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Abstract

Childhood vaccination rates have recently declined in the US due to parental fear of vaccines. I
test whether disease outbreaks increase vaccination using a new dataset of county-level disease
and vaccination data. A large pertussis outbreak in a county decreases the share of unvaccinated
children entering kindergarten by 30% (1.2 percentage points). These responses do not reflect
changes in the future disease risk. I argue these facts may reflect a model in which perceived risk
of disease is influenced by whether a household is aware of any cases of disease. This suggests
better promotion of outbreaks could enhance the response.

1 Introduction

Childhood vaccinations are a crucial input to disease prevention. In the period from 1920

through 1940, prior to vaccination, the incidence of pertussis in the US was 150 cases and 6

deaths per 100,000 people (Kutty et al, 2013). By the early 1990s, case counts had dropped to

just 1 per 100,000 with typically fewer than 10 deaths per year across the country (Davis et

al, 1992). These long run trends in disease reflect trends in vaccination. The current

vaccination rate for pertussis in the US is around 95%.

Within the past fifteen years, however, vaccination rates in the US (and in many other

developed countries) have declined. These declines are on average fairly small, but they are

geographically concentrated, leaving some areas with quite low vaccination rates (Omer et al,

2006). The decline in vaccination rates has contributed to incidence of disease. Pertussis rates
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in the US have roughly doubled since 2000, with a corresponding increase in deaths, primarily

among infants.1 Maintaining and increasing vaccination rates in the face of these issues is an

important goal for both policy-makers and for many practitioners (Yang and Silverman, 2015;

Orenstein and Seib, 2014).

These declines in vaccination rates seem to largely reflect parental choice (Healy and

Paulson, 2015; Glassser et al, 2016; Omer et al, 2012). In surveys, parents express fears about

vaccine safety and efficacy, and skepticism that their child is at risk for vaccine-preventable

diseases (Omer et al, 2009; Salmon et al, 2005).2

The role for parental choice suggests that policies which ensure access to vaccines are

unlikely to be important in the US. Instead, US policy has focused on either (a) educating

parents about vaccines or (b) changing school vaccination policies to make it more difficult to

enroll unvaccinated children in school. Both policies have limitations. Educational campaigns

are appealing in that they preserve autonomy, but evidence suggests they are largely

ineffective (Nyhan et al, 2014; Sadaf et al, 2013). Changes in school vaccination polices are

more effective (Sadaf et al, 2013), but they may be seen as heavy-handed (Constable, Blank

and Caplan, 2014).

A good example of this trade-off appears in California. Vaccination rates in California

have declined substantially from the mid-2000s.3 This decline has occurred in spite of a health

department focus on developing materials to encourage parents and doctors to vaccinate.4 In

the wake of a large measles outbreak at Disneyland in 2014-2015, California passed a law

completely eliminating personal belief exemptions to vaccination for school-age children

(Mello et al, 2015). Early figures suggest this may already have had a large effect (LA Times

Editorial Board, 2016). However, the backlash to this bill has been extreme, with lawsuit

challenges and concerns about parents choosing to home-school their children to avoid

vaccination (Mello et al, 2015; Siepel, 2016). At equal effectiveness, using information to

convince parents they want to vaccinate their children should be preferred; at currently

estimated effectiveness, legal remedies seem like the only effective option.

In a simple cost-benefit framework these policies act on different levers. Education

campaigns seek to increase the perceived benefit of vaccines or lower their perceived cost,

holding the true values of these constant. School vaccination policies increase the actual cost

of not vaccinating. Recognizing this points to two explanations for the differing effectiveness.

1See evidence from the CDC: http://www.cdc.gov/pertussis/images/incidence-graph-age.jpg
2The concerns around vaccine risks include both debunked links with autism (Mnookin, 2011) as well as

more general concerns about “toxins” and “metals” being present in vaccines.
3For reports on vaccination in California see http://www.cdph.ca.gov/programs/immunize/pages/immunizationlevels.aspx.

Herd immunity for pertussis occurs around 92-94%.
4See, for example, the CA Health Department Immunization Branch page at

https://www.cdph.ca.gov/PROGRAMS/IMMUNIZE/Pages/HealthProfessionals.aspx.
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One is that non-vaccination represents a rational, fully informed parental decision. Given the

small disease risk and the discomfort of vaccines, it is possible that a fully informed parent

may choose not to vaccinate. Information will not affect this choice, although raising the

actual cost of not vaccinating may do so. The other possibility is that parents are uninformed

and some type of information provision is effective, but existing campaigns are not optimally

designed.

Evidence that vaccination rates respond to data which is uninformative about the true

risks or benefits of vaccines would be evidence for the latter theory. In this paper I provide

evidence on this by estimating the response of vaccination rates to disease outbreaks. I find

that outbreaks of pertussis increase pertussis vaccination rates, despite the fact that an

outbreak in a single year is not predictive of outbreaks in future years. Cross-area evidence

shows that the behavior of health departments may enhance or deflate this response. This is

encouraging news for a role for education in changing vaccination rates.

The core contribution of this paper is to bring together new data on vaccination and

disease. I combine (1) county-year data on vaccination among kindergarten children; (2)

county-year data on outbreaks of disease; (3) Google search data on disease and vaccination

related terms and (4) a survey of local health department. I use these data to generate a series

of facts about the correlates of vaccination and the response of vaccination to information.

I show first that, in the cross section, vaccination rates vary with demographics and also

correlate with Google searches for vaccination-related terms. I then demonstrate that within a

county over time, pertussis vaccination rates among kindergarten entrants are higher in the

year after a pertussis outbreak.5 The effect size suggests that approximately 30% of

vaccine-hesitant parents vaccinate after a large outbreak. These estimates survive inclusion of

county-specific trends, and I show that future outbreaks do not impact current vaccination

rates. This suggests the estimated impacts are causal.

I perform two analyses showing these results do not seem to reflect changes in the true

pertussis risk. First, within a county, current outbreaks do not predict future outbreaks.

Second, the effects are concave: the per-case impact on vaccination is larger for the first cases

of the disease relative to subsequent cases. This suggests vaccination changes are not a

function of true risk changes.

However, these behaviors do seem to be instrumental and to reflect information seeking.

I show the impact of outbreaks is limited to pertussis vaccinations – it does not spill over to

other vaccines – suggesting an instrumental response.Further, I find that outbreaks increase

searches for “pertussis” and “pertussis vaccination”. This suggest information about outbreaks

5I focus on pertussis since this is the disease which is the most common and, therefore, for which there is the
most variation over time. In an appendix I show similar, but less precise, impacts for measles.
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does spread among the population.

I use a survey of health departments to explore whether the response to disease varies

systematically across areas. I find, first, that the response to outbreaks is much larger in

states in which responses are coordinated by the state rather than individual counties.

Second, I find that within states with county autonomy, counties with systematic media

notification have larger responses.

The evidence presented shows that people are responsive to local cases of disease, even

holding constant the true risk of disease. In Section 4 I discuss which theory might explain

this behavior. I argue that the facts are inconsistent with a model with full information about

disease risk. I further suggest that the patterns in the data - the concave response to cases

and the fact that education about vaccine costs does not seem to have an impact - may be

consistent with a particular model of limited information in which salience plays a role (as in,

e.g., Bordalo, Gennaioli and Shleifer, 2012). Under this model, individuals perceive disease

risk to be zero unless they are aware of cases of disease, in which case they infer some positive

probability. This model has the advantage that it can rationalize the local response to disease

outbreaks alongside the lack of response to information on vaccine safety seen in other data.

Under this model, information can play a crucial role in changing vaccination rates, but

the key information is about disease risk not about vaccine risk. The evidence on area-level

variation suggests that counties may take better or worse advantage of outbreaks to improve

vaccination rates. To make this more vivid, the final section of the paper takes up the

question of whether these responses are large enough to limit vaccination declines. I find that

if the response is limited to only the age cohort entering kindergarten, it makes relatively little

difference to vaccination rates or disease rates. If these responses occur across all children, the

effect is more substantial. In general, this analysis requires a number of additional

assumptions so should be taken with caution.

This paper contributes to the general literature on interventions to increase vaccination

rates, well summarized by Sadaf et al (2013). Perhaps the most closely related paper on this

topic, Wolf et al (2014), did not find an impact of a single large outbreak on vaccination of

young children in Washington State. This differs markedly from my findings, which may be

because I am able to look at a large number of outbreaks, or because my data focuses on

school-age children and not younger children. More supportive of these findings, Cacciatore,

Nowak and Evans (2016) find that the 2014-2015 Disneyland measles outbreak did increase

confidence in vaccines, although they are not able to look at actual vaccination behavior.

