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Abstract 
“Computing performance doubles every couple of years” is the popular 
re-phrasing of Moore’s Law, a 50-year old prediction by one of the 
founders of Intel.  Over that time, it has described the 500,000-fold 
increase in the number of components on modern computer chips that 
forms the basis for virtually all information technology used today.  But 
what impact has this vast expansion of the technological frontier of 
computing had on the productivity of firms? 

This paper tries to answer this question by focusing on the mid-2000s, at 
a moment when the manifestation of Moore’s Law changed to ‘multicore’ 
chips.  Unlike earlier chips that increased processor speed faster with each 
generation, these chips stayed the same speed but added more-and-more 
processors, or ‘cores,’ on each chip (e.g. Intel CORE Duo).  But, taking 
advantage of multiple processors requires that software can split work 
amongst them.  That is, the software must be parallelized.  Software that 
is not designed that way cannot use the extra processors and thus its 
performance stagnates. Thus the switch to multiple-processors chips 
grows the technological frontier asymmetrically, disproportionately 
benefiting parallelized software and firms that use it. 

This paper estimates the productivity impact of this differential 
expansion on a panel of Swedish firms from 2001 to 2007 using a 
remarkably detailed dataset on Swedish I.T. usage and a novel survey of 
computer scientists carried out for this paper.  It shows that prior to the 
switch to multicore, productivity growth was consistent with an equal 
expansion of the technological frontier across all firms, but that 
afterwards those that could take advantage of Moore’s Law in its 
multicore form grew productivity faster, becoming more productive over 
the 2005-2007 period. 

The paper then argues that this should be interpreted as a broad-based, 
causal estimate of the effect of information technology (I.T.) on firm 
productivity because the changeover to multicore chips was a surprise, 
and because of the similarity of the treatment and control groups prior to 
the changeover.   

Real-world examples are also presented that support the description of 
the phenomenon and the mechanism being described.
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1 Introduction 

In spring 2002, Intel got it wrong.  At the Intel Developer Forum they announced that the 
processors on their computer chips would continue to speed-up, as they had for decades, 
saying: “What you have seen is a public demonstration of 4 GHz silicon straight off our 
manufacturing line. We have positive indications to be able to take [this technology] to 
the 10 GHz space.”2  Less than two years later, engineering problems forced Intel to first 
delay and then cancel plans to introduce a 4 GHz chip to the public.3  Instead they, and 
other chip-makers, turned to producing computer chips with multiple processors – the so-
called ‘multicore’ chips.  This was an enormous change, which Patrick Gelsinger, the Chief 
Architect of Intel’s 486 processors, later called the single greatest shift to date in 
microprocessor architecture.4 

For users of information technology, this was a shock whose ramifications took time to 
appreciate.  In 2005, the Chair of an important programming technical committee wrote, 
“[the automatic performance improvements from processor speed-up] has already been 
over for a year or two, only we’re just now noticing.”5   

Dreamworks was one company that experienced and later wrote about their efforts to 
adapt to this change.  At the time of Intel’s abandonment of processor speed-ups 
Dreamworks was in the throes of what they called “Shrek’s Law” – the doubling of 
computing power used in each new incarnation of the Shrek movies (the second of which 
was just coming out).  By 2008, after several years without processor speed-ups providing 
performance improvements for them, Dreamworks made the expensive decision to re-write 
large parts of their animation code to parallelize it.  This allowed them to split up the 
work that the software was doing amongst the multiple processors on their multicore 
chips, which their previous unparallelized code had been largely unable to do.  This was a 
success, providing a 70% overall improvement, with particular gains in areas like fluid 
modelling that lent themselves to parallelization.6 

This paper focuses in on the period from 2001-2007, which covers Intel’s abandonment of 
processor speed-ups (2004), the launch of multicore processors as the standard hardware 
for PCs (2005) and the initial period before software developers, like those at  
                                      
2 De Gelas (2005). 
3 Sutter (2005). 
4 Brock (2006), pp 102-104. 
5 Sutter (2005). 
6 Dreamworks ([confirm date]) and interviews. 
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Dreamworks, could adapt to multicore.  Analyzing this period allows this paper to focus 
on how firm productivities changed when an unexpected technological shock hit virtually 
all users of I.T., but where the effect was strongest for users whose existing code had less 
parallelism. 

This paper shows that before the release of multicore chips in 2005, having more 
parallelism in your code was not predictive of having greater firm productivity, consistent 
with the unresolved debate of the benefits of it in computer science discussions at the 
time.  Furthermore, the distribution of productivity amongst those with the most 
parallelism and those with the least parallelism is very similar, suggesting that pre-
treatment the groups were alike. 

After Intel’s unexpected switch to multicore chips, however, those firms with more 
parallelism in their software grew productivity more rapidly.  By 2007 their total factor 
productivity was growing 0.75pp faster per standard deviation in software parallelism.  A 
placebo test and various robustness checks affirms that this effect does not arise out of 
long-term trends in the underlying industries, nor other obvious candidates for differences 
between firms (size, technological sophistication, etc.). 

To put the estimated magnitude in context, if one divides firms into terciles by the 
amount of parallelism that they had in 2001 (well before the shock), the top tercile grows 
productivity 2.5pp more than the bottom tercile over the 2001-2007 period, with all of the 
gain coming after the 2005 introduction of multicore. 

This estimate provides a lower-bound7 for the impact of Moore’s Law on firm productivity 
over this time period.  It suggests that Moore’s Law-fueled improvements in computing 
performance have substantially improved the productivity of firms, which is consistent 
with the increasing share of firm revenues expended on I.T. over the past decades.8 

To the author’s knowledge, this estimate also provides the most broad-based causal 
identification of the effect of I.T. on firm productivity since it uses an unexpected 
technological shock that impacts virtually all I.T.-using firms. 

The argument for this paper is laid out as follows.  Section 2 outlines previous findings 
about the importance of computing to firms.  Section 3 discusses how Moore’s Law and 

                                      
7 This is a lower bound since all firms continued to benefit from other effects of Moore’s Law, e.g. increasing 
on-chip memory (cache). 
8 IDC ([confirm date] 
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computer hardware have evolved.9  Section 4 shows how these hardware changes translate 
into software performance, and why some software benefits more from multicore than 
others.  Section 5 outlines the central hypothesis of this paper: that these differences in 
software performance impact firm productivity.  It also presents the data used to evaluate 
this hypothesis.  Section 6 discusses the methodology, and Section 7 presents the results, 
and their robustness.  Section 8 places these findings in a larger context, and Section 9 
concludes. 

2 Firms and Information Technology 

The use of I.T. by firms is extensive; databases organize their data, enterprise resource 
systems coordinate their supply-chains, manufacturing systems, and customer 
relationships, and desktop software helps them create and manage the email and other 
documents of a modern office.  This permeation of I.T. into the way firms work is 
evidenced in their spending decisions.  In 2002, market-research company IDC estimated 
that firms spent ~4% of gross revenues on I.T.  Globally, this is estimated to total $1.5 
trillion.10 

A variety of approaches have been used to estimate the impact of I.T. on firm 
productivity.  Macroeconomists have looked at this question through a growth-accounting 
lens, for example Gordon (2000), Jorgenson, Stiroh, Gordon and Sichel (2000).  Many of 
these have suggested positive impacts from I.T. expenditures.   

Of particular relevance for this work is the growth decomposition work by Jorgenson et al.  
In that work the authors look at the productivity of U.S. industries, producing the data 
shown in Figure 1.  It categorizes U.S. industries into following groups: (1) I.T. producing 
industries, (2) I.T. using industries, (3) non-I.T. using industries and two accounting 
terms (not shown).  It then reports the aggregate contribution to productivity from each.  

