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Economists and managers have long studied whether and how differences in workers’ 

skills (human capital) generate differences in workers’ productivity. In the standard theoretical 

model, with foundations in the work of Becker (1964) and Tinbergen (1974), units of labor 

produce output and workers’ varying skills make each unit of labor more (less) productive. 

Recently, Acemoglu and Autor (2011, 2012) have emphasized the distinction between workers’ 

skills and the job tasks to which those skills are applied. Competed tasks produce output, not 

skills, and thus identically-skilled workers assigned different tasks can have different output.1  

In this paper I demonstrate the value of this skills-tasks distinction using micro-data on 

elementary school math teachers. Specifically, I analyze a field-experiment in which teachers, 

with observed measures of math skills, were randomly assigned to follow one of four different 

instructional methods for teaching early-elementary math. Each instructional method is a set of 

specific tasks which teachers are asked to carry out in their classrooms.  

Understanding how skills and job tasks translate into productivity is especially relevant 

and timely in public schools. A consistent empirical literature documents substantial between-

teacher variation in job performance, especially teacher productivity as measured by teachers’ 

contributions to student test score gains. In recent years, these differences in teacher performance 

have become central to political and managerial efforts to improve public schools. Yet relatively 

little is known about what causes this variation. In particular, several plausible measures of 

relevant skills do not consistently predict differences in teacher productivity; this lack of 

evidence is, however, not for lack of research effort. Evidence on how job tasks affect teacher 

                                                 
1 While formalized in Acemoglu and Autor (2011, 2012), this model incorporates prior work by Autor, Levy, and 

Murnane (2003), Acemoglu and Zilibotti (2001), and Costinot and Vogel (2010). 
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productivity is, in comparison, even scarcer.2 Moreover, interactions between skills and tasks 

have not, as far as I am aware, been explicitly studied with empirical data.3 This lack of 

information on the causes of productivity differences constrains teacher policy and management. 

I study teachers’ math skills as measured by the Mathematical Knowledge for Teaching 

(MKT) test, and variation in teachers’ tasks across four different approaches to teaching early-

elementary math codified in commercially published materials. The MKT, administered pre-

experiment, is designed to test a teacher’s knowledge of math concepts and procedures per se, as 

well as her knowledge of how young students (mis)understand the math they are learning (Hill, 

Schilling, and Ball 2004, Hill, Rowan, and Ball 2005). The four approaches, randomly assigned 

to schools, can be primarily characterized as “direct-instruction” or “student-led” methods. In 

direct-instruction classrooms, the more conventional of the two approaches, teachers explicitly 

describe and model math concepts and procedures, and students practice skills frequently. In 

student-led classrooms the students are expected to reason-through and articulate math concepts 

with each other, while teachers “facilitate conversations” and “help students express their 

thoughts” with a “focus on [students’] understanding, rather than on students answering 

problems correctly” (Agodini et al. 2010, pp. xxi, 6-7).  

I show, first, that students’ math test scores are positively correlated with their teacher’s 

math skills, as measured by MKT score; but this correlation goes to zero after accounting for the 

non-random sorting of students to teachers. Second, however, I show that this apparent zero 

correlation masks meaningful heterogeneity caused by the different tasks (instructional methods) 

                                                 
2 For a review of the literature on teacher performance generally, including the evidence on skills and job tasks, see 

Jackson, Rockoff, and Staiger (2014). Rockoff et al. (2011) provide a thorough review of existing evidence on the 

role of teacher skills. I discuss the literature in Section 1 of this paper. 
3 In the closest work that I am aware of, Stein and Kaufman (2010) study the extent to which elementary math 

teachers successfully or faithfully follow the instructional methods they are asked to use. They do not find any 

correlation between implementation and teachers’ knowledge, education, or job experience. 
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teachers are assigned. The correlation between teacher skills and productivity is positive and 

meaningful when teachers use “direct-instruction” methods. By contrast, the correlation is much 

weaker, perhaps even negative, when teachers use a “student-led” approach to teaching math. In 

short, whether and how a teacher’s math skills contribute to her productivity depends on how she 

is asked to teach math. Student-led and direct-instruction methods generate quite different 

relationships between skills and productivity, as measured by teachers’ contributions to testable 

student learning. 

Importantly, productivity differences between student-led and direct-instruction methods 

are apparently driven by high-skilled teachers not their average- and low-skilled colleagues. 

Comparing only classrooms with teachers in the top-tercile of MKT scores, students taught with 

the strongly student-led methods score 0.13-0.16 standard deviations lower at the end of the year 

than their peers taught with more-conventional direct-instruction. By contrast, there is little 

difference across classrooms with teachers in the bottom- or middle-tercile of MKT rank.   

 These higher returns to math skills for teachers using direct-instruction are consistent 

with the key differences in tasks between direct-instruction and student-led methods. Direct-

instruction methods, far more frequently than student-led methods, rely on the teacher to 

demonstrate and explain math concepts and procedures to her students. The ability to correctly 

demonstrate and explain—an ability measured by the MKT test—will have more value in direct-

instruction classrooms.  

Moreover, the teaching tasks or methods teachers adopt can substantially shrink (expand) 

the variation in teacher productivity. The standard deviation of productivity among teachers 

using direct-instruction is 0.12-0.19 student standard deviations. Among teachers using student-

led methods the variation was at least one-third smaller: 0.08 student standard deviations. These 
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treatment effects on the variance of productivity are total effects not just changes in the returns to 

skills. 

Causal interpretation of these estimates relies largely on the random assignment of 

schools and teachers to the four instructional-method treatment conditions. Two points on 

identification are notable. First, within any given treatment condition the slope of the relationship 

between teacher MKT and student test scores is not causally identified, but the differences in 

slope across treatment conditions are casually identified. The slopes may be biased by omitted 

variables, though I show that my estimates are robust to several common and less-common 

measures of teachers. Second, differences in the variance of teacher productivity are causal even 

though students were not randomly assigned to teachers. To identify the difference in variance 

requires only that, if there is any (residual) bias in estimating teachers’ contributions to student 

test scores, the bias is independent of treatment assignment.  

This paper is the first, of which I am aware, to demonstrate that the job tasks teachers’ are 

assigned partly determine the returns to teacher skills in education production, and partly 

determine the variability in teacher productivity more generally. The results suggest decisions 

about how teachers’ are asked to teach can be as important as decisions about who is hired to 

teach. More generally, these results show the value of conceptually separating workers’ skills 

and job tasks when proposing empirical tests of the relationships between skills and productivity. 

 

1. Existing evidence on teacher productivity, skills, and job tasks  

 A consistent empirical literature documents substantial between-teacher variation in job 

performance—variation revealed by differences in observable student outcomes (for a review see 

Jackson, Rockoff, and Staiger 2014). Indeed, economists have been studying teacher 
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productivity, as measured by contributions to student learning growth, for more than four 

decades (with original work by Hanushek 1971 and Murnane 1975). In a typical result, students 

assigned to a teacher at the 75th percentile of the job performance distribution will score between 

0.07-0.15 standard deviations higher on achievement tests than their peers assigned to the 

average teacher. Newer evidence documents equally important between-teacher variation with 

non-test-score outcomes, including students’ non-cognitive skills (Jackson 2013) and students’ 

long-run economic and social success as adults (Chetty, Friedman, and Rockoff 2014b). 

Evidence on what causes these differences in teacher performance is much scarcer. 

 Differences in teachers’ skills—each teacher’s stock of current capabilities whether 

innate, or acquired by training or experience, or both—are an intuitive explanation for 

differences in productivity. Indeed, a large body of research has examined several types of 

relevant skills and several plausible measures, including: (i) general cognitive ability, often 

measured by prior academic success; (ii) specific knowledge of the subject the teacher is 

assigned to teach; (iii) teaching-specific skills, often measured by certification exams; and (iv) 

non-cognitive skills, interpersonal skills, and relevant personality traits. No consistent patterns 

emerge from reading this research; some skill measures explain performance differences in one 

setting but not in another (for reviews see Rockoff et al. 2011 and Hanushek 1997).  

 There are at least two hypotheses for the lack of consistent patterns. First, the returns to 

specific skills depend on the job tasks those skills are applied to; different research results may 

partly reflect differences in sample teachers’ jobs. Second, many (most) easily-observable 

measures of teaching skills are empirically poor measures (e.g., noisy, little variation). This 

paper is partly motivated by the first hypothesis. The second hypothesis is a critical consideration 

in selecting a measure of skills to test the first hypothesis.  
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 Two notable results suggest the importance of hypothesis two and of selecting skill 

measures. First, Rockoff and coauthors (2011) and Dobbie (2011), each studying different data, 

show that composite indices composed of several skill measures do meaningfully predict teacher 

performance, but that the individual components are not predictors. In Dobbie’s data the index 

may explain more than half of the variance in teacher test score effects (Jackson et al. 2014 p. 

806). Second, several recent studies examine the highly teaching-specific skills measured in 

formal classroom observations; in these observations trained raters score teachers on a dozen or 

more specific instructional practices. These observed-skills measures also meaningfully predict 

teacher job performance (for example, Kane et al. 2011, Kane et al. 2013, and Jacob et al. 

2015).4  

 In this paper I measure teachers’ math skills using scores from the Knowledge of 

Mathematics for Teaching (MKT) test developed by Heather Hill and Deborah Ball (Hill, 

Schilling, and Ball 2004, Hill, Rowan, and Ball 2005). As I describe in greater detail in Section 

2, the MKT is designed to measure math skills which are particularly relevant to teaching 

elementary-level math, not simply to test knowledge of mathematics per se. Empirically, 

teachers’ MKT scores have been shown to predict their students’ math test outcomes (see for 

examples, Hill et al. 2005, Rockoff et al. 2011, Hill, Umland, Litke, and Kapitula 2012). 

