

Moore’s Law goes Multicore:
The economic consequences of a fundamental

change in how computers work

PRELIMINARY:
DO NOT CITE, QUOTE OR DISTRIBUTE WITHOUT THE AUTHOR’S

PERMISSION

Neil Thompson

Sloan School of Management, MIT1

1 I would like to thank my PhD advisors David Mowery, Lee Fleming, Brian Wright and Bronwyn Hall for excellent
support and advice over the years. Thanks also to Philip Stark for his statistical guidance. This work would not have
been possible without the help of computer scientists Horst Simon (Lawrence Berkeley National Lab) and Jim Demmel,
Kurt Keutzer, and Dave Patterson in the Berkeley Parallel Computing Lab, I gratefully acknowledge their overall
guidance, their help with the Berkeley Software Parallelism Survey and their hospitality in letting me be part of their
lab. Andrew Gearhart and David Sheffield also provided great feedback and help beta-testing the survey. The
participants of the UPCRC Parallel Computing Lab retreat, and the Haas Business and Public Policy professors and
students made suggestions that improved this paper, as did numerous industry contacts that let me interview them. I
am grateful to them all. Andrew Fang also provided excellent research assistance. Finally, particular thanks to Nick
Bloom for all his advice and encouragement on this paper.

Abstract
“Computing performance doubles every couple of years” is the popular
re-phrasing of Moore’s Law, a 50-year old prediction by one of the
founders of Intel. Over that time, it has described the 500,000-fold
increase in the number of components on modern computer chips that
forms the basis for virtually all information technology used today. But
what impact has this vast expansion of the technological frontier of
computing had on the productivity of firms?

This paper tries to answer this question by focusing on the mid-2000s, at
a moment when the manifestation of Moore’s Law changed to ‘multicore’
chips. Unlike earlier chips that increased processor speed faster with each
generation, these chips stayed the same speed but added more-and-more
processors, or ‘cores,’ on each chip (e.g. Intel CORE Duo). But, taking
advantage of multiple processors requires that software can split work
amongst them. That is, the software must be parallelized. Software that
is not designed that way cannot use the extra processors and thus its
performance stagnates. Thus the switch to multiple-processors chips
grows the technological frontier asymmetrically, disproportionately
benefiting parallelized software and firms that use it.

This paper estimates the productivity impact of this differential
expansion on a panel of Swedish firms from 2001 to 2007 using a
remarkably detailed dataset on Swedish I.T. usage and a novel survey of
computer scientists carried out for this paper. It shows that prior to the
switch to multicore, productivity growth was consistent with an equal
expansion of the technological frontier across all firms, but that
afterwards those that could take advantage of Moore’s Law in its
multicore form grew productivity faster, becoming more productive over
the 2005-2007 period.

The paper then argues that this should be interpreted as a broad-based,
causal estimate of the effect of information technology (I.T.) on firm
productivity because the changeover to multicore chips was a surprise,
and because of the similarity of the treatment and control groups prior to
the changeover.

Real-world examples are also presented that support the description of
the phenomenon and the mechanism being described.

1

1 Introduction

In spring 2002, Intel got it wrong. At the Intel Developer Forum they announced that the
processors on their computer chips would continue to speed-up, as they had for decades,
saying: “What you have seen is a public demonstration of 4 GHz silicon straight off our
manufacturing line. We have positive indications to be able to take [this technology] to
the 10 GHz space.”2 Less than two years later, engineering problems forced Intel to first
delay and then cancel plans to introduce a 4 GHz chip to the public.3 Instead they, and
other chip-makers, turned to producing computer chips with multiple processors – the so-
called ‘multicore’ chips. This was an enormous change, which Patrick Gelsinger, the Chief
Architect of Intel’s 486 processors, later called the single greatest shift to date in
microprocessor architecture.4

For users of information technology, this was a shock whose ramifications took time to
appreciate. In 2005, the Chair of an important programming technical committee wrote,
“[the automatic performance improvements from processor speed-up] has already been
over for a year or two, only we’re just now noticing.”5

Dreamworks was one company that experienced and later wrote about their efforts to
adapt to this change. At the time of Intel’s abandonment of processor speed-ups
Dreamworks was in the throes of what they called “Shrek’s Law” – the doubling of
computing power used in each new incarnation of the Shrek movies (the second of which
was just coming out). By 2008, after several years without processor speed-ups providing
performance improvements for them, Dreamworks made the expensive decision to re-write
large parts of their animation code to parallelize it. This allowed them to split up the
work that the software was doing amongst the multiple processors on their multicore
chips, which their previous unparallelized code had been largely unable to do. This was a
success, providing a 70% overall improvement, with particular gains in areas like fluid
modelling that lent themselves to parallelization.6

This paper focuses in on the period from 2001-2007, which covers Intel’s abandonment of
processor speed-ups (2004), the launch of multicore processors as the standard hardware
for PCs (2005) and the initial period before software developers, like those at

2 De Gelas (2005).
3 Sutter (2005).
4 Brock (2006), pp 102-104.
5 Sutter (2005).
6 Dreamworks ([confirm date]) and interviews.

2

Dreamworks, could adapt to multicore. Analyzing this period allows this paper to focus
on how firm productivities changed when an unexpected technological shock hit virtually
all users of I.T., but where the effect was strongest for users whose existing code had less
parallelism.

This paper shows that before the release of multicore chips in 2005, having more
parallelism in your code was not predictive of having greater firm productivity, consistent
with the unresolved debate of the benefits of it in computer science discussions at the
time. Furthermore, the distribution of productivity amongst those with the most
parallelism and those with the least parallelism is very similar, suggesting that pre-
treatment the groups were alike.

After Intel’s unexpected switch to multicore chips, however, those firms with more
parallelism in their software grew productivity more rapidly. By 2007 their total factor
productivity was growing 0.75pp faster per standard deviation in software parallelism. A
placebo test and various robustness checks affirms that this effect does not arise out of
long-term trends in the underlying industries, nor other obvious candidates for differences
between firms (size, technological sophistication, etc.).

To put the estimated magnitude in context, if one divides firms into terciles by the
amount of parallelism that they had in 2001 (well before the shock), the top tercile grows
productivity 2.5pp more than the bottom tercile over the 2001-2007 period, with all of the
gain coming after the 2005 introduction of multicore.

This estimate provides a lower-bound7 for the impact of Moore’s Law on firm productivity
over this time period. It suggests that Moore’s Law-fueled improvements in computing
performance have substantially improved the productivity of firms, which is consistent
with the increasing share of firm revenues expended on I.T. over the past decades.8

To the author’s knowledge, this estimate also provides the most broad-based causal
identification of the effect of I.T. on firm productivity since it uses an unexpected
technological shock that impacts virtually all I.T.-using firms.

The argument for this paper is laid out as follows. Section 2 outlines previous findings
about the importance of computing to firms. Section 3 discusses how Moore’s Law and

7 This is a lower bound since all firms continued to benefit from other effects of Moore’s Law, e.g. increasing
on-chip memory (cache).
8 IDC ([confirm date]

3

computer hardware have evolved.9 Section 4 shows how these hardware changes translate
into software performance, and why some software benefits more from multicore than
others. Section 5 outlines the central hypothesis of this paper: that these differences in
software performance impact firm productivity. It also presents the data used to evaluate
this hypothesis. Section 6 discusses the methodology, and Section 7 presents the results,
and their robustness. Section 8 places these findings in a larger context, and Section 9
concludes.

2 Firms and Information Technology

The use of I.T. by firms is extensive; databases organize their data, enterprise resource
systems coordinate their supply-chains, manufacturing systems, and customer
relationships, and desktop software helps them create and manage the email and other
documents of a modern office. This permeation of I.T. into the way firms work is
evidenced in their spending decisions. In 2002, market-research company IDC estimated
that firms spent ~4% of gross revenues on I.T. Globally, this is estimated to total $1.5
trillion.10

A variety of approaches have been used to estimate the impact of I.T. on firm
productivity. Macroeconomists have looked at this question through a growth-accounting
lens, for example Gordon (2000), Jorgenson, Stiroh, Gordon and Sichel (2000). Many of
these have suggested positive impacts from I.T. expenditures.

