it skews the
weight on the incentive term dpk away from its favorite weight dck (see (13)).

The second difference is concealed in the definition of this weight dpk. If signals are
identical (more generally, if and only if the ratio αk/βk is the same for all signals that
are not white noise), then these weights are all zero, and transparency is obtained.
While this condition is non-generic for K > 1, it is always true when output is the only
signal. Instead, with confidential ratings, transparency is a non-generic phenomenon,
independent of K. The problem with one signal only is that twisting a weight and an
impulse response partially is insufficient to fix the autocorrelation. The weight must
be taken all the way down to zero: the “continuum” of autocorrelation constraints
determines the “one-dimensional continuum” of variables (the filter u1(·)), and hence
the rating, up to some white noise that the intermediary does not wish to use.

To conclude this section, we note that the weights of different signals in the
incentive term are ordered according to αk/βk.

40

3.3 Proof Overview

Our problem has some unconventional features that make it difficult to apply
dynamic programming or Pontryagin’s maximum principle, as is usually done in
principal-agent models. Hence, our method of proof is somewhat non-standard and
hopefully useful in related contexts.

In the first part, we derive necessary conditions using calculus of variations. The
necessary condition determines a unique candidate for the optimal rating (up to a
factor), if it exists and is sufficiently regular. In the second part, we verify that the
guess from the first part is optimal. This step introduces a parameterized family of
auxiliary principal-agent models and takes limits in a certain way.

Part I: Necessary Conditions

Recall that the ratings communicated to the market may be confidential or public
and the information generated by the signals exclusive or non-exclusive. Thus, there

40Although whether the ranking increases or decreases in the ratio depends not only on the sign
of mβ but also on whether r ∈ [κ, κ2] (r ≤ κ2) in the confidential (public) case.
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are four settings of interest. In all settings, we normalize the mean rating to zero,
and the variance to one.

The Representation Lemma (Lemma 2.10) characterizes all rating processes in
terms of a linear filter u, which we use as a control variable. Lemma 2.11 expresses
the equilibrium marginal cost of the agent as a function of the filter. Maximizing the
equilibrium action is equivalent to maximizing the marginal cost. Thus, we seek to
identify a control u that maximizes a product of two integrals over u:

γ2

2

[
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

][
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

]
. (14)

In this first part of the proof, we focus on controls that exhibit a sufficient degree of
regularity, and we assume that a solution exists within that family.

The maximization is subject to the constraints that the rating process must
satisfy. In the simplest case of confidential exclusive information structures, the only
constraint is the variance normalization, which is written as follows:

K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s−t| ds dt = 1, (15)

where U :=
∑

k βkuk. The higher dimensionality of the problem is plain in (15).
Maximizing (14) subject to (15) is a variational problem with an isoperimetric
constraint. We form the Lagrangian and consider a relaxed, unconstrained problem
that “internalizes” the variance normalization as part of the objective function.
However, the problem is not standard: both objective (14) and constraint (15)
include multiple integrals, yet the control has a one-dimensional input. Adapting
standard arguments, we prove a version of the Euler-Lagrange necessary condition
that covers our class of programs (see Appendix B). This condition takes the form
of an integral equation in u, which can be solved in closed form via successive
differentiation and algebraic manipulation. The solution of the relaxed problem can
be shown to be a solution of the original problem, which yields a candidate for the
optimal rating (unique subject to regularity conditions).

In the more general public and/or non-exclusive settings (see Section 4.1), the
objective (14) remains the same, but there are additional constraints on the rating
process. These capture the restriction that market beliefs are linked to public or
non-exclusive information structures. The lemmas 2.7 and 2.8 state these constraints
in the exclusive case, and Lemma 4.2 does so for the non-exclusive cases. Then,
we can apply the Representation Lemma (Lemma 2.10) to directly express these
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constraints in terms of the filter u.
There are two additional difficulties in these settings. First, there is no longer

a finite number of constraints but a continuum of them. Second, these constraints
involve further integral equations with delay.41 For example, in the public exclusive
setting, the constraint (15) is replaced by

K∑
k=1

σ2
k

∫ ∞
0

uk(t)uk(t+ τ) dt

+
γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s+τ−t| ds dt = 1, ∀τ ≥ 0. (16)

To address this, we reduce the continuum of constraints to a finite set of constraints,
applying “educated” linear combinations. We solve the relaxed optimization problem
with a finite number of constraints in a manner similar to that for the simplest setting
just described. For instance, in the public exclusive setting, we replace (16) by

1 =
K∑
k=1

σ2
k

∫ ∞
0

uk(t)uk(t) dt+
γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s−t| ds dt,

∫ ∞
0

h(τ) dτ =
K∑
k=1

σ2
k

∫ ∞
0

∫ ∞
0

h(τ)uk(t)uk(t+ τ) dt dτ

+
γ2

2

∫ ∞
0

∫ ∞
0

∫ ∞
0

h(τ)U(s)U(t)e−|s+τ−t| ds dt dτ,

where h(τ) := e−rτ . Naturally, h can be interpreted as a continuum of Lagrange
multipliers, but as opposed to the discrete Lagrange multipliers, deriving h via the
Euler-Lagrange equations is not feasible. Instead, inspired by numerical simulations,
we guess the functional form of h. Because two solutions satisfy the Euler-Lagrange
conditions, corresponding to a minimum and maximum equilibrium action, we must
select the maximizer using some form of second-order condition, which is, loosely, in
our setting the analogue of the classical Legendre necessary condition.

41There is a small literature on the calculus of variations with delayed arguments for single
integrals. See Kamenskii (2007) and references therein. There is also a literature on multiple
integrals without delayed arguments; see Morrey (1966) for a classical treatise. In both cases, the
domain of the control is of the same dimension as the domain of integration.
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Part II: Verification

The calculus of variations determines an essentially unique candidate for the filter
u and thus a unique candidate rating. However, few sufficient conditions are known in
the calculus of variations. Most are based on the Hilbert Invariant Integral. However,
in the case of (even one-dimensional) integral equations with delayed argument, the
method does not apply (Sabbagh (1969)).42 Instead, we interpret the intermediary’s
optimization differently, as a principal-agent model. In this auxiliary model, the
agent produces signals and outputs exactly as in the original model and obtains the
same payoffs. However, there is no longer a market, nor an intermediary. Instead,
the agent receives transfers from a principal, who observes all outputs and signals, as
does the agent. The principal’s information at time t is thus Gt, as defined in the
original model. To simplify the exposition, let us focus on the confidential exclusive
case. There are already two difficulties to overcome here: the action must be constant
(a constraint that is difficult to formalize in the principal-agent context) and the
transfer must be equal to the “market” belief.

The principal chooses a transfer process µ, which is interpreted as the instantaneous
payment flow from the principal to the agent. As in the original model, the agent
chooses an action process A (the agent’s strategy) that maximizes, at all t,

E

[∫
s≥t

e−r(s−t)(µs − c(As)) ds

∣∣∣∣ Gt] . (17)

In the principal-agent formulation, the transfer process µ is not constrained to be a
belief nor to have a Gaussian form.

The principal has a discount rate ρ < r and seeks to maximize the ex ante payoff

E

[∫ ∞
0

ρe−ρt(c′(At) + φµt(νt − µt)) dt

]
, (18)

where φ is some scalar multiplier and νt := E[θt | Gt] is the mean ability of the agent
under transparency. The maximization is performed over all strategies A and transfer
processes µ such that the action A is incentive compatible, i.e., it maximizes (17).

To interpret the principal’s objective, it is useful to consider the reward appearing
in (18). The term c′(At) is the agent’s marginal cost, which the intermediary maximizes

42The Lagrangian can be interpreted as a bilinear quadratic form with a continuum of variables.
Proving that the candidate control u is optimal is then equivalent to proving that the quadratic form
has no saddle point. This involves a diagonalization of the quadratic form in an infinite-dimensional
space, which in our case is not tractable.
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in the original model. If the payoff were reduced to this term, the principal might
not choose a µ associated with a market belief. However, for the principal-agent and
original models to be comparable, µ must be close to a market belief. The second
term φµt(νt − µt) imposes a penalty on the principal to incite the principal to choose
a µ close to a market belief. Indeed, observe that if µt and νt are jointly normal, then
E [µt(νt − µt)] = 0 if and only if Cov[µt, νt] = Var[µt]: this is the condition required
for a Gaussian process µ to be a market belief, by Lemma 2.7.

If µ is a market belief process associated with a confidential information structure,
then Cov[µt, νt] = Var[µt] and the principal’s payoff is equal to

E

[∫ ∞
0

ρe−ρtc′(At)

]
= c′(A),

where c′(A) refers to the stationary marginal cost. Thus, the maximum payoff of the
principal is never less than the marginal cost in the original model for every ρ.

We find that there is no multiplier φ such that the principal maximizes his payoff
by choosing a µ that is exactly a market belief. However, using the calculus of
variations from Part I, we can “guess” a multiplier φ such that the payoff-maximizing
µ approaches a market belief as ρ→ 0.

Note that in the original model, the intermediary must induce a constant equilib-
rium effort by the agent. In the principal-agent formulation, instead, the principal
maximizes over all equilibrium action processes. Perhaps surprisingly, it is easier to
solve this “fully dynamic” problem. Indeed, we are able to solve the principal-agent
problem in closed form for every ρ ∈ (0, r). Then, sending the principal’s discount
rate to zero leads to a solution that is constant in the limit, the optimal transfer tends
to a market belief, and the principal’s payoff becomes equal to the intermediary’s
objective in the original model (the agent’s marginal cost). Formally, by sending ρ to
0, the maximum principal payoff converges to the conjectured maximum marginal cost
from Part I. Because the principal’s payoff cannot be lower than the intermediary’s
objective, this proves that the rating obtained in Part I is optimal.

In the public and non-exclusive cases, the methodology is similar, but the payoff
of the principal is different to account for a different set of constraints to internalize.
In those cases, the principal’s payoff includes additional state variables to induce the
principal to choose a µ associated with public or non-exclusive market beliefs.

Note that, if we were able to properly internalize the constraint that the principal
must choose transfer processes among what would correspond to market beliefs,
the principal-agent formulation could, in principle, be used to obtain the necessary
conditions of Part I. The difficulty is precisely that we cannot internalize these
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constraints, both with finite and infinite horizons, with a positive discount rate. This
is why we consider a family of principal-agent problems and take limits as ρ → 0.
The calculus of variations then makes it possible to obtain the candidate optimal
rating and the correct multipliers to be used in the principal-agent formulation.

3.4 The Incentive State as a Benchmark

To gain further insight into the role and structure of the incentive state, let us
consider a special case. Suppose that signals are identical, namely, αk = βk = 1,
σk = σ for all k. As discussed, transparency is obtained under public ratings. Let us
instead consider confidential ratings. Theorem 3.1 immediately yields that, for all k,

uck(t) = uc(t) :=
1

σ2

[
1−√r
κ−√r

√
re−rt + e−κt

]
.

Hence, whether the incentive state is added or subtracted from the belief state depends
on how

√
r compares to 1 and κ. If

√
r lies in [1, κ], the sign of its coefficient is

negative, meaning that it is subtracted. If it is outside this interval, it is added.
Plainly, which of the two impulse responses r and κ is largest depends on whether√
r ≶
√
κ ∈ (1, κ), leading us to distinguish four intervals:

√
r ∈ [0, 1], [1,

√
κ], [
√
κ, κ],

and [κ,∞). The relative size of r vs. κ translates into how the negative sign affects
the shape of uc(·), as illustrated by Figure 2. If

√
r ∈ [1,

√
κ], then u(0) > 0, but it is

single-troughed and negative above some threshold t. Instead, if
√
r ∈ [
√
κ, κ], then

u(0) < 0 and u is single-peaked and positive above some threshold t. To see why a
negative weight on the incentive term can be optimal, consider the case of a patient
agent (r < κ) with output as the only signal and a rating process from the family

u(t) =
β

σ2

(
de−δt + e−κt

)
,

for some d ∈ R, δ > 0. Applying Lemma 2.11 (see (7)) yields as effort

c′(A) =
α
∫∞

0
u(t)e−rt dt√
Var[Yt]

Corr[Yt, θt] ∝
d
δ+r

+ 1
κ+r√

(1+d)2+δ(1+dκ/δ)2

1+δ︸ ︷︷ ︸
Term A

Corr[Yt, θt]︸ ︷︷ ︸
Term B

. (19)

Correlation (Term B) is maximized by transparency, setting d = 0: the market is
never as well informed as when the intermediary reveals her own belief. Hence, to
understand whether d ≷ 0, we focus on the first term of (19), Term A. Its numerator
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Figure 2: Rating in the case of homogenous signals (here, α = β = σ = 1).

is a gross (non-adjusted) measure of incentives. It is decreasing in r and linearly
increasing in d: the higher the rating scale is, the greater the impact of additional effort
on the rating and hence, if the market does not account for the scale, the stronger the
agent’s incentives. However, the market adjusts for scaling via the denominator of
Term A (the standard deviation of the rating). This standard deviation is decreasing
in the rate of mean-reversion (see ft. 11) and nonlinear in d. The derivative of Term
A evaluated at d = 0 is of the same sign as

κ+ r

δ + r
− κ+ 1

δ + 1
, (20)

the sign of which when δ < κ (as when δ = r, its optimal value) is determined by r ≷ 1.
Impatience dilutes the positive impact of a higher d (the first term of (20)) on the
numerator of Term A, just as mean-reversion dilutes the negative impact of a higher
d (the second term) via the denominator. If impatience outweighs mean-reversion
(r > 1), it is better to opt for a lower standard deviation and select a negative d.43

For (r, κ) = (3, 4), for instance, the negative weight for t = 1 implies that a

43The case in which r > κ can be interpreted similarly, but c′(A) is not single-peaked in d ≤ 0 in
that case and the derivative at 0 is not informative.
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positive surprise at time τ negatively impacts the rating at τ + 1 (see the top-right
panel of Figure 2). However the rating has a positive impact until then (or, rather,
until ∼ τ + .6). The market accounts for the fact that the rating “understates”
performance; the way it is done improves its quality.

Certainly, this is a rather subtle point, but it is robust. While it is simplest to
see in the case of identical signals, it holds for a broad range of parameters (roughly,
when r is close to κ) for confidential ratings. It also occurs under public ratings,
for the same reasons. Moreover, it resonates with some practices. Murphy (2001)
documents the widespread practice of past-year benchmarking as an instrument to
evaluate managerial performance, commenting on its seemingly perverse incentive to
underperform with an eye on the long term. Ratcheting does not explain it, as the
compensation systems under study involve commitment by the firm.

3.5 Public vs. Confidential Ratings: A Closer Look

In this subsection, we further develop the comparison between public and confi-
dential ratings by examining performance (effort) and informativeness (variance of
the market belief). Throughout, the superscripts p and c refer to the information
structure. The explicit value of the objective is given first.

Lemma 3.3 The marginal cost induced is

c′(Ac) =
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
,

given the optimal confidential rating process, and, given the optimal public process,

c′(Ap) =

(
1−

(√
r − 1√
r + 1

)2
)
c′(Ac).

The first factor in the formula for c′(Ap) quantifies the extent to which the public
rating fails to match the performance of the confidential rating. Because the discount
rate is the only parameter that enters this wedge, the two effort levels vary in the
same way with respect to all other parameters. A higher impact of effort on signals
(mα) or noise in the type process (γ) increases effort. It is readily verified that effort
is decreasing in r in the public case and that this need not be in the confidential case.
In both cases, effort vanishes when r → ∞ and is maximized when r → 0. In the
confidential case, effort then grows without bound, whereas it approaches a finite
limit with a public rating. The informativeness of the rating is measured by the
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variance of the belief: the higher this variance is, the better informed the market.

Lemma 3.4 The variance of the market belief is

Varµc =
(κ− 1)2

4mβ

(1 + 2mαβ

√
r/∆),

given the optimal confidential rating process, and

Varµp =

(
1 +

(√
r − 1√
r + 1

)2
)

Varµc,

given the optimal public rating process.