Figure 1 
I.T. using industries go from being the largest contributor to productivity growth in 1995-
2000 and 2000-2005, to a negative contributor in 2005-2010.  It is not the absolute level of 
these effects that is interesting, but rather the comparison to I.T. producing industries 
which fall much less.  This drop suggests a change for I.T. using industries.  Some of this 

                                      
9 This paper draws heavily on Thompson (Working Paper) for the underlying computer science.  
Various parts of that work are repeated here for exposition.  

10 IDC (2002). 
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is likely to be the 2008 financial crisis, but Jorgenson, Ho and Samuels (2010) do an 
industry-level disaggregation that shows that the financial sector is not the main driver of 
their results.  

This paper will propose a potential mechanism that might underlie some of this change, 
but will not (as yet) be able to fully connect to the macro-level results.  That work is on-
going. 

Microeconomists have also tackled the question of the impact of I.T. on firm productivity 
at the firm level, perhaps most notably in the 2003 paper by Brynjolfsson and Hitt, which 
looks at firm I.T. expenditure and correlates it with improvements in multi-factor 
productivity.  They conclude that there is a sizable return to investments in I.T., but that 
the benefits are delayed ~5 years as management learns to take advantage of the new 
capabilities. 11  Despite the plausibility of good management and I.T. systems being 
complements in producing productivity increases, Brynjolfsson and Hitt’s findings don’t 
rule out the possibility that these results are driven by reverse causality (more productive 
firms buy more I.T.) or other missing variables (e.g. good managers  buy more I.T. and 
make firms more productive). 

A recent paper by Aral, Brynjolfsson and Wu has attempted to address these causality 
issues using data on the purchase and implementation of large enterprise software systems 
(e.g. enterprise resource planning systems - ERP).  They observe that the purchase of 
ERP systems is not correlated with performance improvements, but that the ‘go-live’ 
events are.12  But, if the ‘go-live’ decisions are also timed to firm needs (for example 
expanding sales), then this might also be endogenous. 

Computer scientists have also tried to quantify the benefits of computing in a number of 
studies, for example in the airline, automobile and semiconductor industries.  These find 
substantial benefits from the usage of computers, and heavy costs from instances where 
computers are down.13  There are also other industries, such as finance, logistics, and oil 
exploration, where the benefits of computation are understood to be large, but where 
firms are reluctant to share detailed information for fear of undermining their competitive 
advantage. 

                                      
11 Brynjolfsson and Hitt (2003). 
12 Aral, Brynjolfsson and Wu (2006). 
13 For example, see discussions in: National Research Council (2005), Council on Competitiveness (2005), 
Hennessy and Patterson (2007). 
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Collectively, these studies suggest that I.T. impacts productivity.  Unfortunately, most of 
these estimates are either indirect, for example by measuring the cost of I.T., or analyzing 
aggregated, rather than firm-specific, numbers.  These choices make endogeneity and 
reverse causality confounds harder to separate out, and thus make causality harder to 
establish.  This paper takes a different approach.  It looks at a change in the technology 
at the heart of computers, microprocessors, and argues that it will impact firm 
performance.  To make this case, and to substantiate why it should have a causal 
interpretation, it is important to understand how computing power has increased over the 
years. 

3 Moore’s Law and the rise of the microprocessor 

At the heart of each modern computer is a microprocessor, usually in the form of a 
central processing unit (CPU).  This is the part of the computer that performs virtually 
all computations; it takes data from memory, manipulates it, and then returns the results 
back to memory, perhaps to be acted upon again later.  Microprocessors are comprised of 
an enormous number of switches, which are used both to store data and to process 
instructions.  In early computers these switches were vacuum tubes, but in modern 
machines they are comprised of transistors.  Roughly speaking, computers that have more 
transistors have more computing power. 

Gordon Moore observed in 1965 that the number of components per computer chip were 
doubling.  This was later re-articulated as the number of transistors doubling every 
(roughly) two years.  This exponential growth, known as “Moore’s Law,” became a 
hallmark of computing power increases and a roadmap used by the semiconductor 
manufacturing industry to coordinate improvements. 

Miniaturization has played a pivotal role in fulfilling Moore’s Law.  As transistors become 
smaller, more can be fit on the chip and the power that each consumes drops.  Together, 
these allow computers to run faster than they had previously – the clock-speed14 of the 
computers increases.  This is important because the clock-speed determines how fast the 
microprocessor can perform a computation, so, roughly speaking, if you double the clock 
speed, you double the speed of a computation.15  This correlation has led to the more-

                                      
14 Roughly: the speed at which the computer can perform a simple operation. 
15 There are many factors that can alter this relationship, for example memory access. 
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popular conception of Moore’s Law, that the performance of computers doubles (roughly) 
every two years.16 

Over the past 40 years, the speed of computers has increased a thousand-fold. Figure 1, 
based on data compiled by various computer scientists including the Stanford VLSI 
group,17 documents the increase in the number of transistors per chip and the clock-speed 
of those chips.   

[Figure 1] 

Figure 1 also highlights the 2004 change in the relationship between the numbers of 
transistors and clock-speed, and the subsequent rise in the number of multicore chips.  
This changeover is at the heart of this paper, and so is described in detail. 

In November 2000, Intel launched the Pentium 4 chip.  Like previous Intel processors, the 
Pentium 4 had a single processor (i.e., had a single core).  It operated at a clock speed of 
1.4 GHz, meaning that it performed 1.4 billion computations per second.18  Intel also 
announced that, as with previous models, additional versions of the Pentium 4 would be 
released that would be faster.  They sharpened this prediction in 2002 (as shown in the 
quotation in the introduction), claiming that future versions would scale up to 10GHz.19  
That prediction never come to pass, and instead chip speeds stalled in the 3-4 GHz range. 

The reason for the failure to deliver faster clock speeds is heat.20  Along with more and 
faster transistors came increased heat buildup in the chips – so much that ultimately the 
chips began to melt.  Thus, on October 14, 2004 Intel announced that it would not release 
any faster versions of the Pentium 4, but “instead will dedicate resources to pushing dual-
core processors to market.”21  It released its first dual-core offering, the Pentium D, in 
May 2005.22  AMD faced similar challenges, and released their first dual core offering, the 
Turion 64 X2, in August 2005.  Because Intel controlled 86% of the processor market at 
this time,23 this paper focuses on its behavior. Since Intel’s 2004 announcement, the 

                                      
16 At a technical level this is more correctly identified as a result of “Dennard Scaling”. 
17 Data collected by Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, Krste 
Asanoviç and Angelina Lee.  Data available at http://cpudb.stanford.edu/. 
18 Intel (2000).  Here ‘a computation’ is used loosely, to avoid unnecessary technical detail. 
19 PC & Tech Authority (2009). 
20 Appendix A discusses this in more detail. 
21 Regan (2004). 
22 Olukotun et al. (2012).  As Figure 1 shows, an IBM dual core chip was released in 2004, but it was a 
reduced instruction set computing (RISC) chip and so not usable for most code written for Intel hardware. 
23 Frost and Sullivan (2005). 
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number of cores on a chip has continued to rise and clock-speeds have continued to 
languish. 