 Like differences in skills, differences in teachers’ assigned job tasks likely contribute to 

differences in observed teacher productivity, but empirical studies on this topic have been 

comparatively rare. The most common, relevant evidence focuses on differences in job tasks 

                                                 
4 A third notable result is also highly suggestive. Several studies now provide convincing evidence of returns to on-

the-job experience in teaching (for example, Rockoff 2004, Rivkin, Hanushek, and Kain 2005, Papay and Kraft 

forthcoming). Of course, “years of experience” is not a direct measure of specific skills (different teachers learn 

different skills on-the-job), but it is likely correlated with a number of different skills. Thus years of experience is 

another kind of composite skill measure. 
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vary between grade levels or course subjects, or across schools; performance does change when 

a teacher’s job changes on these dimensions (for a review see Jackson, Rockoff, and Staiger 

2014). Differences in schools’ use of instructional computer technology also affect teacher 

performance, and the effects appear to vary depending on teachers’ skills (Taylor 2015).  

  

2. Experimental setting, treatments, and data 

 Data for this paper were collected during a field-experiment in first and second grade 

math instruction. Schools, and thus their teachers, were randomly assigned to follow one of four 

different instructional methods for teaching math—the four treatment conditions—but the math 

concepts teachers were asked to cover during the school year did not vary. Alongside this 

experimental variation in teachers’ job tasks, the study team tested teachers to measure math 

skills at baseline, and tested students pre- and post-experiment to measure learning growth. All 

data were collected during the first year of treatment (either 2006-07 or 2007-08); for most 

teachers and schools this was the first school year using the assigned instructional methods.5  

In this paper I examine whether and how teachers’ skills and assigned job tasks interact 

in the production of student learning. The critical features of the data, which I discuss in this 

section, are measures of teachers’ skills and student learning, and exogenous variation in 

                                                 
5 The original study was funded by the Institute for Education Sciences, U.S. Department of Education, and carried 

out by Mathematica Policy Research and SRI International. The discussion in this section focuses on topics most 

relevant to the current study. Additional topics and details can be found in the original experiment study report 

(Agodini, Harris, Thomas, Murphy, and Gallagher 2010), including extensive descriptions of the four treatment 

conditions’ instructional methods and approaches. 

     Original descriptions of the experiment and results refer to the four treatment conditions as four different 

“curricula.” I use the term “instructional methods” or “methods” since, for many readers, the word “curriculum” 

would imply treatment variation in the math concepts (or standards) teachers were asked to teach. 

     The experiment team collected (planned to collect) data during the second year of implementation in some 

schools. Those data are not yet available. 
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teachers’ job tasks. While the data necessary for the current paper’s research questions were 

collected by the original experiment team, the questions were not addressed in their analysis.6  

Table 1 describes the study participants, including 110 schools and nearly 800 teachers 

and 9,000 students.7 By design, the sample focuses on relatively high-poverty settings: three-

quarters of schools were eligible for school-wide Title I funding, and about half of students are 

eligible for free or reduced price lunch. More than half of students were Latino or African-

American, and one in seven was an English language learner. Teachers had, on average, 12 years 

of experience, nearly eight years in their current school. Just under half of teachers had a 

master’s degree (in any field), and half reported having taken one or more advanced math classes 

in college. 

2.1 Experimental treatments—variation in teachers’ job tasks 

Schools were randomly assigned, within blocks defined by district and observable 

characteristics, to one of four treatment conditions.8 Each condition is a distinct method or 

approach for teaching early elementary math concepts, and each method is codified in a 

commercially published set of teacher instructions and classroom materials. The methods’ 

commercial names are: Investigations in Number, Data, and Space (Investigations); Math 

Expressions (Expressions); Saxon Math (Saxon); and Scott Foresman-Addison Wesley 

Mathematics (SFAW).9  

                                                 
6 The original reports include just one analysis using the MKT scores. Among a list of several effect heterogeneity 

analyses, differences in student test scores across conditions (i.e., treatment effects) were estimated separately for 

teachers in two groups: those in the bottom quintile of the sample MKT distribution, and all other teachers. 
7 Throughout the paper sample sizes have been rounded to the nearest 10 following NCES restricted data reporting 

rules. 
8 By rule, each randomization block includes at least four schools and at most seven. If a district has four schools 

there is one block, if eight schools then two blocks, etc; and if five schools then one block, if nine schools then one 

block of four and one of five, etc. 
9 The four products were selected in a competitive process conducted by IES. Investigations and SFAW are 

published by Pearson Scott Foresman. Expressions and Saxon are published by Houghton Mifflin Harcourt. 
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The first-order differences between the four approaches can be summarized by two 

dimensions: the use of “direct-instruction” methods and the use of “student-led” methods. Both 

Saxon and SFAW make extensive use of direct-instruction or teacher-directed methods, but few, 

if any, student-led methods. In direct-instruction, teachers explicitly describe and model math 

concepts and procedures, sometimes following a provided script; and students practice skills 

frequently. By contrast, Investigations is a strongly student-led or constructivist approach. 

Student-led methods “focus on [students’] understanding, rather than on students answering 

problems correctly” (Agodini et al. 2010, p. xxi). In student-led classrooms, teachers “spend 

much of their time facilitating conversations among students, helping students express their 

thoughts, and guiding students to a deeper understanding of math” (Agodini et al. 2010, p. 6-7). 

Expressions uses both direct-instruction and student-led methods, though written descriptions 

suggest greater weight is given to direct-instruction activities.  

Empirical evidence on the relative effectiveness of these four approaches is scarce. The 

original analysis of this experiment, reported in Agodini et al. (2010), compared mean test scores 

in each condition, separately for first and second grade (8 mean estimates, and 12 pair-wise mean 

differences). There were four statistically significant differences: Expressions test scores were 

higher than both Investigations and SWAF in 1st grade classrooms, 0.11 student standard 

deviations (σ); and both Expressions and Saxon scores were higher than SWAF in 2nd grade, 

0.12σ and 0.17σ respectively.10 Other evaluations have examined Investigations, Saxon, and 

                                                 
Collectively Investigations, Saxon, and SFAW are used in about one-third of K-2 classrooms (Agodini and Harris 

2010). 
10 I have replicated these results. Additionally, using this paper’s estimation methods, and pooling grade levels, I 

estimate positive test score effects for Expressions and Saxon compared to SFAW, of 0.08σ and 0.10σ respectively 

(see Table 2 Column 6). 



10 

 

SWAF individually; they generally find no effects, but the counterfactuals are difficult to define 

(see the review in Agodini and Harris 2010). 

2.2 The MKT test—a measure of teachers’ math skills 

Notably, among the data collected, each teacher’s own math skills were measured with a 

pre-experiment test. The Mathematical Knowledge for Teaching (MKT) test is designed to 

measure both teachers’ knowledge of mathematics per se and knowledge of pedagogy specific to 

teaching math (Hill, Shilling, and Ball 2004, Hill, Rowan, and Ball 2005). The latter skill 

includes, for example, “providing grade-level-appropriate but precise mathematical definitions, 

interpreting and/or predicting student errors, and representing mathematical ideas and procedures 

in ways learners can grasp” (Hill, Kapitula, and Umland 2011, p. 804).11 An example MKT item 

is shown in Figure 1.12  

2.3 Student test scores and other data 

 Students were tested pre- and post-experiment using math tests developed for the ECLS-

K study.13 Both the 1st grade and 2nd grade forms include questions in several areas—number 

sense, properties, and operations; measurement; geometry and spatial sense; data analysis, statistics, 

and probability; and patterns, algebra, and functions—though the weights differ by grade. Beginning 

with the scale scores, I standardize both pre and post scores (mean zero, standard deviation one) 

within grade. 

 The available data also include, as listed in Table 1, the several traditional student 

demographic characteristics, as well as many details on teacher demographics, experience, and 

                                                 
11 While conceptually distinct, the math ability and math teaching skills sub-test scores are correlated 0.97, at least in 

the sample for this study. Throughout the paper I use the univariate overall MKT score. 
12 Additional information on the MKT and many example items are available at www.sitemaker.umich.edu/lmt.  
13 Not all students in were tested. Given cost constraints, a sample of students was randomly selected within each 

class for testing. In the results presented in the paper I weight student-level analyses by the inverse probability of 

selection. However, the results are robust to equal weighting, and those results are provided in the appendix 

http://www.sitemaker.umich.edu/lmt
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education. There are also data from classroom observations and teacher surveys, both designed 

to measure what activities occurred in study classrooms and what math content was covered 

during the school year. I describe these data as they arise in the analysis. 

2.4 Baseline covariate balance and attrition 

Causal interpretations of many results in this paper rely on the success of the original 

randomization to treatment conditions. Using the traditional test of random assignment, in Table 

1 I compare the average pre-treatment characteristics of students, teachers, classes, and schools 

across the four conditions. The samples are well balanced. There is some evidence of differences 

in the proportion of teachers with a master’s degree, but this is one of more than twenty 

characteristics tested. 

My measurement of teacher productivity requires student observations with both pre- and 

post-experiment test scores. Thus, even if samples were balanced at baseline, differential attrition 

across conditions could bias my estimates. Since, as I describe shortly, teacher productivity is 

measured with student test score growth, attrition correlated with baseline is of particular 

concern. As shown in Table 2, there is little evidence of differences in attrition patterns: no 

differences in attrition rates in the four conditions (Columns 1-2), and no differences in the 

relationship between baseline test scores and likelihood of attrition (Column 3). Similarly, there 

is little evidence of differences in teacher attrition: no differences in response rates to the MKT 

test (Column 4), and no differences in attrition before the end of the experimental school year 

(Column 5).  
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3. Math skills, teacher productivity, and the effect of instructional methods 

My first two empirical objectives are to (i) estimate the relationship between teachers’ 

math skills, as measured by their MKT scores, and student test scores; and (ii) test whether the 

instructional methods teachers’ are assigned to follow affect that relationship. As stated in these 

objectives, I focus on one aspect of teacher productivity: a teacher’s contribution to student 

academic achievement as measured by test score growth. A large literature documents substantial 

variability in this aspect of productivity (Hanushek and Rivkin 2010), and recent evidence suggests 

that variability is predictive of teacher productivity differences measured with students’ long-run 

economic and social outcomes (Chetty, Friedman, and Rockoff 2014b). In general, the data and my 

analysis cannot cover all aspects of teachers’ job skills, job tasks, and job responsibilities; but the 

foci in this paper are first-order aspects of each category. 

