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Abstract

In this paper, we consider bootstrap jump tests based on functions of realized volatility and
bipower variation, as originally proposed by Barndorff-Nielsen and Shephard (2006). Our aim is
to improve the finite sample size of the asymptotic theory-based tests while retaining good power.
In order to do so, we generate the bootstrap observations under the null of no jumps, by drawing
them randomly from a mean zero Gaussian distribution with a variance given by a local measure
of integrated volatility (which we call {v̂ni }).

Our first contribution is to give a set of high level conditions on {v̂ni } such that any bootstrap
method of this form has the asymptotic correct size and is alternative-consistent. We then verify
these high level conditions for a specific example of {v̂ni } based on the product of L multipowers
of local realized volatility estimates, each of them computed over M consecutive non-overlapping
intraday returns. We show that this choice satisfies our high level conditions under both the null
and the alternative hypothesis of jumps when the maximum of the multipowers is strictly less than
1/2. This is equivalent to letting L > 2 when the multipowers are all equal to 1/L. When L ≤ 2,
the bootstrap is able to mimic the null distribution only under the null of “no jumps”. In particular,
we cannot guarantee that it is alternative-consistent when L = 1 and M = 1, which corresponds
to the standard wild bootstrap based on a Gaussian external random variable. Our simulations
confirm that this choice has very poor finite sample properties. The simulations also show that
by appropriately choosing M and L, we can greatly reduce the overrejections that are typically
associated with the Barndorff-Nielsen and Shephard (2006) tests without compromising power.

Keywords: jumps, bootstrap, block multipower variation.

1 Introduction

A well accepted fact in financial economics is the fact that asset prices do not always evolve continuously
over a given time interval, being instead subject to the possible occurrence of jumps (or discontinuous
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acknowledge financial support from a ANR-FQRSC grant. In addition, Ulrich Hounyo acknowledges support from
CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National
Research Foundation, as well as support from the Oxford-Man Institute of Quantitative Finance.

1



movements in prices). The detection of such jumps is crucial for asset pricing and risk management
because the presence of jumps has important consequences for the performance of asset pricing models
and hedging strategies, often introducing parameters that are hard to estimate (see e.g. Bakshi et
al. (1997), Bates (1996), and Johannes (2004)). For this reason, many tests for jumps have been
proposed in the literature over the years, most of the recent ones exploiting the rich information
contained in high frequency data. These include tests based on bipower variation measures (such as
in Barndorff-Nielsen and Shephard (2004, 2006), henceforth BN-S (2004, 2006), Huang and Tauchen
(2005), Andersen et al. (2007), Jiang and Oomen (2008), and more recently Mykland, Shephard and
Sheppard (2012)); tests based on power variation measures sampled at different frequencies (such as
in Aı̈t-Sahalia and Jacod (2009), Aı̈t-Sahalia, Jacod and Li (2012)), and tests based on the maximum
of a standardized version of intraday returns (such as in Lee and Mykland (2008, 2012)). In addition,
tests based on thresholding or truncation-based estimators of volatility have also been proposed with
the objective of disentangling big from small jumps, as in Aı̈t-Sahalia and Jacod (2009) and Cont and
Mancini (2011), based on Mancini (2001). See Aı̈t-Sahalia and Jacod (2012, 2014) for a review of the
literature on the econometrics of high frequency-based jump tests.

In this paper, we focus on the class of tests based on bipower variation originally proposed by
Barndorff-Nielsen and Shephard (2004, 2006). Our main contribution is to propose a bootstrap im-
plementation of these tests with better finite sample properties than the original tests based on the
asymptotic normal distribution. In particular, our aim is to improve finite sample size while retaining
good power. In order to do so, we generate the bootstrap observations under the null of no jumps,
by drawing them randomly from a mean zero Gaussian distribution with a variance given by a local
measure of integrated volatility (which we call {v̂ni }).

Our first contribution is to give a set of high level conditions on {v̂ni } such that any bootstrap
method of this form has the asymptotic correct size and is alternative-consistent. We then verify these
high level conditions for a specific example of {v̂ni } based on the product of L multipowers of local
realized volatility estimates, each of them computed over M consecutive non-overlapping intraday
returns. When L = 1, this corresponds to the local Gaussian bootstrap of Hounyo (2013), who
proposed this method for inference on integrated volatility under no jumps.