The paper also contributes to the literature on economic epidemiology (e.g. Philipson,

1996; Geoffard and Philipson, 1996; Geoffard and Philipson, 1997; Philipson, 2000; Kremer,

1996; Adda, 2016). Philipson (1996) finds that states with more measles in the late 1980s also
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have higher vaccination rates. The direction of the effect is consistent with my findings,

although the argument in Philipson (1996) is that the response is a rational one, given that in

this time period measles was much more common.

The rest of the paper is organized as follows. Section 2 discusses background. Section 3

presents the data and empirical strategy. Section 4 presents the primary results on the

changes in vaccination behavior in response to outbreaks. Section 5 presents a model which

may explain the findings and Section 6 discusses the role of these responses in mitigating

vaccine declines. Section 7 concludes.

2 Background

Literature on vaccination in the US and other developed countries has generally documented

declines in vaccination in recent years. This change appears to be related to increasing

parental decisions to avoid vaccinations, due to concerns about either vaccine efficacy or

vaccine safety (Omer et al, 2006). In the late 1990s a now-discredited study was published in

the Lancet suggesting a link between vaccines and autism. Although the paper was shown to

be fraudulent, the effects on vaccination rates have been long-lasting (Mnookin, 2011). In the

wake of declining vaccination rates there are serious concerns about outbreaks of

vaccine-preventable diseases. Low levels of vaccination tend to be concentrated in particular

areas, and these areas have been shown to have increased disease risk (Omer et al, 2008). This

suggests vaccination rates in many areas are falling below what would be required to maintain

herd immunity.

There are at least two common policy responses to declining vaccination rates. One is

education. The other is changing rules for school vaccination exemptions.

Educational Interventions There is some existing evidence on the response of vaccination

to education campaigns.

Nyhan et al (2014) uses a randomized trial design to test the impact of messaging about

vaccine safety and vaccine-preventable diseases on vaccination intentions. The authors test

four messages - a message refuting the link between MMR vaccine and autism, a generic text

with disease information, images of children who are sick with vaccine-preventable disease and

a dramatic narrative about an infant in danger from disease. Many of these had perverse

effects; the narrative about an infant in danger, for example, increased fears about vaccine

side effects. The education on the MMR/autism link did succeed in decreasing belief in this

link, but did not change intention to vaccinate. None of these messages changed vaccination

intentions.
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Nyhan and Reifler (2015) evaluate an intervention designed to correct the misconception

that the flu vaccine can give you the flu. They find that messaging can successfully decrease

belief that this is the case, but their messaging also decreases the intent to vaccinate, more so

among those who have an initially poor view of vaccination. Williams et al (2013) report on a

small intervention among vaccine-hesitant parents of infants. Treatment group parents were

shown a video designed to improve attitudes about vaccination and given some handouts on

vaccines and on how to find better information on the internet. The authors, again, find that

parental attitudes improve but they do not see any change in realized vaccination behavior.

Finally, Sadaf et al (2013) review the literature (as of 2012) on the impact of educational

interventions and conclude there is not much evidence to support the efficacy of particular

educational interventions.

Somewhat in contrast to this finding, and more closely related to this paper, Horne et al

(2015) find that they are able to systematically alter vaccination attitudes with an

intervention which focuses on the risk of communicable diseases. They suggest that this type

of focus - rather than a focus on vaccine safety - may be more effective. This study is run on a

convenience sample of Mechanical Turk participants and does not include anything about

vaccination behavior or intentions, making it largely suggestive, but interesting in light of the

hypothesis evaluated in this paper.

School Exemption Policies Schools in the US require students to be vaccinated. At

school entry parents must either show proof that their child is vaccinated or request an

exemption from the policy. All states allow exemptions on medical grounds but there is

substantial variation across states in how difficult it is to obtain vaccine exemptions for

non-medical reasons. Some states offer only religious exemptions, and others permit “personal

belief” exemptions as well.

Omer et al (2006) show in the period from 2001 to 2004 states with relatively easily

granted exemptions had a larger increase in the rate of non-medical exemptions than states

which make the process more difficult. Between 1991 and 2004 the non-medical exemption

rate doubled (from 1.25% to 2.5%) in states with easy exemptions and stayed constant in

those with harder exemption policies. More recent evidence (Stadlin et al, 2012) suggests that

even medical exemption rates may respond to state policy differences. In general, as noted by

Sadaf et al (2013) in their review, these policies do seem to impact vaccination rates.
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3 Data and Empirical Strategy

3.1 Data

This paper uses four primary data sets. The first is on vaccination rates, the second on

disease outbreaks, the third is on Google searches and the fourth is from a survey of health

departments.

The data on vaccination rates comes from individual states. The goal was to collect

county-level vaccination data from as many states as possible. In some cases, states do not

collect their own data on vaccinations, instead relying on the National Immunization Survey.

For states which do have their own data collection, data came in one of two forms. In some

cases data comes from annual school surveys, aggregated to the county level. In others, states

used immunization registries. In the case of the latter, only a subset of the registries are

mandatory. Optional registries tend to have quite poor coverage.

For data quality reasons, I use data from states that either have a mandatory registry or

provided data from school reports.6 I use the vaccination data at kindergarten entry because

it provides consistent data for the largest number of locations, and focus on pertussis since this

is the only illness with a significant number of outbreaks. In an appendix I will show results

for older children and for measles vaccinations. Summary statistics for the states used in the

analysis appear in Panel A of Table 1. The years of coverage for states varies. I have the

longest time series for California, from 1991 to 2011. The shortest time series is for Missouri,

with coverage only in 2011. Vaccination rates are generally high. In these data they are lowest

in Michigan, which may reflect the fact that this is the only state where we use data from a

registry (although the registry is mandatory). All results are robust to excluding Michigan.

The second data set covers disease outbreaks by county over time. These data are

available from the CDC through the National Notifiable Diseases Surveillance System

(NNDSS). The NNDSS is a nation-wide collaboration, run by the CDC, for public health

departments at various levels (state, local) to share information about a set of notifiable

diseases, of which pertussis is one. Reporting of these diseases is judicially mandated. The

data provides counts, by county-year, of disease cases. It is likely that these figures are an

understatement of total cases, especially for pertussis, but I expect them to be correlated with

the true counts.

Merging these with county-level population data produces disease rates. Panel B of

Table 1 summarizes the rates of pertussis by state. Pertussis cases per 100,000 people range

from 2 to just over 8 per year.

6The school reports will include private schools but will not include students who are home schooled. Home
schooling accounts for only about 3% of children so any bias from this is likely to be small.
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The third data set is from Google trends. I focus on three categories of searches. The

first are searches for terms related to pertussis (“pertussis” or “whooping cough”), the second

are searches related to the vaccines (“pertussis vaccination”) and the third are searches related

to vaccine risks (either “vaccine injury” and related terms or “autism and vaccines”). The full

list of search terms in each category appears in Table B.1 in the Appendix.

An issue in constructing the Google trends data is that the data are subject to privacy

thresholds. It is not possible to generate data from rare search terms. To get around this, I

use a technique from Stephens-Davidowitz (2014). In broad terms, this involves searching for

the term of interest along with another common word (for example, “joke” or “sponge”) and

then searching for the common word alone and subtracting the two. Details of the

implementation appear in Appendix B.

I use two sets of Google data. First, I use DMA-level measures which I average over the

entire period from 2004 to 2015. These data indicate which areas have the overall highest

interest in a particular term over this period. These data do not adjust for domain-specific

search volume so I also collect data on searches for non-vaccination-related health terms

(cancer, diabetes) and generate area-level residuals with respect to these terms.

Second, I use Google trends at the state-month level in the estimation of search response

to disease outbreaks. These are merged with disease outbreak data at the state-month level

from the NNDSS system.7

The fourth dataset used comes from a survey of state and county health departments.

Focusing on the 12 states for which I have vaccination data, we first attempted to contact

state health departments to learn about how outbreak response was coordinated. In four of

the states these responses are centrally coordinated; in 8 they are not. Our first analysis will

separate these groups.

Within the 8 states without central coordination we attempted to contact all county

health departments to learn about their procedures including, crucially, whether they

systematically notify the media about outbreaks. There are 828 counties in this set, of which

we attempted to contact the 584 which ever had a case of pertussis in our data. We were able

to contact 54% of counties.8 24% of these report a systematic procedure of notifying the

media.