Of particular relevance for this work is the growth decomposition work by Jorgenson et al.
In that work the authors look at the productivity of U.S. industries, producing the data
shown in Figure 1. It categorizes U.S. industries into following groups: (1) I.T. producing
industries, (2) I.T. using industries, (3) non-I.T. using industries and two accounting
terms (not shown). It then reports the aggregate contribution to productivity from each.

Figure 1
I.T. using industries go from being the largest contributor to productivity growth in 1995-
2000 and 2000-2005, to a negative contributor in 2005-2010. It is not the absolute level of
these effects that is interesting, but rather the comparison to I.T. producing industries
which fall much less. This drop suggests a change for I.T. using industries. Some of this

9 This paper draws heavily on Thompson (Working Paper) for the underlying computer science.
Various parts of that work are repeated here for exposition.

10 IDC (2002).

4

is likely to be the 2008 financial crisis, but Jorgenson, Ho and Samuels (2010) do an
industry-level disaggregation that shows that the financial sector is not the main driver of
their results.

This paper will propose a potential mechanism that might underlie some of this change,
but will not (as yet) be able to fully connect to the macro-level results. That work is on-
going.

Microeconomists have also tackled the question of the impact of I.T. on firm productivity
at the firm level, perhaps most notably in the 2003 paper by Brynjolfsson and Hitt, which
looks at firm I.T. expenditure and correlates it with improvements in multi-factor
productivity. They conclude that there is a sizable return to investments in I.T., but that
the benefits are delayed ~5 years as management learns to take advantage of the new
capabilities. 11 Despite the plausibility of good management and I.T. systems being
complements in producing productivity increases, Brynjolfsson and Hitt’s findings don’t
rule out the possibility that these results are driven by reverse causality (more productive
firms buy more I.T.) or other missing variables (e.g. good managers buy more I.T. and
make firms more productive).

A recent paper by Aral, Brynjolfsson and Wu has attempted to address these causality
issues using data on the purchase and implementation of large enterprise software systems
(e.g. enterprise resource planning systems - ERP). They observe that the purchase of
ERP systems is not correlated with performance improvements, but that the ‘go-live’
events are.12 But, if the ‘go-live’ decisions are also timed to firm needs (for example
expanding sales), then this might also be endogenous.

Computer scientists have also tried to quantify the benefits of computing in a number of
studies, for example in the airline, automobile and semiconductor industries. These find
substantial benefits from the usage of computers, and heavy costs from instances where
computers are down.13 There are also other industries, such as finance, logistics, and oil
exploration, where the benefits of computation are understood to be large, but where
firms are reluctant to share detailed information for fear of undermining their competitive
advantage.

11 Brynjolfsson and Hitt (2003).
12 Aral, Brynjolfsson and Wu (2006).
13 For example, see discussions in: National Research Council (2005), Council on Competitiveness (2005),
Hennessy and Patterson (2007).

5

Collectively, these studies suggest that I.T. impacts productivity. Unfortunately, most of
these estimates are either indirect, for example by measuring the cost of I.T., or analyzing
aggregated, rather than firm-specific, numbers. These choices make endogeneity and
reverse causality confounds harder to separate out, and thus make causality harder to
establish. This paper takes a different approach. It looks at a change in the technology
at the heart of computers, microprocessors, and argues that it will impact firm
performance. To make this case, and to substantiate why it should have a causal
interpretation, it is important to understand how computing power has increased over the
years.

3 Moore’s Law and the rise of the microprocessor

At the heart of each modern computer is a microprocessor, usually in the form of a
central processing unit (CPU). This is the part of the computer that performs virtually
all computations; it takes data from memory, manipulates it, and then returns the results
back to memory, perhaps to be acted upon again later. Microprocessors are comprised of
an enormous number of switches, which are used both to store data and to process
instructions. In early computers these switches were vacuum tubes, but in modern
machines they are comprised of transistors. Roughly speaking, computers that have more
transistors have more computing power.

Gordon Moore observed in 1965 that the number of components per computer chip were
doubling. This was later re-articulated as the number of transistors doubling every
(roughly) two years. This exponential growth, known as “Moore’s Law,” became a
hallmark of computing power increases and a roadmap used by the semiconductor
manufacturing industry to coordinate improvements.

Miniaturization has played a pivotal role in fulfilling Moore’s Law. As transistors become
smaller, more can be fit on the chip and the power that each consumes drops. Together,
these allow computers to run faster than they had previously – the clock-speed14 of the
computers increases. This is important because the clock-speed determines how fast the
microprocessor can perform a computation, so, roughly speaking, if you double the clock
speed, you double the speed of a computation.15 This correlation has led to the more-

14 Roughly: the speed at which the computer can perform a simple operation.
15 There are many factors that can alter this relationship, for example memory access.

6

popular conception of Moore’s Law, that the performance of computers doubles (roughly)
every two years.16

Over the past 40 years, the speed of computers has increased a thousand-fold. Figure 1,
based on data compiled by various computer scientists including the Stanford VLSI
group,17 documents the increase in the number of transistors per chip and the clock-speed
of those chips.

[Figure 1]

Figure 1 also highlights the 2004 change in the relationship between the numbers of
transistors and clock-speed, and the subsequent rise in the number of multicore chips.
This changeover is at the heart of this paper, and so is described in detail.

In November 2000, Intel launched the Pentium 4 chip. Like previous Intel processors, the
Pentium 4 had a single processor (i.e., had a single core). It operated at a clock speed of
1.4 GHz, meaning that it performed 1.4 billion computations per second.18 Intel also
announced that, as with previous models, additional versions of the Pentium 4 would be
released that would be faster. They sharpened this prediction in 2002 (as shown in the
quotation in the introduction), claiming that future versions would scale up to 10GHz.19
That prediction never come to pass, and instead chip speeds stalled in the 3-4 GHz range.

The reason for the failure to deliver faster clock speeds is heat.20 Along with more and
faster transistors came increased heat buildup in the chips – so much that ultimately the
chips began to melt. Thus, on October 14, 2004 Intel announced that it would not release
any faster versions of the Pentium 4, but “instead will dedicate resources to pushing dual-
core processors to market.”21 It released its first dual-core offering, the Pentium D, in
May 2005.22 AMD faced similar challenges, and released their first dual core offering, the
Turion 64 X2, in August 2005. Because Intel controlled 86% of the processor market at
this time,23 this paper focuses on its behavior. Since Intel’s 2004 announcement, the

16 At a technical level this is more correctly identified as a result of “Dennard Scaling”.
17 Data collected by Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, Krste
Asanoviç and Angelina Lee. Data available at http://cpudb.stanford.edu/.
18 Intel (2000). Here ‘a computation’ is used loosely, to avoid unnecessary technical detail.
19 PC & Tech Authority (2009).
20 Appendix A discusses this in more detail.
21 Regan (2004).
22 Olukotun et al. (2012). As Figure 1 shows, an IBM dual core chip was released in 2004, but it was a
reduced instruction set computing (RISC) chip and so not usable for most code written for Intel hardware.
23 Frost and Sullivan (2005).

7

number of cores on a chip has continued to rise and clock-speeds have continued to
languish.

While the change to multicore computing may sound merely technical, it is fundamental
to how hardware works and to how software performs, as the next section will show.
Patrick Gelsinger, a Senior VP at Intel and chief architect for the 486 microprocessor
describes the shift to multiple cores as the single greatest shift to date in microprocessor
architecture.24 The National Research Council, part of the National Academy of Sciences,
went further, describing their fears about the impact of the switch to multicore: “One
might expect that future IT advances will occur as a natural continuation of the stunning
advances that IT has enabled over the last half-century, but reality is more sobering.”25

To understand why this changeover from clock speed improvements to multicore could
have such an important effect on the performance of I.T., the connection between
hardware and software performance needs to be made clear.

4 The connection between hardware and software
performance

Broadly speaking, all software programs benefit from an increase in clock speed since the
calculations they perform run faster. In his famous 2005 article, Herb Sutter, Chair of the
C++ programming language’s ISO committee, discusses how increases in clock-speed
improve software performance:26

“Most classes of applications have enjoyed free and regular performance
gains for several decades, even without releasing new versions or doing
anything special, because the CPU manufacturers (primarily) and memory
and disk manufacturers (secondarily) have reliably enabled ever-newer and
ever-faster mainstream systems”

This highlights a critically important element of these clock-speed improvements: they
produced improvements in software performance even when no change was made to the
software itself.27 Another way to think about this is that AMD and Intel were selling a

24 Brock (2006).
25 National Research Council (2011).
26 Sutter (2005).
27 National Research Council (2011).

8

bundle to consumers; they were selling both a physical microprocessor as well as an
implicit improvement in the performance of software that users already owned.