While the change to multicore computing may sound merely technical, it is fundamental 
to how hardware works and to how software performs, as the next section will show.  
Patrick Gelsinger, a Senior VP at Intel and chief architect for the 486 microprocessor 
describes the shift to multiple cores as the single greatest shift to date in microprocessor 
architecture.24  The National Research Council, part of the National Academy of Sciences, 
went further, describing their fears about the impact of the switch to multicore: “One 
might expect that future IT advances will occur as a natural continuation of the stunning 
advances that IT has enabled over the last half-century, but reality is more sobering.”25 

To understand why this changeover from clock speed improvements to multicore could 
have such an important effect on the performance of I.T., the connection between 
hardware and software performance needs to be made clear. 

4 The connection between hardware and software 
performance 

Broadly speaking, all software programs benefit from an increase in clock speed since the 
calculations they perform run faster.  In his famous 2005 article, Herb Sutter, Chair of the 
C++ programming language’s ISO committee, discusses how increases in clock-speed 
improve software performance:26 

“Most classes of applications have enjoyed free and regular performance 
gains for several decades, even without releasing new versions or doing 
anything special, because the CPU manufacturers (primarily) and memory 
and disk manufacturers (secondarily) have reliably enabled ever-newer and 
ever-faster mainstream systems” 

This highlights a critically important element of these clock-speed improvements: they 
produced improvements in software performance even when no change was made to the 
software itself.27  Another way to think about this is that AMD and Intel were selling a 

                                      
24 Brock (2006). 
25 National Research Council (2011). 
26 Sutter (2005). 
27 National Research Council (2011). 
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bundle to consumers; they were selling both a physical microprocessor as well as an 
implicit improvement in the performance of software that users already owned. 

But even this understates the value of clock-speed improvements because it only 
highlights changes on the intensive margin – firms using software to do their existing 
computations more quickly.  Given the long history of innovative new software 
applications, it is plausible that at least as large a could arise from changes on the 
extensive margin – firms being able to use new software, or being able to use old software, 
now faster, for new purposes.  Computer scientists John Hennessy (Stanford) and David 
Patterson (Berkeley) emphasize the extent of this change, arguing that the increase in 
computing power “has significantly enhanced the capability available to computer users.  
For many applications, the highest-performance microprocessors of today outperform the 
supercomputer of less than 10 years ago.”28 

So, to summarize, clock-speed improvements in hardware provide automatic speed-ups in 
software, improving both existing performance and creating new capabilities.  The end of 
clock-speed increases stops this free improvement for most software.  As Herb Sutter said 
“the free lunch is over.”29  The rise of multicore processors does not compensate for the 
end of clock-speed improvements because, in order to take advantage of multiple 
processors, a software program must be able to split up the work amongst them.  That is, 
it must be parallelized.  If not, it will only run on a single processor, and the other 
processors will sit idle.30  As a consequence, the incremental improvement for an 
unparallelized program from multiple cores will be small.31  In contrast, a parallelized 
program would be able to take advantage of these cores, and thus its benefits would be 
higher.  Historically, few programs were parallelized, with the most-common exception 
being high-end simulations on supercomputers (e.g. for simulating nuclear explosions).  
Later, some parallelism was introduced in the form of multi-threading, an attempt to use 
single processors more effectively by sequencing their work differently.   Results from these 
attempts were mixed, and interviews and software assessments carried out for this paper 
suggest that, even today, it is the exception, rather than the rule that most programs are 
able to make effective use of parallelism.   

                                      
28 Hennessy and Patterson (2007). 
29 Sutter (2005). 
30 Although, if multiple programs are being run at the same time, the operating system may be able to use 
the other processors for other purposes. 
31 There will still be some benefits, for example from larger on-chip memory (cache). 
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The impact of being able to use parallelism is reflected in the following graph, which 
charts the performance of the multiprocessor (i.e. parallelized) version of Stata.32  It 
illustrates several important points about software parallelism. 

[Figure 2] 

 

The black lines represent the two extremes of performance, perfect scaling, where the 
increase in the speed of the calculation grows proportionally to the number of cores, and 
no improvement.  For Stata, the median improvement for all commands of running on an 
8-core machine is only 2.7X.  Thus, as a software program, Stata’s performance is neither 
completely unparallelized (1X), nor perfectly parallelized (8X) despite the fact that it has 
been re-engineered for multicore machines.  This likely reflects two issues: (i) parallel 
programming is hard, (ii) there is a theoretical limit to how parallel a particular task can 
be made.33  This second point is reflected in the differing level of parallelism for various 
commands.  Logistic regression scales quite well, getting 6.5X performance gain from 8 
cores, whereas Arima regression scales poorly, benefiting only 1.2X.  The difference 
between these is that Logistic regression can been broken into smaller calculations that 
are relatively independent (and thus can be run on different processors).  In contrast, the 
auto-regressive and moving-average parts of Arima regression link calculations together, 
making such a split difficult.34 

The much-reduced benefit of multicore on unparallelized code can been seen not just in 
specific examples like Stata, but in general computing performance benchmarks.  The 
SPEC benchmark suite is “designed to provide performance measurements that can be 
used to compare compute-intensive workloads on different computer systems.”35  It 
contains tests for a variety of tasks, including many business-relevant ones.  Figure 3, from 
computer scientists Hennessy (Stanford) and Patterson (Berkeley), summarizes progress 
on this benchmark suite since 1978 (footer added):36,37 

                                      
32 Stata is a statistical analysis tool used by economists and other researchers.  See Stata (2012b) for more 
details. 
33 See, for example, the Wikipedia article on “Amdahl’s Law” for a discussion of one of the reasons for this. 
34 For further discussion of the parallelism of individual Stata commands, see Stata (2012).  For a technical 
discussion of algorithms and their parallelism, see Asanovic et al. (2006).   
35 SPEC (2012). 
36 Hennessy and Patterson (2007).  The benchmarks shown are the SPECint benchmarks.  The SPEC 
floating point operations show a similar trend – see NRC (2011). 
37 In order to create this time series, various SPEC benchmarks have been strung together. 
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[Figure 3] 
 

This graph shows the transition in the mid-1980s from mini-computers, which used 
distinct components, to integrated chips that benefited from Moore’s Law-driven 
improvements in computing speed.  This transition was accompanied by an increase in the 
pace of improvement on the benchmark from 25% per year to 52% per year.  This 
remarkable growth in performance of integrated chips then fell back to 22% per year with 
the changeover to multicore microprocessors.38, 39  In the words of Hennessy and 
Patterson: “this 16-year renaissance is over.  Since 2002, processor performance 
improvement has dropped to about 20% per year due to the triple hurdles of maximum 
power dissipation of air-cooled chips, little instruction-level parallelism left to exploit 
efficiently, and almost unchanged memory latency.”40 

It is clear that the changeover to multicore chips is having a profound impact on 
improvements in software performance, as measured by computer science metrics.  The 
question then becomes, are the impacts of this change visible in the performance of firms? 

5 Connecting software parallelism to firm performance 

If software performance is growing more slowly for firms using unparallelized software 
after the multicore transition then the natural question would be: are they also growing 
their productivity more slowly?  Figure 4 shows this hypothesis schematically:  

[Figure 4] 

Here a (hypothetical) firm with perfectly parallelized software continues growing 
productivity as rapidly as during processor speed-up times because it can take full 
advantage of the exponential increase in the number of cores.  Conversely, firms with 
unparallelized software get a much-reduced benefit.41 

                                      
38 In keeping with the original authors, the changeover is marked in 2003, rather than the 2004 date used 
elsewhere.  Both dates are reasonable. 
39 Benchmarks of completely parallelizable algorithms (for example LINPACK) do not show a change with 
the introduction of multicore. 
40 They date this change to the end of clock speed improvements rather than the introduction of multicore 
chips. 
41 Increases in performance improvement are unlikely to fall to zero because of other chip improvements 
(larger caches, improved chip layout, etc.) continue. 
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Investigating this hypothesis requires three kinds of data: measures of firm performance, 
knowledge of the software that firms are using, and a measure of the parallelism in each 
type of software.  The data used for each of these purposes is outlined below. 