7In the period prior to 2011 there is an excess mass of reported cases in December, seemingly due to a policy
of listing all cases with unknown timing as occurring in the last week of the year. I will therefore drop December
from this monthly analysis.

8Reasons for lack of contact include an inability to find contact information for the health department, being
unable to get a response after many contacts or, in two cases, a refusal to answer questions.
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3.2 Empirical Strategy

This paper uses a panel data strategy in which I estimate the impact of disease outbreaks

controlling for location and time fixed effects.

Vaccination Behavior

The vaccination data is merged with the disease data at the county-year level. I run

regressions of the following form

V acca,c,t = α + β(Diseasec,t−1) + γc + λt + εa,c,t

where V acca,c,t is a measure of the vaccination rate for children of age a in county c in year t

and Diseasec,t−1 is a measure of disease in county c in year t− 1. I explore various

specifications for the disease risk, including rate, counts of cases and groups of cases. The

vaccination rate is specified on the interval between 0 and 1. I will also report, throughout,

the impact as a share of the unvaccinated population. This can be interpreted as the share of

vaccine-hesitant people whose behavior is changed by the independent variable.

In all cases the regression includes county and year fixed effects. Effectively, this asks

whether - within a county over time - years with disease outbreaks are followed by years with

higher vaccination rates.

It is important to be clear on what is driving any impacts we observe. Vaccination is

measured at kindergarten entry and the disease outbreak is in the previous year. Children

with up to date vaccinations would not be affected since by this age they will already have

several pertussis vaccinations. Any effects must therefore be driven by catch up vaccinations.

In the analysis of local variation in effects I run similar regressions by state groups, or

within state with interactions between outbreaks and media notification plans at the county

level.

The coefficient β can be interpreted as causal if disease outbreaks are assigned randomly

within a county over time. However, there is a potential reverse causality issue in this

regression. If changes in vaccination rates at the cohort level influence disease outbreaks, then

the coefficient on β will be biased downward. To see why, consider the following relationship:

Diseasec,t−1 = δ + Ψ(V acca−1,c,t−1) + φc + ηt + νc,t

This posits the possibility that a low vaccination rate for a particular cohort could influence

the rate of disease. We expect Ψ ≤ 0, implying that when vaccination rates are higher, disease

rates are lower.
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There is a mechanical relationship between V acca,c,t and V acca−1,c,t−1 because the cohort

of age a in year t was aged a− 1 in t− 1. Put differently, these are the same children. Since

children cannot become unvaccinated, this generates a mechanical relationship. This will bias

β towards zero.

It is possible to adjust for this directly by estimating Ψ in the data. Appendix Table A.1

does this analysis. There is no evidence that Ψ differs from zero. In other words, within a

county over time there is no relationship between the vaccination rate of this cohort and the

disease rate. This is not surprising. Much of the variation in disease rate across counties is

accounted for by the county fixed effects - which effectively capture the overall level of

vaccination in each county. This suggest the downward bias in β is not large, if it is present at

all.

Google Trends

The analysis of Google trends will follow a similar structure. I will estimate:

Googles,t = α + β1(Diseases,t) + β2(Diseases,t−1) + ...+ β12(Diseases,t−11) + γs + λt + εc,t

Where s indexes state. The data in this case is at the monthly level and the analysis is

contemporary. Google searches in a month are related to outbreaks in that month and

outbreaks in previous months in the last year. This structure will allow me to estimate the

immediate impact of outbreaks and also how it evolves over time.

4 Results: Vaccination Behavior and Disease

Outbreaks

The first subsection below discusses the variation in pertussis vaccination across space and

over time, and describes the cross-sectional correlates of vaccination. The second subsection

provides the primary evidence on the response of vaccination to pertussis outbreaks. Finally,

in Section 4.3 I discuss variation across space.

4.1 Correlates of Vaccination

Pertussis vaccination has declined in these data over time and varies substantially across

space. Using regressions with county fixed effects - which are identified based on changes

within a location over time - pertussis vaccination rates are down 4 percentage points from a

high in the late 1990s. Further, although many counties have vaccination rates at or close to

10



100, there is a long tail of low vaccination rates. Seven-point-eight percent of county-years

have pertussis vaccination rates below 80%, and 12% have rates below 90%. These areas of

very low vaccination are especially at risk for disease outbreaks (Phadke et al, 2016). Details

of variation over time and space are in Appendix Figures A.1 and A.2.

Table 2 estimates correlations between vaccination rates and both some basic

demographics (drawn from the American Community Survey) and the DMA-level Google

search volume on average over the 2004 - 2015 period. The demographics are income,

education and race and the Google searches include the four search term groups discussed

above. All regressions include state fixed effects and I estimate the impacts for both the

average of the 2004/2005 period and the average of the 2010/2011 period (the last in my data).

Counties with more educated people have lower vaccination rates. Counties with higher

income, holding education constant, have higher vaccination rates. This is consistent with the

general perception that at least some of the resistance to vaccination comes from highly

educated parents; if the income control is excluded, education remains negative, although the

effect is smaller.

The Google search data reveals that vaccination rates are higher in areas where people

show more interest in searching for information about pertussis, or about pertussis

vaccination. However, vaccination rates are lower in areas where there is a greater intensity of

search for terms related to the link between vaccines and autism. This is consistent with

survey evidence suggesting that concerns about the negative consequences of vaccination are

among the factors that drive vaccine hesitancy.

The magnitudes here are moderate. They suggest that a 1 standard deviation increase

in searches for autism-vaccine links, for example, decreases the unvaccinated population by

8.5%. Moving from zero population with a college degree to everyone would decrease the

unvaccinated population by 2.9%.

4.2 Response to Outbreaks

Figure 1 shows the estimated impact of pertussis outbreaks (grouped by the number of cases)

in the county-year. The message of the graph is simple: more cases of pertussis lead to higher

vaccination rates in the subsequent year. The largest outbreaks in the data - greater than the

95th percentile of county-years - increase the vaccination rate by 1.2 percentage point. This is

28% of the unvaccinated population.

Table 3 shows regression evidence corresponding to this figure. The figures in square

brackets indicate the impact as a share of the unvaccinated population. The first column

corresponds exactly to Figure 1. This analysis looks only at the count of cases, ignoring the
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fact that this count has very different implications for the rate depending on the population.

Column (2) explores an alternative functional form, including a linear term in the number of

cases and a term measuring the rate. The rate seems to dominate this regression. Column (3)

interacts the case groups with a dummy for being in the bottom half of counties in terms of

population.9 The effects are larger for the smaller population areas, but they do not scale

proportionally given the large differences in population across these groups. Below I return

more specifically to the issue of functional form.

It is useful to estimate the size of the impact in terms of number of children vaccinated.

Focusing on Column (1) of Table 3: for the average county, this predicts that observing about

5 cases (the mean in the 50-75th percentile group) prompts 20 new vaccinations among

entering kindergartners. This is a lower bound if other ages also respond.

Columns (4) and (5) of Table 3 show two standard robustness checks to address the

possibility of preexisting trends driving the results. Column (4) shows the regressions with

county-specific trends included. Column (5) shows the impact of future cases of pertussis (in

the following year) on the current vaccination rate. The results are not sensitive to

county-specific trends, and we see no evidence that future cases drive current vaccination.

Finally, Column (6) adds a control for the state exemption policy; these data are based

on data from Omer et al (2006). This effect is estimated off of states which change their

policies during the course of the data. Exemption regimes are ranked from 1 to 3 with higher

numbers indicating a less strict exemption policy. Including the exemption policy control does

not impact the estimated effect of outbreaks, suggesting state policy changes are not driving

this effect. Moreover, we can see the impact of a large outbreak is similar to a 1 point increase

in the exemption policy.

Relationship between Current and Future Cases Crucial to the interpretation of these

facts is the question of whether they reflect true changes in disease risk. Table 4 tests for a

relationship between current and future pertussis cases, controlling for county and year fixed

effects. It does not appear that more cases in a year predict more cases in the following year

or the year after. If anything, most of the coefficients are negative10; this is likely a result of

the cyclical nature of pertussis outbreaks. There is one positive and significant coefficient: a

large outbreak in the current year does predict an increase in cases in the following year. The

magnitude is much smaller than the cases in the current year, however, and this does not

extend two years in the future. It seems likely this simply reflects some continuation of a large

epidemic across years.

9There are no very large outbreaks in the smaller counties so this interaction is dropped.
10Based on the result in Table A.1 this does not seem likely to result from vaccination responses.
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Impact of Lagged Cases The primary results focus on the impact of outbreaks in the year

prior to kindergarten entry. This is motivated by the fact that this is the time at which

vaccine-hesitant parents must either vaccinate their children or obtain an exemption.