But even this understates the value of clock-speed improvements because it only
highlights changes on the intensive margin – firms using software to do their existing
computations more quickly. Given the long history of innovative new software
applications, it is plausible that at least as large a could arise from changes on the
extensive margin – firms being able to use new software, or being able to use old software,
now faster, for new purposes. Computer scientists John Hennessy (Stanford) and David
Patterson (Berkeley) emphasize the extent of this change, arguing that the increase in
computing power “has significantly enhanced the capability available to computer users.
For many applications, the highest-performance microprocessors of today outperform the
supercomputer of less than 10 years ago.”28

So, to summarize, clock-speed improvements in hardware provide automatic speed-ups in
software, improving both existing performance and creating new capabilities. The end of
clock-speed increases stops this free improvement for most software. As Herb Sutter said
“the free lunch is over.”29 The rise of multicore processors does not compensate for the
end of clock-speed improvements because, in order to take advantage of multiple
processors, a software program must be able to split up the work amongst them. That is,
it must be parallelized. If not, it will only run on a single processor, and the other
processors will sit idle.30 As a consequence, the incremental improvement for an
unparallelized program from multiple cores will be small.31 In contrast, a parallelized
program would be able to take advantage of these cores, and thus its benefits would be
higher. Historically, few programs were parallelized, with the most-common exception
being high-end simulations on supercomputers (e.g. for simulating nuclear explosions).
Later, some parallelism was introduced in the form of multi-threading, an attempt to use
single processors more effectively by sequencing their work differently. Results from these
attempts were mixed, and interviews and software assessments carried out for this paper
suggest that, even today, it is the exception, rather than the rule that most programs are
able to make effective use of parallelism.

28 Hennessy and Patterson (2007).
29 Sutter (2005).
30 Although, if multiple programs are being run at the same time, the operating system may be able to use
the other processors for other purposes.
31 There will still be some benefits, for example from larger on-chip memory (cache).

9

The impact of being able to use parallelism is reflected in the following graph, which
charts the performance of the multiprocessor (i.e. parallelized) version of Stata.32 It
illustrates several important points about software parallelism.

[Figure 2]

The black lines represent the two extremes of performance, perfect scaling, where the
increase in the speed of the calculation grows proportionally to the number of cores, and
no improvement. For Stata, the median improvement for all commands of running on an
8-core machine is only 2.7X. Thus, as a software program, Stata’s performance is neither
completely unparallelized (1X), nor perfectly parallelized (8X) despite the fact that it has
been re-engineered for multicore machines. This likely reflects two issues: (i) parallel
programming is hard, (ii) there is a theoretical limit to how parallel a particular task can
be made.33 This second point is reflected in the differing level of parallelism for various
commands. Logistic regression scales quite well, getting 6.5X performance gain from 8
cores, whereas Arima regression scales poorly, benefiting only 1.2X. The difference
between these is that Logistic regression can been broken into smaller calculations that
are relatively independent (and thus can be run on different processors). In contrast, the
auto-regressive and moving-average parts of Arima regression link calculations together,
making such a split difficult.34

The much-reduced benefit of multicore on unparallelized code can been seen not just in
specific examples like Stata, but in general computing performance benchmarks. The
SPEC benchmark suite is “designed to provide performance measurements that can be
used to compare compute-intensive workloads on different computer systems.”35 It
contains tests for a variety of tasks, including many business-relevant ones. Figure 3, from
computer scientists Hennessy (Stanford) and Patterson (Berkeley), summarizes progress
on this benchmark suite since 1978 (footer added):36,37

32 Stata is a statistical analysis tool used by economists and other researchers. See Stata (2012b) for more
details.
33 See, for example, the Wikipedia article on “Amdahl’s Law” for a discussion of one of the reasons for this.
34 For further discussion of the parallelism of individual Stata commands, see Stata (2012). For a technical
discussion of algorithms and their parallelism, see Asanovic et al. (2006).
35 SPEC (2012).
36 Hennessy and Patterson (2007). The benchmarks shown are the SPECint benchmarks. The SPEC
floating point operations show a similar trend – see NRC (2011).
37 In order to create this time series, various SPEC benchmarks have been strung together.

10

[Figure 3]

This graph shows the transition in the mid-1980s from mini-computers, which used
distinct components, to integrated chips that benefited from Moore’s Law-driven
improvements in computing speed. This transition was accompanied by an increase in the
pace of improvement on the benchmark from 25% per year to 52% per year. This
remarkable growth in performance of integrated chips then fell back to 22% per year with
the changeover to multicore microprocessors.38, 39 In the words of Hennessy and
Patterson: “this 16-year renaissance is over. Since 2002, processor performance
improvement has dropped to about 20% per year due to the triple hurdles of maximum
power dissipation of air-cooled chips, little instruction-level parallelism left to exploit
efficiently, and almost unchanged memory latency.”40

It is clear that the changeover to multicore chips is having a profound impact on
improvements in software performance, as measured by computer science metrics. The
question then becomes, are the impacts of this change visible in the performance of firms?

5 Connecting software parallelism to firm performance

If software performance is growing more slowly for firms using unparallelized software
after the multicore transition then the natural question would be: are they also growing
their productivity more slowly? Figure 4 shows this hypothesis schematically:

[Figure 4]

Here a (hypothetical) firm with perfectly parallelized software continues growing
productivity as rapidly as during processor speed-up times because it can take full
advantage of the exponential increase in the number of cores. Conversely, firms with
unparallelized software get a much-reduced benefit.41

38 In keeping with the original authors, the changeover is marked in 2003, rather than the 2004 date used
elsewhere. Both dates are reasonable.
39 Benchmarks of completely parallelizable algorithms (for example LINPACK) do not show a change with
the introduction of multicore.
40 They date this change to the end of clock speed improvements rather than the introduction of multicore
chips.
41 Increases in performance improvement are unlikely to fall to zero because of other chip improvements
(larger caches, improved chip layout, etc.) continue.

11

Investigating this hypothesis requires three kinds of data: measures of firm performance,
knowledge of the software that firms are using, and a measure of the parallelism in each
type of software. The data used for each of these purposes is outlined below.

More than 30 qualitative interviews were conducted to supplement this quantitative data.
Interviewees were from academia as well as semiconductor and software firms.

5.1 Firm performance data

The firm performance data used in this paper is from the Bureau Van Dijk Orbis firm
database.42 It contains typical accounting information, including line items needed to
calculate Total Factor Productivity (TFP), which is described in Section 6.2. These line
items are relatively more complete for the Swedish data, which was the decisive factor in
choosing that country as the setting for this study.

Despite the greater completeness of data for Sweden, key data are missing for many firms.
As a result, only ~35% of the sample can be used in the full analysis.43 A more complete
discussion of the Bureau Van Dijk coverage of Swedish firms can be found in Bloom,
Sadun, and Van Reenan (forthcoming).

5.2 Firm software data

Harte Hanks, a market research firm, gathers data on software and I.T. usage.44 They do
this using phone surveys that ask establishments45 to report the details of their:

• Computer System / Servers • Operating Systems
• Local Area Network • Personal Computers
• Network Connection Hardware • Server Operating Systems
• Network Connection Services • Software

Harte Hanks collects this data to sell it to software and hardware vendors. This creates
an incentive for Harte Hanks to be accurate in their assessments, as data purchasers may
be in a position to verify these details if the data is used for sales leads.

42 Bureau Van Dijk (2007).
43 Even amongst this reduced sample, some smaller line items must still be imputed to get reasonable sample
sizes. This is done using a simple regression framework (R2 for the regression is 84%).
44 More details on this research is available in Harte Hanks (2002), and Harte Hanks (2006).
45 An establishment is one location of a business.