More than 30 qualitative interviews were conducted to supplement this quantitative data.  
Interviewees were from academia as well as semiconductor and software firms.  

5.1 Firm performance data 

The firm performance data used in this paper is from the Bureau Van Dijk Orbis firm 
database.42  It contains typical accounting information, including line items needed to 
calculate Total Factor Productivity (TFP), which is described in Section 6.2.  These line 
items are relatively more complete for the Swedish data, which was the decisive factor in 
choosing that country as the setting for this study. 

Despite the greater completeness of data for Sweden, key data are missing for many firms.  
As a result, only ~35% of the sample can be used in the full analysis.43  A more complete 
discussion of the Bureau Van Dijk coverage of Swedish firms can be found in Bloom, 
Sadun, and Van Reenan (forthcoming). 

5.2 Firm software data 

Harte Hanks, a market research firm, gathers data on software and I.T. usage.44  They do 
this using phone surveys that ask establishments45 to report the details of their: 

• Computer System / Servers  • Operating Systems 
• Local Area Network  • Personal Computers 
• Network Connection Hardware • Server Operating Systems 
• Network Connection Services • Software 

 

Harte Hanks collects this data to sell it to software and hardware vendors.  This creates 
an incentive for Harte Hanks to be accurate in their assessments, as data purchasers may 
be in a position to verify these details if the data is used for sales leads. 

                                      
42 Bureau Van Dijk (2007). 
43 Even amongst this reduced sample, some smaller line items must still be imputed to get reasonable sample 
sizes.  This is done using a simple regression framework ( R2 for the regression is  84%). 
44 More details on this research is available in Harte Hanks (2002), and Harte Hanks (2006). 
45 An establishment is one location of a business. 
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Of the data collected by Harte Hanks, this analysis focuses on firm software, as captured 
by the Operating Systems, Server Operating Systems, and Software categories.46  The 
following list summarizes the most-widely used types of software from those categories: 

[Table 1] 

The Harte Hanks data used in this paper covers 6,600 Swedish establishments from 2001-
2007.47  Figure 5 shows the percentage of these establishments using each type of software.  

[Figure 5] 

The following two figures decompose these averages.  The first shows the share of 
establishments using software based on whether or not the firm (of which they are a part) 
has below- or above-median sales.  The second figure repeats this analysis, but for below- 
or above-median I.T. intensity (as measured by PCs per employee).   

[Figure 6] 

[Figure 7] 

Sales seem to have little effect on the percentage of establishments using different types of 
software.  However, firms that have high I.T. intensity, as measured by PCs per employee, 
have higher levels of penetration of virtually every type of software.  The ~20% increased 
penetration of databases is of particular interest. 

5.3 Software Parallelism Data 

The parallelism present in various software types is determined using the Berkeley 
Software Parallelism Survey,48 one part of Thompson (Working Paper).  This online 
survey was sent to ~300 computer scientists at the University of California, Berkeley; 
Stanford University; the University of Illinois, Urbana-Champaign; and in Industry.  The 
survey had a ~20% response rate, but not every question was answered by every 

                                      
46 Unfortunately these categories do not provide any details on the intensity of the usage of software by the 
firm.  This is an important limitation to this paper. 
47 Harte Hanks (2007). 
48 A list of the survey questions can be seen at 
http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Softwar
e_Parallelism_Survey.pdf. [needs updating once the new site is live] 

http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Software_Parallelism_Survey.pdf
http://faculty.haas.berkeley.edu/neil_thompson/Berkeley_Software_Parallelism_Survey/Berkeley_Software_Parallelism_Survey.pdf
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respondent.  As a result, the sample sizes for individual questions vary, and in some cases 
are small.49 

The level of software parallelism was determined by asking:50,51 

• “In practice, how parallelized are current implementations of this type of 
software…” 

This was asked for each of the software types listed earlier (e.g. databases).52  Because 
more respondents were able to rank the parallelism in categories of software (e.g. ERP vs. 
compilers) than between types of software (e.g. Microsoft vs. Oracle’s implementation of 
databases), only variation in the category of software is used to construct measures of 
parallelism.  This has the disadvantage of not using all of the differences in parallelism 
between firms.  Conversely it has the advantage that it is less plausible that ‘astute’ firms 
could bias the result by strategically switching between types of software, since ERP 
programs are not a substitute for compilers. 

The survey results indicate that software, such as Finance/Accounting or Antivirus 
programs, have more parallelism in practice, and others, such as Web Browsers or 
Compilers, have less.53  Importantly for this paper, software that is associated with 
technically sophisticated firms, for example databases, compilers, and enterprise resource 
systems, have a broad range of parallelism scores; they are neither predominantly 
parallelized nor unparallelized. 

6 Methodology and Identification Strategy 

This section describes five aspects of the methodology and identification strategy of this 
paper.  First it discusses the treatment variable, establishment-level software parallelism, 

                                      
49 A second phase of survey is planned to augment these values.  See Thompson (Working Paper) for a more 
detailed discussion of this. 
50 All questions were asked using a 7-point Likert scale, but then converted using even spacing to a 0-100% 
scale for ease of interpretability.  The Likert value for 0% was “not at all” parallelized and the value for 
100% was “completely” parallelized.  More details on the Likert scale can be found at 
http://en.wikipedia.org/wiki/Likert_scale, for example. 
51 Pilot testing of the survey asked this question retrospectively to 2004, but respondents were unable to 
answer in that form.  This is discussed further in the robustness checks section. 
52 Some program categories thought to be important for productivity, such as CAD/CAM, are not included 
in the survey because they are used by so sparsely (for CAD/CAM < 1% of establishments) 
53 Once subsequent phases of the survey are completed, these results will be reported in greater detail. 

http://en.wikipedia.org/wiki/Likert_scale
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and discusses how this is obtained from the software-level parallelism data.  Second, it 
explains the outcome variable: total factor productivity, a metric of how efficiently firms 
turn their inputs into outputs.  Third, it presents the regression specifications used to 
analyze the data.  Fourth, it outlines the robustness checks for those specifications.  And 
fifth, it argues that the coefficient estimate from these specifications should have a causal 
interpretation. 

6.1 Firm-level parallelism 

Creating a single variable that fully captures an establishment’s software parallelism is 
hard in theory and harder in practice.  In this sense, it may be akin to capturing national 
output in a single GDP figure (what about unpaid work?).  But, like this example, the 
inability to construct a perfect measure does not imply that an imperfect one is not 
valuable. 

In theory, a measure of software parallelism should indicate the benefit that the 
establishment will get from using multiple processors for its software.  Since some software 
is used more than others, such a measure should reflect how intensively software is used.  
Similarly, it should reflect how important software is in the production process.  
Unfortunately, constructing such a measure requires detailed knowledge of individual 
workers, their software, and how these fit into the firm’s production process.  Such 
detailed knowledge, even about a single firm, is entirely beyond the scope of this paper. 

Instead, this paper adopts a simple and admittedly imperfect, metric for establishment 
software parallelism: the unweighted average of the parallelism in the establishment’s 
software.  While this measure fails to account for differences in software usage intensity as 
well as its importance in the production process, it is the best starting point available.  
Figure 8 shows the distribution of this measure of establishment parallelism for the 
Swedish establishment data.  For this graph, the Likert scale from the survey has been 
mapped to the 0-1 interval for clarity. 