3.1 Teachers’ MKT scores and student test scores 

 Teachers’ MKT scores and their students’ math test scores are positively correlated. This 

is apparent in Table 3 Column 1 which reports the result of a simple bivariate regression: student 

𝑖’s post-experiment math test score regressed on her teacher 𝑗’s MKT score (both variables are 

standardized, and additional estimation details are described in the next section). Students 

assigned to a teacher with top-quartile math skills score about 0.055σ (student standard 

deviations) higher at the end of the school year than do their peers assigned to an average-skilled 

teacher.  

However, that positive correlation may be explained by non-random assignment of 

students to teachers.14 The regression reported in Table 3 Column 2 is identical to Column 1 

except that I have added controls for student 𝑖’s pre-experiment test score; specifically, a 

                                                 
14 While the instructional methods treatment conditions were randomly assigned, students were not randomly 

assigned to teachers or classes. 
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quadratic in baseline test score where the parameters are allowed to differ in each grade-by-year 

cell. With this one control the correlation shrinks toward zero by more than half. Column 3 adds 

school fixed effects, and the point estimate is then essentially zero—0.009σ.15 Empirical 

evidence from other settings suggests these two controls, prior test score and school fixed effects, 

are critical in accounting for between-school and within-school sorting of students to teachers 

(Kane and Staiger 2008, Chetty, Friedman, and Rockoff 2014a). Adding additional student, peer, 

and teacher characteristics as controls does not change the result, see Column 5. 

The non-random assignment of students to teachers can also be seen by regressing 

student 𝑖’s pre-experiment math test score on her teacher 𝑗’s MKT score, as shown in Table 4 

Column 1. As mentioned already, some student-teacher sorting is between-schools; accordingly 

the coefficient falls when school fixed effects are included in Column 2, but there is still 

evidence of within-school sorting. In short, better students are assigned to better, at least on the 

MKT dimension, teachers. This kind of within-school sorting has been documented elsewhere 

using on other observable teacher characteristics (Clotfelter, Ladd, and Vigdor 2005, Kalogrides, 

Loeb, and Beteille 2013). 

3.2 The effects of assigned instructional methods 

The evidence presented so far offers little support for the hypothesis that differences in 

teachers’ knowledge of math content and pedagogy contribute to differences in student math 

                                                 
15 While school fixed effects may be preferable to account for non-random sorting, most estimates presented in the 

paper use randomization block fixed effects instead of school fixed effects, primarily to permit the estimation of 

treatment condition main effects. In general the patterns of results presented in the paper are robust to using school 

fixed effects, for example compare Table 3 Columns 3 and 4. Estimates using school fixed effects are provided in 

the appendix. The robustness is likely due in part of the relatively small size of the randomization blocks. Moreover, 

compared to the large urban districts common in empirical research, this study’s districts have fewer schools on 

average and thus less scope for sorting across-schools within a district. 
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learning.16 However, the null average relationship described above may mask meaningful, but 

heterogeneous, relationships that depend on how teachers are asked to teach. For example, as 

suggested in the introduction, the day-to-day tasks of direct-instruction likely rely on teachers 

own math knowledge more frequently than the tasks of student-led methods.  

The focus of this section is on estimating the effect of assigned instructional methods, the 

treatment conditions, on the relationship between teachers’ skills and student learning. The 

treatment effect estimates, reported in Tables 3 and 5, are obtained by fitting variations of the 

following model:  

𝐴𝑖,𝑡 = 𝑓(𝑀𝐾𝑇𝑗(𝑖)) + 𝐶𝑠(𝑖)𝛿 + ℎ𝑔(𝑖),𝑦(𝑖)(𝐴𝑖,𝑡−1) + 𝑋𝛽 + 𝜏𝑏(𝑠) + 𝜀𝑖,𝑡, 

(1) 

where 𝐴𝑖,𝑡 is the post-experiment end-of-school-year math test score for student 𝑖. Each student 

is observed in only one school year, in 1st or 2nd grade, assigned to one teacher 𝑗 at school 𝑠. 

𝐶𝑠(𝑖) is a vector of indicator variables for the treatment conditions, which were randomly 

assigned at the school level. The function ℎ is a quadratic in pre-experiment beginning-of-

school-year test score, 𝐴𝑖,𝑡−1, interacted with grade-by-year indicators, allowing the quadratic 

parameters to vary on those dimensions. The vector 𝑋 includes several student, peer, teacher, and 

school observable characteristics, notably among them teacher experience and an indicator for 

having experience with the assigned product previously.17 Last, 𝜏𝑏(𝑠) is a series of fixed effects 

                                                 
16 The coefficients on MKT score reported in Table 3 may be biased by measurement error or omitted variables. The 

former is likely not large, Hill and coauthors report relatively high reliability for MKT scores (Hill, Schilling, and 

Ball 2004, Hill, Umland, Litke, and Kapitula 2012).  
17 11 percent of teachers had used their assigned product previously. 

     The complete list of covariates is, for student 𝑖, indicators for female, African-American, Latino, and English 

learner; and a quadratic in age. For teacher 𝑗, indicators for female, white, master’s degree, having taken advanced 

math courses, having used the assigned product previously, and novice teacher; linear terms for years since MA 

degree and age; and quadratics in total experience, experience at the school, and professional development hours 

previous school year. These student and teacher variables are occasionally missing; for each student and teacher 

covariate replace missing values with zero and include an indicator variable = 1 for if the covariate is missing for 

the observation. The results presented in the paper are robust to excluding observations with missing values. For 

peers in teacher 𝑗’s class with student 𝑖, linear terms for the mean and standard deviation of pre-experiment test 
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for the randomization blocks to account for the unequal probabilities of selection into treatment 

conditions. 

 Two additional notes on methods before discussing the estimates and their interpretation: 

First, throughout the paper, I report cluster-corrected standard errors which allow for correlation 

of 𝜀𝑖,𝑡 within schools (the unit of random assignment). Second, as described in Section 2, not all 

students in participating schools were tested; students were randomly sampled within 

classrooms. In all results presented, I weight by the inverse of the probability of selection. 

Estimates without weighting are shown in the appendix, and the pattern of results is the same. 

The current research question can be thought of as comparing different ways to specify 

𝑓(𝑀𝐾𝑇𝑗(𝑖)) in Model 1. The results discussed in the previous section are estimates where 

𝑓(𝑀𝐾𝑇𝑗(𝑖)) is a single constant linear term, i.e., 𝑓 = 𝛼 ∗ 𝑀𝐾𝑇𝑗(𝑖); recall that 𝛼̂, the relationship 

between teachers’ MKT scores and their students’ test scores, was close to zero and statistically 

insignificant. Contrast those null results with the results in Table 3 Column 8 which uses the 

specification in Equation 1, and lets 𝛼 vary by treatment condition, i.e., 𝑓 = 𝑀𝐾𝑇𝑗(𝑖) ∗ 𝐶𝑠(𝑖) ∗ 𝛼. 

For teachers in the SFAW condition 𝛼̂ is 0.035 (different from zero p-value = 0.071). For Saxon 

and Expressions teachers 𝛼̂ is also positive (different from zero p-values 0.134 and 0.126, 

respectively), but not statistically different from the SFAW estimate. However, for teachers in the 

Investigations condition 𝛼̂ is negative, significantly different from the other conditions, and 

significantly different from zero.  

In other words, the methods of instruction teachers are asked to follow do affect whether 

and how teachers’ math skills contribute to their students’ learning growth. Among teachers 

                                                 
score. For school 𝑠, linear terms for the proportion of students eligible for free or reduced price lunch and title 1 

eligible.  
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using primarily direct-instruction methods—the SFAW and Saxon conditions—there is an 

apparent positive relationship: students assigned to a teacher with better math skills do score 

higher on math tests at the end of the school year. This also holds for teachers using Expressions, 

which combines both direct-instruction and student-led methods. In an important contrast, 

among teachers using primarily student-led methods—the Investigations condition—there is an 

apparent negative relationship: students assigned to a teacher with better math skills score lower 

in the end. 

What of these results can be interpreted causally? In short, the individual slope estimates, 

the 𝛼̂ for each treatment condition, should not be given a strong causal interpretation; but the 

pattern of differences between the slopes can be interpreted as a causal effect of the assigned 

instructional methods. Regarding the slopes, I have no new identification strategy for the slope 

estimates. Nevertheless, my estimates do address critical sources of potential bias. First, recent 

empirical evidence suggests bias arising from non-random student-teacher sorting is well 

addressed by including controls, as I do in Model 1, for students’ prior test score, school fixed 

effects, and other commonly available covariates (Kane and Staiger 2008, Kane, McCaffrey, 

Miller, and Staiger 2013, Chetty, Friedman, and Rockoff 2014a). Still, even if students were 

randomly assigned to teachers, studying any single measure of teacher skill, like MKT scores, 

remains subject to omitted variable bias. Second, I can control for a much richer set of teacher 

characteristics than is usually possible. Encouragingly, the point estimates of interest are not 

substantially different with and without this rich set of controls; Table 3 Column 7 without any 

controls is quite similar to Column 8, and the same is true for several other permutations of 

included teacher covariates not reported here.  
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The pattern of differences between slopes can be interpreted causally under the standard 

experimental assumption: At the start of the experiment, there was no difference across the 

treatment conditions in potential outcomes, including student math achievement and teacher 

productivity. Stated differently: Any source of bias in estimating the 𝛼 terms is independent of 

assigned treatment condition. This assumption rests on the random assignment of schools which, 

as discussed in Section 2, appears to have been successful. Table 4 Column 5 provides some 

additional evidence of successful random assignment. Notably, while students may be sorted to 

teachers, so that baseline test scores are correlated with teacher MKT scores, that form of sorting 

does not appear to be different across schools assigned to different treatment conditions. 