12

Of the data collected by Harte Hanks, this analysis focuses on firm software, as captured
by the Operating Systems, Server Operating Systems, and Software categories.46 The
following list summarizes the most-widely used types of software from those categories:

[Table 1]

The Harte Hanks data used in this paper covers 6,600 Swedish establishments from 2001-
2007.47 Figure 5 shows the percentage of these establishments using each type of software.

[Figure 5]

The following two figures decompose these averages. The first shows the share of
establishments using software based on whether or not the firm (of which they are a part)
has below- or above-median sales. The second figure repeats this analysis, but for below-
or above-median I.T. intensity (as measured by PCs per employee).

[Figure 6]

[Figure 7]

Sales seem to have little effect on the percentage of establishments using different types of
software. However, firms that have high I.T. intensity, as measured by PCs per employee,
have higher levels of penetration of virtually every type of software. The ~20% increased
penetration of databases is of particular interest.

5.3 Software Parallelism Data

The parallelism present in various software types is determined using the Berkeley
Software Parallelism Survey,48 one part of Thompson (Working Paper). This online
survey was sent to ~300 computer scientists at the University of California, Berkeley;
Stanford University; the University of Illinois, Urbana-Champaign; and in Industry. The
survey had a ~20% response rate, but not every question was answered by every

46 Unfortunately these categories do not provide any details on the intensity of the usage of software by the
firm. This is an important limitation to this paper.
47 Harte Hanks (2007).
48 A list of the survey questions can be seen at
http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Softwar
e_Parallelism_Survey.pdf. [needs updating once the new site is live]

http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Software_Parallelism_Survey.pdf
http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Software_Parallelism_Survey.pdf

13

respondent. As a result, the sample sizes for individual questions vary, and in some cases
are small.49

The level of software parallelism was determined by asking:50,51

• “In practice, how parallelized are current implementations of this type of
software…”

This was asked for each of the software types listed earlier (e.g. databases).52 Because
more respondents were able to rank the parallelism in categories of software (e.g. ERP vs.
compilers) than between types of software (e.g. Microsoft vs. Oracle’s implementation of
databases), only variation in the category of software is used to construct measures of
parallelism. This has the disadvantage of not using all of the differences in parallelism
between firms. Conversely it has the advantage that it is less plausible that ‘astute’ firms
could bias the result by strategically switching between types of software, since ERP
programs are not a substitute for compilers.

The survey results indicate that software, such as Finance/Accounting or Antivirus
programs, have more parallelism in practice, and others, such as Web Browsers or
Compilers, have less.53 Importantly for this paper, software that is associated with
technically sophisticated firms, for example databases, compilers, and enterprise resource
systems, have a broad range of parallelism scores; they are neither predominantly
parallelized nor unparallelized.

6 Methodology and Identification Strategy

This section describes five aspects of the methodology and identification strategy of this
paper. First it discusses the treatment variable, establishment-level software parallelism,

49 A second phase of survey is planned to augment these values. See Thompson (Working Paper) for a more
detailed discussion of this.
50 All questions were asked using a 7-point Likert scale, but then converted using even spacing to a 0-100%
scale for ease of interpretability. The Likert value for 0% was “not at all” parallelized and the value for
100% was “completely” parallelized. More details on the Likert scale can be found at
http://en.wikipedia.org/wiki/Likert_scale, for example.
51 Pilot testing of the survey asked this question retrospectively to 2004, but respondents were unable to
answer in that form. This is discussed further in the robustness checks section.
52 Some program categories thought to be important for productivity, such as CAD/CAM, are not included
in the survey because they are used by so sparsely (for CAD/CAM < 1% of establishments)
53 Once subsequent phases of the survey are completed, these results will be reported in greater detail.

http://en.wikipedia.org/wiki/Likert_scale

14

and discusses how this is obtained from the software-level parallelism data. Second, it
explains the outcome variable: total factor productivity, a metric of how efficiently firms
turn their inputs into outputs. Third, it presents the regression specifications used to
analyze the data. Fourth, it outlines the robustness checks for those specifications. And
fifth, it argues that the coefficient estimate from these specifications should have a causal
interpretation.

6.1 Firm-level parallelism

Creating a single variable that fully captures an establishment’s software parallelism is
hard in theory and harder in practice. In this sense, it may be akin to capturing national
output in a single GDP figure (what about unpaid work?). But, like this example, the
inability to construct a perfect measure does not imply that an imperfect one is not
valuable.

In theory, a measure of software parallelism should indicate the benefit that the
establishment will get from using multiple processors for its software. Since some software
is used more than others, such a measure should reflect how intensively software is used.
Similarly, it should reflect how important software is in the production process.
Unfortunately, constructing such a measure requires detailed knowledge of individual
workers, their software, and how these fit into the firm’s production process. Such
detailed knowledge, even about a single firm, is entirely beyond the scope of this paper.

Instead, this paper adopts a simple and admittedly imperfect, metric for establishment
software parallelism: the unweighted average of the parallelism in the establishment’s
software. While this measure fails to account for differences in software usage intensity as
well as its importance in the production process, it is the best starting point available.
Figure 8 shows the distribution of this measure of establishment parallelism for the
Swedish establishment data. For this graph, the Likert scale from the survey has been
mapped to the 0-1 interval for clarity.

[Figure 8]

These results indicate that the average software for these establishments corresponds to
“Somewhat” or “Moderately” parallelized in the language of the Berkeley Software
Parallelism Survey.

15

6.2 Firm Productivity

Firm productivity is measured using total factor productivity. The following description
of this metric draws heavily on Syverson’s survey of the topic (2011).

Total factor productivity (hereafter just “productivity”) is a ratio of the output of the
firm to its inputs. The intuition is that a firm producing more output from the same
inputs is more productive. The formula for calculating productivity for firm i is:

𝑇𝑇𝑇𝑇𝑇 𝐹𝑇𝐹𝑇𝑇𝑡 𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦𝐹𝐹𝐹𝐹 𝐹 = 𝑆𝑆𝑆𝑆𝑠𝑖

𝐿𝑆𝐿𝐿𝐹𝑖
𝛼𝑖,𝐿∗𝐶𝑆𝐶𝐹𝐶𝑆𝑆𝑖

𝛼𝑖,𝐾∗𝑀𝑆𝐶𝑆𝐹𝐹𝑆𝑆𝑠𝑖
𝛼𝑖,𝑀.

In this equation, 𝛼𝐿 , 𝛼𝐾 , 𝛼𝑀 are the cost shares associated with labor, capital and
materials respectively. The denominator of the equation is a Cobb-Douglas production
function. According to Syverson, a Cobb-Douglas production function is known to be “a
first-order approximation of any production function.”54

The conditions under which total factor productivity perfectly measures productivity are
that firms are cost minimizing, that their factor markets (e.g. labor) have perfect
competition, and that their production technology has constant returns to scale. These
are strong assumptions, and this paper defers to the productivity literature to defend
them. Nevertheless, this paper can address some concerns from the productivity
literature better than other papers because the data on Swedish firms includes material
costs. For many other countries, data on material costs are not publicly available and
thus ‘revenue’ total factor productivity, a less good proxy, is used instead.

Figure 9 plots the productivity for the sample, with establishments with below-average
software parallelism in red and above-average parallelism in blue. The data is shown as of
2003, which pre-dates both the announcement of the end of clock speed improvements
(2004) and the launch of multicore chips (2005).

[Figure 9]

This graph suggests that, in terms of the pre-treatment productivity, the treatment and
control groups are very similar.55 Figure 10 shows that pre-treatment productivity growth
is also similar.

[Figure 10]

54 Syverson (2011).
55 Statistical tests of these differences are presented in Table 3.

16

Together Figure 9 and Figure 10 suggest that, prior to exposure to the shock, those with
more or less software parallelism looked ‘similar’ in terms of productivity, making them
good for comparing the effect of the switch to multicore. Moreover, the similar pre-
treatment growth suggests validates the usage of a difference-in-differences approach to
measure this effect.

6.3 Regression specifications

The goal of the following analyses is to quantify how software parallelism impacts firm
productivity after the switchover to multicore chips.

6.3.1 Difference-in-differences specifications

The base specification is a differences-in-differences estimation that looks at whether
higher pre-treatment parallelism leads to a differential increase in productivity.