Hence, the market is better informed given public ratings, confirming a plausible but
not foregone conclusion. Here also, the wedge is a function of the discount rate alone,
implying that the degrees of informativeness vary alike in all other respects.44

However, with respect to the discount rate, the variation of accuracy could not be
more different. As the left (right) panel of Figure 3 illustrates, variance is maximized
(minimized) at an intermediate level of patience in the confidential (public) case.
When ratings are confidential, an emphasis on the incentive state becomes dominant
with extreme discounting. Thus, the rating becomes less accurate. Instead, given
public ratings, transparency is obtained asymptotically, whether r → 0,∞. Publicness
is a constraint that leaves the intermediary with little flexibility when only the long
term matters (r ≈ 0). When only the very short term matters, the incentive state
decays too rapidly. As a result, under public ratings, the market backs out the belief
state (the weight that the rating would have to assign to the incentive state to prevent
this would transform the rating into de facto white noise).

This raises a natural question: is requiring ratings to be public equivalent to
setting standards of accuracy? To answer this, we plot the solution (maximum
marginal cost of effort) to the two problems—confidential and public ratings—subject
to an additional constraint on the variance of the market belief. See Figure 4.45

Quality and effort are substitutes: transparency does not maximize effort. These
substitutes are imperfect, as the effort-maximizing rating does not leave the market in
the dark. Hence, there is a range of precision levels over which it conflicts with effort
provision. Fixing precision, there is a maximum effort level that can be induced by the

44Which is not to say that these comparative statics are foregone conclusions. For instance,
adding a signal can lead to a less-informed market.

45This plot is based on necessary conditions, but we expect that Theorems 3.1–3.2 extend.
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Figure 3: Confidential and public variance, as a function of r (here, (α2, β2, σ2, γ, σ1) =
(3, 2, 1, 1, 2), K = 2).

rating. (Curves are truncated at this maximum.) This maximum effort corresponds
to a rating process qualitatively similar to the unconstrained one; only the weights on
the exponentials vary. As is clear from the figure, effort is higher in the confidential
case for any given level of variance. A confidential rating system is simultaneously
able to incentivize more effort and provide better information than a public system.

4 Extensions

For brevity, we focus here on two generalizations. First, we allow some signals
to be non-exclusive. That is, the intermediary cannot prevent the market from
observing them publicly. Second, we consider the case in which the agent’s actions
are multidimensional, possibly differentially affecting signals and output. All proofs
for this section are in the online appendix (Hörner and Lambert (2015)).

4.1 Exclusivity

Not all information can be hidden. If the market represents long-run consumers
that repeatedly interact with the agent, cumulative output is likely publicly observable.
In credit ratings, solicited ratings are based on a mix of information that is widely
available to market participants, as well as information that is exclusively accessible to
the intermediary (see ft. 18). We refer to this distinction as exclusive vs. non-exclusive
information. The intermediary does not ignore the fact that the market has direct
access to this source of information. What she reveals about the exclusive signals
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that she can conceal also reflects the characteristics of those signals that she cannot.
Formally, all participants observe {Sk,s}s≤t,k=1,...,K0 in addition to the information

provided by the intermediary (we consider the cases of both public and confidential
structures, according to whether past information is publicly available).46 Signals
Sk,t, k > K0, are only observed by the intermediary and the agent. If K0 = 0, ratings
are exclusive, as in Section 3. If K0 = K, it is transparency, as in Section 2.4. The
statements for K0 = 0, K require adjustments in the theorems given below; as they
are already covered by earlier results, we rule them out.

The following proposition generalizes Proposition 2.6.

Proposition 4.1 Let Y be a rating process. Then, Y is:
1. A belief for a confidential information structure with non-exclusive signals

S1, . . . , SK0 if and only if, for all t,

E∗[θt | {Sk,s}s≤t,k=1,...,K0 , Yt] = Yt.

2. A belief for a public information structure with non-exclusive signals S1, . . . , SK0

if and only if, for all t,

E∗[θt | {Sk,s}s≤t,k=1,...,K0 , {Ys}s≤t] = Yt.

The next lemma extends lemmas 2.7 and 2.8 to account for the non-exclusive
signals.

46By our ordering convention, output is observed whenever any signal is observed.
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Lemma 4.2 (Confidential/Public Belief with Non-Exclusive Signals) A rat-
ing process Y is a belief for a confidential/public information structure with non-
exclusive signals S1, . . . , SK0 if, and only if it is a belief for a confidential/public
information structure and, for all k = 1, . . . , K0, all t, and all τ ≥ 0,

Cov[Sk,t, Yt+τ ] = Cov[Sk,t, θt+τ ]. (21)

Hence, the constraints that a rating process must satisfy to be a belief for a confidential
or public information structure are the constraints given in lemmas 2.7 and 2.8
respectively, and the covariance equalities (21) which capture the constraint of non-
exclusivity for every signal that is publicly observed.

As in the exclusive setting of Section 3, we focus on ratings that are equal (or
proportional) to beliefs, and we express the rating by its linear filter as in the
Representation Lemma (Lemma 2.10). But a new choice arises: does the belief
represent the interim belief based solely on the information communicated by the
intermediary, to be combined with the non-exclusive signals into a posterior belief (in
which case, uk = 0 for k ≤ K0), or this posterior belief itself? In other words, should
the rating already incorporate the information conveyed by the non-exclusive signals?
Both formulations are possible, so this is a matter of convention. We attempt to
preserve as much as possible the analogy with the solution in the exclusive case. This
demands an interim approach for confidential information structures and a posterior
approach for public information structures. Note that the beliefs of Lemma 4.2 refer
to the posterior beliefs.

The main results of this section require the following notation. First, we introduce
the rate at which a belief based solely on public signals decays, namely,

κ̂ =

√√√√1 + γ2

K0∑
k=1

β2
k

σ2
k

.

Second, we generalize the sums (8) to the current framework, e.g.,

mn
α =

K0∑
k=1

α2
k

σ2
k

, mn
αβ :=

K0∑
k=1

αkβk
σ2
k

, mn
β :=

K0∑
k=1

β2
k

σ2
k

,

and

me
α =

K∑
k=K0+1

α2
k

σ2
k

, me
αβ :=

K∑
k=K0+1

αkβk
σ2
k

me
β :=

K∑
k=K0+1

β2
k

σ2
k

.
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We assume throughout that either mn
αβ ≥ 0 or mαβ ≥ 0, ensuring that positive effort

can be achieved in equilibrium (by either disclosing no or all exclusive information).47

More generally, we add superscripts n, e (for non-exclusive and exclusive) whenever
convenient, with the meaning being clear from the context.

We find that Theorem 3.1 holds verbatim, provided we redefine ∆. Let

λ = (κ− 1)
(√

r(1 + r)mαβ + (κ2 − r2)
√

∆
)
,

where

∆ :=
(κ+ 1)(κ̂+ 1)

2(κ− κ̂)

[
me
αm

e
β

κ2 − κ̂2
+

(1 + 2r + κ̂)(mn
αβ)2

(r + κ̂)2(κ̂+ 1)
−

(1 + 2r + κ)m2
αβ

(r + κ)2(κ+ 1)

]
.

With these slightly generalized formulas, we restate Theorem 3.1.

Theorem 4.3 The optimal confidential rating process is unique and given by, for
f ≤ K0, uk = 0 and k > K0,

uk(t) =
βk
σ2
k

(
dk

√
r

λ
e−rt + e−κt

)
,

with coefficients

dk := (κ2 − r2)mβ
αk
βk
− (κ2 − 1)mαβ.

Theorem 4.4 The optimal non-exclusive public rating process is unique and given
by, for signals k ≤ K0,

unk(t) =
βk
σ2
k

(
dne−δt + e−κt

)
,

and for signals k > K0,

uek(t) =
βk
σ2
k

((
ce
βk
σ2
k

+ de
αk
βk

)
e−δt + e−κt

)
,

for some constants dn, ce, de and δ > 0 given in Appendix A.

The parameters dn, ce, de are elementary functions of δ, where δ is a root of a
polynomial of degree 6. This polynomial is irreducible. Using Galois theory, we show

47These assumptions are not necessary. The rating process defined in the theorem yields a
candidate value for c′(A). If it is positive, the rating system is optimal. If not, then effort is zero.
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that it admits no solution in terms of radicals. It always admits exactly two positive
roots, and we indicate how to select the correct one (see Lemma A.1 in Appendix A).

The differences in parameter values should not distract from the overarching com-
monalities. Most important, as in the exclusive case, the optimal process is expressed
in terms of a two-state Markov process, with one state being the intermediary’s belief.
As before, it can be restated as a system in which the intermediary revises the rating
by gradually incorporating her belief. As under exclusivity, with public ratings, the
optimal rating reduces to transparency if the exclusive signals are redundant(i.e., if
αk/βk is independent of k, k > K0) as is the case if there is only one such signal.

The intermediary does not need to observe the realized values of the non-exclusive
signals to incentivize the agent.48 Yet non-exclusivity affects the quality of the
information available to the market. As an example, consider Figure 5, which
describes variances under confidential ratings in a variety of cases. The market is
better informed (i.e., the variance of the market belief is highest) when information
is non-exclusive (the higher solid line) than when it is not (the dotted line). However,
this is only the case because the market can rely on the non-exclusive signal (the
output) in addition to the rating. If (counterfactually) a market participant were to
rely on the rating alone to derive inferences on ability (lower solid line), he would be
worse off under non-exclusivity. This does not necessarily imply that the information
conveyed by the rating is degraded because of the existence of another signal that the
intermediary cannot hide. As is clear from Figure 5, variance could be even lower if
the non-exclusive signal did not exist at all and we were considering the confidential
rating process for the case of one signal only (dashed line). For nearly all discount
rates, however, the presence of non-exclusive information depresses the intermediary’s
willingness to disclose information regarding her unshared signal—free information
and the information conveyed by the rating are then strategic substitutes.49

4.2 Multiple Actions

Ratings are often criticized for biasing, rather than bolstering, incentives. When
the agent engages in multiple tasks, a poorly designed system might distract attention
from those actions that boost output and toward those that boost ratings.

Such moral hazard takes many forms. In credit rating, for instance, both shirking

48This is not obvious from the statement of Theorem 4.4 because we chose to state the optimal
non-exclusive public rating process as a posterior belief.

49This is consistent with a large empirical literature in finance showing that (i) ratings do not
summarize all the information that is publicly available and that (ii) the value-added of these ratings
decreases in the quality of information otherwise available.
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Figure 5: Belief variances (here, K = 2 and (αk, βk, σk, γ) = (1, 1, 1, 4), k = 1, 2).

and risk-shifting by the issuer are costly moral hazard activities that rating systems
might encourage (see Langohr and Langohr (2009), Ch. 3). Report cards in sectors
such as health care and education are widely criticized for encouraging providers to
“game” the system, leading doctors to inefficient selection behavior and teachers to
concentrate their effort on developing those skills measured by standardized tests.50

Our model can accommodate such concerns. We illustrate how in the context of
confidential ratings. Suppose that there is not one but L effort levels A`, ` = 1, . . . , L,
with a cost of effort that is additively separable.51 With some abuse of notation,

c(A1, . . . , AL) =
L∑
`=1

c(A`).

For concreteness, assume that c(A`) = cA2
` , c > 0, although the method applies more

generally. Signals are now defined by their law

dSk,t = (
∑

`αk,`A`,t + βkθt) dt+ σk dWk,t,

for all k = 1, . . . , K, with
∑

` α1,` 6= 0. The model is otherwise unchanged. The
intermediary’s objective is the maximization of the expected discounted output, as in
the baseline model.

This model is solved as in Section 3.2 via a change of variables. Define a fictitious

50See Porter (2015) for a variety of other examples.
51For a discussion of the restriction implied by separability, see Holmstrom and Milgrom (1991).
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model with one-dimensional effort A, cost c(A) = cA2 and signals S̃k with law

dS̃k,t = (αkAt + βkθt) dt+ σk dWk,t,

for all k = 1, . . . , K, where

αk :=

∑
`α1,`αk,`∑
`α1,`

.

Lemma 4.5 The linear filter of the optimal confidential rating process is the same
in both the original model and the fictitious model.

In terms of the optimal linear filter {uk}k for the fictitious model, each effort level in
the original model is then given by

c′(A`) =
Cov[Yt, θt]

Var[Yt]

∫ ∞
0

e−rt

(∑
k

αk,`uk,t

)
dt,

for ` = 1, . . . , L. The following example shows that the optimal rating remains opaque
and does not seek to deter effort in unproductive tasks. Output is only a function of
effort A1; however, the signal S2 reflects both effort A2 and the agent’s type; namely,

dS1,t = A1,t dt+ σ1 dW1,t, and

dS2,t = (A2,t + θt) dt+ σ2 dW2,t.

Absent any rating, if either only the first signal or both signals are observed, the
unique equilibrium involves A` = 0, ` = 1, 2. Action A1 does not affect learning about
the type, and the type does not enter output. The optimal rating is given by

u1(t) =

√
r

σ1

e−rt, and u2(t) =
e−κt

σ2
2

.

The signal that is irrelevant for learning is not discarded. Rather, it is exclusively
assigned to the incentive term; conversely, the signal that matters for learning matters
only for the learning term. This leads to positive effort on both dimensions, namely,

c′(A1) =
κ− 1

4
√
rσ1

, c′(A2) =
κ− 1

2(r + κ)σ2
2

,

and market belief variance 1
4
(κ − 1)2σ2

2. Unproductive effort in the unobservable
dimension that affects learning is the price to pay for effort in the productive activity.
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4.3 Performance of Standard Policies

Many real-world systems do not use two-state mixtures. Here, we illustrate how
our methods also allow us to compare some standard policies that are used in practice.
As mentioned in Section 2.2, exponential smoothing and moving windows are two
common systems. We argue that a properly calibrated exponential smoothing rating
process outperforms any moving window rating process. For simplicity, we focus on
confidential exclusive ratings with only one additional signal (simply denoted St).

Formally, in the case of exponential smoothing, the intermediary releases signal

Yt =

∫
s≤t

e−δ(t−s) [c dXs + (1− c) dSs]

at time t, where δ > 0 is the coefficient of smoothing and c is the relative weight
placed on the output. With a moving window, the intermediary releases a signal

Yt =

∫ t

t−T
[c dXs + (1− c) dSs] ,

where T > 0 is the size of the moving window. The optimal exponential smoothing
(resp., moving window) system is defined by the choice of (c, δ) (resp., (c, T )) such
that equilibrium effort is maximized. It is simple to show the following.

Lemma 4.6 The optimal confidential exponential smoothing rating process yields
higher effort than any moving window rating process.

The proof establishes a stronger statement: for any weight c on the output, the best
rating process using exponential smoothing with that weight outperforms the best
moving window rating process with the same weight.

5 Concluding Comments

Our stylized model lays bare why one should not expect ratings to be Markovian
and why, for instance, the same performance can have an impact on the rating that
is either positive or negative according to its vintage. Richer versions might deliver
more nuanced rating systems but will not overturn these insights.

Nonetheless, it is desirable to extend the analysis in several directions. First, in
terms of technology, we have assumed that effort and ability are substitutes. While
this follows Holmström (1999) and most of the literature on career concerns, it is
limiting, as Dewatripont, Jewitt, and Tirole (1999) make clear. Building on Cisternas
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(2015), for instance, it might be possible to extend the analysis to cases in which effort
and ability are complements. The absence of risk-aversion allows us to use effort as a
yardstick for efficiency. Allowing for CARA preferences, for instance, would be useful
to discuss the welfare implications of the informativeness of ratings.

Second, in terms of market structure, we have assumed a competitive market
without commitment and a single agent. When the firm that designs the rating
system is the same that pays the worker, one might wish to align its ability to commit
along these two dimensions. Harris and Holmstrom (1982) offer an obvious framework.
Relative performance evaluation requires introducing more agents but is also a natural
extension, given the prevalence of the practice in performance appraisal.