However, it is useful to look at the full time path of effects, including both leads and lags.

These have different interpretations. Future outbreaks should not affect current vaccination

behavior (see Column (5) of Table 3). Lagged outbreaks, however, may impact vaccines if

they prompt parents to vaccinate children at the time of the outbreak or parents remember

them when they are making decisions about kindergarten vaccines. In practice, based on data

from the National Immunization Survey, vaccination rates (as measured here, with an

indicator for any vaccination) do not increase much between 19 and 35 months of age. Given

this, finding a significant impact of lagged outbreaks likely points to the role of memory.

Figures 2a and 2b graph coefficients on measures of the pertussis rate, or large

outbreaks, over a number of years leading up to and following kindergarten entry. The leads

are all insignificant, mostly negative and small. When we look at large outbreaks there is

some effect of outbreaks two years prior to entry and in the year of entry; this latter result

make sense given that school entry is in September. This picture overall suggests that

outbreaks do not have much of a long-term effect.11

Older Children, Measles This paper focuses on the case of pertussis for kindergarten

students because this is the age group with the best data coverage and this is the disease with

the most frequent outbreaks. However, to the extent possible we would like to confirm that

these effects are not limited to this setting. Appendix Table A.2 shows two additional tests.

First, Column (1) shows the same regressions - pertussis vaccination on pertussis outbreaks -

but for 11-year-olds. There is less data for this age group but there is some coverage from

junior high entry. There is a very large vaccination response in this group; in fact, it is larger

than the 5-year-olds (this is partially but not completely driven by the change in sample).

Columns (2) shows the impact of measles outbreaks on measles vaccination for entering

kindergartners. Measles outbreaks are rare even relative to the pertussis outbreaks. About

half of county-years have at least one case of pertussis. In contrast, only 5% of county-years

have at least one case of measles. The effects here are therefore identified off of a very small

number of outbreaks. However, we do see evidence that large outbreaks - here defined as

county-years in which there are 15 or more cases in a county - prompt increases in

vaccination. Both of these provide some helpful confirmation that the results are not limited

to a single specification.

11To preserve sample size as much as possible the regressions which produce this table are run separately.
Given the evidence in Table 4 this should not bias the results. However, the impacts are extremely similar if we
run the regression together, differing largely due to the loss of sample size on estimating lags.
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Functional Form of Relationship Figures 3a and 3b provide more detail on the

functional form of this relationship.

Figure 3a graphs the coefficients from Column (1) of Table 3 against the average count

of cases by group. The relationship is concave. The impact is largest for the group with the

largest number of cases, but it is not proportionally larger. That is, the increase in

vaccinations is approximately 0.4 percentage points with an average of 5 cases in the

county-year, and 1.2 percentage points for an average of 150 cases.

A second way to look at this is to look by population group. If the response were linear

in the number of cases then we should see the impact of disease rate is the same for large and

small counties. If the first cases matter more, then a given rate should have a larger impact in

larger counties. Figure 3b shows the relationship between rate and impact on vaccinations for

the smallest 25% of counties in terms of population and the largest 25%. The largest impacts

are seen in the smaller counties, reflecting the fact that the same count of cases delivers a

larger rate increase. However, to the left of the graph we see evidence of concavity: the

impact of a similar change in disease rate is twice as big in larger counties.

Both figures suggest the impact of disease is non-linear: the first cases matter more than

subsequent cases. Another way to see this point is based on the evidence in Column (3) of

Table 3. This table shows the impacts separately for the top half and bottom half of the

population distribution. The table shows that the largest outbreak group has a similar effect

in the large counties as the second largest group does in the smaller counties. There is a

six-fold difference in average cases in these two groups, but a twenty-fold difference in county

sizes. This suggests, again, non-linearity.

Interactions with Baseline Covariates It is possible to estimate variation in the

response by baseline characteristics. The most obvious covariate of interest is the initial level

of vaccination: is this effect larger or smaller in areas which have on average lower vaccination

rates? Figure 4 shows three lines, corresponding to the impact by case group on vaccination

behavior for low, medium and high vaccination areas. These areas are defined as terciles

based on the average of the two lowest vaccination county-years. The graph shows the

impacts as a share of the unvaccinated population since this figure is comparable across areas.

Figure 4 demonstrates that the effects are similarly sized in the bottom two terciles, but

it shows no effect in the highest vaccination group. This should not be surprising since in the

highest vaccination groups there is simply not much room for vaccination rates to move. We

would not expect vaccination rates of 100% in all locations since some share of people cannot

vaccinate for health reasons.

Appendix Table A.3 shows this interaction and interactions with further demographic
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variables. In general, there is not much interesting variation. There is some weak evidence

that the response is smaller in areas with more education.

4.2.1 Mechanism Evidence

The results above point to a vaccination response to observed cases of disease. This section

provides two pieces of evidence which bolster the claim to causality by, first, making clear the

results are specific to the particular vaccination in question and, second, by showing that

there is an internet search response to the outbreak.

Cross-Disease Responses The analysis thus far has focused on the impact of pertussis

outbreaks on pertussis vaccination. A related question is whether pertussis cases also impact

vaccination for other diseases. A finding that the response is disease-specific would make the

claim that this effect is causal and driven by the outbreaks more compelling. It is worth

noting, however, that there are some (non-rational) theories which would predict a

cross-vaccine response.

Appendix Table A.4 shows the impact of pertussis outbreaks on other vaccinations (all

measles vaccines, MMR vaccines and an overall measure of whether a child is fully up to date

on vaccinations). There is no evidence of cross-disease interactions. Outbreaks of pertussis do

not seem to increase vaccination rates for any other diseases.

Response of Google Trends The results in this paper rely on the assumption that people

learn about disease outbreaks and respond to them. Although we cannot explicitly observe

what people know about these outbreaks, we can proxy for their information with Google

searches.

Figure 5a and 5b show the impact of outbreaks in a state-month on Google searches for

information about the disease, vaccination and searches for terms related to vaccine dangers.

Figure 5a estimates the impact of a linear control for number of cases. Figure 5b estimates

the impact of a dummy for a large outbreak in the state. These figures show the impact over

time - the effect in the month of the outbreak, the next month, and so on.

The results in either case are the same. Outbreaks prompt a significant increase in

searches for information on the disease. They also prompt a significant increase in searches for

information on the vaccine. Both of these effects are short lived - they last a month or two

before dissipating. The effects are reasonably large. In the case of searches for pertussis, the

impact of a large outbreak is to increase searches by 0.4 of a standard deviation. For

“pertussis vaccine” this figure is 0.18 of a standard deviation. These results show that

information about outbreaks is reaching the population.

15



In contrast there is no evidence that outbreaks increase searches for vaccine injury terms

or for terms that link vaccines and autism. This is despite the fact that in general these

searches move together (see correlations in Appendix Table A.5). In other words, although it

is generally the case that increases in searches for pertussis vaccination also increase searches

for terms related to vaccine dangers, the increase in vaccine searches that are prompted by

outbreaks do not seem to be accompanied by an increase in interest in vaccine risks.

4.3 Response Variation across Areas

I analyze two sources of variation across areas. First, I estimate the difference in response

between states which centrally coordinate responses and those which do not. Second, within

the latter set, I estimate differences between counties which systematically notify the media

about outbreaks and those which do not.

4.3.1 Variation across States

The full sample in the paper includes 12 states: Alabama, Arizona, California, Kansas,

Kentucky, Michigan, Missouri, New York, North Carolina, North Dakota, Oregon and Texas.

In four of these states - Alabama, North Dakota, Oregon and Michigan - the response to

disease outbreaks is coordinated directly by either the state or, in the case of Michigan,

regional health offices. In these states the counties may play a role in disseminating

information about disease outbreaks but they do so at the direction of the state or regional

office. In the other eight states counties have autonomy with respect to their response to

disease outbreaks. They may notify the state and ask for help, and the state provides some

guidelines, but they ultimately decide their own policies.

In principle both structures have advantages. State-coordinated response could dominate

since those dealing with outbreaks will have more experience (a state experiences many more

outbreaks than individual counties) and the state may have a better ability to see the whole

picture, including cross-county spread, etc. On the other hand, locally-sourced responses may

allow for better targeting of the response to the individual county circumstances.