The following expression describes the quantity of interest (shown here with parallelism
dichotomous):56

𝛽 = 𝐸[∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ�𝑝𝑇𝑡ℎ𝐹𝑖ℎ�] − 𝐸[∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ(𝑝𝑇𝑡𝑆𝐿𝑙)]

Where ∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ is the change in average productivity growth from the ‘before’
period, 2001-2003, to the ‘after’ period, 2005-2007, and 𝑝𝑇𝑡ℎ𝐹𝑖ℎ/𝑆𝐿𝑙 reflects the software
parallelism level of the establishment in 2003 (pre-treatment).57 Growth in 2004 is
excluded from the pre-period, since it is unclear what effect the announcement of the
switch to multicore designs would have on chip replacement behavior.

Because this is a difference-in-differences estimator, any establishment-level characteristics
that are not time-varying are netted out. This produces the following specification, here
with parallelism continuous:

56 Although firm software parallelism is a continuous variable, it is presented here as a dichotomous variable
for expositional purposes.
57 This is calculated using the ‘in-practice’ parallelism software measures from the Berkeley Software
Parallelism Survey and applying them to the software being used by the firm in 2003. The Robustness
Section discusses the implications of the timing of these two measures.

17

I. Base differences-in-differences estimator58

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2005−2007, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚2003,𝑆 + 𝛾1 ∗ 𝑃𝑃𝑃 𝑝𝑃𝑡 𝑃𝑚𝑝𝑇𝑇𝑦𝑃𝑃2003,𝑆 + 𝛾2
∗ log (# 𝐼.𝑇.𝐷𝑃𝑃𝑃𝑇𝑇𝑝𝑃𝑡𝑃2003,𝑆) + 𝜑 ∗ log (# 𝐸𝑚𝑝𝑇𝑇𝑦𝑃𝑃𝑃2003,𝑆)

II. With ordinal parallelism rankings

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2005−2007, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚 𝑅𝑇𝑅𝑘2003,𝑆 + 𝛾1 ∗ 𝑃𝑃𝑃 𝑝𝑃𝑡 𝑃𝑚𝑝𝑇𝑇𝑦𝑃𝑃2003,𝑆 + 𝛾2
∗ log (# 𝐼.𝑇.𝐷𝑃𝑃𝑃𝑇𝑇𝑝𝑃𝑡𝑃2003,𝑆) + 𝜑 ∗ log (# 𝐸𝑚𝑝𝑇𝑇𝑦𝑃𝑃𝑃2003,𝑆)

Here i indexes the firm, and e the establishment. Because productivity is at the firm
level, whereas parallelism is at the establishment level, this will induce correlation in the
error terms between establishments at the same firm. These are accounted for by
clustering the standard errors at the firm level.

The coefficient of interest is 𝛽, the impact of establishment-level parallelism. This paper’s
hypothesis is that establishments with more parallelism in their software should have
higher TFP growth in 2005-2007 than those with little parallelism in their software. Thus
the prediction is that the sign of 𝛽 will be positive.

The additional covariates, PCs per employee and # I.T. Developers, correspond to the
number of PCs per employee and the total number of I.T. developers at the
establishment. The number of employees the total number of employees at the
establishment.

An important potential confound in this data would be industry productivity trends that
pre-date the introduction of multicore chips. Since establishments in an industry are
likely to do similar tasks, they are likely to use similar software types, and thus have
similar levels of parallelism. If certain industries had particular growth paths, this could
lead to incorrectly assigning industry trends to parallelism.59

58 Strictly speaking, specifications I, and II have employees on both the right- and left-hand side of the
estimating equation, since it is an input to productivity growth. However the estimated coefficients are so
small that there is no substantive effect. The panel specifications show this directly.

59 Here “particular growth paths” would be ones where the acceleration of productivity growth is correlated
with parallelism. It is not enough for productivity growth itself to be correlated, since this would appear in
both the before- and after-productivity growth measures and thus would cancel out in the difference-in-
differences.

18

Figure 9 and Figure 10 address this issue, showing that both the levels of productivity
and the growth of productivity are very similar between the high- and low-parallelism
groups. This makes the pre-trend argument less plausible. Nevertheless, the hypothesis
about industry trends can be tested directly in both the differences-in-differences
specification and the panel specifications (following). In the difference-in-differences
framework this can be done by testing on a placebo, pre-treatment, year. If it is industry
trends that are driving the productivity changes, these should appear even prior to the
multicore change. If not, it suggests that industry trends emerge at the same time as the
multicore change, and that the extent is correlated with the parallelism of firms in that
industry, which is more consistent with a story of firms using similar software being
affected similarly.60

III. Difference-in-differences placebo specification (Placebo year: 2002)

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2001−2002,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚2003,𝑆

The importance of specifications II and III as robustness checks are discussed in detail in
section 6.4.

The difference-in-differences analyses are for a balanced panel and present only a single,
overall-impact value. The following panel specifications allow us to relax these
assumptions at the cost of some (software) limitations on the standard error clustering.

6.3.2 Panel specifications

The second set of specifications for examining this question are panel-level regressions.
These take the following forms:

IV. Base panel specification
𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶 = 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆

60 Notice that industry fixed effects (here measuring growth trends) cannot be used to disentangle this
question, since the difference-in-differences collapses the panel into a cross-section, and thus industry fixed
effects would simultaneously estimate both pre-existing industry trends and post-multicore industry trends
together. In contrast, the panel specification, which follows, does allow for industry trends effects.

19

V. With linear industry trends pre- and post-multicore61
𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶

= 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆 + 𝜏𝑆𝑆𝐶3 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑌𝑃𝑇𝑡
+ 𝜔𝑆𝑆𝐶3 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑃𝑇𝑃𝑇 ∗ 𝑌𝑃𝑇𝑡

VI. With industry-year fixed-effects

𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶
= 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆 + 𝜅𝑆𝑆𝐶3,𝐶 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑌𝑃𝑇𝑡𝐶

In all cases, i indexes the firm, e the establishment, t the year, and SIC3 the industry.
The coefficients of interest are 𝛽𝐶, the productivity benefits of establishment-level software
parallelism. Software parallelism is measured in 2001, pre-multicore, to ensure no reverse
causality.

In specification V, linear industry trends are added. These are flexible, allowing both a
pre-multicore trend and a post-multicore change in the trend. In specification VI this is
replaced with an even more flexible industry-year fixed effects model, which can adjust for
any industry time trend (including non-linear ones). In all cases industry values are
calculated at the 3-digit SIC level.

6.4 Robustness checks

To ensure that the results presented are robust, three sets of tests are performed.

The first robustness check is the placebo test, checking whether the ‘parallelism’ impact
emerges before multicore chips are released. This is done by considering 2001-2002 as the
‘before’ period, and 2002-2003 as the ‘after’ period. The difference-in-differences model is
then estimated from that sample of data. This is presented in specification III.

The second robustness test checks the robustness of the results to the specific distribution
of the software parallelism rankings from the Berkeley Software Parallelism Survey. This
is important because the highly-specialized nature of the survey means that some
questions have few answerers, so differences in interpretation of ranking scores are

61 Errors here should ideally be clustered at the firm level, as in the difference-in-differences regressions,
however current implementations of the panel regression software (plm) in R cannot handle the memory
load required for this calculation for specifications V, VI. As a consequence, these results are presented with
errors unclustered. Nonetheless, running specification IV with clustered standard errors at the
establishment level produces only a small change in the p-values.

20

plausible and could impact the results. This robustness check is done by converting the
software parallelism scores into rankings. The following equations summarize this change
(j indexes the type of software):

[Table 2]

The third robustness check is a permutation test, also known as a Fisher Exact Test
(Fisher, 1935), which non-parametrically relaxes the normality assumption in the output
variable, productivity. This is accomplished by dividing the sample into those with
above- and below-median parallelism. Under the null hypothesis that there is no
relationship between parallelism and productivity, these groups should have equal
productivity growth changes (i.e. equal values for the dependent variable from Equation
2). The test is run by randomly permuting the labels for these observations and
determining the share of permutations that produce differences in productivity as large as
observed in reality.

6.5 Causal interpretation

This paper argues that the estimate for the effect of parallelism on firm productivity
should be interpreted causally: having parallelized software improves firm productivity in
this period. This is based on several lines of argument: (i) the similarity between those
with higher parallelism and lower parallelism prior to the changeover to multicore, (ii) the
changeover to multicore being a surprise, which made it difficult for firms to anticipate
the change, and (iii) the effect on productivity appearing before firms could firm adapt.