Third, in terms of the rating process, stationarity, in particular, is an assumption
that one might wish to relax. It is needed (among other uses) for the Representation
Lemma (Lemma 2.10), one of the premises of our analysis. Nonetheless, one can
bypass this difficulty by simply asserting that the rating process admits a (possibly
non-stationary) linear filter. This might be difficult to interpret in terms of primitives
(the random process of the rating), but it includes the class considered here.
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A Missing Formulas for Theorem 4.4

The missing formulas for Theorem 4.4 are

dn := −κ− 1

δ − 1
− Λ1Rβ(δ + κ− r − 1)

z(δ − 1) (δ + κ−Rβ)
,

ce :=
(δ − r) (mαβRβ + z)

(r − κ)z
, de :=

(δ − r)(κ+ r)mβRβ

(κ2 − 1) z
,

where

Λ1 :=
λ1(κ+ r)

(
(1− δ2)mβ + (κ2 − 1)mn

β

)
(δ − 1)mβ(r − δ) ,

Rβ :=
(κ− 1)

(
(δ − 1)(r + 1)mβ + (κ+ 1)mn

β(r + 1− δ − κ)
)

(δ − 1)mβ(r − δ) ,

z :=
mαβ

(
(r2 − 1)mβ − (κ2 − 1)mn

β

)
(δ − κ)mβ

+
(r2 − κ2)

(
(κ2 − 1)λ1m

n
β − (δ − 1)mβ

(
(δ + 1)λ1 +mn

αβ(r − δ)
))

(δ − 1)(δ − κ)mβ(r − δ) ,
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in terms of λ1 and δ.
The parameter λ1 is a function of δ, and we accordingly write λ1(δ) when conve-

nient. It holds that

λ1 =
(r − δ) ((κ− 1)σβ (r(δ + κ+ 1)− δ2) + (δ + κ) (δ2 − κr)) (A1 + A2)

(1− κ)σβD1 + σαβ(κ+ r)D2

,

where

A1 =
(
κ2 − 1

)
m2
αβ

(
(δ + κ)2 − (κ+ 1)σβ(2δ + κ− 1)

) ((
κ2 − 1

)
σβ + 2σαβ

(
r2 − κ2

))
,

A2 = (κ+ r)2
(
x2σαmαmβ − (κ+ 1)σ2

αβm
2
αβ((δ − 1)(δ + r)(r − κ) + x(δ + κ− r − 1))

)
,

with
x := (κ+ 1)σβ(δ + κ− r − 1) + (δ + κ)(r − κ).

The expressions for D1 and D2 are somewhat unwieldy, unfortunately. It holds that

D1 = (κ− 1)(κ+ 1)2σ2
β

(
δ4 − r4 − 2r3 + 2r2

(
2δ2 + 2δκ+ κ2 − 1

)
− 2δ2r(2δ + 2κ− 1)

)
− (κ+ 1)σβ(δ + κ)

(
δ3
(
δ2 + 3δκ+ κ− 1

)
+ r4(δ − 2κ+ 1)

+ r3(−δ(κ− 3)− 3κ+ 1) + r2
(
−2δ3 + δ2(3κ− 1) + δ

(
4κ2 − κ+ 1

)
+ 4κ

(
κ2 − 1

))
+ δ2r

(
−3δ(κ+ 1)− 8κ2 + 3κ+ 3

) )
+ (δ + κ)2

(
δ3(2δκ+ δ + κ) + r4(δ − κ) + (δ + 1)r3(δ − κ)

+ r2
(
−δ3 + δ2(κ+ 1)− δκ+ 2κ2(κ+ 1)

)
− δ2r

(
δ2 − δκ+ δ + κ(4κ+ 3)

) )
,
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and

D2 =
(
κ2 − 1

)
σ2
β

(
(δ − 1)δ3(κ− 1) + r3

(
−
(
2δ2 + 3δκ+ δ + 2κ2 + κ− 1

))
+ r2

(
4δ3 + δ2(7κ+ 1) + δ

(
4κ2 + κ− 1

)
+ 2κ

(
κ2 − 1

))
+ δ2r

(
−2δ2 − 5δκ+ δ − 4κ2 + κ+ 1

) )
+ σβ(δ + κ)

(
− δ3

(
δ2(κ+ 1) + δ

(
3κ2 − 1

)
+ (1− κ)κ

)
+ r3

(
δ2(κ− 1) + δ

(
3κ2 − 1

)
+ κ

(
4κ2 + κ− 3

))
+ r2

(
δ3(1− 3κ) + δ2

(
3− 9κ2

)
− δκ

(
4κ2 + κ− 1

)
− 4κ2

(
κ2 − 1

))
+ δ2r

(
δ2(3κ+ 1) + 5δκ2 + δ + κ

(
8κ2 − κ− 5

)) )
− 2(δ + κ)2(r − κ)

(
δ2 − κr

)2
.

Finally, regarding δ, consider the polynomial

P̃ (z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + z6,

with

b0 := ζ (ζ + ψgαβ) ,

b1 := ζ (2ηβ + gαβ) ,

b2 :=
1

2

(
−2ηβ (2ζ − ηβ)− gαβ ((4ψ − 1)ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b3 := −2
(
η2
β + ζ

)
− gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ,

b4 :=
1

2

(
2 (ηβ − 2) ηβ + gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b5 := 2ηβ + gαβ,

where σβ = 1−mn
β/mβ, σα = 1−mn

α/mα, σαβ = 1−mn
αβ/mαβ and

ηβ :=
κ(1− σβ) + σβ

r
, ζ :=

κ2(1− σβ) + σβ
r2

,

gαβ :=
2(κ− 1)(r + 1)2χ(χ+ 1)m2

αβ

r
(
σαmαmβ(κ+ r)2 + (κ− 1)m2

αβ (2(r + 1)χ− (κ− 1)σβ)
) ,

ψ :=
(κ− 1)σβ + χ(κ(χ+ 2) + χ)

2rχ(χ+ 1)
, χ :=

(κ− 1)σβ − σαβ(κ+ r)

r + 1
.

In the supplementary appendix, we prove
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Lemma A.1 The polynomial P̃ is irreducible and admits no solutions in terms of
radicals. It has exactly two positive distinct roots δ̃−, δ̃+. Let δ− = rδ̃−, δ+ = rδ̃+.
It holds that either (δ2

− − r)λ1(δ−) < 0 or (δ2
+ − r)λ1(δ+) < 0, but not both. The

parameter δ is equal to δ− if (δ2
− − r)λ1(δ−) < 0, and to δ+ otherwise.

B Euler-Lagrange First-Order Conditions

In this section, we derive the first-order conditions for the particular type of
control problems considered in this paper.

Let N,M,K,L, be positive integers. For ` = 1, . . . , L, let F ` : RN
+ → R, and

G` : RK×M → R, where every G` can be written

G`((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M)) = yk,iyk′,i′ ,

for some k, k′, i, i′. In other words, letting

F (x,y1, . . . ,yM) =
L∑
`=1

F `(x)G`(y1, . . . ,yM),

we have that F (x, ·) is a quadratic form, and F `(x) are the coefficients.
For every i = 1, . . . ,M , let φi : RN

+ → R+ be a (possibly shifted) projection, in
the following sense: φi((x1; . . . ;xN)) = xj + δ for some j and some δ ≥ 0. Let U be
the space of measurable functions u : R+ → RK that are continuous, integrable and
square integrable.

Define G`
k,i((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M)) as

∂G((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M))

∂yk,i
,

and let

Fk,i(x,y1, . . . ,yM) =
L∑
`=1

F `(x)G`
k,i(y1, . . . ,yM).

We consider the problem of maximizing∫
RN

+

F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φM(x))) dx, (22)

over control functions u ∈ U .
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We make the following assumptions:

1. For every `, every u ∈ U , x 7→ F `(x)G`(u(φ1(x)),u(φ2(x)), . . . ,u(φM(x))) is
integrable on RN

+ .

2. For every `, i, k, x 7→ F `(x)G`
k,i(u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) is integrable

on RN
+ ∩ {φi = t} for every t.

3. The map

t 7→
∫
RN

+∩{φi=t}
F `(x)G`

k,i(u(φ1(x)),u(φ2(x)), . . . ,u(φM(x))) dx

is piecewise continuous, where the integral is taken with respect to the Lebesgue
measure on RN

+ ∩ {φi = t}.
Compared to standard problems of calculus of variations (see, for example, Burns

(2014), Chapter 3), this optimization problem involves delayed terms and integrals
over a domain whose dimension is unrelated to the dimension of the control. The
classical Euler-Lagrange equations do not hold. However, the argument can be
adapted to yield the following first-order condition.

Proposition B.1 Assume the control function u∗ ∈ U maximizes (22). Then, for
every k and every t,

M∑
i=1

∫
RN

+∩{φi=t}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM(x))) dx = 0.

Proof. For a control function u ∈ U , let

J(u) :=

∫
RN

+

F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φM(x))) dx,

and assume J(u) is maximized for u = u∗.
The proof relies on classical variational arguments. Fix k and let v : R+ → RK ,

where we write v = (v1, . . . , vK) and where vk′ = 0 for k′ 6= k, and assume vk is
continuous with bounded support. Let j(ε) = J(u∗ + εv). Differentiating under the
integral sign (see, for example, Theorem 6.28 of Klenke (2014)), we get

j′(0) =

∫
RN

+

M∑
i=1

Fk,i(x,u
∗(φ1(x)), . . . ,u∗(φM(x)))vk(φi(x)) dx.
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We observe that j is maximized at ε = 0, and so j′(0) = 0.
Suppose by contradiction that, for some t,

M∑
i=1

∫
RN

+∩{φi=t}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM(x))) dx

is nonzero—for example, positive. The sum is piecewise continuous with respect to t,
and so by continuity,

M∑
i=1

∫
RN

+∩{φi=t′}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM(x))) dx

is positive for t′ on an interval to the left or the right of t. Let It be such an interval,
and let vk be a function that is zero outside of It and that is positive inside It. Then

0 <

∫
t′∈It

M∑
i=1

∫
RN

+∩{φi=t′}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM(x)))vk(t
′) dx dt′

=
M∑
i=1

∫
RN

+

Fk,i(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM(x)))vk(φi(x)) dx,

which contradicts j′(0) = 0.

C Proofs of Section 2

C.1 Proof of Lemma 2.4

1. If the cumulative payment process satisfies the zero-profit condition, then the
agent who chooses effort strategy A makes (ex ante) payoff

E

[∫ ∞
0

(A∗t + µt − c(At)) e−rt dt

]
,

where A∗ denotes the market conjectured effort level. The agent has no impact
on A∗. Thus, the agent’s strategy is optimal if and only if it maximizes

E

[∫ ∞
0

(µt − c(At)) e−rt dt

]
.
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2. If F ′ = {F ′t}t≥0, with F ′t = σ(µt), then E∗[θt|F ′t] = E∗[θt|µt] = µt, hence for a
given conjectured effort level A∗, the market’s transfers and the agent’s optimal
action are the same under both information structures F and F ′.

C.2 Proof of Proposition 2.6

1. If Y is a belief for a confidential information structure F , then Yt = µt, where,
by definition, µt = E∗[θt | Ft] = E∗[θt | µt], where the second equality follows
from the law of iterated expectations. Conversely, if Yt = E∗[θt | Yt], then Y is
the belief µ for the confidential information structure induced by Y .

2. If Y is a belief for a public information structure structure F , then Yt = µt, where,
by definition, µt = E∗[θt | Ft] = E∗[θt | {µs}s≤t], where the second equality
follows from the law of iterated expectations, using that F is a filtration and thus
Ft includes all information about {µs}s≤t. Conversely, if Yt = E∗[θt | {Ys}s≤t],
then Y is the belief µ for the public information structure that is the filtration
generated by Y .

C.3 Proof of Lemma 2.7

The lemma is immediate by application Proposition 2.6, observing that, by the
projection formula for jointly normal random variables,

E∗[θt | Yt] =
Cov[θt, Yt]

Var[Yt]
(Yt − E∗[Yt]).

C.4 Proof of Lemma 2.8

The correlation between θt and θt+τ satisfies

Corr[θt, θt+τ ] =
Cov[θt, θt+τ ]√

Var[θt]
√

Var[θt+τ ]
= e−τ ,

where we note that, as θ is a stationary Ornstein-Uhlenbeck process with mean-
reverting rate 1 and scale γ,

Cov[θt, θt+τ ] =
γ2

2
e−τ , and Var[θt] = Var[θt+τ ] =

γ2

2
.

Let µ be the market belief process induced by some public information structure
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F . We have E∗[µt] = E∗[θt] = 0. As F is also a confidential information structure, µ
is also a belief for a confidential information structure.

Conditionally on µt, the random variable θt is then independent from every µt−τ ,
τ ≥ 0, because µt carries all relevant information about θt. Thus, Cov[θt, µt−τ | µt] =
0. Let τ ≥ 0. The projection formulas for jointly normal random variables yield

Cov[θt, µt−τ | µt] = Cov[θt, µt−τ ]−
Cov[θt, µt] Cov[µt−τ , µt]

Var[µt]
.

Hence,

Cov[µt−τ , µt] = Var[µt]
Cov[θt, µt−τ ]

Cov[θt, µt]
= Var[µt−τ ]

Cov[θt, µt−τ ]

Cov[θt−τ , µt−τ ]
, (23)

where we used the stationarity of the pair (µ, θ). Besides, by Lemma 2.10, there exist
uµ1 , . . . , u

µ
K , such that µt can be written as

µt =
K∑
k=1

∫
s≤t

uµk(t− s)[dSk,s − αkA∗s ds].

Hence, as Cov[θt, θt−τ ] = γ2e−τ/2,

Cov[µt−τ , θt−τ ] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uµk(s)e−s ds,

and,

Cov[µt−τ , θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uµk(s)e−(τ+s) ds = e−τ Cov[µt−τ , θt−τ ].

Hence, plugging these last two expressions into (23), we have

Cov[µt, µt+τ ] = Cov[µt−τ , µt] = Var[µt−τ ]e
−τ = Var[µt]e

−τ .

Now, we prove the converse. Let Y be a rating process that is a belief for a
confidential information structure, and satisfies

Cov[Yt+τ , Yt] = Var[Yt]e
−τ ,
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for every τ ≥ 0. By Lemma 2.10, as E∗[Yt] = 0, there exist uY1 , . . . , u
Y
K , such that Yt

can be written as

Yt =
K∑
k=1

∫
s≤t

uYk (t− s)[dSk,s − αkA∗s ds],

so that, as above, we get

Cov[Yt−τ , θt] = e−τ Cov[Yt−τ , θt−τ ] = e−τ Cov[Yt, θt],

using the stationarity of (Y, θ), and we have by assumption on Y that

e−τ =
Cov[Yt, Yt−τ ]

Var[Yt−τ ]
=

Cov[Yt, Yt−τ ]

Var[Yt]
.

Therefore,

Cov[θt, Yt−τ | Yt] = Cov[θt, Yt−τ ]−
Cov[θt, Yt] Cov[Yt−τ , Yt]

Var[Yt]
= 0.

As θ and Y are jointly normal, it implies that θt and Yt−τ are independent conditionally
on Yt for every τ ≥ 0, so the market belief associated to the public information
structure that is the filtration generated by Y satisfies

E∗ [θt | {Ys}s≤t] = E∗ [θt | Yt] = Yt.

The conclusion follows from Proposition 2.6.

C.5 Proof of Lemma 2.9 and Lemma 2.11

We prove the existence and uniquess of the equilibrium, and give the closed-form
expression of the equilibrium action.

We have, following the projection formulas for jointly normal random variables,
using the Representation Lemma (Lemma 2.10)

µt = E∗[θt | Yt]
= Cov[Yt, θt](Yt − E∗[Yt])

= Cov[Yt, θt]
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkA∗s ds] ,
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where A∗ is the effort level conjectured by the market. Observe that by stationarity,
Cov[Yt, θt] is constant.

We prove that, given the (unique) cumulative payment process that satisfies the
zero-profit condition, there exists an optimal effort strategy for the agent, and that
it is unique (up to measure zero sets) and pinned down by the first-order condition
given in Lemma 2.11. This, in turn, yields existence of a unique equilibrium.

Let us fix the cumulative payment process that satisfies the zero-profit condition,
and suppose that the agent follows effort strategy A. The agent’s time-0 (ex post)
payoff is then ∫ ∞

0

[A∗t + µt − c(At)] e−rt dt. (24)

Maximizing the agent’s ex ante payoff is equivalent to maximizing the agent’s ex
post payoff, up to probability zero events. Hence, we seek conditions on A that
characterize when it is a maximizer of (24).