[Figure 8] 

These results indicate that the average software for these establishments corresponds to 
“Somewhat” or “Moderately” parallelized in the language of the Berkeley Software 
Parallelism Survey.   
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6.2 Firm Productivity 

Firm productivity is measured using total factor productivity.  The following description 
of this metric draws heavily on Syverson’s survey of the topic (2011). 

Total factor productivity (hereafter just “productivity”) is a ratio of the output of the 
firm to its inputs.  The intuition is that a firm producing more output from the same 
inputs is more productive.  The formula for calculating productivity for firm i is: 

 
𝑇𝑇𝑇𝑇𝑇 𝐹𝑇𝐹𝑇𝑇𝑡 𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦𝐹𝐹𝐹𝐹 𝐹 = 𝑆𝑆𝑆𝑆𝑠𝑖

𝐿𝑆𝐿𝐿𝐹𝑖
𝛼𝑖,𝐿∗𝐶𝑆𝐶𝐹𝐶𝑆𝑆𝑖

𝛼𝑖,𝐾∗𝑀𝑆𝐶𝑆𝐹𝐹𝑆𝑆𝑠𝑖
𝛼𝑖,𝑀. 

 
In this equation, 𝛼𝐿 ,  𝛼𝐾 ,  𝛼𝑀 are the cost shares associated with labor, capital and 
materials respectively.  The denominator of the equation is a Cobb-Douglas production 
function.  According to Syverson, a Cobb-Douglas production function is known to be “a 
first-order approximation of any production function.”54 

The conditions under which total factor productivity perfectly measures productivity are 
that firms are cost minimizing, that their factor markets (e.g. labor) have perfect 
competition, and that their production technology has constant returns to scale.  These 
are strong assumptions, and this paper defers to the productivity literature to defend 
them.  Nevertheless, this paper can address some concerns from the productivity 
literature better than other papers because the data on Swedish firms includes material 
costs.  For many other countries, data on material costs are not publicly available and 
thus ‘revenue’ total factor productivity, a less good proxy, is used instead.  

Figure 9 plots the productivity for the sample, with establishments with below-average 
software parallelism in red and above-average parallelism in blue.  The data is shown as of 
2003, which pre-dates both the announcement of the end of clock speed improvements 
(2004) and the launch of multicore chips (2005). 

[Figure 9] 

This graph suggests that, in terms of the pre-treatment productivity, the treatment and 
control groups are very similar.55  Figure 10 shows that pre-treatment productivity growth 
is also similar. 

[Figure 10] 
                                      
54 Syverson (2011). 
55 Statistical tests of these differences are presented in Table 3. 



16 
 

Together Figure 9 and Figure 10 suggest that, prior to exposure to the shock, those with 
more or less software parallelism looked ‘similar’ in terms of productivity, making them 
good for comparing the effect of the switch to multicore.  Moreover, the similar pre-
treatment growth suggests validates the usage of a difference-in-differences approach to 
measure this effect. 

6.3 Regression specifications 

The goal of the following analyses is to quantify how software parallelism impacts firm 
productivity after the switchover to multicore chips. 

6.3.1 Difference-in-differences specifications 

The base specification is a differences-in-differences estimation that looks at whether 
higher pre-treatment parallelism leads to a differential increase in productivity. 

The following expression describes the quantity of interest (shown here with parallelism 
dichotomous):56 

𝛽 = 𝐸[∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ�𝑝𝑇𝑡ℎ𝐹𝑖ℎ�] − 𝐸[∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ(𝑝𝑇𝑡𝑆𝐿𝑙)] 
 
Where ∆𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ is the change in average productivity growth from the ‘before’ 
period, 2001-2003, to the ‘after’ period, 2005-2007, and 𝑝𝑇𝑡ℎ𝐹𝑖ℎ/𝑆𝐿𝑙 reflects the software 
parallelism level of the establishment in 2003 (pre-treatment).57  Growth in 2004 is 
excluded from the pre-period, since it is unclear what effect the announcement of the 
switch to multicore designs would have on chip replacement behavior. 

Because this is a difference-in-differences estimator, any establishment-level characteristics 
that are not time-varying are netted out.  This produces the following specification, here 
with parallelism continuous: 

                                      
56 Although firm software parallelism is a continuous variable, it is presented here as a dichotomous variable 
for expositional purposes. 
57 This is calculated using the ‘in-practice’ parallelism software measures from the Berkeley Software 
Parallelism Survey and applying them to the software being used by the firm in 2003.  The Robustness 
Section discusses the implications of the timing of these two measures. 
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I. Base differences-in-differences estimator58 

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2005−2007, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚2003,𝑆 + 𝛾1 ∗ 𝑃𝑃𝑃 𝑝𝑃𝑡 𝑃𝑚𝑝𝑇𝑇𝑦𝑃𝑃2003,𝑆 + 𝛾2
∗ log (# 𝐼.𝑇.𝐷𝑃𝑃𝑃𝑇𝑇𝑝𝑃𝑡𝑃2003,𝑆) + 𝜑 ∗ log (# 𝐸𝑚𝑝𝑇𝑇𝑦𝑃𝑃𝑃2003,𝑆) 

 
II. With ordinal parallelism rankings 

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2005−2007, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚 𝑅𝑇𝑅𝑘2003,𝑆 + 𝛾1 ∗ 𝑃𝑃𝑃 𝑝𝑃𝑡 𝑃𝑚𝑝𝑇𝑇𝑦𝑃𝑃2003,𝑆 + 𝛾2
∗ log (# 𝐼.𝑇.𝐷𝑃𝑃𝑃𝑇𝑇𝑝𝑃𝑡𝑃2003,𝑆) + 𝜑 ∗ log (# 𝐸𝑚𝑝𝑇𝑇𝑦𝑃𝑃𝑃2003,𝑆) 

 

Here i indexes the firm, and e the establishment.  Because productivity is at the firm 
level, whereas parallelism is at the establishment level, this will induce correlation in the 
error terms between establishments at the same firm.  These are accounted for by 
clustering the standard errors at the firm level. 

The coefficient of interest is 𝛽, the impact of establishment-level parallelism.  This paper’s 
hypothesis is that establishments with more parallelism in their software should have 
higher TFP growth in 2005-2007 than those with little parallelism in their software.  Thus 
the prediction is that the sign of 𝛽 will be positive. 

The additional covariates, PCs per employee and # I.T. Developers, correspond to the 
number of PCs per employee and the total number of I.T. developers at the 
establishment.  The number of employees the total number of employees at the 
establishment. 

An important potential confound in this data would be industry productivity trends that 
pre-date the introduction of multicore chips.  Since establishments in an industry are 
likely to do similar tasks, they are likely to use similar software types, and thus have 
similar levels of parallelism.  If certain industries had particular growth paths, this could 
lead to incorrectly assigning industry trends to parallelism.59 

                                      
58 Strictly speaking, specifications I, and II have employees on both the right- and left-hand side of the 
estimating equation, since it is an input to productivity growth.  However the estimated coefficients are so 
small that there is no substantive effect.  The panel specifications show this directly. 