Table 3 shows the covariate balance between firms in 2003, based on whether they had
parallelism above or below the average. It also shows where these differences are
statistically significant, both as a difference in means (t-test) and as a difference in
distributions (Kolmogorov-Smirnov test).

[Table 3]

These indicate that firms with greater parallelism have lower sales, fewer employees, and
fewer I.T. staff (not shown). Despite some differences in the average values of some of
these variables, there is still common support across them. Figure 11 illustrates this for
the Sales variable.

[Figure 11]

Table 3 also tests the distributions presented in Figure 9 and Figure 10. It confirms that
despite some differences in some pre-treatment covariates, both productivity levels and

21

growth are not statistically significantly different between the groups. This suggests that
the other differences in covariates are not creating differential productivity outcomes.

The argument that the switch to multicore computing came as a surprise is strongly
supported by Intel’s own statements. As already mentioned, Intel announced in 2002 that
they would continue the decades-long trend of increasing microprocessor clock speed, but
then in 2004 they publicly reversed course and began focusing on multicore processors.

Interviews with Intel support this view, suggesting that they adopted this change only
hesitantly, saying that Microsoft “didn’t want us to do this [switch to multicore], and we
didn’t either, but we were forced to by the physics.”62 Moreover, action to help important
software partners adapt also didn’t start until after the change. It was not until 2005 that
Intel and Microsoft began to collaborate on multicore, and not until 2007 – 2009 that
Intel released the first set of tools to help programmers write parallel code.

Statements by outside computer scientists also support the argument that the community
was taken by surprise. To the author’s knowledge, the first public announcement of the
importance of the multicore changeover was by Herb Sutter, Chair of the C++
committee, who wrote in 2005 that “the free lunch has already been over for a year or
two, only we’re just now noticing.”63 Similarly, the ‘Berkeley View’ report, one of the first
academic documents to highlight the importance of this change was published in
December 2006, and stated that the group had been meeting over the past “nearly two
years,” suggesting that they also became engaged with this in early 2005.64

Finally, there is a question about whether I.T.-using firms could have adapted to the
change within the sample period. To do so, firms would need to (i) substitute between
the types of software that they are using, or (ii) re-implement their existing software to
get more parallelism from it. The first of these probably happened to some extent, but is
sharply limited by different software doing different tasks (by definition) and hence firms
cannot replace their customer management software with, say, Powerpoint. The second of
these could be done either by the company themselves in-house or by third-party software
providers. There is evidence that both of these took time, even for firms well positioned
to notice and adapt to this change. For example, STATA MP was not released until mid-
2006. Similarly, a request by Wall Street traders for more parallelization in Excel for use
in their Monte Carlo simulations was not met until the release of Office 2007.65 In-house

62 Conducted for this study.
63 Sutter (2005).
64 Asanovic et al. (2006).
65 As related in interviews with developers working on the project.

22

parallelization of Dreamworks animation software began in 2008 (discussed in greater
detail in section 8).

These examples show that, even for important applications by large, technically-savvy
software companies, there were long delays in redeveloping software to take advantage of
multicore chips. But, as will be shown later, firms get the benefit from multicore chips
almost immediately despite not getting a benefit beforehand. This suggests that the level
of parallelism that these firms have is a ‘frozen accident,’ with firms choosing their
software before 2004 based on their business needs, and then finding after the switch to
multicore that parallelism that they happen to have yields new productivity benefits.

Together, the similarity of firms before the changeover, the ‘surprise’ of the switch to
multicore, and the emergence of a software parallelism effect before firms could adapt,
suggest a causal interpretation to the estimated effects.

7 Results

This section estimates the effect of software parallelism on productivity. Unless otherwise
noted, all results are initially calculated as a level, or change, in total factor productivity
arising from increased software parallelism. However, because the interpretation of this
quantity is unintuitive, the initial coefficient estimates are re-scaled to have the more-
intuitive interpretation of the percentage point increase in productivity level (or growth
rate) for an average firm if it had one standard deviation more software parallelism. That
said, it is worth noting that a difference of one standard deviation in parallelism is a large
change, and that firms within an industry (and thus having similar types of software)
might have a difference in parallelism of less than a standard deviation.

7.1 Overall trends

Prior to adding any covariate controls, Figure 12 simply shows the average productivity of
firms over time for two groups: those whose level of parallelism in 2001 was in the top-
third of all firms, and those whose level of parallelism was in the bottom-third. This
directly tests the hypothesis from Figure 4.

[Figure 12]

It shows the predicted pattern – no difference in the productivity of high- versus low-
parallelism firms prior to the multicore switch and a large, statistically significant,

23

difference afterwards. The subsequent analyses test to see whether this can be explained
by other causes.

7.2 Difference-in-Differences analysis

This analysis estimates specifications I, II, and III for a balanced panel of firms.
Enforcing balance results in the sample being approximately one-third as large as for the
panel analysis.

The difference-in-differences analysis estimates the per year increase in productivity growth
in 2005 – 2007 from having one standard deviation more firm software parallelism in 2003.

To get a more robust measure of central tendency the results below are on trimmed
samples. These exclude a small number of firms with productivity changes more than 2
standard deviations from the mean.

[Table 4]

The coefficient estimates in the Parallelism row indicate that firms with greater software
parallelism grow productivity more rapidly over this period. Column I shows that the
magnitude of this effect is 0.75pp** per year. Column II shows the result when the
parallelism measure is ordinalized. If parallelism was previously specified correctly, this
would just add measurement error, biasing the result towards zero, which is what is
shown with the 0.62pp* result. However, that the significance survives the variable
transformation suggests that this result is robust to the exact formulation of the measure.

Column III shows the first robustness check: a placebo test. It checks whether firm
software parallelism has an effect prior to the introduction of multicore chips. Such a
result would call into question the mechanism proposed by this paper.

The placebo test recreates the specification described in Equation 2, but with the ‘before’
period as 2001-2002, and the ‘after’ period as 2002-2003. The placebo test shows no
economically or statistically significant effect on the growth of productivity in the period
prior to the introduction of multicore, consistent with the argument that this effect comes
from the introduction of multicore and is not just representative of a longer secular trend.

7.3 Panel regressions

Figure 12 presents coefficient estimates from specification IV. It shows the extent to
which a firm with 1 standard deviation more parallelism in 2001 has a higher level of
productivity in that year. Consistent with the multicore story, it shows no statistically

24

significant differences in productivity before 2005, and large statistically-significant ones
afterwards, rising to 1.5% by 2007 (1% significance).

 [Figure 12]

Despite the estimate being on a larger, unbalanced sample, this result agrees well with the
cumulative impact that the increased growth rate of productivity, estimated in the
difference-in-differences analysis, would have.

Table 5 presents these results in regression form and presents increasingly flexible
industry-level effects.

[Table 5]

Columns V and VI show the additional effect of adding in industry-level controls. Even
with Industry-Year fixed-effects the magnitude and approximate significance of the results
survive. These results do not indicate that inter-industry parallelism is unimportant, but
do suggest that intra-industry variation in parallelism is important. Interestingly, once
industry effects are added the ramp-up in magnitude of the effect from 2005-2007
becomes smaller, perhaps suggesting that at the end of the period ‘laggard’ firms in
industries that could parallelize were starting to adjust.

7.4 Permutation Test

This robustness test compares the productivity growth of firms with above- and below-
median parallelism. It does this by permuting the labels “above” and “below” for the
data points and calculating the difference in productivity between the groups as if those
were those the true labels. This is repeated 10,000 times to produce an assumption-free
distribution of outcomes. The true productivity difference between these groups is then
compared to the distribution.

Only 2.9% of the 10,000 draws are as extreme (one-tailed test) as the value under the true
labels, thus the test rejects the null hypothesis that these labels do not impact
productivity gains.

8 Discussion

An underlying principle to this paper is the importance of performance of software for
firms. However achieving proper functionality and performance in a new (or revised)

25

piece of software, either for users or 3rd-party software developers, is famously difficult –
with development and implementation costs often far exceeding planned budgets.