Columns (1) and (2) of Table 5 show the primary regressions in the paper (replicating

Column (1) of Table 3) divided by states with coordinated responses (Column (1)) and those

without (Column (2)). The responses are significantly larger in the centrally coordinated

states. In the non-coordinated states there is little evidence of any response other than to very

large outbreaks. In the centrally coordinated states the data suggests about 10% of

unvaccinated children are vaccinated even in response to a very small outbreak.

Columns (3) - (6) of Table 5 show evidence on the response of Google searches for
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“pertussis” and “pertussis vaccination” (and related terms) in the two groups of states. These

regressions are at the state-month level, as in Figure 5. I report the impact of cases in the

same month. Consistent with the evidence on vaccination response, the Google search

response on both terms is substantially higher for centrally-coordinated states.

This suggests that state-coordinated notification dominates county autonomy, at least in

the sense of better promoting disease outbreaks to coordinate increases in vaccination.

4.3.2 Variation across Counties

In the states without central coordination, I focus on whether counties reported a systematic

way of notifying the media about outbreaks. There are 828 counties in these states, of which

244 never have any outbreaks in the course of the data. Among the others, I was able to

collect data from 317. In the other cases I was unable to contact the county, the county had

no health department or the health department was unable to provide information on their

approach to outbreaks.

The regressions in Table 5 show, on average, limited response in these states. To

enhance power, I redefine the pertussis case groups as either “small” (less than the 95th

percentile of county-years with positive outbreaks) or “large” (the largest outbreak group). I

then estimate the standard regressions in the paper with these independent variables and

these variables interacted with a dummy for whether the county typically notifies the media.

This regression also includes interactions between the county population and the outbreak

variables and between state dummies and these variables. The results are shown in Table 6:

the impacts of large outbreaks are significantly higher in areas with a media contact plan.

4.4 Summary

The evidence in this section shows that vaccination responds to disease outbreaks, even as

those outbreaks are not informative about future disease in the data. The evidence for a

causal link is bolstered both by standard robustness checks and by evidence on mechanisms

drawn from internet searches. Importantly, from a policy standpoint, there is variation across

space. This variation suggests that with “good management” outbreaks can have a larger

impact on vaccination rates.

The next two sections develop two further implications of these findings. First, I return

to the underlying question of what model of behavior explains lack of vaccination in general

and use the evidence above to inform this issue. Second, I turn to better understanding the

size of these impacts and ask whether they are large enough to counteract vaccination declines.
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5 Model of Behavior

In this section I outline an extremely simple theory of vaccination behavior, designed to

rationalize the set of facts above, along with observations from the existing literature. I focus

on understanding the behavior of the marginal individuals. I begin by setting up an extremely

simple framework and situating the key findings in the language of that framework. I then

argue that a model of full information cannot explain these results, and suggest that a model

of limited information with an important salience component may be able to rationalize them.

5.1 Setup

The model considers a simple case in which vaccination decisions depend on the trade-off

between (perceived) benefits and (perceived) costs.

Consider a disease j with an associated vaccine. Household i perceives a utility cost to

vaccination for disease j, Cij and a utility cost to developing the disease Dij. I normalize

Dij = 1 so Cij will then be interpreted as the utility cost to vaccination relative to the utility

cost of developing the disease. Household i also holds a perception about the excess risk of

developing the disease in the absence of the vaccine: pij.

Both cost and probability may differ in perception from the true values. Denote the fully

informed (household-specific) cost of vaccination as Ĉij. Denote the true excess risk of

developing disease j if not vaccinated as p̂j and note this may be larger or smaller than pij for

any i.

In line with the experiments in the data and existing literature, I consider two stimuli:

education about vaccine costs and data on observed cases of disease j. Denote an education

stimulus as e ∈ [0, 1] and observed disease cases as oj. Education may impact perceptions of

vaccine costs, and observed cases of the disease may impact perceived probability. In addition,

I allow for the perceived probability to be related to the actual probability.

The perceived vaccine cost in the model is therefore denoted Cij(Ĉij, e), the excess

probability of developing the disease absent the vaccine is pij(p̂j, oj) Note that the perceived

probability may be a function of the true probability but, importantly, the true probability is

not a function of the observed cases, consistent with the evidence in Table 4.

Under this model denote the vaccination status for household i for disease j as Sij,

where Sij = 1
{
pij(p̂j, oj) > Cij(Ĉij, e)

}
.

The data presented above - both the new results and the evidence from the existing

literature - suggest two key comparative statics: vaccination increases with outbreaks,

vaccination does not increase with education about vaccine safety, even though that education

does change the perception of safety.

18



The table below summarizes these facts in the language of the model.

Comparative Static Description
∂Sij

doj
|p̂j > 0 Vaccination increases with

observed cases of disease, holding

true disease rate constant
∂2Sij

∂o2j
|p̂j < 0 The impact of observed cases on

vaccination, holding true rate

constant, is concave.
∂Sij

∂e
= 0,

∂Cij

∂e
< 0 Vaccination does not respond to

education, but beliefs about

costs do.

I argue that the facts above - in the form of these comparative statics - put restrictions

on the set of models which could explain the results. Below, I begin with a benchmark

full-information model of under-vaccination and argue this is ruled out by the data. I then

discuss a model of limited information.

5.2 Fully Informed Model

Consider first a fully informed model of non-vaccination. This is the type of model outlined in

the baseline “economic epidemiology” literature on vaccinations (see, for example, Geoffard

and Philipson, 1996 and Geoffard and Philipson, 1997). In these models, the choice to

vaccinate or not is a response to actual risk of disease.

The key aspect of the fully informed model is that vaccination behavior is not affected

by observed cases (conditional on the true probability) or by education. We therefore have

Cij = Ĉij, and pij = p̂j. Household vaccination behavior in this model can be expressed as:

Sij = 1
{
p̂j > Ĉij

}
.

Note that this model has no trouble rationalizing the choice not to vaccinate since I allow for

individual heterogeneity in Ĉij. Parents in this model may rationally decide that the small

probability of infection does not outweigh the small costs (pain, tiny chance of adverse

reaction) of the vaccine.

This model fails to replicate the first or second comparative static above. It is

straightforward to observe that
∂Sij

doj
= 0, given that p̂j does not depend on oj.

As an extension, it is worth noting that no model in which pij = p̂j - even those with

very flexible allowances for the Cij function - will be able to rationalize the patterns in the
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data. Effectively, the central results in this paper mean that perceived risk of disease must

depend on something other than the true disease risk.

5.3 Model of Limited Information and Salience

I turn now to suggesting a particular model of limited information. The first comparative

static is sufficient to reject full information. The second and third suggest a particular

functional form. More specifically, we must have, first, that the perceived risk is increasing in

oj but concave. Second, the model would ideally also deliver the result that changes in the

perceived cost of vaccines (due to an education stimulus) do not change vaccination behavior.

This last point is difficult to rationalize with a simple modification of the pij function since if

the decision is responsive to movements in pij we would also expect it to be responsive to

movements in Cij on the margin.

It is necessary to introduce something into the model to generate the asymmetry in

response. This section suggest a model with a salience component may fit the data well.

The key element of this model is the particularization of pij. In particular, I assume:

pij =

0 if oj = 0

pij(p̂j, oj) if oj > 0

That is, assume that if people do not observe any cases of the disease, they assume there is no

chance of developing the disease. If they observe any cases of the disease then the perceived

chance is a function of the true chance and the number of cases they observe. This is

effectively a model of salience (Bordalo, Gennaioli and Shleifer, 2012), in which the disease

risk only becomes salient to people once they are aware of at least one case.

Vaccination behavior can be expressed as follows:

Sij =

0 if oj = 0

1
{
pij(p̂j, oj) > Cij(Ĉij, e)

}
if oj > 0

This model clearly delivers movement in vaccination behavior with observed cases of the

disease. This occurs both because of the discontinuity associated with the belief structure and

because pij(p̂j, oj) may vary with oj. The model also accommodates a concave response to

outbreaks, again for two reasons. First, the discontinuity generates concavity in response

directly. Second, it would be possible to generate more discontinuity with the functional form

of pij(p̂j, oj).

This model also accommodates the idea that Sij may not respond much (or at all) to e
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even if Cij does respond. If oj = 0 then movements in Cij(Ĉij, e) will not impact vaccination

behavior. Intuitively, if people believe there is no benefit of vaccination - nothing to protect

against - they will not vaccinate even if the cost is very small. Given that there are relatively

few cases of these diseases in a given time period, it is likely that campaigns to educate people

about vaccine safety will primarily be accessing people who have not recently seen cases of

disease and, hence, movements in beliefs will have no impact.12

To the extent that this model captures important features of the decision not to

vaccinate it suggests that there may be scope for education to influence vaccination rates but

this education should focus on the risks of not vaccinating, not the safety of vaccines. This is

consistent with the survey evidence in Cacciatore, Nowak and Evans (2016). Importantly, this

model also suggests that it may be possible to affect beliefs even without changes in disease

rates. Making even a small number of local disease cases salient to families may increase

vaccination rates.