But random assignment only identifies the differences in slopes. Thus, for example, it 

may be that the true relationship between teacher math skills and student math learning is 

positive for all four treatment conditions, but biased downward by some omitted variable so that 

the slope for Investigations appears to be negative. Even if that example were the case, our 

causal interpretation of the difference in slopes would not change: when using strongly student-

led methods teachers’ math skills contribute less to student learning than when using direct-

instruction methods. 

To summarize, ignoring differences in teachers job tasks—how they are asked to teach—

can easily generate the misleading result that teachers’ math skills do not contribute to student 

math achievement growth. That null estimate, however, masks important differences that depend 

on teachers assigned job tasks. When using direct-instruction methods, teachers with more 

knowledge of math concepts and pedagogy produce students with more math knowledge, but 

teachers’ knowledge contributes less to student learning when teachers are asked to use student-
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led methods. Indeed, the relationship between teacher skills and student learning may be 

negative in schools that use student-led instructional methods. 

3.3 Heterogeneity across the distribution of teacher skills 

 I next investigate whether the effects of instructional methods on teacher productivity 

depend on teachers’ prior skills. To this point the analysis has assumed linear relationships 

between teachers’ math skills and student learning outcomes, and thus also assumed the 

treatment effect is a constant shift in the slope. It turns out that, as I describe in this section, there 

is important heterogeneity in treatment effects across the distribution of teacher skills. 

To test for heterogeneity I first (i) divide teachers into three equal groups based on their 

MKT score rank, and then (ii) estimate treatment effects within those terciles. In the language of 

Equation 1, I replace the linear term, 𝑀𝐾𝑇𝑗(𝑖), in 𝑓 with three indicator variables for each MKT 

tercile. The results, all drawn from a single regression, are reported in Table 5 and plotted in 

Figure 2.18 Again, to be precise, comparisons between teachers using different instructional 

methods can be interpreted causally given random assignment; comparisons between teachers of 

different skill levels should not be given the same strong causal interpretation.  

 Several important patterns are evident in Figure 2. First, the productivity of both low-

skilled and average-skilled teachers evidently does not depend on the instruction method they are 

asked to follow. The exception to that pattern is the strongly direct-instruction SFAW, but the 

SFAW deficit holds for nearly all teachers regardless of math skill level. Moreover, low-skilled 

teachers appear equally as good as their average-skilled colleagues at producing student 

achievement growth.  

                                                 
18 An alternative approach to analysis is to replace the linear term 𝑀𝐾𝑇𝑗(𝑖) in 𝑓 with a higher-order polynomial. 

Figure 2 suggests a quadratic where the parameters are allowed to vary by treatment condition. Results using a 

quadratic are provided in the appendix. Adding higher order terms beyond a quadratic do not improve the model, at 

least as judged by likelihood ratio tests. 
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In stark contrast, instructional methods do affect the productivity of high-skilled teachers.  

High-skilled teachers generate noticeably more student math learning using direct-instruction 

methods then they would generate using student-led methods. This is clear comparing student 

scores in either the Expressions or Saxon conditions to Investigations. Even SFAW tops 

Investigations among high-skilled teachers, though the difference is not statistically significant. 

Indeed, while high-skilled teachers apparently out perform their average- and low-skilled 

colleagues when using direct-instruction, the opposite is true when teachers use the strongly 

student-led methods of Investigations.  

For high-skilled teachers the consequences are large. Students of high-skilled teachers 

using direct-instruction methods can score 0.13-0.16σ higher than their peers assigned to equally 

high-skilled teachers using student-led methods (Table 5 Column 7). A difference of 0.13-0.16σ 

is roughly equivalent to the standard deviation in total teacher productivity (Hanushek and 

Rivkin 2010).  

3.4 Potential mechanisms 

 Higher returns to math skills for teachers using direct-instruction, as reported above, are 

consistent with the differences in teacher tasks between direct-instruction and student-led 

methods—in particular differences in the extent to which teachers explicitly teach math concepts 

and procedures to their students. Direct-instruction methods rely on explicit teaching far more 

frequently than student-led methods. Thus direct-instruction should be more successful the better 

the teacher understands math herself, and even more successful if she understands the typical 

ways students (mis)understand math concepts and procedures. The MKT primarily tests these 

two kinds of knowledge, as illustrated by the sample question in Figure 1.19 Put differently, high-

                                                 
19 MKT scores also capture variation in teachers’ own test-taking skills for standardized math tests, and teachers 

may be imparting those skills to their students as well. 
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MKT teachers have the ability to answer math problems correctly using standard procedures; 

direct-instruction gives them many opportunities to demonstrate and explain those skills to their 

students, while such opportunities are infrequent with student-led methods.  

 Teachers’ assigned tasks are, of course, not necessarily the tasks they actually do from 

day to day. The previous paragraph assumes treatment assignment generated meaningful, 

empirical differences in the extent to which teachers used direct-instruction or student-led 

methods. I test for differences in teacher behavior across the four treatment conditions using data 

collected during classroom observations.20 Trained observers spent, on average, about 1.5 hours 

in each teacher’s classroom (mean 81 minutes, standard deviation 40), recording the frequency 

of dozens of specific teacher practices and behaviors. For example, observers tallied the number 

of times the teacher “tells information [or] models procedures” and “probes for [a student’s] 

reasoning or justification of a solution.” I focus here on two summary measures derived from 

these micro-data using factor analysis: teacher behavior characteristic of (i) student-led methods 

and (ii) direct-instruction methods. These are the first and second predicted factors, which 

together explain nearly two-thirds of the variation in the observation data (39 and 24 percent of 

the variation respectively).21 All the included measures and factor weights are detailed in the 

appendix. Among the highest-weighted items in the “student-led” factor are “probes for [a 

student’s] reasoning or justification of a solution,” “poses open-ended questions,” and “elicits 

multiple strategies/solutions.” For the “direct-instruction” factor the highest-weighted items 

                                                 
20 Complete details regarding the classroom observations are provided in Agodini et al. (2010). Among those details, 

first, Agodini and coauthors report evidence of strong inter-rater reliability. Second, teachers were randomly 

selected for classroom observation from among all study teachers: 82 percent of 1st grade teachers and 90 percent of 

2nd were selected for observation, with response rates of 96 and 91 percent respectively.  
21 The original analysis by Agodini et al. (2010) also involved a similar factor analysis; the results are comparable to 

the factor loadings reported here (see their Table C.2) including a first “student-centered” factor and second 

“teacher-directed” factor. 
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include “tells information [or] models procedures,” “guides practice on problems,” and “states if 

[student answer is] correct or not without elaborating.” 

 Table 6 summarizes relevant variation in these two measures of student-led and direct-

instruction teacher behavior. I estimate least squares regressions, similar to those in Table 3, with 

the specification 

𝑌𝑗 = 𝑓(𝑀𝐾𝑇𝑗) + 𝐶𝑠(𝑗)𝛿 + 𝑋𝛽 + 𝜏𝑏(𝑠) + 𝜈𝑗, 

(2) 

where 𝑌𝑗 is either the (i) student-led factor score for teacher 𝑗 or the (ii) direct-instruction factor 

score drawn from the classroom observation data. In both cases 𝑌𝑗 is standardized (mean zero, 

standard deviation one) within the sample. The right hand terms are as before (see Specification 

1), and standard errors are clustered at the school level. When the additional controls, 𝑋, include 

student variables, those variables are the mean characteristic among teacher 𝑗’s students.  

The extent of direct-instruction and student-led behavior by teachers, as observed in the 

classroom, depends on how teachers are asked to teach (assigned treatment condition) but not on 

their math skills (MKT score). First, as reported in the top rows of Table 6 Columns 1-4, there 

are large and statistically significant differences between treatment conditions in both student-led 

and direct-instruction behavior. For example, teachers assigned to Investigations used direct-

instruction methods a full standard deviation less often than SFAW teachers, and half a standard 

deviation less than Expressions or Saxon teachers. However, there is little evidence that either 

student-led or direct-instruction behaviors are correlated with teachers’ math skills. Pooling 

across conditions, the coefficient on MKT score for student-led behavior is 0.016 with a standard 

error three times as large. The same coefficient for direct-instruction is -0.023. Moreover, even if 

there is a relationship between skills and these two behaviors, that relationship is not affected by 
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treatment assignment. I cannot reject the hypothesis that the four slope coefficients are equal, nor 

the hypothesis that the four are jointly zero.  

In short, teachers’ assigned tasks did change how they taught day to day, but those 

changes did not depend on the teachers’ differing math skills. Thus, differences in teachers’ 

adherence to assigned tasks cannot explain the productivity effects seen in Table 3 or Figure 2, at 

least given the evidence from these classroom observation measures. 

While the two measures in Table 6 Columns 1-4 are the actions mostly likely affected, 

treatment assignments may have (unintentionally) affected other aspects of teachers’ jobs. Of 

particular interest are “other aspects” correlated with teachers’ math skills. As a contrast with 

Columns 1-4, in Columns 5-6 I provide a measure of classroom environment also drawn from 

the classroom observation data. Separate from the teacher practices and behaviors described 

above, observers also rated the classroom environment on about 30 characteristics. Items 

including “student behavior disrupts the classroom,” “class time is spent on understanding or 

practicing math,” and “teacher has techniques for gaining class attention in less than 10 sections” 

are each scored from “1 = not at all characteristic (almost never)” to “4 = extremely 

characteristic (almost always evident)”. Columns 5-6 report results using the first predicted 

factor, standardized, from a factor analysis of these environment items.22 Treatment assignment 

did not affect observed classroom environment, neither in levels nor in the relationship with 

teachers’ skills.  