In this context it is important to understand the role that Intel has played as a hardware
provider. In their 2002 book, Platform Leadership, Annabelle Gawer and Michael
Cusumano discuss how Intel creates innovation. They argue that Intel actively promotes
innovation throughout hardware, based on the recognition by Intel that it benefits from –
and indeed needs – innovation by other players to create a demand for their chips.

This paper takes this argument one step further, arguing that implicit in the sales of their
microprocessors was ready-made improvement of users existing software, since that
software run more quickly with little-to-no adjustments on the new hardware. This could
enable firms to run software tasks that were previously too slow, or turn existing tasks
into ones that could be run in real-time. It is easy to imagine how these could improve
productivity. Thus, implicitly Intel was bundling improved software performance with
their chips prior to the switch to multicore.

An Intel interviewee explained why firms rarely parallelized their code prior to the
multicore switchover, even though they could have done so to run on supercomputers,
mainframes, etc. Firm would have needed “to want performance and to want it enough
to not just wait a few years for it to happen automatically”. Given the uncertainty and
costs of software redevelopment, it is perhaps not surprising that relatively few did.

The switch to multicore computing has overturned this relationship. Now firms must
adapt their software to reflect their hardware. A number of different approaches to
address this problem seem to be emerging.

As has always been the case, firms with sufficiently deep expertise can develop their
software in house. Google is an example of a company that has done this, for example in
developing its own file management system, BigTable, and its own adaptation of a
database, MapReduce.66

Firms may also be helped by outside consultants in this process, for example by Intel.
One instance of Intel’s involvement was a successful collaboration with Dreamworks, who
brought them in to help scale up the animation software used to produce the Shrek

66 Chang et al. (2006), Dean and Ghemawat (2004). MapReduce is not a full database, although it can
perform many of the same functions.

26

movies. Intel was able to achieve a 70% speed-up of Dreamworks’ software, using a
combination of parallelizing their code and other programming changes.67

New products focused on parallel computing are also being developed. One such example
is Hadoop, an open-source implementation of Google’s MapReduce.

A final possibility is that firms will do their parallel computing through Cloud Computing
providers such as Amazon.com’s EC2 Cloud. There are two rationales for this change.
The first is that once firms are willing to invest to parallelize their software, either directly
or through third-party providers, they may choose to scale not just to the 2, 4 or 8
processors on their desktop machines, or even the 16, 32 or 64 processors on their servers,
but to thousands of processors on a Cloud. Secondly, since many Cloud providers pre-
load and customize software for their machines, they may represent a new platform for
computing, with hardward and software bundled as a service.

Although it is just a conjecture at this point, it is interesting to consider that firms may
have chosen to move to Cloud Computing in part because their alternative of getting
automatic speed-ups through new hardware has disappeared. As a point of contrast, had
Moore’s Law continued to speed-up computers, all computers would be at least 20 times
as fast as they are today.

The effect of parallelism on productivity shown in this paper is a mechanism that gets at
the importance of software performance improvements for firms. It will be interesting to
see how such performance improvements are sought now that such a powerful source of
these improvements (processor speed-ups) is no longer available.

9 Conclusion

This paper investigates how a change in the microprocessor technology that underlies
Moore’s Law has impacted the productivity of firms. It argues that clock-speed
improvements in computer chips provided substantial productivity gains to firms, and
that the engineering-driven switch to multicore computing in 2004/2005 has greatly
diminished these benefits for some firms.

Analysis of the productivity changes in Swedish firms confirm that firms with greater
software parallelism – the prerequisite to take advantage of multicore chips – had larger
productivity gains. The magnitude of this effect is estimated to be 0.5pp - 0.7pp in total

67 Based on interviews and personal communications with Intel staff.

27

factor productivity growth per year from 2005 – 2007 from one standard deviation greater
software parallelism. Non-parametric tests support the robustness of this result
qualitatively, as does a placebo test for 2002, which shows no effect. A rich set of controls
for industry-level effects also reject the idea that this is simply different industries growing
productivity at different rates.

This paper argues that this productivity impact should be interpreted causally – that
parallelism allowed some firms to become more productive – because the switch to
multicore came as a surprise, and because firms had little knowledge or ability to respond
to it within the timeframe of the data.

To the author’s knowledge, this is one of only a few papers to test the impact of I.T. on
firm productivity in a way that addresses reverse-causality and omitted variable bias
issues. It finds strong effects.

28

Bibliography

Asanovic et al. 2006. The Landscape of Parallel Computing Research: A View from
Berkeley. UC Berkeley Electrical Engineering and Computer Sciences, Technical Report
No. UCB/EECS-2006-183.

Aral, Sinan, Erik Brynjolfsson and D.J. Wu. 2006. Which came first, IT or productivity?
The virtuous cycle of investment and use in enterprise systems. Twenty-Seventh
International Conference on Information Systems, Milwaukee 2006.

Barroso, Luiz A., Kourosh Gharachorloo, Andreas Nowatzyk and Ben Verghese. 2000.
Impact of Chip-Level Integration on Performance of OLTP Workloads. Sixth
International Symposium on High-Performance Computer Architecture (HPCA), January
2000.

Bloom, Nicholas, Raffaella Sadun and John Van Reenan. Forthcoming. The organization
of firms across countries. Quarterly Journal of Economics

Bloom, Nicholas, Raffaella Sadun and John Van Reenan. 2012. Americans do I.T.
Better: US Multinationals and the Productivity Miracle. American Economic Review.

Borek, Chris, Laurits Christensen, Peter Hess, Josh Lerner and Greg Rafert. Working
Paper. Lost in the Clouds: The Impact of Copyright Scope on Investments in Cloud
Computing Ventures.

Brock, David. 2006. Understanding Moore’s Law: Four Decades of Innovation. Chemical
Heritage Foundation, Philadelphia.

Brynjolfsson, Erik and Lorin Hitt. 2003. Computing productivity: Firm-level evidence.
MIT Sloan Working Paper 4210-01, http://ebusiness.mit.edu/research/papers.html.

Bureau Van Dijk. 2007. Orbis. Data extract of income statement and establishment
data for Sweden for 2001-2007.

Cabezas, Victoria C., and Phillip Stanley-Marbell. 2011. Parallelism and Data
Movement Characterization of Contemporary Application Classes. SPAA ’11, June 4-6,
2011.

29

Cabezas, Victoria C., and Phillip Stanley-Marbell. 2011b. Quantitative Analysis of
Parallelism and Data Movement Properties Across the Berkeley Computational Motifs.
CF ’11, May 3-5, 2011.

Chang, Fay et al. 2006. Big Table: A Distributed Storage System for Structured Data.
OSDI: Seventh Symposium on Operating System Design and Implemenation.

Council on Competitiveness. 2005. High Performance Computing and Competitiveness.

Dean, Jeffrey and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on
Large Clusters. OSDI 2004.

De Gelas, Johan. 2005. The Quest for More Processing Power, Part One: “Is the single
core CPU doomed?” online at http://www.anandtech.com/show/1611.

ExcelTrader. 2011. Excel Benchmark 2011: An Excel Speed Test (with trading functions).
ExcelTrader online at http://exceltrader.net/984/benchmark_et-xls-an-excel-benchmark-
for-traders/.

Favero, Willie. 2008. DB2 History 101: Version 4. Toolbox database blogs, online at
http://it.toolbox.com/blogs/db2zos/db2-history-101-version-4-23970.

Frost and Sullivan. 2005. World Market for Dual Core Processors. Market research
report.

Gordon, Robert J. 2000. Does the “New Economy” measure up to the great inventions of
the past? NBER working paper 7833.

Gower, Anabelle and Michael Cusumano. 2002. Platform Leadership. Harvard Business
Review Press.

Harte Hanks. 2002. CI Technology Database Methodology. Harte Hanks marketing
distribution document.

Harte Hanks. 2006. Relational Database Format: A guide to using the CI Technology
Database with relational database software. Online at:
http://www.europe.hartehanksmi.com/support/downloads/RDF_Manual.pdf.

30

Harte Hanks. 2007. CI Technology Database. Data extract from Sweden, 2001-2007,
including establishment and equipment data.

Hennesy, John and David Patterson. 2007. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publications, San Francisco.