6 Are Declining Vaccination Rates Self-Limiting?

The results in Section 4 show vaccination rates increasing with disease outbreaks. A natural

way to think about the magnitude of these effects is to ask whether they imply “cycles” in

vaccination rates. As vaccination rates fall, outbreaks are more likely to occur, and this may

lead to increased vaccination rates again. This will only occur, however, if these responses are

large. In this section I take up this question.

6.1 Setup

Consider the simplest “economic epidemiology” model, explained by two equations which

relate vaccination rates over time, Vt, to disease rates dt. The first equation captures the

epidemiology - current vaccination rates affects current disease - and the second capture the

economics - recent disease outbreaks affect current vaccination.

dt = f(Vt)

Vt = g(dt−1)

Ideally, in order to estimate this we would have full information on both of these functions. In

reality, both are a challenge.

12It is important to recall that this is a model intended to explain non-vaccination behavior - that is, the
behavior of a set of marginal vaccinators. There are of course a large set of people who vaccinate their children
who may or may not believe there are disease risks.
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The evidence in Section 4 provides an estimate of the response of vaccination among a

single age group to disease outbreak. I do not have direct evidence on the response among any

other age group.

Further, there is not an obvious source of information on the relationship between

vaccination rates and disease outbreaks. Epidemiological models of pertussis focus more on

natural cycles in the disease rates in a large population and less on the impact of location

variation in vaccination on individual outbreaks. Existing papers on the link between local

pertussis vaccination rates and pertussis outbreaks use data similar to the data used in this

paper, but less complete.

To move forward on this problem, then, I introduce a number of assumptions. Future

work would ideally more fully elucidate this link.

Vaccination and Disease I use cross sectional variation in the data to estimate the

relationship between the level of vaccination and the probability of a disease outbreak of

various sizes. Specifically, I estimate an ordered probit model where the outcome is outbreak

size categories and the treatment variables are categories of vaccination rates. I estimate this

using variation in the cross section since, as noted in Appendix Table A.1, within a county

over time the year-to-year variations in vaccination rates do not seem to relate to pertussis

levels. In the cross section there is a strong relationship between vaccination rates and

outbreaks. This can be seen in the ordered probit results in Appendix Table A.6.

The output from the ordered probit model is a predicted probability of being in each

outbreak group for each vaccination rate group.

Disease and Vaccination I show two simulations. First, I assume that the only response

to disease occurs among the cohort of children entering kindergarten. I use the estimates from

Table 3. Second, I assume this response occurs among all children.

Simulation Structure I focus on disease and vaccination rates among children 10 and

under, who are the group primarily affected by pertussis. I start the simulation with a 99.5%

vaccination rate. I then introduce a “shock”: a permanent reduction of vaccination rate to

95% for each entering cohort. The idea is to capture, for example, the introduction of some

information (like the purported vaccine-autism link) which limits vaccination.

I consider two possibilities for the evolution of vaccination rates. In the conservative

specification I limit response to the cohort at age 5. That is, no additional children are

vaccinated between ages 1 and 4 or between 6 and 10. At age 5 some children are vaccinated

according to whether there was an outbreak in that year and its size; he response is to
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increase vaccination as a share of the unvaccinated group, with the size of the impacts based

on the results in Section 4. Outbreaks are generated in simulation based on random data

draws and the predicted probability of outbreaks of various sizes given the prevailing

vaccination rate in the cohort.

In the less conservative specification I imagine that all age cohorts respond. In both

cases I use, first, the overall response and, second, the response among the centrally

coordinated states (see Table 5).

Throughout I run each simulation 10,000 times and average.

6.2 Results

The results of the simulations are in Figure 6. The first two sub-figures, Figure 6a and 6b

show the path of vaccination rates; Figures 6c and 6d show corresponding graphs of the risk of

a large outbreak (>=75% of case-years) in each scenario.

In the most conservative specification this response makes little difference to vaccination

rates overall. It is straightforward to see why: even though the responses at age 5 are

relatively large, there is only a chance for the response to operate on a single cohort. Figure

6c demonstrates that this response makes no difference to the risk of a large outbreak.

In the less conservative specification (Figures 6b and 6d), however, the response has a

large effect on vaccination rates. Without response, the prevailing vaccination rates is 95%.

With the large response, the rate is around 97%. Figure 6d shows that this makes a difference

to the risk of large outbreaks. These outbreaks occur 13.5% of the time in steady state in the

large response condition, and 16.6% of the time in the baseline condition.

This analysis suggests that the results here could matter for the path of vaccination in

the face of a shock, although the result is heavily dependent on whether the vaccination

response occurs only in one cohort versus all cohorts. It is worth noting again that there are

many assumptions inherent in this analysis and even if we are confident in the estimated

relationship between vaccination rate and disease outbreaks within the range of data here, we

know little about the relationship between vaccination rates and outbreaks at lower levels of

vaccination. From historical evidence we can learn about the likely rate of pertussis in the

absence of any vaccination, but it may be harder to learn about the impact of (for example) a

steady state rate of 70% vaccinated.
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7 Conclusion

Anecdotal evidence suggests that vaccine-resistant parents can be swayed toward vaccination

by disease outbreaks. This paper provides evidence suggesting those anecdotes are borne out

in the data. Using a data set of county-year vaccination rates and outbreaks, I show that

vaccination rates among entering kindergartners are increased by outbreaks of disease. For

large outbreaks, these effects are sizable. In the second set of results I show that these

outbreaks increase interest in the disease and vaccinations, as measured by Google search

volume, but do not result in an increase in searches for vaccine dangers. The vaccination

effects exist in spite of the fact that current outbreaks are not informative about future

outbreaks.

It is difficult to fit these facts with a fully informed model in which households react to

the disease risk. Instead, I suggest the data may be better fit by a model in which being made

aware of even a single case of disease prompts changes in perceived disease risk through a

salience mechanism. A version of this model in which individuals perceive the risk to be zero

when they do not observe any cases can also fit the fact that we see limited evidence that

vaccination responds to education campaigns.

The key policy issue motivating this paper is how to increase childhood vaccination

rates. The evidence here suggests that disease outbreaks may be a powerful motivator and, in

particular, that they may be a useful motivation even if they are not actually informative. I

show that the structure of outbreak response across counties and states can importantly

influence the size of this response. In particular, states which coordinate their response

through state health departments are much more effective at promoting vaccination response

than those which coordinate at the county level. Within the latter, I see some evidence that

counties with a systematic media notification plan have larger responses. This may reflect

better general management.

In general, these results suggest that disease outbreaks may provide an important

opportunity to promote vaccination behavior. Effective management of this promotion may

enhance these effects.
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Figure 1: Impact of Disease on Vaccination
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Notes: These figures show the impact of pertussis cases in the county on vaccination behavior. The vaccination data is at the time

of school entry and the outbreaks are measured in the year prior. All points shown are regression coefficients from regressions with

county and year fixed effects.
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Figure 2: Timing of Disease Impacts

(a) Impact of Pertussis Rate on Vaccination
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(b) Impact of Large Outbreaks on Vaccination
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Notes: These figures show the impact of disease cases in the county on vaccination behavior in lags and leads. The outbreak is

measured either as a dummy for a large outbreak or as the disease rate. All points shown are regression coefficients from regressions

with county and year fixed effects. ** sig. at 5% level.
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Figure 3: Functional Form Analysis

(a) Vaccination Impact by Case Count
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(b) Vaccination Impact by Population

0
.0

05
.0

1
.0

15
.0

2
.0

25
E

ffe
ct

 o
n 

V
ac

ci
na

tio
n

0 .001 .002 .003
 

Disease Rate

Smallest 25%
Largest 25%

Effect of Pertussis Cases on Vaccination, by Population

Notes: These figures illustrate the functional form of the relationship between outbreaks and vaccination. In Sub-Figure b the

two groups are the top 25% of counties in terms of population and the bottom 25% of counties. All points shown are regression

coefficients from regressions with county and year fixed effects.
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Figure 4: Interactions with Vaccination Levels
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Notes: These figures show the impact of outbreaks on vaccination separated by areas with high and low vaccination rates. Counties

are divided into three groups based on the minimum county-year vaccination rate. All points shown are regression coefficients from

regressions with county and year fixed effects, scaled by the average under-vaccination rate in each group.
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Figure 5: Impact of Pertussis Cases on Google Searches