59 Here “particular growth paths” would be ones where the acceleration of productivity growth is correlated 
with parallelism.  It is not enough for productivity growth itself to be correlated, since this would appear in 
both the before- and after-productivity growth measures and thus would cancel out in the difference-in-
differences. 
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Figure 9 and Figure 10 address this issue, showing that both the levels of productivity 
and the growth of productivity are very similar between the high- and low-parallelism 
groups.  This makes the pre-trend argument less plausible.  Nevertheless, the hypothesis 
about industry trends can be tested directly in both the differences-in-differences 
specification and the panel specifications (following).  In the difference-in-differences 
framework this can be done by testing on a placebo, pre-treatment, year.  If it is industry 
trends that are driving the productivity changes, these should appear even prior to the 
multicore change.  If not, it suggests that industry trends emerge at the same time as the 
multicore change, and that the extent is correlated with the parallelism of firms in that 
industry, which is more consistent with a story of firms using similar software being 
affected similarly.60 

III. Difference-in-differences placebo specification (Placebo year: 2002) 

𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2002−2003, 𝐹 − 𝑇𝑃𝑎 𝑇𝐹𝑃 𝑎𝑡𝑇𝑔𝑇ℎ2001−2002,𝐹
= 𝛼 + 𝛽 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚2003,𝑆 

 

The importance of specifications II and III as robustness checks are discussed in detail in 
section 6.4. 

The difference-in-differences analyses are for a balanced panel and present only a single, 
overall-impact value.  The following panel specifications allow us to relax these 
assumptions at the cost of some (software) limitations on the standard error clustering. 

6.3.2 Panel specifications 

The second set of specifications for examining this question are panel-level regressions.  
These take the following forms: 

IV. Base panel specification 
𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶 = 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆 

 

                                      
60 Notice that industry fixed effects (here measuring growth trends) cannot be used to disentangle this 
question, since the difference-in-differences collapses the panel into a cross-section, and thus industry fixed 
effects would simultaneously estimate both pre-existing industry trends and post-multicore industry trends 
together.  In contrast, the panel specification, which follows, does allow for industry trends effects. 
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V. With linear industry trends pre- and post-multicore61 
𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶

= 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆 + 𝜏𝑆𝑆𝐶3 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑌𝑃𝑇𝑡  
+ 𝜔𝑆𝑆𝐶3 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑃𝑇𝑃𝑇 ∗ 𝑌𝑃𝑇𝑡 

 
VI. With industry-year fixed-effects 

𝑃𝑡𝑇𝑃𝑃𝐹𝑇𝑃𝑃𝑃𝑇𝑦 (𝑇𝐹𝑃)𝐹,𝐶
= 𝛽𝐶 ∗ 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑆,𝐶=2001 + 𝛼𝐶 + 𝜓𝑆 + 𝜅𝑆𝑆𝐶3,𝐶 ∗ 𝐼𝑅𝑃𝑃𝑃𝑇𝑡𝑦𝑆𝑆𝐶3 ∗ 𝑌𝑃𝑇𝑡𝐶 

In all cases, i indexes the firm, e the establishment, t the year, and SIC3 the industry.  
The coefficients of interest are 𝛽𝐶, the productivity benefits of establishment-level software 
parallelism.  Software parallelism is measured in 2001, pre-multicore, to ensure no reverse 
causality. 

In specification V, linear industry trends are added.  These are flexible, allowing both a 
pre-multicore trend and a post-multicore change in the trend.  In specification VI this is 
replaced with an even more flexible industry-year fixed effects model, which can adjust for 
any industry time trend (including non-linear ones).  In all cases industry values are 
calculated at the 3-digit SIC level. 

6.4 Robustness checks 

To ensure that the results presented are robust, three sets of tests are performed. 

The first robustness check is the placebo test, checking whether the ‘parallelism’ impact 
emerges before multicore chips are released.  This is done by considering 2001-2002 as the 
‘before’ period, and 2002-2003 as the ‘after’ period.  The difference-in-differences model is 
then estimated from that sample of data.  This is presented in specification III. 

The second robustness test checks the robustness of the results to the specific distribution 
of the software parallelism rankings from the Berkeley Software Parallelism Survey.  This 
is important because the highly-specialized nature of the survey means that some 
questions have few answerers, so differences in interpretation of ranking scores are 

                                      
61 Errors here should ideally be clustered at the firm level, as in the difference-in-differences regressions, 
however current implementations of the panel regression software (plm) in R cannot handle the memory 
load required for this calculation for specifications V, VI.  As a consequence, these results are presented with 
errors unclustered.  Nonetheless, running specification IV with clustered standard errors at the 
establishment level produces only a small change in the p-values.  
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plausible and could impact the results.  This robustness check is done by converting the 
software parallelism scores into rankings.  The following equations summarize this change 
(j indexes the type of software): 

[Table 2] 

The third robustness check is a permutation test, also known as a Fisher Exact Test 
(Fisher, 1935), which non-parametrically relaxes the normality assumption in the output 
variable, productivity.  This is accomplished by dividing the sample into those with 
above- and below-median parallelism.  Under the null hypothesis that there is no 
relationship between parallelism and productivity, these groups should have equal 
productivity growth changes (i.e. equal values for the dependent variable from Equation 
2).  The test is run by randomly permuting the labels for these observations and 
determining the share of permutations that produce differences in productivity as large as 
observed in reality. 

6.5 Causal interpretation 

This paper argues that the estimate for the effect of parallelism on firm productivity 
should be interpreted causally: having parallelized software improves firm productivity in 
this period.  This is based on several lines of argument: (i) the similarity between those 
with higher parallelism and lower parallelism prior to the changeover to multicore, (ii) the 
changeover to multicore being a surprise, which made it difficult for firms to anticipate 
the change, and (iii) the effect on productivity appearing before firms could firm adapt. 

Table 3 shows the covariate balance between firms in 2003, based on whether they had 
parallelism above or below the average.  It also shows where these differences are 
statistically significant, both as a difference in means (t-test) and as a difference in 
distributions (Kolmogorov-Smirnov test). 

[Table 3] 

These indicate that firms with greater parallelism have lower sales, fewer employees, and 
fewer I.T. staff (not shown).  Despite some differences in the average values of some of 
these variables, there is still common support across them.  Figure 11 illustrates this for 
the Sales variable. 

[Figure 11] 

Table 3 also tests the distributions presented in Figure 9 and Figure 10.  It confirms that 
despite some differences in some pre-treatment covariates, both productivity levels and 
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growth are not statistically significantly different between the groups.  This suggests that 
the other differences in covariates are not creating differential productivity outcomes. 

The argument that the switch to multicore computing came as a surprise is strongly 
supported by Intel’s own statements.  As already mentioned, Intel announced in 2002 that 
they would continue the decades-long trend of increasing microprocessor clock speed, but 
then in 2004 they publicly reversed course and began focusing on multicore processors. 

Interviews with Intel support this view, suggesting that they adopted this change only 
hesitantly, saying that Microsoft “didn’t want us to do this [switch to multicore], and we 
didn’t either, but we were forced to by the physics.”62  Moreover, action to help important 
software partners adapt also didn’t start until after the change.  It was not until 2005 that 
Intel and Microsoft began to collaborate on multicore, and not until 2007 – 2009 that 
Intel released the first set of tools to help programmers write parallel code.   