Therefore, as
dSk,s = (αkAs + βkθs) ds+ σk dZk,s,

maximizing (24) is equivalent to maximizing

Cov[Yt, θt]

∫ ∞
0

∫ t

0

K∑
k=1

αkuk(t− s)Ase−rt ds dt−
∫ ∞

0

c(At)e
−rt dt. (25)

Let us re-write

Cov[Yt, θt]

∫ ∞
0

∫ t

0

K∑
k=1

αkuk(t− s)Ase−rt ds dt

= Cov[Yt, θt]

∫ ∞
0

∫ ∞
s

K∑
k=1

uk(t− s)αkAse−rt dt ds

= Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ +∞

s

K∑
k=1

uk(t− s)αke−r(t−s) dt ds

= Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ ∞

0

K∑
k=1

αkuk(τ)e−rτ dτ ds.
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Maximizing (25) is then the same as maximizing

Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ ∞

0

K∑
k=1

αkuk(τ)e−rτ dτ ds−
∫ ∞

0

c(At)e
−rt dt,

which is the same as maximizing

Cov[Yt, θt]As

∫ ∞
0

K∑
k=1

αkuk(τ)e−rτ dτ − c(As),

for (almost) every s. By strict convexity of the agent’s cost, (25), and thus (24), is
maximized if and only if

c′(At) = Cov[Yt, θt]

∫ ∞
0

K∑
k=1

αkuk(τ)e−rτ dτ,

for (almost) every t.
We note that Cov[Yt, θt] is constant and equal to

Cov[Yt, θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uk(s)e
−s ds.

Hence, (24) is maximized if and only if

c′(At) =
γ2

2

[
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

][
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
,

for every t up to measure zero sets. Thus, the optimal effort strategy exists for the
agent, it is unique (up to measure zero events and times), it is constant and pinned
down by the last equation.

C.6 Proof of Lemma 2.10

The proof proceeds in three parts. In the first part, we make additional regularity
assumptions to derive necessary conditions so as to pin down a unique candidate
for the coefficients uk. In the second part, we prove that the candidate obtained is
integrable and square integrable. In the third part, we relax the regularity assumptions
and show that the conjectured coefficients obtained in the first part are valid for the
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rating process being considered. The first part is useful to get an educated guess of
the candidate weight functions. Given the educated guess, the second and third parts
are self-contained and sufficient to prove the lemma.

Guess of the coefficients. Assume that Y has the linear representation

Yt = E∗[Yt] +
K∑
k=1

∫
s≤t

uk(t− s)(dSk,s − αkA∗s ds),

with u measurable, integrable and square-integrable. Further, let B > 0, and assume
that every uk is twice continuously differentiable on [0, B], and that uk(s) = 0 if s > B.
Later, we will relax the bounded-support assumption. We define U :=

∑
k βkuk.

We have

fk(τ) = Cov[Yt, Sk,t−τ ]

=
K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−τ ]

= σ2
k

∫ ∞
τ

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ ∞
τ

U(s)e−|j−s| dj ds.

Successive differentiations yield

f ′k(τ) = −σ2
kuk(τ)− βkγ

2

2

∫ ∞
0

U(s)e−|τ−s| ds, (26)

f ′′k (τ) = −σ2
ku
′
k(τ) +

βkγ
2

2

∫ τ

0

U(s)e−(τ−s) ds− βkγ
2

2

∫ ∞
τ

U(s)e+(τ−s) ds,

f ′′′k (τ) = −σ2
ku
′′
k(τ) + βkγ

2U(τ)− βkγ
2

2

∫ τ

0

U(s)e−(τ−s) ds− βkγ
2

2

∫ ∞
τ

U(s)e+(τ−s) ds.

Thus
f ′k − f ′′′k = σ2

ku
′′ − σ2

ku− βkγ2U. (27)

Multiplying (27) by βk/σ
2
k and summing over k yields an ordinary differential equation

(ODE) for U :
f̄ ′ − f̄ ′′′ = U ′′ − U − γ2mβU = U ′′ − κ2U, (28)
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where we recall that

f̄(s) :=
K∑
k=1

βk
σ2
k

fk(s).

Integrating by parts the general solution of (28) gives

U(τ) = C1e
κτ + C2e

−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds, (29)

for some constants C1 and C2. Multiplying the expression for f ′k by βk/σ
2
k and

summing over k gives

f̄ ′(τ) = −U(τ)− κ2 − 1

2

∫ ∞
0

U(s)e−|τ−s| ds, (30)

for every τ ≥ 0. Together, and after simplification, (29) and (30) yield an equation
that C1 and C2 should satisfy, for every τ :

f̄ ′(τ) = f̄ ′(τ)− C1e
κτ − C2e

−κτ

− κ2 − 1

2
C1

[
eB(κ−1)+τ

κ− 1
− e−τ

κ+ 1
+

eκτ

κ+ 1
− eκτ

κ− 1

]
− κ2 − 1

2
C2

[
−e
−B(κ+1)+τ

κ+ 1
+

e−τ

κ− 1
+

e−κτ

κ+ 1
− e−κτ

κ− 1

]
+
κ2 − 1

2

κ2 − 1

κ

e−B+τ

κ2 − 1

∫ B

0

f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj.

After further simplification, we obtain a system of two equations in C1 and C2:

− C1
1

κ− 1
eB(κ−1) + C2

1

κ+ 1
e−B(κ+1)

+
eB(κ−1)

2κ
(κ+ 1)

∫ B

0

f̄ ′(j)e−κj dj +
e−B(κ+1)

2κ
(κ− 1)

∫ B

0

f̄ ′(j)eκj dj = 0,

and
C1

κ+ 1
=

C2

κ− 1
.
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Therefore, solving these two equations,

C1 =
1

2κ

eB(κ−1)(κ+ 1)2(κ2 − 1)
∫ B

0
f̄ ′(j)e−κj dj + e−B(κ+1)(κ+ 1)2(κ− 1)2

∫ B
0
f̄ ′(j)eκj dj

(κ+ 1)2eB(κ−1) − (κ− 1)2e−B(κ+1)
,

and

C2 =
1

2κ

eB(κ−1)(κ+ 1)2(κ− 1)2
∫ B

0
f̄ ′(j)e−κj dj + e−B(κ+1)(κ2 − 1)(κ− 1)2

∫ B
0
f̄ ′(j)eκj dj

(κ+ 1)2eB(κ−1) − (κ− 1)2e−B(κ+1)
.

To get candidate coefficients whose support is not necessarily bounded, we send B to
infinity and get

C1 → C∞1 :=
κ2 − 1

2κ

∫ ∞
0

f̄ ′(j)e−κj dj, (31)

and

C2 → C∞1 :=
(κ− 1)2

2κ

∫ ∞
0

f̄ ′(j)e−κj dj. (32)

Thus, a candidate for U is

U(τ) = C∞1 e
κτ + C∞2 e

−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds.

We plug in the expression of U in (26) which yields the candidate for uk:

uk(τ) = C∞1
βkγ

2

σ2
k(κ

2 − 1)
eκτ+C∞1

βkγ
2

σ2
k(κ

2 − 1)
e−κτ−f

′
k(τ)

σ2
k

−βkγ
2

σ2
kκ

∫ τ

0

sinh(κ(τ−s))f̄ ′(s) ds,

(33)
and after simplification,

uk(τ) =
βkγ

2

σ2
kκ

(
sinhκτ + κ coshκτ

1 + κ

∫ ∞
0

e−κs df̄(s)−
∫ τ

0

sinhκ(t− s) df̄(s)

)
−f

′
k(τ)

σ2
k

,

(34)

Proof of integrability. We show that every uk defined by Equation (34) is inte-
grable and square-integrable. To do so, we have to show that

(sinhκt+ κ coshκt)

∫ ∞
0

e−κsh(s) ds− (1 + κ)

∫ t

0

sinhκ(t− s)h(s) ds (35)
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is integrable and square-integrable whenever h and h2 are. We note that (35) is linear
in h, so that it suffices to show that its positive and negative parts are integrable.
Hence, without loss, we assume that h ≥ 0.

After re-arranging the terms, (35) is equal to

1

2
(κ+ 1)

(
eκt
∫ ∞
t

e−κsh(s) ds+ e−κt
∫ t

0

eκsh(s) ds

)
+

1

2
(κ− 1)e−κt

∫ ∞
0

e−κsh(s) ds.

(36)
Thus, (35) is nonnegative, and showing the integrability of (35) reduces to showing
that the integral of (35) converges on [0,+∞).

It is readily verified by differentiation that (35) is the derivative of

coshκt+ κ sinhκt

κ

∫ ∞
0

e−κsh(s) ds−1 + κ

κ

∫ t

0

coshκ(t−s)h(s) ds+
1 + κ

κ

∫ t

0

h(s) ds.

We must show that this expression converges as t→∞. Since by assumption, the
last term is convergent, it suffices to show that

(coshκt+ κ sinhκt)

∫ ∞
0

e−κsh(s) ds− (1 + κ)

∫ t

0

coshκ(t− s)h(s) ds

converges. Further, since

coshκt+ κ sinhκt =
κ+ 1

2
eκt − κ− 1

2
e−κt, and

coshκ(t− s) =
e−κ(t−s)

2
+
eκ(t−s)

2
,

it suffices to show that

(κ+ 1)eκt
∫ ∞

0

e−κsh(s) ds− (1 + κ)

∫ t

0

eκ(t−s)h(s) ds = (κ+ 1)

∫ ∞
t

e−κ(s−t)h(s) ds

converges, which is immediate from the integrability of h. Thus, (35) is integrable.
Next, to show that (36) is square-integrable, we show that

eκt
∫ ∞
t

e−κsh(s) ds (37)

is square-integrable. As square-integrable functions are closed under additivity, and
h is integrable, (37) is the only non-trivial term of (36) for which we must show
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square-integrability. By the Cauchy-Schwarz inequality,(∫ ∞
t

e−κsh(s) ds

)2

≤
(∫ ∞

t

e−κsh2(s) ds

)(∫ ∞
t

e−κs ds

)
= κ−1e−κt

∫ ∞
t

e−κsh2(s) ds.

Thus,∫ τ

0

(
eκt
∫ ∞
t

e−κsh(s) ds

)2

dt ≤ κ−1

∫ τ

0

eκt
∫ ∞
t

e−κsh2(s) ds dt

=
1

κ2

∫ ∞
τ

e−κ(s−τ)h2(s) ds− 1

κ2

∫ ∞
0

e−κsh2(s) ds

+
1

κ2

∫ τ

0

h2(t) dt,

where the equality follows from integration by parts. Convergence is immediate by
square-integrability of h.

Proof that the educated guess is correct. In this part, we show that the
candidate for {uk}k derived in the first step defines valid coefficients for the rating
process.

Let uk be defined by (34), or, equivalently, by (33). Let

Ỹt = E∗[Yt] +
K∑
k=1

∫
s≤t

uk(t− s)(dSk,s − αkA∗s ds).

Note that, if we have Cov[Yt − Ỹt, Sk,t−τ ] = 0 for every τ and k, then Yt and Sk,t−τ
are independent for every τ and k. As Yt − Ỹt is measurable with respect to the
information generated by the past signals Sk,t−τ , τ ≥ 0, k = 1, . . . , K, it implies that

Var[Yt − Ỹt] = 0 and thus Yt = Ỹt.

In the remainder of the proof, we show that Cov[Yt − Ỹt, Sk,t−τ ] = 0 for every
τ ≥ 0 and every k = 1, . . . , K.
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Let gk(τ) = Cov[Ỹt, Sk,t−τ ]. Then we have:

gk(τ) =
K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−τ ]

= σ2
k

∫ ∞
τ

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ ∞
τ

U(s)e−|s−j| dj ds,

and so

g′k(τ) = −σ2
kuk(τ)− βkγ

2

2

∫ ∞
0

U(s)e−|τ−s| ds.

So, replacing uk by its definition in (33),

g′k(τ) = f ′k(τ)− C1
βkγ

2

κ2 − 1
eκτ − C2

βkγ
2

κ2 − 1
e−κτ

+
βkγ

2

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds

− βkγ
2

2

∫ ∞
0

U(s)e−|τ−s| ds.

(38)

Further, multiplying (33) by βk and summing over k, we have

U(τ) = C∞1 e
κτ + C∞2 e

−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds.

It holds that ∫ ∞
0

U(s)e−|τ−s| ds = lim
B→∞

∫ B

0

U(s)e−|τ−s| ds.

Thus,∫ B

0

U(s)e−|τ−s| ds = C∞1

∫ B

0

eκse−|τ−s| ds+ C∞2

∫ B

0

e−κse−|τ−s| ds−
∫ B

0

f̄ ′(s)e−|τ−s| ds

− κ2 − 1

κ

∫ B

0

∫ s

0

sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds.
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Then, for any B > τ , we write∫ B

0

∫ s

0

sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds

= − κ

κ2 − 1

∫ B

0

f̄ ′(j)e−|τ−j| dj

+
e−B+τ

κ2 − 1

∫ B

0

f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj

− 2

κ2 − 1

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj.

Using the expressions for C∞1 and C∞2 given by (31) and (32) we get that

C∞1

[
eB(κ−1)+τ

κ− 1
− e−τ

κ+ 1

]
+ C∞2

[
−e
−B(κ+1)+τ

κ+ 1
+

e−τ

κ− 1

]
+
κ2 − 1

κ

κ

κ2 − 1

∫ B

0

f̄ ′(j)e−|τ−j| dj

− κ2 − 1

κ

e−B+τ

κ2 − 1

∫ B

0

f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj

converges to 0 as B →∞. Therefore,∫ ∞
0

U(s)e−|τ−s| ds =
2

κ

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj

+ C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
+ C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
.

(39)
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Plugging the expression of (39) in (38) yields

g′k(τ) = f ′k(τ)− C∞1
βkγ

2

κ2 − 1
eκτ − C∞2

βkγ
2

κ2 − 1
e−κτ

+
βkγ

2

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds

− βkγ
2

κ

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj

− βkγ
2

2
C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
− βkγ

2

2
C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
= f ′k(τ).

So g′k = f ′k. As fk(0) = gk(0) = 0, it follows that f = g. Uniqueness of the coefficients
(up to measure zero sets) is immediate by linearity, as different coefficients on a set
of positive measure yield a different joint distributions over ratings and signals.

C.7 Proof of Theorem 2.12

Following Equation (10) of Section 2.4, we have the following linear representation
of ν,

νt =
K∑
k=1

∫
s≤t

uk(t− s) (dSk,s − αkA∗s ds) ,

with

uk(τ) := (κ− 1)
βk

σ2
kmβ

e−κτ .

We apply Lemma 2.11 and Equation (7), and get equilibrium action A given by

c′(At) = (κ− 1)
K∑
k=1

αkβk
σ2
kmβ

∫ ∞
0

e−κτe−rτ dτ

= (κ− 1)
mαβ

mβ

1

κ+ r
.
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C.8 Proof of Lemma 2.14

Let F be a public or confidential information structure. Let Y be a rating process
proportional to the market belief, and let A be the (stationary) effort level it induces.

To show that any action in the range [0, A] can be attained in the equilibrium of
an alternative public/confidential information structure, we modify the rating process
that achieves A to depress incentives to any desired extent. To do so, we use a source
of independent noise. In addition to the K signals described in the model, we include
one additional signal indexed by K + 1 that is entirely uninformative about both the
agent’s action and the agent’s ability. Let us assume SK+1 is a two-sided standard
Brownian motion.

Consider the two-sided process

ξt =

∫
s≤t

e−(t−s) dSK+1,s.

From Proposition 2.11, if Y has linear filter {uk}k, the equilibrium action A in both
the public and confidential cases is the solution to

c′(A) =
Cov[Yt, θt]

Var[Yt]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ.

Consider the alternative rating process Ŷ = (1 − a)Y + aξ, for some constant

a ∈ [0, 1]. Note that Ŷ is a well-defined rating process for the information generated
by the K + 1 signals.