(a) Count of Cases
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(b) Large Outbreak
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Notes: These figures show the impact of outbreaks on Google searches for four groups of terms: terms related to the disease,

“pertussis vaccine” and related, “vaccine injury” and related and “vaccine and autism”. The graph maps out the impact in the

month in which the cases occur, the following month, the month after and so on up to a year after the outbreak. All coefficients

are from regressions which include state and month fixed effects. Sub-figure (a) shows the impact of a linear control for number of

cases. Sub-figure (b) shows the impact of a dummy for a large outbreak.
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Figure 6: Simulation Results
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(b) Simulated Vaccination, All Ages Respond
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(c) Simulated Outbreaks, Single Year Response
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(d) Simulated Outbreaks, All Ages Respond
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Notes: These figures show the results of the simulation. Subfigures (a) and (c) show results from the simulation assuming that

only one age group (five-year-olds) responds. Sub-figures (b) and (d) show results assuming that all age groups respond. A large

outbreak is an outbreak in >=95th percentile of county-years.
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Table 1: Summary Statistics

Panel A: Vaccination Rates Panel B: Disease Data

State
Years of Sample

Mean
Std.

Mean
Std.

Coverage Size Dev. Dev.

Alabama 2007-2011 304 0.978 0.042 2.673 5.177

Arizona 2009-2011 45 0.945 0.033 4.762 5.597

California 1991-2011 1218 0.934 0.041 4.670 11.540

Kansas 2009-2011 314 0.867 0.096 6.936 25.383

Kentucky 2004-2011 886 0.964 0.059 3.049 8.709

Michigan 2004-2011 662 0.906 0.034 8.765 31.470

Missouri 2011-2011 115 0.966 0.027 2.950 9.8656

New York 2002-2011 682 0.970 0.095 8.566 20.331

North Carolina 1999-2011 1293 0.991 0.030 2.060 10.954

North Dakota 2005-2011 352 0.935 0.094 6.470 20.466

Oregon 1992-2011 660 0.959 0.032 4.508 19.299

Texas 2007-2011 1260 0.972 0.048 5.014 17.980

Notes: This table shows pertussis vaccination and disease rates by state. Disease rates are quoted in rates per 100,000 people. As
throughout the paper, vaccination rates are the share of children entering kindergarten with any pertussis vaccination.
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Table 2: Relationship Between Pertussis Vaccinations and Demographics

Outcome: Vaccination Rate

(1) (2)

Period: 2004-2005 2010-2011

Share HS Degree -0.091** -0.061

(.043) (.047)

Share College Degree -0.038* -0.128*

(.020) (.067)

Share Black -0.0197** -0.020

(.009) (.019)

Median Family Income (’000s) 0.0005** 0.0013**

(.0002) (.0003)

Google: Pertussis 0.004*** -0.001

(.002) (.001)

Google: Pertussis Vacc. 0.001 0.003*

(.001) (.002)

Google: Vaccine Injury -0.001 -0.002

(.001) (.002)

Google: Autism & Vaccine -0.004** -0.004*

(.001) (.001)

State FE YES YES

R-Squared 0.59 0.39

Number of Observations 479 892

Notes: This table illustrates the relationship between vaccination rates and county-level demographics. Vaccination rates are
averaged for the 2004-2005 or 2010-2011 period. Demographic measures are from the 2010 census. Google searches are at the
DMA-area level and are all standardized. All regressions include state fixed effects and are clustered at the DMA level. Figures in
parentheses are standard errors. * significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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Table 3: Impacts of Pertussis Outbreaks on Vaccination

Outcome: Pertussis Vaccination Rate, 5-year-olds

(1) (2) (3) (4) (5) (6)

<50th Pctile of Cases 0.002 [4.5%] 0.001 [3.2%] 0.003* 0.002 0.002

(0.001) (0.001) (0.001) (0.001) (0.001)

50th to <75th Pctile 0.0045*** [10.3%] 0.0021 [4.8%] 0.0056*** 0.0055*** 0.0044***

(0.001) (0.001) (0.002) (0.002) (0.001)

75th to <95th Pctile 0.0042***[9.7%] 0.002[4.1%] 0.0059*** 0.0049*** 0.0041**

(0.002) (0.002) (0.002) (0.002) (0.002)

>=95th Pctile 0.012***[28.1%] 0.011***[24.4%] 0.010*** 0.014*** 0.012***

(0.003) (0.003) (0.003) (0.004) (0.003)

# of Cases 0.000 [0.00%]

(0.000)

Rate 6.82*** [154%]

(2.13)

<50th Pctile X Low Pop 0.0004 [0.9%]

(0.002)

50th to <75th X Low Pop 0.0071** [16.0%]

(0.0034)

75th to <95th X Low Pop 0.010**[24.0%]

(0.005)

>=95th Pctile X Low Pop N/A

<50th Pctile of Cases, t+1 -0.002

(0.001)

50th to <75th Pctile, t+1 -0.002

(0.002)

75th to <95th Pctile, t+1 -0.003

(0.002)

>=95th Pctile, t+1 -0.010

(0.009)

Exemption Policy (1-3) -0.010*

(.006)

County FE YES YES YES YES YES

Year FE YES YES YES YES YES

County-Specific Trends NO NO YES NO YES

R-squared 0.58 0.58 0.70 0.58 0.70

Number of Observations 7472 7472 7472 6422 7472

Notes: This table shows the impact of pertussis outbreaks on vaccination rates. Outbreaks are defined by groups. The omitted
category is 0 cases. The groups are then based on the distribution of positive county years. “Low pop” (Column (2) interaction)
is a dummy for being in the bottom half of the population distribution. The highest group interaction is omitted since no small
counties have this outbreak rate. Figures in square brackets show the change as a share of the average unvaccinated population.
Robust standard errors in parentheses, clustered at the county level. * significant at 10% level; ** significant at 5% level; ***
significant at 1% level.
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Table 4: Impacts of Current Pertussis Cases on Future Cases

Outcome: Pertussis Rate Cases of Pertussis

(1) (2) (3) (4)

<50th Pctile of Cases, t− 1 0.0000005 -1.18**

(0.000009) (0.45)

50th to <75th Pctile, t− 1 -0.000008 -2.32***

(0.000008) (0.75)

75th to <95th Pctile, t− 1 -0.0000006 0.357

(0.00001) (1.63)

>=95th Pctile, t− 1 0.00002 22.04***

(0.00002) (7.01)

<50th Pctile of Cases, t− 2 -0.000006 -0.20

(0.000006) (0.34)

50th to <75th Pctile, t− 2 -0.00002∗ -0.58

(0.00001) (0.69)

75th to <95th Pctile, t− 2 -0.00004*** -1.87

(0.00001) (12.6)

>=95th Pctile, t− 2 -0.00009*** -20.30***

(0.00001) (7.34)

Pertussis Rate, t− 1 -0.020 864.6

(0.038) (1144.1)

Pertussis Rate, t− 2 -0.140*** -8763.5**

(0.047) (4498.8)

County FE YES YES YES YES

Year FE YES YES YES YES

R-squared 0.26 0.28 0.50 0.50

Number of Observations 7734 7734 7734 7734

Notes: This table shows the impact of past disease on current disease. Outbreaks are defined in groups. The omitted category is 0
cases. The groups are then based on the distribution of positive county years. * significant at 10% level; ** significant at 5% level;
*** significant at 1% level.
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Table 6: Impacts of Outbreaks by County Media Notification

Outcome: Pertussis Vaccination

(1)

<95th Pctile, t− 1 -0.011∗

(0.006)

>=95th Pctile, t− 1 0.005

(0.003)

<95th Pctile × Media Notified 0.001

(0.004)

>=95th Pctile, × Media Notified 0.011∗∗

(0.005)

County FE YES

Year FE YES

Population X Outbreak Controls YES

State Dummy X Outbreak Controls YES

R-squared 0.64

Number of Observations 3740

Notes: This table shows how the impact of outbreaks varies with county notification details. The data excludes states with state
coordination of response. The data includes all the counties with no outbreaks and the counties for which we have data on the
details of outbreak response. Outbreaks are defined as either small or large to enhance power. The interactions of interest are those
between the outbreak groups and whether the county reports systematically notifying the media of outbreaks. The regressions
include interactions between county population and the outbreak groups and between state dummies and the outbreak groups. *
significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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Appendix: Online Publication Only

Appendix A: Figures and Tables

Figure A.1: Pertussis Vaccination Rate Variation Over Time
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Notes: This graph shows estimates of changes in pertussis vaccination rates over time. The observations are coefficients on year

dummies from regressions of vaccination rate on these dummies and county fixed effects. The regressions use an unbalanced panel,

although do control for county fixed effects.
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Figure A.2: Pertussis Vaccination Rate Variation Across Space
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Notes: These figures show the density of vaccination rates across counties in the 2010/2011 period. I average vaccination rates for

2010 and 2011 and drop the bottom 1% of counties.