 

 

                                                 
22 This first factor accounts for 62 percent of the variation in these environment items. The full list of items and 

factor loadings are reported in the appendix. The results are quite similar using the simple average of the 31 items, 

after reversing the scale of negatively framed items.  
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4. Total effects on teacher productivity 

 The instructional methods schools adopt may, plausibly, affect teacher productivity 

through mechanisms unrelated to teachers’ math skills. Section 3 focuses on differences in 

productivity arising from interactions between skills and methods. In this section I situate those 

skill-related effects in the broader context. Empirically, I first estimate the effect of treatment—

the contrasts between instructional methods—on total teacher productivity. I focus on treatment 

effects on the variance of productivity. Then, second, I examine whether the total effect is 

explained by the mechanisms related to teachers’ math skills.  

4.1 Estimating treatment effects on the variance of total teacher productivity 

My first empirical objective is to estimate the variance of teacher productivity in each 

treatment condition, and test for differences between conditions. Throughout the paper I focus on 

one aspect of productivity: a teacher’s contribution to student math achievement as measured by 

test score growth.  

A teacher’s contribution to her students’ test scores is not directly observable. To isolate 

the teacher’s contribution, I first assume a statistical model of student test scores, similar to the 

model in Equation 1, where a test score, 𝐴𝑖,𝑡, for student 𝑖 at the end of the experiment school 

year 𝑡 can be written 

𝐴𝑖,𝑡 = ℎ𝑔(𝑖),𝑦(𝑖)(𝐴𝑖,𝑡−1) + 𝑋𝛽 + 𝜓𝑠(𝑖) + 𝜇𝑗(𝑖) + 𝜈𝑖,𝑡, 

(3) 

The 𝜇𝑗(𝑖) term represents the effect of teacher 𝑗 on student 𝑖’s test score; net of baseline 

achievement, ℎ𝑔(𝑖),𝑦(𝑖)(𝐴𝑖,𝑡−1), other student characteristics, 𝑋, and school effects, 𝜓𝑠(𝑖). The 

vector 𝑋 includes all of the student variables described above for Model 1, but does not include 

any teacher or school characteristics. Specification 3, now commonplace in the literature on 

teachers, is motivated by a dynamic model of education production, suggested by Todd and 
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Wolpin (2003), in which prior test score, 𝐴𝑖,𝑡−1, is a sufficient statistic for differences in prior 

inputs.  

 With the model in 3 as a key building block, I take two separate approaches to estimating 

treatment effects on the variance of teacher productivity. The first approach is a least-squares 

estimate of the conditional variance function. Specifically, I estimate the pairwise differences in 

variance between conditions, 𝛾𝐿𝑆, by fitting  

(𝜇𝑗 − 𝔼[𝜇𝑗| 𝐶𝑠(𝑗), 𝜏𝑏(𝑠)])
2
 = 𝐶𝑠(𝑗)𝛾

𝐿𝑆 + 𝜏𝑏(𝑠) + 𝑢𝑗, 

(4) 

where, just as before, 𝐶𝑠(𝑖) is a vector of indicator variables for the treatment conditions, which 

were randomly assigned at the school level; and 𝜏𝑏(𝑠) represent fixed effects for each 

randomization block group, 𝑏.23  

My approach to estimating Model 4 has three steps. Step one, estimate 𝜇, as described in 

the next paragraph. Then follow the common, feasible approach to fitting conditional-variance 

equations like 4: Step two, estimate 𝔼[𝜇̂𝑗| 𝐶𝑠(𝑗), 𝜏𝑏(𝑠)] by ordinary least-squares, i.e., fit 𝜇̂𝑗 =

𝐶𝑠(𝑗)𝛾̃ + 𝜏̃𝑏(𝑠) + 𝜖𝑗. Step three, estimate Equation 4 using the squared residual from step two, 𝜖𝑗̂
2, 

as the dependent variable. I calculate standard errors for 𝛾𝐿𝑆 that allow for clustering within 

schools. 

In step one I estimate the test-score productivity of each teacher, 𝜇̂𝑗, by fitting Equation 3 

treating the 𝜇𝑗(𝑖) as teacher fixed effects.24 The 𝜓𝑠(𝑖) terms are school fixed effects, and ℎ𝑔(𝑖),𝑦(𝑖) 

is, as before, a quadratic in pre-experiment test score. The parameters of ℎ𝑔(𝑖),𝑦(𝑖) are allowed to 

be different for each combination grade, 𝑔, and experiment year, 𝑦. Note that this teacher-fixed-

                                                 
23 Model 4 follows from the general observation that 𝑣𝑎𝑟(𝑌|𝑋) = 𝔼[(𝑌 − 𝔼[𝑌|𝑋])2|𝑋]. 
24 The teacher fixed effects are parameterized to be deviations from the school average, rather than deviations from 

an arbitrary hold out teacher, using the approach suggested by Mihaly, McCaffrey, Lockwood, and Sass (2010).  
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effects approach does not require a distributional assumption about 𝜇𝑗(𝑖), and identifies other 

model parameters using only within-teacher variation. 

  The second approach to estimating 𝛾 is a maximum likelihood estimate, 𝛾𝑀𝐿, obtained 

by treating 𝜇𝑗(𝑖) as teacher random effects. I fit a slightly re-parameterized version of Equation 3, 

𝐴𝑖,𝑡 = ℎ𝑔(𝑖),𝑦(𝑖)(𝐴𝑖,𝑡−1) + 𝑋𝛽 + 𝜓𝑠(𝑖) 

+ 𝜇𝑗(𝑖)
𝐼𝑁𝑉𝐼𝑁𝑉𝑠(𝑖) + 𝜇𝑗(𝑖)

𝐸𝑋𝑃𝑅𝐸𝑋𝑃𝑅𝑠(𝑖) + 𝜇𝑗(𝑖)
𝑆𝐴𝑋𝑆𝐴𝑋𝑠(𝑖) + 𝜇𝑗(𝑖)

𝑆𝐹𝐴𝑊𝑆𝐹𝐴𝑊𝑗(𝑖) + 𝜈𝑖,𝑡, 

 (5) 

where 𝐼𝑁𝑉𝑠(𝑖), 𝐸𝑋𝑃𝑅𝑠(𝑖), 𝑆𝐴𝑋𝑠(𝑖), and 𝑆𝐹𝐴𝑊𝑗(𝑖) are treatment condition indicators, and the four 

𝜇𝑗 terms are random effects with the assumed distribution 
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). 

That is, the model allows the estimated variance of the teacher-specific random intercepts to 

differ for each treatment condition. All other covariates are identical to the least squares 

approach. Maximum likelihood estimation of this linear mixed model provides estimates of the 

𝜎2 terms, and thus 𝛾𝑀𝐿 = {(𝜎̂𝐼𝑁𝑉
2 − 𝜎̂𝐸𝑋𝑃𝑅

2 ), (𝜎̂𝐼𝑁𝑉
2 − 𝜎̂𝑆𝐴𝑋

2 ),… , (𝜎̂𝑆𝐴𝑋
2 − 𝜎̂𝑆𝐹𝐴𝑊

2 )}. 

 To interpret estimates from either approach, 𝛾𝑀𝐿 or 𝛾𝐿𝑆, as causal effects—the effect of 

adopting one adopting instructional method instead of another—requires two assumptions. 

Assumption 1: At the start of the experiment, there were no differences across treatment 

conditions in teachers’ potential productivity during the experiment school year. This assumption 

should be satisfied by the random assignment study designs.  

Assumption 2: Students were not assigned to teachers based on unobserved (i.e., omitted 

from Specifications 3 or 5) determinants of potential for test score growth: 𝔼[𝜈𝑖,𝑡| 𝑗] = 𝔼[𝜈𝑖,𝑡]. 
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This assumption is necessary for obtaining consistent estimates of 𝜇̂𝑗, and parameters like it 

throughout the teacher effects literature. Empirical tests of this assumption by Chetty, Friedman, 

and Rockoff (2014a) and Kane and Staiger (2008) find little residual bias in 𝜇̂𝑗 if the estimating 

equation includes, as I do, flexible controls for students’ prior achievement, and controls for 

teacher and student sorting between schools.25  

 Assumption 2 is, strictly speaking, only needed to identify the levels of variance. A 

weaker alternative is sufficient for causal estimates of the relative difference in variance, and 

thus the sign of 𝛾𝑀𝐿 or 𝛾𝐿𝑆. Assumption 2 Alternative: Any source of (residual) bias in 

estimating 𝜇̂𝑗 is independent of assigned treatment condition. Like Assumption 1, this alternative 

assumption should be satisfied by random assignment. 

4.2 Measuring the influence of skill-related mechanisms  

 My follow-up empirical question is: To what extent are the total productivity effects 

explained by mechanisms related to teachers’ math skills? To answer that question I repeat the 

estimation methods described in the previous section with one modification: in Equations 4 and 5 

I add controls for a quadratic in 𝑀𝐾𝑇𝑗 allowing the parameters of the quadratic to differ for each 

of the four treatment conditions. As an alternative modification, I replace the quadratic terms 

with indicators for MKT tercile.  

4.3 Results and discussion 

 Asking teachers to use student-led instruction methods, instead of more-conventional 

direct-instruction methods, reduces the differences between teachers in student learning. That is, 

                                                 
25 For detailed discussions of the theoretical and econometric issues in isolating teacher contributions to student test 

score growth see Todd and Wolpin (2003), Kane and Staiger (2008), Rothstein (2010), and Chetty, Friedman, and 

Rockoff (2014a). Rothstein (2010), in particular, provides a skeptical analysis, and raises some concerns not yet 

resolved or tested empirically.  
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as reported in Table 7 Column 1, the variance of teacher productivity is smallest in the student-

led Investigations condition. Focusing on the maximum-likelihood random-effects estimates (top 

panel), the estimated standard deviation of teacher effects is 0.08σ for teachers using 

Investigations, which is half or less as large as the between-teacher standard deviation for 

Expressions 0.19σ or Saxon 0.16σ. Both of those differences are statistically significant. The 

difference between Investigations and SFAW is smaller and not as precisely estimated, but is in 

the same direction.  