Consider the information structure generated by the rating process Ŷ , and the
induced equilibrium action, Â. We have

c′(Â) =
Cov[Ŷt, θt]

Var[Ŷt]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ

=
(1− a) Cov[Yt, θt]

(1− a)2 Var[Yt] + a2 Var[ξ]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ

=
1− a

(1− a)2 + a2 Var[ξ]/Var[Yt]
c′(A).

By varying a over the interval [0, 1], c′(Â) covers the entire interval [0, c′(A)], and

thus Â covers the interval [0, A].
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Besides, as Y and ξ are independent, for τ ≥ 0,

Cov[Ŷt, Ŷt+τ ] = (1− a)2 Cov[Yt, Yt+τ ] + a2 Cov[ξt, ξt+τ ].

By Itô’s isometry, we get

Cov[ξt, ξt+τ ] =

∫ ∞
0

e−se−(s+τ) ds =
1

2
e−τ = Var[ξt]e

−τ .

By Lemma 2.8,
Cov[Yt, Yt+τ ] = Var[Yt]e

−τ .

Thus,

Cov[Ŷt, Ŷt+τ ] = ((1− a)2 Var[Yt] + a2 Var[ξt])e
−τ = Var[Ŷt]e

−τ ,

and invoking Lemma 2.8 a second time, we get that Ŷ is proportional to the market
belief associated with a public information structure. Hence, Â also denotes the
equilibrium action under that public information structure.

It follows that under both the public and confidential information structures, any
action in the interval [0, A] can be induced in equilibrium.

C.9 Proof of Lemma 2.15

We note that θt and µt are jointly normal, and as µt is the market belief,
Cov[θt, µt] = Var[µt] by Lemma 2.7, so applying the projection formulas:

Var[θt | µt] = Var[θt]−
Cov[θt, µt]

2

Var[µt]

=
γ2

2
−Var[µt].

D Proofs of Section 3

D.1 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. The proof proceeds in two parts. In the
first part, we provide a candidate optimal rating by deriving first-order conditions
using a variational argument. In the second part, we verify the optimality of the
candidate.
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D.1.1 Part I: First-Order Conditions

Throughout this subsection, we use the following shorthand notation:

U(t) :=
K∑
k=1

βkuk(t),

V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt,

V0 :=

∫ ∞
0

V (t)e−rt dt.

We seek to maximize c′(A) (where A is the stationary equilibrium action of the agent)
among confidential information structures generated by rating processes with mean
zero and with linear filter u = {uk}k, that in addition satisfy the normalization
condition that the rating has variance one.

Any such rating process Y can be written

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkA∗s ds] .

We note that, by Itô’s isometry,

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

K∑
k=1

K∑
k′=1

∫
j≤t

∫
i≤t
βkβk′uk(t−i)uk′(t−j) Cov[θi, θj] di dj,

and since θ is a stationary Ornstein-Uhlenbeck process with mean-reversion rate 1
and scale σ, we have Cov[θt, θs] = γ2e−|t−s|/2, so that

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj.

Applying Lemma 2.11, the problem of maximizing c′(A) among rating processes
that satisfy the normalization conditions thus reduces to choosing a linear filter u
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that maximizes [∫ ∞
0

V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

subject to

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj +
K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt = 1.

This optimization problem is a problem of calculus of variations with isoperimetric
constraints. Assume there exists a solution u∗ to this optimization problem, where
u∗ is twice differentiable, integrable, and square-integrable.

Let
L(u, λ0) = F (u) + λ0G(u),

where F and G are defined as

F (u) =

[∫ ∞
0

V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

and

G(u) =
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj +
K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt.

The function L defines an unconstrained maximization problem for every given
λ0. It corresponds to the Lagrangian of the constrained optimization problem up to
an additive, u-independent term, where the coefficient λ0 is a Lagrangian multiplier.
However, we do not need to invoke the Theorem of Lagrange Multipliers and its
extensions to isoperimetric problems in the calculus of variations. Instead, we will look
for a constant λ0 that yields a unique candidate of the unconstrained maximization
problem that satisfies the Euler-Lagrange first-order conditions, and, in addition,
satisfies the original constraint. In the remainder of this proof, we refer to the
unconstrained optimization problem as the relaxed optimization problem, as opposed
to the original (constrained) maximization problem.

Observe that we can write both F and G as a double integral:

F (u) =

∫ ∞
0

∫ ∞
0

V (i)U(j)e−rie−j di dj,
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while

G(u) =

∫ ∞
0

∫ ∞
0

(
γ2

2
U(i)U(j)e−|j−i| di dj +

K∑
k=1

σ2
kuk(j)

2e−i

)
di dj.

This allows us to apply the results of Proposition B.1. Assume there exists a λ∗0 < 0
such that u = u∗ maximizes u 7→ L(u, λ∗0).52

Proposition B.1 gives the first-order condition derived from the Euler-Lagrange
equations: if λ0 = λ∗0 and u = u∗, then for all k and all t, we have Lk(t) = 0, where
we define

Lk(t) := αkU0e
−rt + βkV0e

−t + λ0γ
2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λ0σ
2
kuk(t) = 0, (40)

and where U0, V0, U and V are defined as above as an implicit function of u.
We differentiate the above equation in the variable t twice, and get, for all k and

all t:

αkU0r
2e−rt + βkV0e

−t − 2λ0γ
2βkU(t) + λ0γ

2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λ0σ
2
ku
′′
k(t) = 0.

(41)

The difference between (40) and (41) is

(1− r2)αkU0e
−rt + 2λ0γ

2βkU(t) + 2λ0σ
2
k(uk(t)− u′′k(t)) = 0. (42)

In particular, multiplying (42) by βk/σ
2
k and summing over k, we get a linear differ-

ential equation that U(t) must satisfy, namely,

(1− r2)mαβU0e
−rt + 2λ0γ

2mβU(t) + 2λ0(U(t)− U ′′(t)) = 0,

where we recall that mβ =
∑

k β
2
k/σ

2
k, mαβ =

∑
k αkβk/σ

2
k, and mα =

∑
k α

2
k/σ

2
k.

The characteristic polynomial has roots ±
√

1 + γ2mβ = ±κ. A particular solution
is Ce−rt, for some constant C. If the solution is admissible, it is bounded, hence we

52In-so-far as we find a coefficient λ∗0 that yields a unique candidate which is shown to solve the
original problem, we need not prove uniqueness of the coefficient. However, it is easily seen that
λ∗0 < 0 is a necessary second-order condition. The optimum marginal cost, if it exists, is strictly
positive, i.e., F (u∗) > 0, since the optimal solution does at least as well as transparency (giving all
information included in all signals to the market) and transparency induces a positive equilibrium
effort by our assumption that mαβ > 0. This implies λ∗0 < 0 as F (u∗) > 0 and G(u∗) = 1.
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get
U(t) = C1e

−rt + C2e
−κt,

for some constants C1 and C2.
For such U , uk satisfies the linear differential equation (42), whose characteristic

polynomial has roots ±1. A particular solution is a sum of scaled time exponentials
e−rt and e−κt. As every uk is bounded, we must consider the negative root of the
characteristic equation, and we get that

uk(t) = D1,ke
−rt +D2,ke

−κt +D3,ke
−t, (43)

for some constants D1,k, D2,k, D3,k.

Determination of the constants. We have established that the solution belongs
to the family of functions that are sums of scaled time exponentials. We now solve
for the constant factors.

We plug in the general form of uk from (43) in the expression for Lk, and get:

Lk = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,

where the coefficients L1,k, L2,k, L3,k depend on the primitives of the model and the
constants D1,k, D2,k, D3,k. The condition that Lk = 0 implies that L1,k = L2,k =
L3,k = 0.

First, note that U(t) does not include a term of the form e−t, which implies that

K∑
k=1

βkD3,k = 0. (44)

We also observe that

L2,k = 2λ0σ
2
kD2,k −

2γ2λ0βk
∑K

i=1 βiD2,i

κ2 − 1
,

so that L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (45)
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for some multiplier a. Next, we use (45) together with (44) to show that

L3,k =
βk
2r

K∑
i=1

αiD1,i +
βk
r + 1

K∑
i=1

αiD3,i +
γ2λ0βk
r − 1

K∑
i=1

βiD1,i + 2λ0σ
2
kD3,k

+
aγ2λ0βkmβ

κ− 1
+
aβkmαβ

κ+ r
,

and L3,k = 0 for every k implies that D3,k = 0 for all k. The equation L3,k/βk = 0 is
linear in λ0, and then simplifies to:

λ0

(
γ2

r − 1

K∑
i=1

βiD1,i +
aγ2mβ

κ− 1

)
+

1

2r

K∑
i=1

αiD1,i +
amαβ

κ+ r
= 0. (46)

Next, we use (45) together with (44) to show that

L1,k = 2λ0σ
2
kD1,k +

aαkmβ

κ+ 1
+

((r − 1)αk − 2γ2λ0βk)

r2 − 1

K∑
i=1

βiD1,i,

and, since L1,k = 0 must hold for every k, we get, since λ0 6= 0,

σ2
kD1,k =

(
γ2βk
r2 − 1

− αk
2λ0 + 2λ0r

) K∑
i=1

βiD1,i −
aαkmβ

2κλ0 + 2λ0

. (47)

We multiply (47) by βk/σ
2
k, and sum over k to get

[
(κ+ 1)

(
(r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ

)] K∑
i=1

βiD1,i = −a
(
r2 − 1

)
mαβmβ.

As by assumption r 6= 1, the right-hand side is non-zero, which implies(
(r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ

)
6= 0, (48)

and thus

K∑
i=1

βiD1,i =
−a (r2 − 1)mαβmβ

(κ+ 1) ((r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ)
. (49)
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Similarly, if we multiply (47) by αk/σ
2
k and sum over k, we get

K∑
i=1

αiD1,i =

(
γ2mαβ

r2 − 1
− mα

2λ0 + 2λ0r

) K∑
i=1

βiD1,i −
amαmβ

2κλ0 + 2λ0

=
amβ

(
mα (γ2mβ − r2 + 1)− γ2m2

αβ

)
(κ+ 1) ((r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ)

.

Putting together (46), (49) and (D.1.1) yields a quadratic equation in λ0 of the form

Aλ2
0 +Bλ0 + C = 0, (50)

which, after simplification and using that κ2 = 1 + γ2mβ, gives

A = mβ
κ+ r

1− κ,

B =
mαβ (γ2mβ (−2κ2 + r2 + 1) + (κ2 − 1) (r2 − 1))

γ2 (κ2 − 1) (γ2mβ − r2 + 1)

= − 2

γ2
mαβ,

C =
mαmβ(κ+ r) (r2 − κ2) +m2

αβ (γ2mβ(κ+ r)− 2(κ+ 1)(r − 1)r)

4γ2(κ+ 1)r (r2 − κ2)

=
(κ− 1)mα(κ+ r)2 − γ2m2

αβ(κ+ 2r − 1)

4γ4r(κ+ r)
.

As κ > 1, we immediately have A < 0. Also, C has the sign of

(κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)γ2

= (κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)m−1

β (κ2 − 1).

By the Cauchy-Schwarz inequality, mαmβ ≥ m2
αβ, so:

(κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)m−1

β (κ2 − 1)

≥ mα

{
(κ− 1)(κ+ r)2 − (κ− 1 + 2r)(κ2 − 1)

}
= mα(κ− 1)(1− r)2 > 0.

Hence C is positive, A · C is negative, and Equation (50) has two roots, one positive
and one negative. Besides, as mαβ > 0 by assumption, B < 0. As we have already
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established that λ0 must be negative, we conclude that

λ0 =
−B +

√
B2 − 4AC

2A
.

Pulling out the term
∑

i βiD1,i in (47) using (49), we express D1,k as a solution of
the linear equation. It follows that

D1,k = a
mβ

[
γ2mαβ

βk
σ2
k
− (κ2 − r2)αk

σ2
k

]
(1 + κ) [2λ0(κ2 − r2) + (1− r)mαβ]

,

where the denominator is non-zero by (48). We can simplify those expressions further.
We define

λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆,

with
∆ = (r + κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ.

Then, D1,k = a
√
rck/λ with

ck := (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

.

Note that, as a rating process induces the same effort level up to a scaling of the
rating process, any multiplier a yields the same equilibrium action. Thus, a candidate
optimal rating process for the original optimization problem is given by the linear
filter

uk(t) = ck

√
r

λ
e−rt +

βk
σ2
k

e−κt, ∀k.

If

a =
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

2
√

∆mβ(κ− r)
,

then the conditions of Lemma 2.7 are satisfied, so that the associated rating process
is a market belief for a confidential information structure.

D.1.2 Part II: Verification

We now verify that the candidate rating process of Section D.1.1 is optimal. To so
so, we consider an auxiliary principal-agent setting. We refer to the principal-agent
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setting as the auxiliary setting, and to the main setting detailed in the main body of
the paper as the original setting.

Auxiliary setting. In the auxiliary setting, there is a principal (she) and an agent
(he). Time t ≥ 0 is continuous and the horizon infinite. The agent is as in the
original model. He exerts private effort (his action), has an exogenous random ability,
produces output X and generates signals S1 = X, S2, . . . , SK over time. The various
laws of motion, for the agent’s ability, output, signals, are as in the original setting.
The filtration G captures all information of the signal processes as in the original
setting. The agent’s information at time t continues to be Gt, as defined in Section 2.1.
The agent’s strategy, which specifies his private action at every time as a function of
his information, continues to be a bounded G-adapted process A.

However, the agent’s payoff is not defined as in Section 2.1. In the auxiliary
setting, the agent is not paid by a market, but by a principal. Informally, over
interval [t, t+ dt), the principal transfers the amount Yt dt to the agent. Here Y is the
stochastic process that determines the transfer rate (payments may be negative). The
agent is risk-neutral, he discounts future payoffs at rate r > 0, and his instantaneous
cost of effort is c(·), as in the original setting. The agent’s total payoff is∫ ∞

0

e−rt (Yt − c(At)) dt.

Given Y , the agent chooses a strategy A that maximizes his expected discounted
payoff:

A ∈ argmax
Â

E

[∫ ∞
0

e−rt
(
Yt − c(Ât)

)
dt

∣∣∣∣ G0

]
, (51)

where the expectation is under the law of motion defined by strategy Â. A strategy
that satisfies (51) is called a best-response to the transfer process Y .

In the auxiliary setting, the principal combines features of both the market and
the intermediary in the original setting. As the market, the principal sets the transfer
to the agent, and as the intermediary, she observes all the signals the agent generates
over time, i.e., she knows Gt at time t. The principal also recommends a strategy for
the agent, denoted A∗—the analogue of the market conjecture in the original setting.
She is risk-neutral and has discount rate ρ ∈ (0, r). Her total payoff is∫ ∞

0

e−ρtHt dt.
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For now, we do not need to specify the instantaneous payoff process H. We specialize
H below as we discuss the principal’s optimization program.

A contract for the principal is a pair (A∗, Y ). The contract is incentive compatible
if A∗ is a best-response to Y .

For the most part, we focus on stationary linear contracts. These are contracts
whose transfer processes Y are affine in the past signal increments, and are stationary:
there exist uk, k = 1, . . . , K, such that, up to an additive constant,

Yt =
K∑
k=1

∫
s≤t

uk(t− s) dSk,s.

The principal wants to maximize her own payoff over all contracts that are incentive
compatible. This implies that there are two optimal control problems, one embedded
into the other. First, we solve the agent’s problem, and then turn to the principal’s
problem.

The Agent’s Problem. We first state conditions of incentive compatibility as
in the main body of the paper. The proof follows the same arguments used in
Lemma 2.11.

Lemma D.1 Let (A, Y ) be a stationary linear contract. The contract is incentive
compatible if, and only if,

c′(A) =
K∑
k=1

αk

∫ ∞
0

u(t)e−rt dt.

As common in principal-agent problems, to solve the principal’s problem using a
dynamic programming approach, we express incentive compatibility in terms of the
evolution of the agent’s continuation value, or equivalently, the agent’s continuation
transfer.

In the sequel, as in the main body of the paper, we let νt = E[θt | Gt] be the
agent’s best current estimate about his ability.