Table A.1: Impact of Vaccination Rates on Outbreaks

Outcome: Pertussis

Pertussis Rate, t Large Outbreak (0/1), t

Vaccine Rate, t -0.000014 0.023

(0.000033) (0.017)

Population 0.00000060***

(0.000000092)

County FE YES YES

Year FE YES YES

R-Squared 0.28 0.12

Number of Observations 7538 7614

Notes: This table shows the relationship between contemporaneous vaccine rates and disease rates. * significant at 10% level; **
significant at 5% level; *** significant at 1% level.
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Table A.2: Auxiliary Effects: Older Children, Measles Vaccination

Outcome: Pertussis Vacc, 11-year-olds Measles Vacc: 5-year-Olds

(1) (2)

<50th Pctile of Cases 0.006

(0.009)

50th to <75th Pctile 0.016*

(0.010)

75th to <95th Pctile 0.027**

(0.011)

>=95th Pctile 0.068***

(0.019)

Measles Cases: 1-4 -0.0003

(0.002)

Measles Cases : 5-14 0.002

(0.003)

Measles Cases: >=15 0.012**

(0.006)

County FE YES YES

Year FE YES YES

R-squared 0.71 0.76

Number of Observations 1249 7614

Notes: This table shows the impact of pertussis outbreaks on vaccination among 11-year-olds (Column (1)) and the impact of
measles cases on vaccination rate of entering kindergartners. The pertussis case groups are defined as in the primary analysis in the
paper. The omitted measles group is 0 cases. The maximum number of cases of measles in a county-year is 42. Robust standard
errors in parentheses, clustered at the county level. * significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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Table A.3: Interactions between Response and Demographics

Outcome: Pertussis Vaccination Rate

(1) (2)

Pertussis Rate, t− 1 171.6

(108.2)

% HS X Rate -0.554

(0.572)

Med. Income X Rate -0.00006

(0.0004)

Autism Search X Rate 0.613

(0.709)

Vacc Level X Rate -133.0

(91.42)

Big Outbreak, t− 1 0.258***

(0.097)

% HS X Big -0.0009**

(0.0003)

Med. Income X Big 0.0000

(0.0000)

Autism Search X Big 0.0004

(0.0003)

Vacc Level X Big -0.196**

(0.093)

County FE YES YES

Year FE YES YES

R-squared 0.58 0.58

Number of Observations 7356 7356

Notes: This table shows the impact of pertussis rate on vaccination, interacted with various demographics. * significant at 10%
level; ** significant at 5% level; *** significant at 1% level.
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Table A.4: Impacts of Pertussis Outbreaks on Other Vaccination Rates

Outcome: All Measles Vacc. MMR. Vacc. Up-to-Date

(1) (2) (3)

<50th Pctile of Cases, t− 1 0.0007 0.0007 -0.004

(0.001) (0.001) (0.003)

50th to <75th Pctile, t− 1 0.001 0.002 0.0004

(0.002) (0.002) (0.003)

75th to <95th Pctile, t− 1 -0.0008 -0.0006 0.001

(0.002) (0.003) (0.003)

>=95th Pctile, t− 1 -0.001 0.001 0.007

(0.003) (0.004) (0.005)

County FE YES YES YES

Year FE YES YES YES

R-squared 0.76 0.73 0.55

Number of Observations 7614 6433 5339

Notes: This table shows the impact of pertussis outbreaks on vaccination for other diseases. Outbreaks are defined in groups. The
omitted category is 0 cases. The groups are then based on the distribution of positive county years. * significant at 10% level; **
significant at 5% level; *** significant at 1% level.
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Table A.5: Correlations between Search Terms

“Pertussis” “Pertvacc” “Metalrisk” “Autism”

“Pertussis” 1.000

“Pertvacc” 0.2402 1.000

“Metalrisk” 0.0753 0.0744 1.000

“Autism” 0.0014 0.0343 0.1236 1.000

Table A.6: Regression of Outbreaks on Vaccination Levels, For Simulation

Outcome: Outbreak Category [1-5]

Method: Ordered Probit

96% to <98% -0.136***

(0.036)

98% to <99% -0.287***

(0.040)

>=99% to 100% -0.629***

(0.033)

Number of Observations 7472

Notes: This table shows the impact of vaccination levels in the cross section on disease outbreaks. The unit of observation is a
county-year and we do not adjust for any fixed effects. The model is an ordered probit with the outcome categories as in the Tables
in the paper: <50th pctile of cases by county-year, 50-75th pctile, 75-95th pctile and >=95th pctile. The omitted category for
vaccination is a vaccination rate of less than 96%. * significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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Appendix B: Google Trends Data Production

Google Trends reports data in two ways. First, they report changes in search interest over
time within an area. This is reported relative to the time in that area with the highest search
interest. Second, they report differences in search interest across space within a given time
period. This is relative to the area with the highest search interest. Our estimation is
identified off of changes within a location over time so we focus on the first type of data.
These data are generated in the following way:

First define the search rate for a query ([query]) in a given area z at time y:

θy,z =
Number of searches for [query] at time y in area z

Total number of searches at time y in area z

Then trend data (τ) for a given area z over a time period Y = {y1, ..., yn} can be
expressed as:

τy,z =
θy,z

max
yεY

(θy,z)
× 100

Note that Google Trends only calculates these values on a random sample of searches,
and so the values may change depending on the time the website was accessed.

The trends data ranges from 0 to 100. A score of 0 however does not usually indicate no
searches for the query; instead, it usually indicates that the volume of searches for the query
did not meet Google’s privacy threshold. While I do not know the exact cut-off for the
threshold, in general data is easier to produce for more common queries, larger time periods
(i.e. months versus weeks) and larger areas. The data also improves over time.

Many of the terms I am searching do not meet the privacy restrictions. I take two steps
to overcome this. First, Google Trends allows me to use an ‘or’ connector so I can combine
many queries (up to 30 words) related to a common topic, which then reports the sum of their
trend scores. This still does not fully solve the problem so the second step uses elements of
the method described in Stephens-Davidowitz (2014).

The methodology is straightforward. I take a common word that is unrelated to our
terms of interest (this common word should meet the privacy threshold by itself). I then
search for two terms in the same query: the common word ([word]), and the common word or
the term of interest ([word+ term]). For example, if our term was “pertussis” and the
common word was “joke”, I would search for “joke” and “joke or pertussis” at the same time.
The difference between the two trends gives the trends for “pertussis”. Note that the scores
are still given from 0-100, but the data-point with the 100 score is now given to the relative
highest search rate across both terms.

There are trade-offs with how to select the common word. As the common word
becomes more popular it is more likely to consistently pass the privacy threshold, even in
smaller areas and shorter time periods. However, this also increases the probability of having
a small (or zero) difference between [word] and [word+ term]. This is because Google Trends
are reported on a relative scale, so the term of interest’s score becomes smaller relative to the
common word’s score as the popularity of the common word increases.

With this as the general background, I follow the detailed steps below.
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1. Scrape the data for [word] and [word+ term] together at the area-month level

2. Collapse both queries to the year level (mean monthly trend)

3. Recode both queries in a given year as missing if:

(a) One of them has a mean monthly trend equal to zero (i.e. every month in that year
was below the privacy threshold)

(b) [word] trend is greater than [word+ term] trend (i.e. a negative difference, which
can occur due to the random sampling and is more likely if the term of interest
trend score is relatively small)

4. Eliminate any area with less than two non-missing year observations

5. Re-scale the trends relative to the highest area-year score within each area and across
both queries

6. Take the difference between the scaled [word+ term] and [word] - this generates the
trends for [term]

7. Re-scale again relative to the highest area-year score within each area

To balance the popularity trade off, I repeat these steps using five common words with
varying levels of popularity (sponge, joke, fax, chair, rainbow). I then repeat this process over
three different days and average the results of the 15 scrapes. I do this at the state-month
level for the time period 2004-2015 (Y = {2004, ..., 2015}). The search queries I scraped are
listed in Table B.1.
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