This pattern of results is robust to alternative approaches to estimation. First, the pattern 

is the same using the conditional-variance of teacher fixed-effects method (bottom panel), 

though the estimated differences between conditions are smaller. Second, the pattern is also 

robust to replacing the school fixed effects, 𝜓𝑠(𝑖) in Specification 3 or 5, with controls for 

treatment condition main effects and the available school characteristics listed in Section 3. 

Results for this second alternative are provided in the appendix. Broadly speaking the estimates 

in Table 7 and the appendix span the range of teacher effect variances commonly estimated in 

other settings (Hanushek and Rivkin 2010). 

 The magnitudes of differences across instructional methods conditions are educationally 

substantial. Consider the MLE point estimates. In the widely-used direct-instruction Saxon 

classrooms, students assigned to a teacher at the 75th percentile of the teacher performance 

distribution will score approximately 0.11σ higher on math achievement tests than their peers 

assigned to a median teacher. By contrast, in the student-led Investigations classrooms a 

student’s teacher assignment is much less consequential. The median to 75th percentile 

difference is just 0.05σ. These results can be read as greater “equity” of outcomes across teachers 
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and classrooms, in a sense; but, as suggested in Figure 2, that greater equity comes in part at the 

expense of the students assigned to high-skilled teachers. 

 The estimated variances are not substantively different when I add controls for teachers’ 

skills. Comparing Table 7 Column 1 to either Columns 6 or 7, in some cases adding MKT 

controls reduces the variance estimate, in other cases the estimate increases, and in most cases 

the changes are only a few percent in magnitude. Additionally, the pattern of differences in 

variance between treatment conditions does not change. First, these results are a reminder that 

teachers’ assigned instructional methods can affect productivity through mechanisms unrelated 

to their math knowledge, as measured by MKT. Student-led methods, for example, rely on 

teachers’ verbal and communication skills more, perhaps, than direct-instruction. As a second 

example, for some tasks SFAW provides a script for teachers to read, which may contribute to the 

lower variance for SFAW relative to the other direct-instruction conditions. Second, though the 

estimated variance does not change much after controlling for MKT scores, nevertheless the 

interaction between teachers’ math skills and assigned instructional methods does affect the 

estimated rank ordering of teachers, as shown in Section 3.  

 

5. Conclusion 

In this paper I show that the job tasks teachers are assigned—the instructional methods 

they are asked to use in the classroom—partly determine the returns to teacher skills in education 

production, and partly determine the variability in teacher productivity more generally. These 

results are one example of the value in making a distinction between workers’ skills and the job 

tasks to which those skills are applied, as in Acemoglu and Autor (2011, 2012). 
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Using data from a field-experiment in 1st and 2nd grade classes, I first examine the 

relationship between teachers’ math skills, measured by the Mathematical Knowledge for 

Teaching (MKT) test, and teacher productivity, measured by teachers’ contributions to their 

students’ test score growth. That relationship is positive and educationally meaningful when 

teachers are asked (by random assignment) to use conventional “direct-instruction” methods. 

But, in stark contrast, the relationship is much weaker, perhaps even negative, when teachers are 

asked to use “student-led” instructional methods. This difference in the returns to skills is largely 

driven by high-skilled teachers. In the classrooms of top-tercile MKT teachers, students’ math 

scores grow 0.13-0.16σ faster when the teacher uses direct-instruction instead of student-led 

methods. However, there is little or no difference between instructional methods in the 

classrooms of bottom- or middle-tercile MKT teachers. In short, whether and how a teacher’s 

math skills contribute to her productivity depends on how she is asked to teach math. 

Second, I show that teaching tasks or methods can substantially shrink (expand) the 

variation in teacher productivity. The standard deviation of productivity among teachers using 

direct-instruction is 0.12-0.19 student standard deviations, but at least one-third smaller, 0.08, for 

teachers using student-led methods. These are differences in total productivity, not just 

differences that arise through math-skill-related mechanisms; thus these differences suggest 

teachers assigned tasks operate on productivity through other skills or mechanisms.  

Understanding how skills and job tasks translate into productivity is especially relevant 

and timely in public schools. In recent years, differences in teacher productivity have become 

central to political and managerial efforts to improve public schools. This paper’s results suggest 

that decisions about how teachers are asked to teach can be as important as decisions about who 

is hired to teach.   
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FIGURE 1—EXAMPLE MKT TEST ITEM 

 
Note: Reproduced from Hill, Shilling, and Ball (2004, p. 28). This item has been publically released, but it was not 

necessarily included in the MKT test form used in this experiment. 
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FIGURE 2—STUDENT TEST SCORE DIFFERENCES ACROSS  

TREATMENT CONDITIONS AND TEACHER MKT TEST SCORE TERCILES 
 

NOTE: Each point is the estimated mean post-experiment math test-score for students in the given MKT-tercile-by-

curriculum cell, relative to the mean score of students in the SFAW condition assigned to bottom-tercile teachers. 

Lines connect estimates in the same curriculum treatment condition. All points are estimated in a single regression 

(the same regression reported in Table 5). The dependent variable is the student's post-experiment standardized ECLS-

K math test score. The key independent variables are a vector of indicators, one indicator for each MKT-tercile-by-

curriculum combination. Independent variables also include the full set of student, teacher, and peer pre-experiment 

controls as in Table 5, and randomization block fixed effects. Students were randomly sampled within classrooms, 

and these results are weighted by the inverse probability of selection. The estimation sample includes 7,650 students, 

750 teachers, and 110 schools. Sample sizes have been rounded to nearest 10 following NCES restricted data reporting 

procedures. 
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TABLE 1—STUDENT, TEACHER, CLASS, AND SCHOOL CHARACTERISTICS 

           

 

Assigned curricula 

(experimental condition)  Joint test  

p-value 

 

Obs. 

 
Category 

joint test 

p-value  Invest. Express. Saxon SFAW    

 (1) (2) (3) (4)  (5)  (6)  (7) 

           

Student characteristics          0.704 

   Baseline test score, mean 0.009 -0.045 0.012 0.021  0.587  8,850   

 (0.968) (0.967) (0.972) (0.959)       

   Baseline test score, variance 0.943 0.941 0.943 0.907  0.760  8,850   

   Days between pre- and  238.0 236.6 236.5 236.9  0.868  8,010   

      post-experiment tests (9.055) (8.385) (6.480) (6.609)       

   Age 7.016 7.012 7.022 7.009  0.957  7,690   

 (0.626) (0.654) (0.622) (0.631)       

   Female 0.498 0.479 0.486 0.493  0.587  8,600   

   Latino 0.294 0.280 0.311 0.324  0.632  8,110   

   African-American 0.262 0.338 0.278 0.250  0.161  8,110   

   English language learner 0.100 0.132 0.140 0.151  0.196  7,510   

           

Teacher and class characteristics          0.171 

   MKT score, mean -0.503 -0.602 -0.604 -0.524  0.148  750   

 (0.477) (0.483) (0.462) (0.490)       

   MKT score, variance 0.224 0.231 0.212 0.243  0.746  750   

   Total years experience 12.930 12.278 12.078 11.548  0.456  760   

 (8.723) (9.872) (9.628) (9.313)       

   Years experience current school 7.969 7.606 7.442 8.171  0.816  720   

 (7.004) (7.679) (6.719) (7.694)       

   Female 0.948 0.971 0.969 0.961  0.685  770   

   White 0.611 0.616 0.602 0.588  0.880  770   

   Master's degree 0.492 0.423 0.474 0.393  0.028  740   

   Years with master's degree 4.544 3.821 3.935 3.314  0.312  770   

 (7.367) (7.312) (6.051) (6.189)       

   Training hours previous  9.501 9.826 8.000 8.753  0.866  730   

      school year (20.52) (21.00) (20.90) (19.16)       

   One or more adv. math courses 0.491 0.514 0.516 0.558  0.654  770   

   Class mean baseline test score 0.003 -0.057 0.010 0.015  0.503  790   

 (0.390) (0.402) (0.447) (0.384)       

   Class st. dev. baseline test score 0.885 0.891 0.878 0.879  0.929  790   

           

School characteristics          0.255 

   Proportion eligible for free or  0.525 0.471 0.466 0.513  0.222  110   

      reduced price lunch (0.132) (0.102) (0.109) (0.120)       

   Proportion Title I 0.756 0.756 0.749 0.730  0.992  110   

 (0.265) (0.232) (0.315) (0.358)       

                      

Note: Means (standard deviations) adjusted for randomization block fixed effects. Column 5 tests the null hypothesis 

that the four curriculum condition means are equivalent for the given pre-treatment characteristic. Column 7 tests the 

null hypothesis that each set of four means is equivalent for all pre-treatment characteristics within the category. 

Sample sizes have been rounded to nearest 10 following NCES restricted data reporting procedures. 
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TABLE 2—STUDENT AND TEACHER ATTRITION 

         

 

Student attrited  

before…  

Teacher attrited 

before… 

 pre-test  post-test  MKT  post-test 

 (1)  (2) (3)  (4)  (5) 

Curricula (relative to SFAW)       

   Investigations -0.001  0.005 0.004  0.000  -0.019 

 (0.010)  (0.012) (0.012)  (0.026)  (0.015) 

   Math Expressions -0.003  0.006 0.004  0.004  0.028 

 (0.007)  (0.013) (0.013)  (0.024)  (0.022) 

   Saxon 0.004  0.008 0.008  0.031  0.005 

 (0.010)  (0.011) (0.011)  (0.025)  (0.017) 

         

Baseline test score (main effect)    -0.021**     

    (0.006)     

         

Baseline score * Investigations    0.007     

       (0.009)     

Baseline score  * Expressions    0.005     

      (0.008)     

Baseline score * Saxon    0.001     

    (0.009)     

         

Observations 8,990  8,820 8,820  790  790 

Dependent variable sample mean 0.019  0.092 0.092  0.056  0.028 

                  

 

Note: Each column represents a separate LPM regression with student (Columns 1-3) or teacher (Columns 4-5) 

observations. Dependent variables are indicators as described in the column headers. All independent variables are as 

shown above, plus fixed effects for randomization blocks. Standard errors in parentheses. Sample sizes have been 

rounded to nearest 10 following NCES restricted data reporting procedures.  