Lemma D.2 Let (A, Y ) be a stationary linear contract. If the contract is incentive
compatible, then there exists constants C1, . . . , CK such that the agent’s continuation
transfer process J defined by

Jt = E

[∫
s≥t

e−r(s−t)Ys ds

∣∣∣∣ Gt] ,
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(where the expectation is taken with respect to the law of motion induced by strategy
A) satisfies the SDE

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

and the two transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Gt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Gt] = 0,

where ξβ :=
∑K

k=1 βkCk. In addition, the equilibrium action is defined by c′(At) =

ξα :=
∑K

k=1 αkCk.

Note that transversality is with respect to the principal’s discount rate, not the
agent’s.
Proof. Consider a stationary linear contract (A, Y ), where

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] .

Let

JT = E

[∫
t≥T

e−r(t−T )Yt dt

∣∣∣∣ GT] .
We compute∫

t≥T
e−r(t−T )Yt dt =

K∑
k=1

∫
t≥T

∫
s≤T

e−r(t−T )uk(t− s) [dSk,s − As ds] dt

+
K∑
k=1

∫
s≥T

∫
t≥s

e−r(t−T )uk(t− s) dt [dSk,s − As ds] .

Note that, for t ≥ T , E[θt | GT , θT ] = E[θt | θT ] = e−(t−T )θT , so using the law of
iterated expectations, E[θt | GT ] = E[E[θt | GT , θT ] | GT ] = E[e−(t−T )θT | GT ] =
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e−(t−T )νT . Hence, we can compute JT as

JT =
K∑
k=1

∫
t≥T

∫
s≤T

e−r(t−T )uk(t− s) [dSk,s − As ds] dt

+
K∑
k=1

βk

∫
s≥T

∫
t≥s

e−r(t−T )uk(t− s)e−(s−T )νT dt.

=

∫
t≥T

∫
s≤T

e−r(t−T )u(t− s) [dSk,s − As ds] dt

+
νT

1 + r

K∑
k=1

βk

∫
τ≥0

e−rτuk(τ) dτ.

Now, let us define the constants C1, . . . , CK as

Ck =

∫
τ≥0

e−rτuk(τ) dτ.

Recall that the lemma introduces

ξα :=
K∑
k=1

αkCk, ξβ :=
K∑
k=1

βkCk.

Then

dJT =
ξβ

1 + r
dνT − YT dT +

K∑
k=1

Ck [dSk,T − αkAT dT ] + rJT dT − r

1 + r
ξβνT dT

=
ξβ

1 + r
dνT + (rJT − YT ) dT +

K∑
k=1

Ck

[
dSk,T −

(
αkAT +

r

1 + r
βkνt

)
dT

]
.

After simplification and using dνt = −κνt dt+ γ2

1+κ

∑K
k=1

βk
σ2
k

[dSk,t − αkAt dt], we get

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] .

That c′(At) = ξα follows from Lemma D.1.
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Lemma D.3 Let (A, Y ) be a stationary linear contract. Suppose J and Ĉ1, . . . , ĈK
are G-adapted processes, and that J satisfies the SDE

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

(52)
and the two transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Gt] = 0, and (53)

lim
τ→+∞

E[e−ρτJ2
t+τ | Gt] = 0, (54)

where ξ̂β :=
∑

k βkĈk.

Then, Jt is the agent’s continuation transfer E
[∫

s≥t e
−r(s−t)Ys ds

∣∣∣ Gt], the contract is

incentive compatible, and the agent’s equilibrium action satisfies c′(At) =
∑

k αkĈk.

Proof. We fix a stationary linear contract (A, Y ). Let J and Ĉ1, . . . , ĈK be G-adapted
processes such that J satisfies (52) subject to (53) and (54).

Integrating J yields

Jt − e−rτJt+τ =∫ t+τ

t

e−r(s−t)

[
Ys −

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt]

]
,

and using that J is G-adapted, together with the law of iterated expectations, we get

Jt − E
[
e−rτJt+τ

∣∣ Gt]
= E

[∫ t+τ

t

e−r(s−t)Ys

∣∣∣∣ Gt]
+

K∑
k=1

E

[∫ t+τ

t

e−r(s−t)
(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt]

∣∣∣∣ Gt]
= E

[∫ t+τ

t

e−r(s−t)Ys

∣∣∣∣ Gt] .
Taking the limit as τ → +∞ and applying the transversality condition (53), we get
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J = V , where V is defined as the agent’s continuation transfer,

Vt := E

[∫ ∞
t

e−r(s−t)Ys

∣∣∣∣ Gt] .
As in the proof of Lemma D.2, for any stationary linear contract—incentive compatible
or not—and an arbitrary strategy A of the agent, we have that

dVt = [rVt − Yt] dt+
K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

with Ck :=
∫
τ≥0

e−rτuk(τ) dτ and ξβ :=
∑K

k=1 βkCk. That J = V implies Ĉk = Ck,
and thus by Lemma D.1, the contract is incentive compatible.

The Principal’s Problem. The problem for the principal is to choose a contract
(A, Y ) such that two conditions are satisfied:

1. The process Y maximizes

E

[∫ ∞
0

e−ρtHt dt

∣∣∣∣ G0

]
.

2. The contract is incentive compatible.

In the remainder of this proof, we consider the following instantaneous payoff for the
principal:

Ht := c′(At)− φYt(Yt − νt), (55)

where

φ :=

√
∆√

r(κ− 1)(r + κ)
> 0, (56)

and ∆ := (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ, as defined in Section 3.2.
Remarks on the choice of the principal’s payoff: In the original setting, the

intermediary seeks to maximize the agent’s discounted output. In a stationary setting,
it is equivalent to maximizing the agent’s discounted marginal cost. The marginal
cost is the first term in the right-hand side of (55). However, in the original setting,
the agent’s incentives are driven by the market’s belief process. By Proposition 2.6,
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the market belief process µ satisfies

µt = E[θt | µt] = E[νt | µt] =
Cov[µt, νt]

Var[µt]
µt,

using the law of iterated expectations and the projection formula for jointly normal
random variables. Thus Cov[µt, νt] = Var[µt]. To make the principal’s payoff
in the auxiliary setting and the intermediary’s objective of the original setting
comparable, we include a penalty term φµt(νt − µt) in the principal’s payoff. Note
that E [Yt(νt − Yt)] = Cov[Yt, νt]−Var[Yt]. As a Lagrangian multiplier, the parameter
φ captures the tradeoff between the maximization of the agent’s marginal cost and
the penalty term, so as to constrain the transfer to be close to a market belief. Its
specific value (given in (56)) is picked using the conjectured optimal rating derived in
the first part of the proof.

The principal’s problem is an optimal control problem with two natural state
variables: the agent’s estimate of his ability, ν, and the agent’s continuation transfer
J . The state ν appears explicitly in the principal’s payoff. Recall that ν can be
expressed in closed form, namely,

νt =
γ2

1 + κ

K∑
k=1

βk
σ2
k

∫
s≤t

e−κ(t−s) [dSk,s − αkAs ds] .

Thus, for t ≥ 0, the state variable ν is determined by its initial value,

ν0 =
γ2

1 + κ

K∑
k=1

βk
σ2
k

∫
s≤0

eκs dSk,s,

and the equation of evolution of ν,

dνt = −κνt dt+
γ2

1 + κ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

The other state J does not appear explicitly in the principal’s payoff, but must be
controlled to ensure that the transversality conditions are satisfied—by the lemmas D.2
and D.3, these transversality conditions are necessary and sufficient to ensure that
the contract is incentive compatible.

The principal’s problem can then be restated as follows: the principal seeks to
find a stationary linear contract (A, Y ), along with processes Ĉk, k = 1, . . . , K such
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that, for all t, the principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)(c′(At)− φYt(Yt − νt)) ds

∣∣∣∣ Gt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α, where ξ̂α :=
∑

k αkĈk.

2. The evolution of the agent’s belief ν is given by

dνt = −κνt dt+
γ2

1 + κ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the agent’s continuation transfer J is given by

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

where ξ̂β :=
∑

k βkĈk.

4. The following transversality conditions hold

lim
τ→+∞

E[e−ρτJt+τ | Gt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Gt] = 0.

To solve the principal’s problem, we use dynamic programming. The principal
maximizes

E

[∫ ∞
t

ρe−ρ(s−t)(ξα,t − φYt(Yt − νt)) ds

∣∣∣∣ Gt]
for every t, subject to the evolution of the state variables ν and J , and the transver-
sality conditions on J . Without the restriction to stationary linear transfer processes,
the dynamic programming problem is standard. We solve the principal’s problem
without imposing that restriction, and verify ex post that the optimal transfer in this
relaxed problem is indeed stationary linear.

Assume the principal’s value function V as a function of the two states J and
ν is C1(R2). By standard arguments, an application of Itô’s Lemma yields the
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Hamilton-Jacobi-Bellman (HJB) equation for V :

ρV = sup
y,c1,...,cK

ρξ̂α − ρφy(y − ν) + (rJ − y)VJ − νtVν + γ2κ− 1

κ+ 1
Vνν

+
(κ+ r)γ2ξ̂β

(1 + κ)(1 + r)
VνJ +

∑
k

(
ξ̂β

γ2

(1 + κ)(1 + r)

βk
σk

+ σkck

)2

VJJ ,

(57)

where to shorten notation we have used the subscript notation for the (partial)

derivatives of V , and have abused notation by using ξ̂α and ξ̂β to denote
∑

k αkck
and

∑
k βkck, respectively.

We conjecture a quadratic value function V of the form

V (J, ν) = a0 + a1J + a2ν + a3Jν + a4J
2 + a5ν

2. (58)

Using the general form of the conjectured value function (58), we can solve for
y, c1, . . . , cK using the first-order condition. We can then plug these variables expressed
as a function of the coefficients ai’s back into (57), which allows to uniquely identify
the coefficients.53 We obtain

a0 = −
m2
αβ(κ− 1)(1 + 2r + κ)

4mβ(κ+ r)2(2r − ρ)φ
+
mαβ(κ− 1)

2mβ(κ+ r)
+

(κ− 1)2φ

2mβ(2 + ρ)
+

mα

4(2r − ρ)φ
,

a1 = 0,

a2 = 0,

a3 =
(2r − ρ)ρφ

1 + r
,

a4 = −(2r − ρ)ρφ,

a5 =
ρ(1− r + ρ)2φ

4(1 + r)2(2 + ρ)
.

It is readily verified that the second-order condition is equivalent to a5 < 0, and so it
is satisfied for all ρ < r.

53The details of the identification are lengthy and omitted.
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After simplification, we obtain the following expressions for y and ck:

y(J, ν) = (2r − ρ)J +
1− r + ρ

2(1 + r)
ν, and (59)

ck(J, ν) =
αk

2σ2
k(2r − ρ)φ

− βk(κ− 1) (mαβ(1 + 2r + κ)− (r + κ)(2r − ρ)φ)

2σ2
kmβ(r + κ)2(2r − ρ)φ

.

Thus, we obtain that the optimal processes Ĉk are constant, and we obtain the
optimal transfer at time t, Yt as a linear function of the state variables Jt, νt:

Yt =

[
2r − ρ
1−r+ρ
2(1+r)

]
·
[
Jt
νt

]
. (60)

We insert the expression of the optimal control Yt back into the equations that
determine the evolution of the state variables. Doing so yields a linear two-dimensional
stochastic differential equation for the state variables, namely

d

[
Jt
νt

]
= M

[
Jt
νt

]
+

K∑
k=1

ξ̂β,t
γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

κ− 1

mβ

βk
σ2
k

 [dSk,t − αkAt dt] ,

where

M :=

−r + ρ −ξ̂β
κ+ r

1 + r
− 1− r + ρ

2(1 + r)
0 −κ

 .
The matrix M has two eigenvalues, −(r − ρ) and −κ, which are generically distinct,
and negative for ρ < r. We can write[

Jt
νt

]
=

K∑
k=1

∫
s≤t

(
fke
−(r−ρ)(t−s) + gke

−κ(t−s)) [dSk,t − αkAt dt] ,
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where fk and gk are two-dimensional vectors that can be expressed in closed form as:

fk =

[
mβ(r+κ)(r−κ−ρ)

2mβ(r+κ)(2r−ρ)(r−κ−ρ)φ
αk
σ2
k

+
mαβ(κ−1)(1+κ+ρ)

2mβ(r+κ)(2r−ρ)(r−κ−ρ)φ
βk
σ2
k

0

]
, and

gk =

− (κ−1)(mαβ(1+r)2−(r+κ)(2r−ρ)(r−κ−ρ)φ)
2mβ(1+r)(r+κ)(2r−ρ)(r−κ−ρ)φ

βk
σ2
k

κ−1
mβ

βk
σ2
k

 .
Moreover, when we plug the expressions of the state variables into (59), we get a
stationary linear transfer process

Yt =
∑
k

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] ,

with linear filter
uk(τ) = Fke

−(r−ρ)τ +Gke
−κτ ,

where

Fk :=
mβ(r + κ)(r − κ− ρ)

2mβ(r + κ)(r − κ− ρ)φ

αk
σ2
k

+
mαβ(κ− 1)(1 + κ+ ρ)

2mβ(r + κ)(r − κ− ρ)φ

βk
σ2
k

, and

Gk :=
(κ− 1) (mαβ(1 + r) + (κ+ r)(κ− r + ρ)φ)

2mβ(r + κ)(κ− r + ρ)φ

βk
σ2
k

.

The equilibrium action for the agent is stationary and given by

c′(At) =
∆ +mαβ(κ− 1)(r + κ)(2r − ρ)φ

2mβ(r + κ)2(2r − ρ)φ
.

Thus, the contract (A, Y ) just defined is an optimal stationary linear contract for the
principal.

Note that, as ρ→ 0,

c′(At)→
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
,

and {uk}k converges to the linear filter associated with the market belief of the
conjectured optimal rating in the first part of this proof.
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Back to the original model. We now make the connection between the auxiliary
model and the original model, and conclude the verification. We prove by contradiction
that the candidate rating obtained in the first part of this proof is indeed optimal.

We continue to consider the auxiliary model defined in this section. Let (A∗, Y ∗)
be the incentive-compatible contract defined by

c′(A∗) =
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
,

and

Y ∗t =
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

2
√

∆mβ(κ− r)

·
K∑
k=1

∫
s≤t

uck(t− s) [dSk,s − αkA∗s ds] .

Note that Y ∗t is defined as the market belief of the conjectured optimal rating
of the original setting, obtained in Section D.1.1, while A∗ is the corresponding
equilibrium action. Consider an information structure F̂ , generated by some rating
process, that induces a stationary action Â. Let Ŷ := E[θt | F̂t]. Note that (Â, Ŷ )
is a well-defined incentive-compatible stationary linear contract. We show that
c′(A∗) ≥ c′(Â). Let (A(ρ), Y (ρ)) be the optimal incentive-compatible stationary linear
contract defined above, as a function of the discount rate of the principal ρ. Let V (ρ)

be the corresponding principal’s expected payoff.
Note that, for every confidential exclusive information structure F generated by a

rating process, the equilibrium market belief of the original setting, µt = E[θt | Ft],
satisfies Cov[µt, νt] = Var[µt], and thus the principal’s expected payoff for contract

(A∗, Y ∗) is V ∗ := c′(A∗)/ρ, while the principal’s expected payoff for contract (Â, Ŷ )

is V̂ := c′(Â)/ρ.

Then, for every ρ ∈ (0, r), the inequalities ρV (ρ) ≥ ρV̂ = c′(Â) must hold.
However, as ρ→ 0, c′(A(ρ))→ c′(A∗), and the linear filter of Y (ρ) converges pointwise
to the linear filter of Y ∗. Thus, Cov[Y (ρ), νt]−Var[Y (ρ)]→ 0, which in turn implies

that ρV (ρ) → c′(A∗). Hence, c′(A∗) ≥ c′(Â).
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D.2 Proof of Theorem 3.2

We prove Theorem 3.2. As in the proof of Theorem 3.1, we proceed in two parts.
In the first part, we compute a candidate optimal rating using calculus of variations,
while in the second part, we verify the optimality of the candidate using an auxiliary
principal-agent model.