Statements by outside computer scientists also support the argument that the community 
was taken by surprise.  To the author’s knowledge, the first public announcement of the 
importance of the multicore changeover was by Herb Sutter, Chair of the C++ 
committee, who wrote in 2005 that “the free lunch has already been over for a year or 
two, only we’re just now noticing.”63  Similarly, the ‘Berkeley View’ report, one of the first 
academic documents to highlight the importance of this change was published in 
December 2006, and stated that the group had been meeting over the past “nearly two 
years,” suggesting that they also became engaged with this in early 2005.64 

Finally, there is a question about whether I.T.-using firms could have adapted to the 
change within the sample period.  To do so, firms would need to (i) substitute between 
the types of software that they are using, or (ii) re-implement their existing software to 
get more parallelism from it.  The first of these probably happened to some extent, but is 
sharply limited by different software doing different tasks (by definition) and hence firms 
cannot replace their customer management software with, say, Powerpoint.  The second of 
these could be done either by the company themselves in-house or by third-party software 
providers.  There is evidence that both of these took time, even for firms well positioned 
to notice and adapt to this change.  For example, STATA MP was not released until mid-
2006.  Similarly, a request by Wall Street traders for more parallelization in Excel for use 
in their Monte Carlo simulations was not met until the release of Office 2007.65  In-house 

                                      
62 Conducted for this study. 
63 Sutter (2005). 
64 Asanovic et al. (2006). 
65 As related in interviews with developers working on the project. 



22 
 

parallelization of Dreamworks animation software began in 2008 (discussed in greater 
detail in section 8). 

These examples show that, even for important applications by large, technically-savvy 
software companies, there were long delays in redeveloping software to take advantage of 
multicore chips.  But, as will be shown later, firms get the benefit from multicore chips 
almost immediately despite not getting a benefit beforehand.  This suggests that the level 
of parallelism that these firms have is a ‘frozen accident,’ with firms choosing their 
software before 2004 based on their business needs, and then finding after the switch to 
multicore that parallelism that they happen to have yields new productivity benefits. 

Together, the similarity of firms before the changeover, the ‘surprise’ of the switch to 
multicore, and the emergence of a software parallelism effect before firms could adapt, 
suggest a causal interpretation to the estimated effects. 

7 Results 

This section estimates the effect of software parallelism on productivity.  Unless otherwise 
noted, all results are initially calculated as a level, or change, in total factor productivity 
arising from increased software parallelism.  However, because the interpretation of this 
quantity is unintuitive, the initial coefficient estimates are re-scaled to have the more-
intuitive interpretation of the percentage point increase in productivity level (or growth 
rate) for an average firm if it had one standard deviation more software parallelism.  That 
said, it is worth noting that a difference of one standard deviation in parallelism is a large 
change, and that firms within an industry (and thus having similar types of software) 
might have a difference in parallelism of less than a standard deviation. 

7.1 Overall trends 

Prior to adding any covariate controls, Figure 12 simply shows the average productivity of 
firms over time for two groups: those whose level of parallelism in 2001 was in the top-
third of all firms, and those whose level of parallelism was in the bottom-third.  This 
directly tests the hypothesis from Figure 4. 

[Figure 12] 

It shows the predicted pattern – no difference in the productivity of high- versus low-
parallelism firms prior to the multicore switch and a large, statistically significant, 
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difference afterwards.  The subsequent analyses test to see whether this can be explained 
by other causes. 

7.2 Difference-in-Differences analysis 

This analysis estimates specifications I, II, and III for a balanced panel of firms.  
Enforcing balance results in the sample being approximately one-third as large as for the 
panel analysis.  

The difference-in-differences analysis estimates the per year increase in productivity growth 
in 2005 – 2007 from having one standard deviation more firm software parallelism in 2003.   

To get a more robust measure of central tendency the results below are on trimmed 
samples.  These exclude a small number of firms with productivity changes more than 2 
standard deviations from the mean. 

[Table 4] 

The coefficient estimates in the Parallelism row indicate that firms with greater software 
parallelism grow productivity more rapidly over this period.  Column I shows that the 
magnitude of this effect is 0.75pp** per year.  Column II shows the result when the 
parallelism measure is ordinalized.  If parallelism was previously specified correctly, this 
would just add measurement error, biasing the result towards zero, which is what is 
shown with the 0.62pp* result.  However, that the significance survives the variable 
transformation suggests that this result is robust to the exact formulation of the measure. 

Column III shows the first robustness check: a placebo test.  It checks whether firm 
software parallelism has an effect prior to the introduction of multicore chips.  Such a 
result would call into question the mechanism proposed by this paper. 

The placebo test recreates the specification described in Equation 2, but with the ‘before’ 
period as 2001-2002, and the ‘after’ period as 2002-2003.  The placebo test shows no 
economically or statistically significant effect on the growth of productivity in the period 
prior to the introduction of multicore, consistent with the argument that this effect comes 
from the introduction of multicore and is not just representative of a longer secular trend. 

7.3 Panel regressions 

Figure 12 presents coefficient estimates from specification IV.  It shows the extent to 
which a firm with 1 standard deviation more parallelism in 2001 has a higher level of 
productivity in that year.  Consistent with the multicore story, it shows no statistically 
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significant differences in productivity before 2005, and large statistically-significant ones 
afterwards, rising to 1.5% by 2007 (1% significance).   

 [Figure 12] 

Despite the estimate being on a larger, unbalanced sample, this result agrees well with the 
cumulative impact that the increased growth rate of productivity, estimated in the 
difference-in-differences analysis, would have. 

Table 5 presents these results in regression form and presents increasingly flexible 
industry-level effects. 

[Table 5] 

Columns V and VI show the additional effect of adding in industry-level controls.  Even 
with Industry-Year fixed-effects the magnitude and approximate significance of the results 
survive.  These results do not indicate that inter-industry parallelism is unimportant, but 
do suggest that intra-industry variation in parallelism is important.  Interestingly, once 
industry effects are added the ramp-up in magnitude of the effect from 2005-2007 
becomes smaller, perhaps suggesting that at the end of the period ‘laggard’ firms in 
industries that could parallelize were starting to adjust. 

7.4 Permutation Test 

This robustness test compares the productivity growth of firms with above- and below-
median parallelism.  It does this by permuting the labels “above” and “below” for the 
data points and calculating the difference in productivity between the groups as if those 
were those the true labels.  This is repeated 10,000 times to produce an assumption-free 
distribution of outcomes.  The true productivity difference between these groups is then 
compared to the distribution.    

Only 2.9% of the 10,000 draws are as extreme (one-tailed test) as the value under the true 
labels, thus the test rejects the null hypothesis that these labels do not impact 
productivity gains. 

8 Discussion 

An underlying principle to this paper is the importance of performance of software for 
firms.  However achieving proper functionality and performance in a new (or revised) 
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piece of software, either for users or 3rd-party software developers, is famously difficult – 
with development and implementation costs often far exceeding planned budgets. 

In this context it is important to understand the role that Intel has played as a hardware 
provider.  In their 2002 book, Platform Leadership, Annabelle Gawer and Michael 
Cusumano discuss how Intel creates innovation.  They argue that Intel actively promotes 
innovation throughout hardware, based on the recognition by Intel that it benefits from – 
and indeed needs – innovation by other players to create a demand for their chips. 

This paper takes this argument one step further, arguing that implicit in the sales of their 
microprocessors was ready-made improvement of users existing software, since that 
software run more quickly with little-to-no adjustments on the new hardware.  This could 
enable firms to run software tasks that were previously too slow, or turn existing tasks 
into ones that could be run in real-time.  It is easy to imagine how these could improve 
productivity.  Thus, implicitly Intel was bundling improved software performance with 
their chips prior to the switch to multicore. 

An Intel interviewee explained why firms rarely parallelized their code prior to the 
multicore switchover, even though they could have done so to run on supercomputers, 
mainframes, etc.  Firm would have needed “to want performance and to want it enough 
to not just wait a few years for it to happen automatically”.  Given the uncertainty and 
costs of software redevelopment, it is perhaps not surprising that relatively few did. 