+ indicates p<0.10, * p<0.05, and ** p<0.01 
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TABLE 3—TEACHER MATH SKILLS, INSTRUCTION PRACTICES, AND STUDENT ACHIEVEMENT 

(dep. var. = post-experiment ECLS-K math test score, standardized) 

                 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

MKT score 0.082** 0.036* 0.009 0.006 0.008 0.011 0.029+ 0.035+ 

 (0.021) (0.014) (0.010) (0.010) (0.010) (0.010) (0.017) (0.019) 

         

Curricula main effects (relative to SFAW)       

   Investigations      0.054 0.053 0.063+ 

      (0.037) (0.036) (0.035) 

   Expressions      0.080* 0.085* 0.085** 

      (0.031) (0.039) (0.031) 

   Saxon      0.104** 0.122** 0.110** 

      (0.034) (0.034) (0.033) 

         

MKT score * Investigations       -0.082** -0.081** 

          (0.027) (0.025) 

MKT score  * Expressions       -0.000 -0.003 

         (0.029) (0.028) 

MKT score * Saxon       0.012 -0.004 

          (0.029) (0.027) 

         

Baseline test score controls  √ √ √ √ √ √ √ 

Student, teacher, peer covariates    √ √  √ 

School covariates     √ √  √ 

         

Rand. block fixed effects    √ √ √ √ √ 

School fixed effects   √      

         

Adjusted R-squared 0.007 0.581 0.619 0.603 0.618 0.619 0.606 0.620 

                  

 

Note: Each column represents a separate regression with student observations. The dependent variable is the student's 

post-experiment standardized ECLS-K math test score. The independent variables are as shown above. "Baseline test 

score controls" include a quadratic in pre-experiment test score, which is allowed to differ in each year-by-grade cell. 

"Student covariates" include a quadratic in age, and indicators for female, Black, Hispanic, and English language 

learner. "Teacher covariates" include indicators for female, white, MA degree, having taken advanced math courses, 

having used the assigned curriculum previously, and novice teacher; linear terms for years since MA degree, and age; 

and quadratics in total experience, experience at the school, and professional development hours previously. "Peer 

covariates" include the mean and standard deviation of pre-experiment test score calculated among the student's 

classmates. "School covariates" include the proportion of students eligible for free or reduced price lunch, and title 1 

eligible. Students were randomly sampled within classrooms, and these results are weighted by the inverse probability 

of selection. Standard errors allow for clustering within schools, the unit of random assignment. The estimation sample 

includes 7,650 students, 750 teachers, and 110 schools. Sample sizes have been rounded to nearest 10 following NCES 

restricted data reporting procedures.  

+ indicates p<0.10, * p<0.05, and ** p<0.01 
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TABLE 4—TEACHER MATH SKILLS, INSTRUCTION PRACTICES,                    

AND STUDENT SORTING 

(dep. var. = pre-experiment ECLS-K math test score, standardized) 

      

 (1) (2) (3) (4) (5) 

      

MKT score 0.057** 0.032* 0.026+ 0.026+ 0.014 

 (0.019) (0.014) (0.015) (0.015) (0.031) 

      

Curricula main effects (relative to SFAW)   

   Investigations    0.010 0.005 

    (0.069) (0.069) 

   Math Expressions    -0.035 -0.039 

    (0.058) (0.059) 

   Saxon    0.029 0.028 

    (0.061) (0.061) 

      

MKT score * Investigations     0.051 

        (0.039) 

MKT score  * Math Expressions     -0.021 

       (0.040) 

MKT score * Saxon     0.018 

        (0.053) 

      

Rand. block fixed effects   √ √ √ 

School fixed effects  √    

      

Adjusted R-squared 0.003 0.094 0.054 0.055 0.055 

            

 

Note: Each column represents a separate regression with student observations. The dependent variable is the student's 

pre-experiment standardized ECLS-K math test score. The independent variables are as shown above. Students were 

randomly sampled within classrooms, and these results are weighted by the inverse probability of selection. Standard 

errors allow for clustering within schools, the unit of random assignment. The estimation sample includes 7,650 

students, 750 teachers, and 110 schools. Sample sizes have been rounded to nearest 10 following NCES restricted data 

reporting procedures.  

+ indicates p<0.10, * p<0.05, and ** p<0.01 
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TABLE 5—PAIRWISE TEST SCORE DIFFERENCES WITHIN MKT SCORE TERCILES 

(dep. var. = post-experiment ECLS-K math test score, standardized) 

            

 Bottom tercile  Middle tercile  Top tercile 

 Invest. Express. Saxon  Invest. Express. Saxon  Invest. Express. Saxon 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

            

Express. -0.026    -0.015    0.125*   

 (0.050)    (0.044)    (0.052)   

            

Saxon 0.007 0.033   -0.024 -0.009   0.159** 0.034  

 (0.043) (0.044)   (0.050) (0.050)   (0.056) (0.054)  

            

SFAW -0.104* -0.078+ -0.111*  -0.119* -0.105* -0.095+  0.057 -0.068 -0.102+ 

 (0.052) (0.047) (0.044)  (0.046) (0.044) (0.049)  (0.050) (0.046) (0.053) 

                        

 

Note: Each cell is an estimated pairwise test-score difference between students in two curriculum conditions, 

conditional on their teacher's MKT tercile. For example, among students assigned to top-tercile MKT teachers, 

students whose teachers used "Math Expressions" (row 1) scored 0.125 standard deviations higher than students whose 

teachers used "Investigations" (Column 7). All estimates in this table come from a single regression. The dependent 

variable is the student's post-experiment standardized ECLS-K math test score. The key independent variables are a 

vector of indicators, one indicator for each MKT-tercile-by-curriculum combination. Independent variables also 

include the full set of pre-experiment controls as in Table 3 Column 5, 6, and 8, and randomization block fixed effects. 

Students were randomly sampled within classrooms, and these results are weighted by the inverse probability of 

selection. Standard errors allow for clustering within schools, the unit of random assignment. The estimation sample 

includes 7,650 students, 750 teachers, and 110 schools. Sample sizes have been rounded to nearest 10 following NCES 

restricted data reporting procedures.  

+ indicates different from zero at p<0.10, * p<0.05, and ** p<0.01 
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TABLE 6--OBSERVED TEACHER BEHAVIORS AND CLASSROOM ENVIRONMENT 

                 

 Observed teacher behavior characteristic of…  

Classroom 

environment  

student-led  

methods  

direct-instruction 

methods  

 (1) (2)  (3) (4)  (5) (6) 

Curricula main effects (relative to SFAW)         

   Investigations 0.393** 0.397**  -1.016** -1.009**  -0.056 -0.054 

 (0.116) (0.119)  (0.116) (0.117)  (0.104) (0.107) 

   Expressions -0.374** -0.374**  -0.443** -0.442**  -0.166 -0.170 

 (0.104) (0.104)  (0.098) (0.100)  (0.115) (0.115) 

   Saxon -0.549** -0.543**  0.085 0.090  -0.127 -0.124 

 (0.100) (0.100)  (0.098) (0.100)  (0.112) (0.112) 

         

MKT score 0.016   -0.023   0.031  

 (0.048)   (0.044)   (0.041)  

MKT score * Investigations  0.051   -0.030   0.027 

     (0.141)   (0.086)   (0.081) 

MKT score  * Expressions  -0.103+   -0.072   -0.008 

    (0.055)   (0.082)   (0.100) 

MKT score * Saxon  -0.025   -0.020   0.064 

  (0.055)   (0.058)   (0.070) 

MKT score * SFAW  0.129+   0.025   0.039 

  (0.074)   (0.077)   (0.082) 

         

Adjusted R-squared 0.147 0.150  0.248 0.245  0.084 0.080 

         

MKT * method slopes equal (p-value)  0.078   0.833   0.941 

MKT * method slopes jointly zero (p-value)  0.130   0.882   0.883 

                  

 

Note: Each column represents a separate regression with teacher observations. Dependent variables are listed in the 

column headers. Each dependent variable is a predicted factor score derived from a factor analysis of classroom 

observation micro-data (see the text for complete details), and then standardized within the sample (mean zero, 

standard deviation one). In addition to the independent variables shown above, all specifications include 

randomization block fixed effects and several additional covariates. The additional covariates are the "teacher 

covariates" and "peer covariates" described in the notes for Table 3, as well as the teacher-/class-level means of all 

"student covariates" described in Table 3. Standard errors allow for clustering within schools, the unit of random 

assignment. The estimation sample includes 610 teachers and 110 schools. Sample sizes have been rounded to nearest 

10 following NCES restricted data reporting procedures.  

+ indicates p<0.10, * p<0.05, and ** p<0.01  
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TABLE 7—TREATMENT EFFECTS ON THE VARIANCE OF TEACHER PRODUCTIVITY 

             

  A:  B: 

  Main estimates  Controlling for MKT 

          Quadratic  Terciles 

 

 
St. dev. 

teacher 

effects 

 

Test of pairwise difference 

from… (p-value)  
Joint  

test 

(p-value) 

 
St. dev. 

teacher 

effects 

 
St. dev. 

teacher 

effects   Invest. Express. Saxon     

  (1)  (2) (3) (4)  (5)  (6)  (7) 

             

Maximum likelihood estimate of teacher st. dev. (teacher random effects) 

        0.001     

Investigations  0.077        0.072  0.076 

Expressions  0.189  0.000      0.187  0.187 

Saxon  0.161  0.007 0.307     0.161  0.159 

SFAW  0.124  0.135 0.015 0.187    0.120  0.121 

             

Estimated conditional st. dev. of teacher fixed effects  

        0.001     

Investigations  0.204        0.205  0.176 

Expressions  0.264  0.001      0.265  0.268 

Saxon  0.257  0.001 0.677     0.262  0.269 

SFAW  0.227  0.154 0.024 0.033    0.237  0.185 

                          

 

Note: Columns 1, 6, and 7 report estimated between-teacher standard deviations in student standard deviation units.  