D.2.1 Part I: First-Order Conditions

Recall the shorthand notation of Section D.1.1 that will be used throughout this
proof as well:

U(t) :=
K∑
k=1

βkuk(t),

V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt,

V0 :=

∫ ∞
0

V (t)e−rt dt.

We want to maximize c′(A), with A the stationary equilibrium action of the agent,
among all public information structures generated by some rating process Y that
satisfies the variance normalization Var[Yt] = 1 and that is proportional to the market
belief. Such rating processes can be described by their linear filter u = {uk}k, and
are written as

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] .

As in Section D.1.1, we note that, by Itô’s isometry, for τ ≥ 0,

Cov[Yt, Yt+τ ] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ τ) ds

+
K∑
k=1

K∑
k′=1

∫
i≤t

∫
j≤t+τ

βkβk′uk(t− i)uk′(t+ τ − j) Cov[θi, θj] dj di.

Hence, as Cov[θi, θj] = γ2e−|i−j|/2, after a change of variables in the last term, we
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get

Cov[Yt, Yt+τ ] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ τ) ds+
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| di dj.

By Lemma 2.8, the rating process Y is proportional to the belief of a public
information structure if, and only if, Cov[Yt, Yt+τ ] = e−τ for every τ ≥ 0.

Using the expression for Cov[Yt, Yt+τ ] just obtained, and applying Lemma 2.11,
our optimization problem is thus that of maximizing

γ2

2

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

subject to the continuum of constraints

K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + τ) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| di dj = e−τ ,

for every τ ≥ 0.
The continuum of constraints makes it difficult to solve this optimization problem

directly by forming the Lagrangian as we did in the proof of Theorem 3.1. Instead,
we solve a relaxed optimization problem with a single constraint: we maximize F (u),
defined as

F (u) =

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

(as before, the original objective without the constant factor γ2/2), subject to G(u) =
2

1+r
, where

G(u) := g(u, 0) + (1− r)
∫ ∞

0

e−rτg(u, τ) dτ,

with

g(u, τ) :=
K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + τ) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| di dj.

Assume there exists a solution u∗ to this optimization problem, where u∗ is twice
differentiable, integrable, and square-integrable. As will be shown, the solution of
this relaxed constrained problem satisfies the original continuum of constraints.

As in the confidential setting, we work on an unconstrained problem that in-
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ternalizes the above constraint. Thus, we relax the problem a second time and we
let

L(u, λ0) = F (u) + λ0G(u)

be the Lagrangian, from which we remove the additive terms that do not depend on
u. Assume there exists some λ∗0 < 0 such that u∗ maximizes u 7→ L(u, λ∗0).

54 We
apply Proposition B.1 to get first-order conditions: if λ0 = λ∗0 and u = u∗, then for
all k = 1, . . . , K and all t, Lk(t) = 0, with

Lk(t) := Fk(t) + λ0Gk(t),

Fk(t) := αkU0e
−rt + βkV0e

−t,

and

Gk(t) := 2σ2
kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

+ (1− r)σ2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

+ (1− r)γ
2βk
2

∫ ∞
0

e−rτ
∫ ∞

0

U(j)e−|j+τ−t| dj dτ

+ (1− r)γ
2βk
2

∫ ∞
0

e−rτ
∫ ∞

0

U(i)e−|t+τ−i| di dτ.

Throughout the proof, any function h defined on the nonnegative real line is extended
to the entire real line with the convention that these functions assign value zero
to any negative input. By convention, the derivative of h at 0 is defined to be
the right-derivative of h at 0, which is well-defined for h twice differentiable. Let
some function h : R+ → R be twice differentiable and such that h, h′, h′′ are all
integrable. Throughout the proof, to compute derivatives of integral functions, we
use the following arguments.

First, if H(t) =
∫∞

0
h(i)e−|t+τ−i| di for some τ ≥ 0, then

H(t) =

∫ t+τ

0

h(i)e−(t+τ−i) di+

∫ ∞
t+τ

h(i)et+τ−i di,

so that
H ′′(t) = H(t)− 2h(t+ τ).

54As in the confidential setting, it is easily seen that λ∗0 < 0 is a necessary second order condition.
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Similarly, if instead H(t) =
∫∞

0
h(j)e−|j+τ−t| dj then if t > τ ,

H(t) =

∫ t−τ

0

h(j)e(j+τ−t) dj +

∫ ∞
t−τ

h(j)e−(j+τ−t) dj,

and for every t,
H ′′(t) = H(t)− 2h(t− τ).

Finally, if H(t) =
∫∞

0
e−rτ [h(t+ τ) + h(t− τ)] dτ , then

H ′(t) = e−rth(0) +

∫ ∞
0

e−rτ [h′(t+ τ) + h′(t− τ)] dτ,

and

H ′′(t) = −re−rth(0) + e−rth′(0) +

∫ ∞
0

e−rτ [h′′(t+ τ) + h′′(t− τ)] dτ.

We can now compute pk := Lk − L′′k as

pk(t) = Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λ0σ
2
k[uk(t)− u′′k(t)] + 2λ0γ

2βkU(t)

+ λ0(1− r)σ2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

− λ0(1− r)σ2
k

∫ ∞
0

e−rτ [u′′k(t+ τ) + u′′k(t− τ)] dτ

− λ0(1− r)σ2
k

[
−re−rtuk(0) + u′k(0)e−rt

]
+ λ0(1− r)γ2βk

∫ ∞
0

e−rτU(t− τ) dτ

+ λ0(1− r)γ2βk

∫ ∞
0

e−rτU(t+ τ) dτ.

Next, we let

Jk(t) =

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ, and

J(t) =
K∑
k=1

βkJk(t).
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We observe that J ′′k = −2ruk + r2Jk. Plugging Jk in the expression for pk:

pk(t) = αkU0(1− r2)e−rt + 2λ0σ
2
k [uk(t)− u′′k(t)] + 2λ0γ

2βkU(t)

+ 2rλ0(1− r)σ2
kuk(t) + λ0(1− r)(1− r2)σ2

kJk(t) + λ0(1− r)γ2βkJ(t).

After differentiation, we get

p′′k(t) = r2αU0(1− r2)e−rt + 2λ0σ
2
k [u′′k(t)− u′′′′k (t)] + 2λ0γ

2βU ′′(t)

+ 2rλ0(1− r)σ2
ku
′′
k(t) + λ0(1− r)(1− r2)σ2

k

[
−2ruk(t) + r2Jk(t)

]
+ λ0(1− r)γ2βk

[
−2rU(t) + r2J(t)

]
.

Finally, we let qk := p′′k − r2pk. We have

qk(t) = 2λ0σ
2
k [u′′k(t)− u′′′′k (t)]− r22λ0σ

2
k [uk(t)− u′′k(t)]

+ 2λ0γ
2βkU

′′(t)− 2r2λ0γ
2βkU(t)

+ 2rλ0(1− r)σ2
ku
′′
k(t)− 2r3λ0(1− r)σ2

kuk(t)

− 2rλ0(1− r)(1− r2)σ2
kuk(t)

− 2rλ0(1− r)γ2βkU(t).

We must have qk(t) = 0 for all k and all t. In particular, and since λ0 6= 0,

1

2λ0

K∑
k=1

βk
σ2
k

qk(t) = 0,

hence

U ′′ − U ′′′′ − r2(U − U ′′) + γ2mβU
′′ − r2γ2mβU

+ r(1− r)U ′′ − r(1− r)U − r(1− r)γ2mβU = 0.

The characteristic polynomial associated with this homogeneous linear differential
equation has roots ±

√
1 + γ2mβ = ±κ and ±√r. As we have assumed that the

solution to the optimization problem is admissible, it follows that U must be bounded,
and we discard the positive roots. Thus, U must have the form

U(t) = C1e
−
√
rt + C2e

−κt, (61)

for some constants C1 and C2.
Next, pick an arbitrary pair (i, j) with i 6= j, and define ζij(t) := βiσ

2
juj(t) −
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βjσ
2
i ui(t). That (βiqj(t)− βjqi(t))/(2λ0) = 0 yields, after simplification, the following

differential equation for ζij:

ζ ′′ij − ζ ′′′′ij − r2(ζij − ζ ′′ij) + r(1− r)(ζ ′′ij − ζij) = 0.

The characteristic polynomial associated with this homogeneous linear differential
equation has roots ±1 and ±√r. As ζij must be bounded, we get that ζij has the
form

ζij(t) = C ′1e
−
√
rt + C ′2e

−t, (62)

for some constants C ′1 and C ′2.
Putting together (61) and (62), we get that

uk(t) = D1,ke
−
√
rt +D2,ke

−κt +D3,ke
−t, (63)

for some constants D1,k, D2,k, D3,k.

Determination of the constants. As in the proof of Theorem 3.1, we have
established that the solution belongs to a family of functions that are sums of some
given scaled time exponentials. We now solve for the constant factors D1,k, D2,k, D3,k,
k ≥ 1.

We first note that, since the term e−t vanishes in Equation (61) that gives the
general form of the function U , the equality

K∑
k=1

βkD3,k = 0 (64)

obtains.
Using (64), we plug (63) in the equation for Lk(t) and get that

Lk(t) = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,

where L1,k, L2,k and L3,k are scalar factors that will be expressed as a function
of the primitives of the model and the constants D1,k, D2,k, D3,k. Note that the
exponential e−

√
rt, that exists in the general form of uk(t) given in (63) vanishes after

simplification, while instead an exponential e−rt appears that is not present in uk(t).
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We observe that

L2,k =
2σ2

kλ0(r − κ2)

(r − κ)(κ+ r)
D2,k +

2γ2λ0βk (r − κ2)

(κ− 1)(κ+ 1)(κ− r)(κ+ r)

K∑
i=1

βiD2,i

=
2λ0σ

2
k (r − κ2)D2,k

(r − κ)(κ+ r)
+

2λ0βk (κ2 − r)
mβ(r − κ)(κ+ r)

K∑
i=1

βiD2,i,

using that γ2 = (κ2 − 1)/mβ. That L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (65)

for some constant a. It can be seen that if a = 0, then D1,k = D2,k = D3,k = 0 for all
k, in which case uk = 0 and the variance normalization constraint is violated. Hence,
in the remainder of the proof, we assume a 6= 0. (As it turns out, as ratings yield the
same market belief up to a scalar, the precise value of a is irrelevant, as long as it is
non-zero.) In particular,

K∑
k=1

αkD2,k = amαβ,

and
K∑
k=1

βkD2,k = amβ.

Using (64), (65), and γ2 = (κ2 − 1)/mβ, we get

L3,k =
(κ2 − 1)λ0βk

(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i +
βk

r +
√
r

K∑
i=1

αiD1,i

+
βk
r + 1

K∑
i=1

αiD3,i +
2λ0σ

2
k

r + 1
D3,k +

aβkmαβ

κ+ r
+
a(κ+ 1)λ0βk

r + 1
.

(66)

As L3,k = 0 for all k, we can multiply (66) by βk/σ
2
k, sum over k, and use (64) to get

that D3,k = 0. In addition, after plugging D3,k = 0, the term L3,k simplifies to

(κ2 − 1)λ0βk
(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i +
βk

r +
√
r

K∑
i=1

αiD1,i +
aβkmαβ

κ+ r
+
a(κ+ 1)λ0βk

r + 1
= 0,

(67)
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which we will use to determine λ0.
Finally, given D2,k = aβk/σ

2
k and D3,k = 0, and using that γ2 = (κ2 − 1)/mβ, the

remaining constant L1,k simplifies to

L1,k =

(
αk√
r + 1

− (κ2 − 1)λ0βk
(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ0 (
√
r + 1)σ2

k√
r

D1,k

+
aαkmβ

κ+ 1
+
aλ0βk(κ+ r)

r + 1
.

(68)

As L1,k = 0 must hold for every k, we multiply (68) by βk/σ
2
k, sum over k, and we

get an equation that the term
∑

i βiD1,i must satisfy:

(
mαβ√
r + 1

− (κ2 − 1)λ0mβ

(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ0 (
√
r + 1)√
r

K∑
i=1

βiD1,i

+
amαβmβ

κ+ 1
+
aλ0mβ(κ+ r)

r + 1
= 0. (69)

As mαβ ≥ 0 and mβ > 0,

amαβmβ

κ+ 1
+
aλ0mβ(κ+ r)

r + 1
6= 0, (70)

which implies that the factor of
∑

i βiD1,i is non-zero. Similarly, if we multiply (68)
by αk/σ

2
k and sum over k, we get an equation that the term

∑
i αiD1,i must satisfy:

(
mα√
r + 1

− (κ2 − 1)λ0mαβ

(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ0 (
√
r + 1)√
r

K∑
i=1

αiD1,i

+
amαmβ

κ+ 1
+
aλ0mαβ(κ+ r)

r + 1
= 0. (71)

Now we can solve for
∑

i αiD1,i and
∑

i βiD1,i, using (69) and (71). Plugging in the
solutions in (67), we get a rational expression in λ0, whose denominator is

(κ+ 1)(r + 1)2
(√

r − 1
)√

r
(√

r + 1
)2
mαβ(κ+ r)

+ (κ+ 1)λ0(r + 1)
(√

r + 1
)3

(r − κ)(κ+ r)2,

91



and whose numerator is

− a(r + 1)2
(√

r − κ
) (
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)

+ 4a(κ+ 1)λ0(r + 1)
√
r
(√

r + 1
)2
mαβ

(√
r − κ

)
(κ+ r)

+ a(κ+ 1)2λ2
0

(√
r + 1

)4 (√
r − κ

)
(κ+ r)2.

We observe that the numerator, which must equal zero, yields a quadratic equation
in λ0,

a
(√

r − κ
) (
Aλ2

0 +Bλ0 + C
)

= 0, (72)

where:

A := (κ+ 1)2(κ+ r)2
(√

r + 1
)4
,

B := 4(κ+ 1)(κ+ r)
(√

r + 1
)2√

r(r + 1)mαβ,

C := −(r + 1)2
(
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)
,

= −(r + 1)2
(
(κ+ r)2

(
mαmβ −m2

αβ

)
+ (1− r)2m2

αβ

)
.

Next, we have that A > 0, and also that C < 0, which owes to the Cauchy-Schwarz
inequality mαmβ ≥ m2

αβ and to κ > 1. Hence, there are two real roots of (72), one
negative, and one positive. As B > 0 and we have established that λ0 < 0, it follows
that

λ0 =
−B +

√
B2 − 4AC

2A
,

which, after simplification, reduces to

λ0 = −
(r + 1)

(√
∆ + 2

√
rmαβ

)
(κ+ 1) (

√
r + 1)

2
(κ+ r)

,

with ∆ := (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ.
Finally, (68) and (69) yield a linear equation that determines D1,k:

D1,k = − a
√
r(r + 1)mβ (

√
r − κ) (κ+ r)

(κ+ 1)
(

(r2 − 1)
√
rmαβ + λ0 (

√
r + 1)

2
(r2 − κ2)

) αk
σ2
k

− a(r + 1)
√
rmαβ (κ+ r −√r − 1) + aλ0 (r −√r) (

√
r + 1)

2
(κ+ r)(

(r2 − 1)
√
rmαβ + λ0 (

√
r + 1)

2
(r2 − κ2)

) βk
σ2
k

.
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Letting λ := (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆, we can make further simplifications,

and express the solution in a form similar to that of the confidential case. We have

uk(t) = adk

√
r

λ
e−
√
rt + a

βk
σ2
k

e−κt,

with

dk =
κ−√r
κ− r ck + λ

√
r − 1

κ− r
βk
σ2
k

,

and, as in the confidential setting,

ck = (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

. (73)

As in the case of confidential ratings, because a rating process induces the same
effort level up to scaling, all constant multipliers a yield the same effort level. We
can use, for example, a = 1 in the preceding expressions.

If

a = −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

,

then it can be verified that the corresponding rating process satisfies the conditions
of Lemma C.4, so is a market belief for a public information structure.

D.2.2 Part II: Verification

As for the case of confidential ratings described in Section D.1.2, we verify that
the candidate rating of Section D.2.1 is optimal among all ratings. We use the same
auxiliary setting described in Section D.1.2, with the same variables and notation,
except for the principal’s payoff instantaneous payoff function H.