The switch to multicore computing has overturned this relationship. Now firms must 
adapt their software to reflect their hardware.  A number of different approaches to 
address this problem seem to be emerging. 

As has always been the case, firms with sufficiently deep expertise can develop their 
software in house.  Google is an example of a company that has done this, for example in 
developing its own file management system, BigTable, and its own adaptation of a 
database, MapReduce.66   

Firms may also be helped by outside consultants in this process, for example by Intel.  
One instance of Intel’s involvement was a successful collaboration with Dreamworks, who 
brought them in to help scale up the animation software used to produce the Shrek 

                                      
66 Chang et al. (2006), Dean and Ghemawat (2004).  MapReduce is not a full database, although it can 
perform many of the same functions. 
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movies.  Intel was able to achieve a 70% speed-up of Dreamworks’ software, using a 
combination of parallelizing their code and other programming changes.67 

New products focused on parallel computing are also being developed.  One such example 
is Hadoop, an open-source implementation of Google’s MapReduce. 

A final possibility is that firms will do their parallel computing through Cloud Computing 
providers such as Amazon.com’s EC2 Cloud.  There are two rationales for this change.  
The first is that once firms are willing to invest to parallelize their software, either directly 
or through third-party providers, they may choose to scale not just to the 2, 4 or 8 
processors on their desktop machines, or even the 16, 32 or 64 processors on their servers, 
but to thousands of processors on a Cloud.  Secondly, since many Cloud providers pre-
load and customize software for their machines, they may represent a new platform for 
computing, with hardward and software bundled as a service. 

Although it is just a conjecture at this point, it is interesting to consider that firms may 
have chosen to move to Cloud Computing in part because their alternative of getting 
automatic speed-ups through new hardware has disappeared.  As a point of contrast, had 
Moore’s Law continued to speed-up computers, all computers would be at least 20 times 
as fast as they are today. 

The effect of parallelism on productivity shown in this paper is a mechanism that gets at 
the importance of software performance improvements for firms.  It will be interesting to 
see how such performance improvements are sought now that such a powerful source of 
these improvements (processor speed-ups) is no longer available. 

9 Conclusion 

This paper investigates how a change in the microprocessor technology that underlies 
Moore’s Law has impacted the productivity of firms.  It argues that clock-speed 
improvements in computer chips provided substantial productivity gains to firms, and 
that the engineering-driven switch to multicore computing in 2004/2005 has greatly 
diminished these benefits for some firms. 

Analysis of the productivity changes in Swedish firms confirm that firms with greater 
software parallelism – the prerequisite to take advantage of multicore chips – had larger 
productivity gains.  The magnitude of this effect is estimated to be 0.5pp - 0.7pp in total 

                                      
67 Based on interviews and personal communications with Intel staff. 
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factor productivity growth per year from 2005 – 2007 from one standard deviation greater 
software parallelism.  Non-parametric tests support the robustness of this result 
qualitatively, as does a placebo test for 2002, which shows no effect.  A rich set of controls 
for industry-level effects also reject the idea that this is simply different industries growing 
productivity at different rates. 

This paper argues that this productivity impact should be interpreted causally – that 
parallelism allowed some firms to become more productive – because the switch to 
multicore came as a surprise, and because firms had little knowledge or ability to respond 
to it within the timeframe of the data. 

To the author’s knowledge, this is one of only a few papers to test the impact of I.T. on 
firm productivity in a way that addresses reverse-causality and omitted variable bias 
issues.  It finds strong effects.  
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Figure 1: U.S. National Productivity Growth (Jorgenson)68 

  

                                      
68 Based on data from Dale Jorgenson, Harvard Economics, from a personal communication.  The quantity 
on the y-axis is a measure of productivity, but is not straight-forward.  A discussion of how the calculations 
are carried out can be found in Jorgenson, Ho & Samuels (2010). 
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Figure 2: Moore's Law & the switch to multicore processors69 

  

                                      
69 UC Berkeley Parallel Computing Class. 
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Figure 3: Performance of STATA MP70 

  

                                      
70 Stata (2012). 
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Figure 4: SPEC Benchmark 

  



37 
 

 
Figure 5: Hypothesis 
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Software Type Examples 
Antivirus Norton Antivirus 
Compiler C++ compiler, Java compiler 

Customer relationship mgt SAP CRM 
Database SQL Server 

Email Microsoft Outlook 
Finance & Accounting SAP Financial Accounting 
Human resources mgt Oracle HRM 

Network mgt HP Openview 
Network operating system 

(network os) 
Windows Server 

Operating system (os) Microsoft Windows 
Presentation Microsoft Powerpoint 

Resource planning system SAP MRP 
Spreadsheet Microsoft Excel 
Web browser Internet Explorer, Firefox 

Word processing Microsoft Word 
Table 1: Software Classes 
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Figure 6: Share of Swedish establishments using various software types in 2003 
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Figure 7: Share of Swedish establishments using various software types in 2003 (by sales level) 
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Figure 8: Share of Swedish establishments using various software types in 2003 by I.T. intensity 
level (PCs per employee) 

  



42 
 

 
Figure 9: Establishment level parallelism 

  

Establishment 
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Figure 10: Distribution of Total Factor Productivity for Swedish Firms 
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Figure 11: Pre-treatment trends in productivity 
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 Formula for Establishment Parallelism 
Values Calculation 

(default) 
𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝐹 =

1
𝑚
� 𝑆𝑇𝑆𝑇𝑔𝑇𝑡𝑃 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑗

𝐹

𝑗=1
 

Ranking Calculation 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝐹 =
1
𝑚
� 𝑅𝑇𝑅𝑘(𝑆𝑇𝑆𝑇𝑔𝑇𝑡𝑃 𝑃𝑇𝑡𝑇𝑇𝑇𝑃𝑇𝑃𝑃𝑚𝑗

𝐹

𝑗=1
) 

Table 2: Definitions for software parallelism robustness check 
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Table 3: Covariate Balance 
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Figure 12: Distribution of Sales 
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Figure 13: Overall Productivity Trends by Tercile  
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Table 4: Difference-in-differences Results71 

  

                                      
71 Coefficient estimates for the covariates are suppressed because the magnitudes are not economically 
significant (as might be expected from the diff-in-diff construction). 
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Figure 14: Productivity Impact of +1 standard deviation of software parallelism in 2001 
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Table 5: Panel Regression Results72 

  

                                      
72 In future versions of this paper these results will be clustered at the firm level.  The author is in the 
process of reimplementing these in the R statistical language to make this possible.  This is already complete 
for the diff-in-diffs specification, which is clustered at the firm level. 
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Appendix A: Heat dissipation from chips 

This paper contends that the switch-over to multicore was a surprise to industry.  And 
while the increase in heat build-up was foreseeable, it may have been foreseeable in the 
way that countless other technical challenges are in semiconductor manufacturing (e.g. 
lithography).  In the face of a 30+ year history of speed-ups and an announcement from 
Intel that the Pentium 4 would scale to 10GHz, it seems reasonable that software 
providers would bet on the existing trajectory of single processor speed-ups. 

The following chart, from Intel, summarizes the evolution of the power density.  It also 
shows that a previous increase in power density (for the 8086) was overcome in the 1980s. 

 
Figure 15: Heat dissipation challenge 

Notice, this graph also makes clear the scale of the challenge of heat dissipation if another 
type of engineering solution could not be found.  It is telling that even today the most 
ardent seekers of computer speed (mostly gamers) have only achieved speed-ups to 8.2 
GHz, and only then by using liquid nitrogen to cool the processor.73 
 

                                      
73 Telovation (2010). 
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