IDC. 2002. Worldwide IT Spending by Vertical Market Forecast, 2001-2006.
International Data Corporation.

Intel. 2000. Intel Introduces the Pentium 4 Processor. Intel News Release, online at:
http://web.archive.org/web/20070403032914/http://www.intel.com/pressroom/archive/re
leases/dp112000.htm.

Jorgenson, Dale, Kevin Stiroh, Robert Gordon and Daniel Sichel. 2000. Raising the
Speed Limit: U.S. Economic Growth in the Information Age. Brookings Papers on
Economic Activity, Vol. 2000, No 1 (2000), pp. 125-235, Brookings Institution Press.

Jorgenson, Dale, Mun Ho, and Jon Samuels. 2010. Information Technology and U.S.
Productivity Growth: Evidence from a Prototype Industry Production Account. Prepared
for Industrial Productivity in Europe: Growth and Crisis, online at:
http://www.economics.harvard.edu/faculty/jorgenson/files/02_jorgenson_ho_samuels%2
B19nov20101_2.pdf.

Kaspersky. 2012. Kaspersky Anti-virus for Novell NetWare. Kaspersky Lab, online at
http://www.kaspersky.com/anti-virus_novell_netware.

Malone, Michael. 1995. The Microprocessor: A Biography. Springer-Verlag, New York.

National Research Council. 2005. Getting up to Speed: The Future of Supercomputing.
National Academies Press, Washington, D.C.

National Research Council. 2011. The Future of Computing Performance: Game Over or
Next Level? National Academies Press, Washington, D.C.

Olukotun, Kunle, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, Krste
Asanoviç and Angelina Lee. 2012. CPU DB. Data available at
http://cpudb.stanford.edu/. Data received in 2012.

31

OPL Working Group. 2012. A Pattern Language for Parallel Programming ver2.0.
ParLab Patterns Wikipage, online at:
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.

PC & Tech Authority. 2009. The greatest tech U-turns of all time: Intel and Netburst.
Online at: http://www.pcauthority.com.au/News/163122,the-greatest-tech-u-turns-of-all-
time-intel-and-netburst.aspx.

PostgreSQL wiki. 2012. Parallel Query Execution. PostGreSQL wiki online at:
http://wiki.postgresql.org/wiki/Parallel_Query_Execution.

Regan, Keith. 2004. Intel Puts 4 GHz Processor on Back Burner. E-Commerce Times,
Oct 15, 2004. Online at http://www.ecommercetimes.com/story/37360.html.

SPEC. 2002. SPEC’s Benchmarks and Published Results. Online at:
http://www.spec.org/benchmarks.html#cpu.

Stata. 2012. STATA MP homepage. Online at: http://www.stata.com/statamp/.

Stata. 2012b. Why use Stata statistical software?. Stata website, online at:
http://www.stata.com/why-use-stata/.

Sutter, Herb. 2005. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software, online at http://www.gotw.ca/publications/concurrency-ddj.htm.

Symantec. 2005. Enabling Multithreaded Scans. Symantec Knowledge Base Article.
Online at
http://www.symantec.com/business/support/index?page=content&id=TECH101387.

Syverson, Chad. 2011. What determines productivity? Journal of Economic Literature,
49:2, pp. 326-365.

Televation. 2010. The Fastest PC. Online at
http://www.telovation.com/articles/fastest-pc.html

Thompson, Neil. Working Paper. U.C. Berkeley Computer Science Master’s Thesis, draft
as of December 2012.

32

Watt, Martin, Lawrence D. Cutler, Alex Powell, Brendan Duncan, Michael Hutchinson,
and Kevin Ochs. 2012. LibEE: A Multithreaded Dependency Graph for Character
Animation. DigiPro ’12, the Proceedings of the Digital Production Symposium, pp 59-66.

33

Figure 1: U.S. National Productivity Growth (Jorgenson)68

68 Based on data from Dale Jorgenson, Harvard Economics, from a personal communication. The quantity
on the y-axis is a measure of productivity, but is not straight-forward. A discussion of how the calculations
are carried out can be found in Jorgenson, Ho & Samuels (2010).

34

Figure 2: Moore's Law & the switch to multicore processors69

69 UC Berkeley Parallel Computing Class.

35

Figure 3: Performance of STATA MP70

70 Stata (2012).

36

Figure 4: SPEC Benchmark

37

Figure 5: Hypothesis

38

Software Type Examples
Antivirus Norton Antivirus
Compiler C++ compiler, Java compiler

Customer relationship mgt SAP CRM
Database SQL Server

Email Microsoft Outlook
Finance & Accounting SAP Financial Accounting
Human resources mgt Oracle HRM

Network mgt HP Openview
Network operating system

(network os)
Windows Server

Operating system (os) Microsoft Windows
Presentation Microsoft Powerpoint

Resource planning system SAP MRP
Spreadsheet Microsoft Excel
Web browser Internet Explorer, Firefox

Word processing Microsoft Word
Table 1: Software Classes

39

Figure 6: Share of Swedish establishments using various software types in 2003

40

Figure 7: Share of Swedish establishments using various software types in 2003 (by sales level)

41

Figure 8: Share of Swedish establishments using various software types in 2003 by I.T. intensity
level (PCs per employee)

42

Figure 9: Establishment level parallelism

Establishment

43

Figure 10: Distribution of Total Factor Productivity for Swedish Firms

44

Figure 11: Pre-treatment trends in productivity

45

 Formula for Establishment Parallelism
Values Calculation

(default)
𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝐹 =

1
𝑚
� 𝑆𝑇𝑆𝑇𝑔𝑇𝑡𝑃 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑗

𝐹

𝑗=1

Ranking Calculation 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝐹 =
1
𝑚
� 𝑅𝑇𝑅𝑘(𝑆𝑇𝑆𝑇𝑔𝑇𝑡𝑃 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑗

𝐹

𝑗=1
)

Table 2: Definitions for software parallelism robustness check

46

Table 3: Covariate Balance

47

Figure 12: Distribution of Sales

48

Figure 13: Overall Productivity Trends by Tercile

49

Table 4: Difference-in-differences Results71

71 Coefficient estimates for the covariates are suppressed because the magnitudes are not economically
significant (as might be expected from the diff-in-diff construction).

50

Figure 14: Productivity Impact of +1 standard deviation of software parallelism in 2001

51

Table 5: Panel Regression Results72

72 In future versions of this paper these results will be clustered at the firm level. The author is in the
process of reimplementing these in the R statistical language to make this possible. This is already complete
for the diff-in-diffs specification, which is clustered at the firm level.

52

Appendix A: Heat dissipation from chips

This paper contends that the switch-over to multicore was a surprise to industry. And
while the increase in heat build-up was foreseeable, it may have been foreseeable in the
way that countless other technical challenges are in semiconductor manufacturing (e.g.
lithography). In the face of a 30+ year history of speed-ups and an announcement from
Intel that the Pentium 4 would scale to 10GHz, it seems reasonable that software
providers would bet on the existing trajectory of single processor speed-ups.

The following chart, from Intel, summarizes the evolution of the power density. It also
shows that a previous increase in power density (for the 8086) was overcome in the 1980s.

Figure 15: Heat dissipation challenge

Notice, this graph also makes clear the scale of the challenge of heat dissipation if another
type of engineering solution could not be found. It is telling that even today the most
ardent seekers of computer speed (mostly gamers) have only achieved speed-ups to 8.2
GHz, and only then by using liquid nitrogen to cool the processor.73

73 Telovation (2010).

	1 Introduction
	2 Firms and Information Technology
	3 Moore’s Law and the rise of the microprocessor
	4 The connection between hardware and software performance
	5 Connecting software parallelism to firm performance
	5.1 Firm performance data
	5.2 Firm software data
	5.3 Software Parallelism Data

	6 Methodology and Identification Strategy
	6.1 Firm-level parallelism
	6.2 Firm Productivity
	6.3 Regression specifications
	6.3.1 Difference-in-differences specifications
	6.3.2 Panel specifications

	6.4 Robustness checks
	6.5 Causal interpretation

	7 Results
	7.1 Overall trends
	7.2 Difference-in-Differences analysis
	7.3 Panel regressions
	7.4 Permutation Test

	8 Discussion
	9 Conclusion
	Bibliography
	Appendix A: Heat dissipation from chips