To define the principal’s payoff, we introduce an extra state variable, Λ, with
initial value Λ0 = 0, and which evolves as

dΛt = −rΛt dt+ Yt dt. (74)

Instead of using H as in equation (55), we let

Ht = c′(At)− φ1Yt(Yt − νt)− φ2Yt

(
Yt

1 + r
− Λt

)
,
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where

φ1 =
2
√

∆

(1 + r)(κ− 1)(κ+ r)
,

φ2 =

√
∆(r − 1)

(κ− 1)(κ+ r)
,

and ∆ = (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ, as defined in Section 3.2.
Compared to the case of the confidential exclusive setting described in Sec-

tion D.1.2, we now require two penalty terms to ensure that the principal’s payoff
(in the auxiliary setting) and the intermediary’s objective (in the original setting)
are comparable. As in the confidential exclusive case, the term φ1Yt(Yt − νt) can
be interpreted as a Lagrangian penalty term to bring the optimal transfer for the
principal close to a market belief (belief in the sense of the original setting). The
second term, φ2Yt

(
Yt

1+r
− Λt

)
, is new. It captures the public constraint: together with

the first term, it ensures that the transfer for the principal is close to a market belief
derived from public information structures. Indeed, recall that any public market
belief µ satisfies Cov[µt, µt+τ ] = Var[µt]e

−τ , by Lemma 2.8. If

Λt =

∫ t

0

e−r(t−s)µs ds,

it is immediate that Λ satisfies (74) for Y = µ and, as

E [µtΛt] =

∫ t

0

e−r(t−s) Cov [µs, µt] ds =
Var [µt]

1 + r

(
1− e−(1+r)t

)
,

thus,

E

[
µt

(
µt

1 + r
− Λt

)]
=

Var [µt]

1 + r
e−(1+r)t.

As opposed to the first penalty term, this expectation does not vanish for finite values
of t, because Λ0 = 0 (more generally, as long as Λ0 is set independently of the contract,
the above expectation cannot be zero for every market belief). However, it converges
exponentially to zero as t grows, and this turns out to be sufficient for our purposes.
The specific values for φ1 and φ2 are carefully selected using the conjectured optimal
rating derived from the Euler-Lagrange necessary conditions in Section D.2.1.

The principal’s problem is then an optimal control problem with three natural
state variables: the agent’s estimate of his ability, ν, the state associated with the
public constraint, Λ, and the agent’s continuation transfer, J . We have the following
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equations for the evolution of the state variables:

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,t − αkAt dt] ,

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξβ
mβ

κ− 1

1 + r

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

dΛt = −rΛt dt+ Yt dt.

As in the confidential exclusive setting considered in Section D.1, the principal’s
problem can be restated as follows: the principal seeks to find a stationary linear
contract (A, Y ), along with processes Ĉk, k = 1, . . . , K, such that, for all t, the
principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)
(
c′(As)− φ1Ys(Ys − νs)− φ2Ys

(
Ys

1 + r
− Λs

))
ds

∣∣∣∣ Gt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α, where ξ̂α :=
∑

k αkĈk.

2. The evolution of the agent’s belief ν, given by

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the state Λ, given by

dΛt = −rΛt dt+ Yt dt.

4. The evolution of the agent’s continuation transfer J , given by

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

where ξ̂β :=
∑

k βkĈk.
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5. The following transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Gt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Gt] = 0.

We use dynamic programming to solve the principal’s problem. The principal
maximizes

E

[∫ ∞
t

ρe−ρ(s−t)
(
ξ̂α,s − φ1Ys(Ys − νs)− φ2Ys

(
Ys

1 + r
− Λs

))
ds

∣∣∣∣ Gt] ,
for every t, subject to the evolution of the different state variables and the transver-
sality conditions. As before, we solve the principal’s problem without imposing the
restriction that transfer processes be stationary linear, and verify ex post that the
optimal transfer in this relaxed problem is indeed stationary linear.

Assume the principal’s value function V , as a function of the three states J , ν
and Λ, is C1(R3). By standard arguments, an application of Itô’s Lemma yields the
Hamilton-Jacobi-Bellman (HJB) equation for V :

ρV = sup
y,c1,...,cK

ρξ̂α − ρφ1y(y − ν)− ρφ2y

(
y

1 + r
− Λ

)
− νVν + (rJ − y)VJ + (−rΛ + y)VΛ

+
ξ̂β
mβ

(κ− 1)(κ+ r)

1 + r
VνJ +

(κ− 1)2

2mβ

Vνν

+
1

2

K∑
k=1

(
ξ̂β
mβ

κ− 1

1 + r

βk
σk

+ σkck

)2

VJJ ,

(75)

where, as before, to shorten notation, we have used the subscript notation for the
(partial) derivatives of V , and have abused notation by using ξ̂α and ξ̂β to denote∑

k αkck and
∑

k βkck, respectively.
We conjecture a quadratic value function V of the form

V (J, ν,Λ) = a0 + a1ν + a2J + a3Λ

+ a4νJ + a5νΛ + a6JΛ

+ a7ν
2 + a8J

2 + a9Λ2.

(76)

We plug (76) into the dynamic programming equation (75) and solve for the
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optimal control variables y, c1, . . . , cK .
The equation is quadratic in (y, c1, . . . , cK). The second-order conditions are

φ1 +
φ2

1 + r
> 0, and (77)

a8 < 0. (78)

That condition (77) is satisfied is immediate by the definition of φ1 and φ2. Assuming
momentarily that (78) holds, the first-order conditions yield as maximizers

y(J,Λ, ν) =
(a6 − 2a8) (r + 1)

2ρ ((r + 1)φ1 + φ2)
J +

(r + 1) (−a6 + 2a9 + ρφ2)

2ρ ((r + 1)φ1 + φ2)
Λ (79)

+
(r + 1) (−a4 + a5 + ρφ1)

2ρ ((r + 1)φ1 + φ2)
ν +

(a3 − a2) (r + 1)

2ρ ((r + 1)φ1 + φ2)
,

ck(J,Λ, ν) =
(κ− 1) (mαβρ(κ+ 2r + 1)− a4(r + 1)(κ+ r))

2a8mβ(κ+ r)2
· βk
σ2
k

− ρ

2a8

· αk
σ2
k

. (80)

Note that y is affine in the three state variables, and every ck is constant.
Define

ρ̄ =
√

(ρ+ 2)(ρ+ 2r).

We then plug the optimal controls in (75) to identify the coefficients a0, . . . , a9.
Contrary to the confidential exclusive case, the system is linear-quadratic. There are
two sets of coefficients that satisfy the equality (75) and the second-order conditions.
However, only one set of coefficients yields a state J that satisfies the transversality
condition. Keeping that set of coefficients, we get:

a1 = a2 = a3 = 0,

a4 =

√
∆ρ(2r − ρ)(ρ+ r + 1) (ρ(ρ+ 2) + (r − 1− ρ)ρ̄)

(κ− 1)(ρ+ 2)(r − 1)r(r + 1)2(κ+ r)
,

a5 =

√
∆ρ2 ((ρ+ 2)(r − 1− ρ)(ρ+ 2r) + (ρ− r + 1)(ρ+ r + 1)ρ̄)

(κ− 1)(ρ+ 2)(r − 1)r(r + 1)2(κ+ r)
,

a6 =

√
∆ρ(2r − ρ) (2r2 − (ρ+ 2)r + ρ (ρ̄− ρ− 1))

4(κ− 1)r2(κ+ r)
,

a7 =
2
√

∆ρ(ρ− r + 1)2(ρ+ r + 1)2 (ρ− ρ̄+ r + 1)

(κ− 1)(ρ+ 2)2(r − 1)2(r + 1)4(κ+ r)
,
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a8 = −
√

∆ρ(2r − ρ) (ρ2 + ρ− ρr + 2r(r + 1))

8(κ− 1)r2(κ+ r)

−
√

∆ρρ̄(ρ− 2r)2

8(κ− 1)r2(κ+ r)
,

a9 =

√
∆ρ3 (ρ− ρ̄+ r + 1)

8(κ− 1)r2(κ+ r)
.

The expression for the coefficient a0 is lengthy and does not impact the calculations
that follow. Therefore, it is omitted. Note that, if ρ < r, the coefficient a8 is negative,
hence (78) is satisfied, and the maximizers are determined by the first-order condition.

After inserting the coefficients a1, . . . , a9 into (79) and (80), we obtain the optimal

processes Ĉk, which are constant (and whose expression is lengthy and omitted), as
well as the optimal transfer at time t, Yt, as a linear function of the state variables
Jt, νt,Λt:

Yt =

b1

b2

b3

 ·
JtΛt

νt

 , (81)

with

b1 :=
(2r − ρ) (ρ̄− ρ+ 2r)

4r
,

b2 :=
ρ (ρ− ρ̄+ 2r)

4r
,

b3 :=
((ρ+ 1)2 − r2) (ρ̄− ρ− 2)

(ρ+ 2)(r − 1)(r + 1)2
.

We insert the expression of the optimal control Yt back into the equations that de-
termine the evolution of the state variables. Doing so yields a linear three-dimensional
stochastic differential equation for the state variables, namely

d

JtΛt

νt

 = M

JtΛt

νt

+
K∑
k=1


ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

0
κ− 1

mβ

βk
σ2
k

 [dSk,t − αkAt dt] ,
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where

M :=

r − b1 −b2 −ξ̂β
κ+ r

1 + r
− b3

b1 −r + b2 b3

0 0 −κ

 .
The matrix M has three eigenvalues,

δf :=
1

4

(
3ρ− ρ̄−

√
2
√
ρ(ρ+ ρ̄+ 1) + 2r2 − r(ρ+ 2ρ̄− 2)− 2r

)
,

δg :=
1

4

(
3ρ− ρ̄+

√
2
√
ρ(ρ+ ρ̄+ 1) + 2r2 − r(ρ+ 2ρ̄− 2)− 2r

)
,

δh := −κ.

Note that, as ρ→ 0, δf → −
√
r, and δg → −r. Hence, if ρ is close enough to zero

(i.e., ρ < ρ0, for some ρ0 > 0), the eigenvalues of the matrix M are all distinct and
negative. We can writeJtΛt

νt

 =
K∑
k=1

∫
s≤t

(
fke

δf (t−s) + gke
δg(t−s) + hke

δh(t−s)) [dSk,t − αkAt dt] ,

where fk,gk and hk are three-dimensional vectors that can be expressed in closed
form as a function of the parameters of the model (the expressions for ρ > 0 are
lengthy and omitted). From (81), we get

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,t − αkAt dt] ,

with
uk(τ) = Fke

δf τ +Gke
δgτ +Hke

δhτ ,

for some constants Fk, Gk, Hk, k = 1, . . . , K that depend on the parameters of the
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model, and, in particular, on ρ. As ρ→ 0, we can simplify these constants as

Fk →
(κ− 1)mβ (

√
r − κ) (κ+ r)

mβ (
√
r + 1)

√
∆
r

(
√
r − κ)

αk
σ2
k

+
(κ− 1)

(√
∆ + (κ− 1)mαβ (κ+ r −√r + 1)−

√
∆r
)

mβ (
√
r + 1)

√
∆
r

(
√
r − κ)

βk
σ2
k

,

Gk → 0,

Hk → −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

βk
σ2
k

.

Also, as ρ→ 0,

Ĉk →
mβ(κ+ r)2

√
∆mβ (

√
r + 1)

2
(κ+ r)

αk
σ2
k

+
(κ− 1)

(
2
√

∆r − (κ− 1)mαβ(κ+ 2r + 1)
)

√
∆mβ (

√
r + 1)

2
(κ+ r)

βk
σ2
k

.

Thus,

ξ̂α(= c′(A))→
(κ− 1)

(
mαmβ(κ+ r)2 − (κ− 1)m2

αβ(κ+ 2r + 1) + 2mαβ

√
∆r
)

√
∆mβ (

√
r + 1)

2
(κ+ r)

,

and so, after simplification,

c′(At)→
(κ− 1)

(
1−

(√
r−1√
r+1

)2
)(

2mαβ +
√

∆
r

)
4mβ(κ+ r)

.

Back to the original model. We conclude the verification and make the connec-
tion between the auxiliary model and the original model. The procedure is analogous
to the confidential case explained in the last part of Section D.1.2.

Let (A∗, Y ∗) be the incentive-compatible contract defined by

c′(A∗t ) =
(κ− 1)

4mβ(κ+ r)

(
1−

(√
r − 1√
r + 1

)2
)(

2mαβ +

√
∆

r

)
,
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and

Y ∗t = −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

·
K∑
k=1

∫
s≤t

upk(t− s) [dSk,s − αkA∗s ds] .

Here, Y ∗t is the market belief of the conjectured optimal rating of the original setting,

and A∗t is the conjectured optimal action. Let F̂ be a public information structure,

generated by some rating process, which induces a constant action process Â. Let
Ŷ := E[θt | F̂t], and observe that (Â, Ŷ ) is an incentive-compatible stationary linear

contract. We show that c′(A∗) ≥ c′(Â). For ρ < ρ0, let (A(ρ), Y (ρ)) be the optimal
incentive-compatible stationary linear contract defined above.

Let V ∗ be the principal’s expected payoff under contract (A∗, Y ∗), V̂ be her

expected payoff under (Â, Ŷ ), and V (ρ) be her expected payoff (A(ρ), Y (ρ)).
For every public exclusive information structure F generated by some rating

process, the equilibrium market belief of the original setting, µt = E[θt | Ft], satisfies
Cov[µt, νt] = Var[µt], as well as Cov[µt, µt+τ ] = Var[µt]e

−τ for τ > 0, by Lemma 2.8.
Thus, under the contract (µ,A), where A is the equilibrium action, the state variable
Λ is expressed as

Λt =

∫ t

0

e−r(t−s)µs ds,

and the principal’s payoff is∫ ∞
0

e−ρt
(
c′(A)− φ1µt(µt − νt)− φ2µt

(
µt

1 + r
− Λt

))
dt

=
c′(At)

ρ
− φ2

Var [µt]

(1 + r)(1 + r + ρ)
.

Hence, as ρ→ 0, ρV ∗ → c′(A∗), and ρV̂ → c′(Â). For every ρ small enough, V (ρ) ≥ V̂
must hold, because (A(ρ), Y (ρ)) is optimal. However, as ρ→ 0, c′(A(ρ))→ c′(A∗), and
the linear filter of Y (ρ) converges pointwise to the linear filter of Y ∗. In particular,
Cov[Y (ρ), νt]−Var[Y (ρ)]→ 0, and, for every τ > 0, Cov[Y

(ρ)
t , Y

(ρ)
t+τ ]−Var[Y

(ρ)
t ]e−τ →

0. Together, these two limits imply that, as ρ→ 0,

ρV (ρ) − ρV ∗ → 0.
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Thus, ρV (ρ) → c′(A∗), implying that c′(A∗) ≥ c′(Â).

D.3 Proof of Lemma 3.3 and Lemma 3.4

Fix a confidential or public information structure F .
Given a rating process Y that is proportional to a market belief induced by F

and with linear filter {uk}k, the equilibrium marginal cost is given by

c′(A) =
Cov[Yt, θt]

Var[Yt]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ,

and the equilibrium market belief induced by the information structure is

µt = E[θt | Ft] = E[θt | Yt] =
Cov[Yt, θt]

Var[Yt]
Yt,

which follows from the projection formulas for jointly normal random variables, with

Cov[Yt, θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uk(τ)e−τ dτ,

and

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(τ)2 dτ +
K∑
k=1

K∑
k′=1

∫ ∞
0

∫ ∞
0

uk(s)uk′(s
′)e−|s−s

′| ds ds′.

Thus,

Var[µt] =
Cov[Yt, θt]

2

Var[Yt]
.

The expressions c′(Ac) and c′(Ap) given in the statement of Lemma 3.3, and the
expressions Var[µc] and Var[µp] given in the statement of Lemma 3.4, follow by
plugging in the expressions of the linear filters for the optimal ratings as described in
Theorem 3.1 and Theorem 3.2. The calculations are lengthy and omitted, a detailed
proof being available upon request.
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