     Top panel, column group A from a linear mixed model estimated by maximum likelihood. The dependent variable 

is the student's post-experiment standardized ECLS-K math test score. The fixed effects potion includes "baseline test 

score controls," a quadratic in pre-experiment test score, which is allowed to differ in each year-by-grade cell; "student 

covariates," a quadratic in age, and indicators for female, Black, Hispanic, and English language learner; "peer 

covariates," the mean and standard deviation of pre-experiment test score calculated among the student's classmates; 

and randomization block fixed effects. The random effects portion includes four between-teacher variance parameters, 

one for each curriculum condition. The joint test in Column 5 is a likelihood-ratio test where the constrained model 

sets all four teacher variance parameters equal. 

     Bottom panel, column group A estimated in two steps: (i) estimate teacher fixed effects in a model with the same 

dependent variable and fixed portion independent variables as in the top panel MLE model; then (ii) estimate the 

conditional variance of the estimated teacher fixed effects. The latter step is a least-squares regression of squared 

residuals on the treatment indicators and randomization block fixed effects; the residuals are obtained from a 

regression of teacher fixed effects on the same right hand side variables. Standard errors allow for clustering within 

schools. The joint test in Column 5 is an F-test with the null that each of the treatment indicator coefficients in zero. 

     Column group B estimated just as in column group A but with controls added for MKT score. Top panel, Column 

6 adds a a quadratic in MKT score where the parameters are allowed to be different for each of the four treatment 

conditions. Bottom panel, Column 6 adds the same quadratic terms to both regressions in step (ii). Column 7 replaces 

the quadratic terms with indicators for MKT tercile, again interacted with treatment condition. 

     The estimation sample includes 7,650 students, 750 teachers, and 110 schools. Sample sizes have been rounded to 

nearest 10 following NCES restricted data reporting procedures. 
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Appendix Table A1—Factor loadings for teacher behavior items from classroom 

observations 
     

  Factor 1  Factor 2 

     

  

Observed teacher behavior 

characteristic of… 

  

student- 

led   

direct-

instruction 

  (1)  (2) 

A. Teacher initiated instructional behaviors (frequency observed) 

 Asks closed-ended questions 0.15  0.79 

 Poses open-ended questions 0.58  -0.21 

 Tells information, models procedures, or shows students how to represent concepts 0.20  0.33 

 Guides practice on problems 0.22  0.38 

 Elicits multiple strategies/solutions 0.48  -0.20 

 Uses representations 0.19  0.26 

B. Teacher response to student answers (frequency observed) 

 

States if correct or not without elaborating or repeats what child said with  

     indication of right or wrong 0.16  0.66 

 Calls on other students until the "correct" answer is given 0.15  0.18 

 Provides correct answer right away 0.06  0.11 

 Asks class if they agree or disagree with student's response 0.14  0.14 

 takes student through step-by-step procedure 0.26  0.11 

 Tells student strategy to use 0.30  -0.01 

 Elicits other student' questions about the student's response 0.30  -0.09 

 Labels math strategy, problem, or concept 0.32  0.02 

 Repeats student answer in a neutral way 0.46  -0.24 

C. Teacher guidance and follow up questions (frequency observed) 

 Probes for reasoning or justification of solution 0.65  -0.16 

 Provides hint to students 0.49  0.05 

 Clarifies what student says or does 0.60  -0.15 

 Extends what student says of does 0.41  -0.06 

D. Teacher praise (frequency observed) 

 Uses praise or makes positive comments focused on content 0.32  0.09 

 Highlights student work of solution to class 0.39  -0.15 

 Praises effort or behavior 0.28  0.10 

E. Evidence of instructional behaviors (binary yes, no) 

 States lesson objective at the beginning of class 0.07  0.09 

 Connects lesson to prior knowledge/instruction 0.19  0.15 

 Demonstrates how to play game 0.17  -0.16 

 Guides children in acting out a problem 0.15  0.07 

 Leads children in a rap, song, or finger play to illustrate math concept or practice 0.01  0.12 

 Uses children's book to make connections to math concept 0.12  0.07 

 Connects math to real life problems of situations 0.13  0.13 

 Directs or encourages students to help one another with math 0.27  -0.08 

 Prompts child to guide practice or lead class in a routine 0.01  0.07 

 Leads summary of what was learned or asks student to lead/share summary 0.07  0.22 

 Administered a written assessment 0.01  0.03 

          

 

Note: Factor loadings obtained from a principal factor analysis of the items listed. Bold loading values represent the 

ten largest loadings, in absolute value, for the factor. The estimation sample includes 610 teachers. Sample sizes have 

been rounded to nearest 10 following NCES restricted data reporting procedures.   
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APPENDIX TABLE A2—FACTOR LOADINGS FOR CLASS ENVIRONMENT ITEMS 

FROM CLASSROOM OBSERVATIONS 

  

 Factor 1 

 (1) 

  

Students are cooperative and attentive to the lesson 0.777 

Student behavior disrupts the classroom -0.750 

Teacher spends a lot of time managing behavior -0.749 

Class runs without disruption from student behavior 0.736 

Students are perfectly behaved 0.721 

Teacher has techniques for gaining class attention in less than 10 seconds 0.713 

Class time is spent on understanding or practicing math 0.692 

Students are off-task -0.678 

Students spend little time waiting or transitioning 0.651 

Students are actively engaged  0.642 

Transitions are smooth and students get to work quickly 0.637 

Teacher is fluid in presentation 0.625 

Students appear excited by the lesson  0.593 

Teacher and students have a warm, positive relationship 0.591 

Teacher used nonverbal methods to manage misbehaviors  0.529 

Teacher spends a lot of time giving directions -0.468 

Students appear familiar with the materials and procedures used 0.446 

In monitoring student work, teacher followed through to ensure understanding 0.435 

Students are given the opportunity to think and respond 0.433 

Students attended to the lesson in a passive way -0.371 

Teacher has materials prepared and ready for students 0.352 

During independent work time the teacher monitored student work 0.318 

Students had easy access and permission to use manipulative when working 0.283 

Teacher used praise or rewards to maintain positive behavior 0.276 

Peer to peer interaction about math occurs 0.239 

Teacher encourages students to help one another understand the math 0.233 

Students help one another to understand math concepts or procedures 0.224 

Students need to wait for the teacher to begin or for other students to finish 

working before they work on next problem or activity -0.165 

Teacher differentiated curriculum for children who were English language learners 0.094 

Teacher differentiated curriculum for children who were above level 0.085 

Teacher differentiated curriculum for children who were below level 0.080 

    

 

Note: Factor loadings obtained from a principal factor analysis of the items listed. Items listed in order from largest to 

smallest loading, in absolute value. The estimation sample includes 610 teachers. Sample sizes have been rounded to 

nearest 10 following NCES restricted data reporting procedures. 
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APPENDIX TABLE A3—ADDITIONAL SPECIFICATIONS: TEACHER MATH SKILLS, INSTRUCTION PRACTICES, AND STUDENT ACHIEVEMENT 

(dep. var. = post-experiment ECLS-K math test score, standardized) 
               

 Quad.  School fixed effects  Equally weighted 

 (1)  (2) (3) (4)  (5) (6) (7) (8) (9) (10) (11) (12) 

               

MKT score 0.024  0.010 0.034* 0.039*  0.089** 0.039** 0.009 0.007 0.004 0.007 0.018 0.018 

 (0.017)  (0.011) (0.016) (0.017)  (0.022) (0.014) (0.010) (0.010) (0.009) (0.009) (0.017) (0.019) 

MKT score ^2 0.031*              

 (0.013)              

Curricula main effects (relative to SFAW)             

   Investigations 0.090*           0.030 0.036 0.039 

 (0.037)           (0.032) (0.034) (0.032) 

   Expressions 0.130**           0.070* 0.081* 0.073* 

 (0.034)           (0.030) (0.036) (0.030) 

   Saxon 0.121**           0.101** 0.119** 0.105** 

 (0.032)           (0.030) (0.033) (0.030) 

               

MKT score * Investigations -0.075**   -0.065** -0.065**        -0.056+ -0.054* 

    (0.024)   (0.023) (0.023)        (0.030) (0.027) 

MKT score  * Expressions 0.007   -0.002 -0.006        0.001 0.004 

   (0.027)   (0.024) (0.027)        (0.028) (0.029) 

MKT score * Saxon 0.013   -0.039 -0.048        0.024 0.011 

    (0.027)   (0.028) (0.029)        (0.030) (0.029) 

               

MKT score ^2 * Investigations -0.025              

    (0.017)              

MKT score  ^2 * Expressions -0.045*              

   (0.020)              

MKT score ^2 * Saxon -0.012              

 (0.018)              

               

Baseline test score controls √  √ √ √   √ √ √ √ √ √ √ 

Student, teacher, peer covariates √  √  √      √ √  √ 

School covariates √          √ √  √ 

               

Rand. block fixed effects √         √ √ √ √ √ 

School fixed effects   √ √ √    √      

               

Adjusted R-squared 0.620  0.629 0.619 0.629  0.008 0.593 0.630 0.615 0.629 0.630 0.618 0.631 

                              

 

Note: Estimation details are identical to Table 3, except that Columns 5-12 are not weighted. + indicates p<0.10, * p<0.05, and ** p<0.01 