We show that this choice of {v̂ni } satisfies our high level conditions under both the null and the
alternative hypothesis of jumps when the maximum of the exponents {pl} used to compute v̂ni is
strictly less than 1/2. This is equivalent to letting L > 2 when pl = 1/L for l = 1, . . . , L. Thus, under
these conditions, the bootstrap is able to mimic the null distribution of the jump test under the null
of no jumps as well as under the alternative of jumps. This ensures that the bootstrap test has the
correct size asymptotically and is consistent under the alternative. Crucial for this result is the fact
that the bootstrap variance of the test is consistent under both the null and the alternative hypothesis.
As it turns out, this variance is a function of (efficient) blocked multipower variation measures (cf.
Mykland, Shephard and Sheppard (2012), henceforth MSS (2012)) with multipowers given by up to
four times the exponents {pl} used to compute v̂ni . Since these measures are robust to jumps only
when we impose the restriction that the multipowers are strictly less than two (here, implied by the
condition 4 max (pl) < 2), this explains why we obtain the condition max (pl) < 1/2.

When max (pl) > 1/2, or equivalently L < 2 when all exponents are the same, the bootstrap
variance of the test diverges under the alternative of jumps and we can only show that the bootstrap
is able to mimic the null distribution in restriction to the null of “no jumps”. Although this result
implies that the bootstrap has the correct asymptotic size for L < 2, its power may be adversely
affected. In particular, we show that this is the case when L = 1 and M = 1, which corresponds to
the standard wild bootstrap based on a Gaussian external random variable. For these choices of L
and M , the bootstrap test statistic diverges at the same rate as the original test statistic, implying
that it might not be alternative-consistent. This is confirmed by our simulations, which show that this
choice has very poor finite sample power properties. The simulations also show that by appropriately
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choosing M and L, we can greatly reduce the overrejections that are typically associated with the
Barndorff-Nielsen and Shephard (2006) tests without compromising power.

The rest of the paper is organized as follows. In Section 2, we provide the framework and state our
assumptions. In Section 3, we introduce a general bootstrap method for testing for jumps based on the
Gaussian wild bootstrap and a general local volatility measure {v̂ni }. After providing examples of {v̂ni },
we give a set of high level conditions on {v̂ni } such that any such bootstrap method is asymptotically
valid when testing for jumps. We end this section with two lemmas that are crucial to proving the
remaining results. In Section 4, we verify our high level conditions for the choice of {v̂ni } introduced
by Hounyo (2013) and show that they are verified only under no jumps. For the special case of
M = 1, we show that this choice of {v̂ni } implies the divergence of the bootstrap test statistic under
the alternative of jumps. For this reason, in Section 5 we discuss a generalization of the local Gaussian
bootstrap of Hounyo (2013) that leads to bootstrap tests that have correct asymptotic size and are
alternative-consistent. Section 6 gives simulations while Section 7 provides an empirical application.
Section 8 concludes. All proofs are relegated to Appendices A and B. Appendix C contains formulas
for the log version of our tests.

Finally, a word on notation. As usual in the bootstrap literature, we let P ∗ describe the probability
of bootstrap random variables, conditional on the observed data. Similarly, we write E∗ and V ar∗

to denote the expected value and the variance with respect to P ∗, respectively. For any bootstrap
statistic Z∗n ≡ Z∗n (·, ω) and any (measurable) set A, we write P ∗ (Z∗n ∈ A) = P ∗ (Z∗n (·, ω) ∈ A) =
Pr (Z∗n (·, ω) ∈ A|Xn), where Xn denotes the observed sample. We say that Z∗n →P ∗ 0 in prob-P (or
Z∗n = oP ∗ (1) in prob-P ) if for any ε, δ > 0, P (P ∗ (|Z∗n| > ε) > δ)→ 0 as n→∞. Similarly, we say that
Z∗n = OP ∗ (1) in prob-P if for any δ > 0, there exists 0 < M <∞ such that P (P ∗ (|Z∗n| ≥M) > δ)→ 0
as n → ∞. For a sequence of random variables (or vectors) Z∗n, we also need the definition of
convergence in distribution in prob-P . In particular, we write Z∗n →d∗ Z, in prob-P (a.s.-P ), if
E∗ (f (Z∗n))→ E (f (Z)) in prob-P for every bounded and continuous function f (a.s.−P ).

2 Assumptions and statistics of interest

We assume that the log-price process (Xt)
t≥0

is defined on a probability space (Ω,F , P ) equipped with

a filtration (Ft)t≥0 such that
Xt = Yt + Jt, t ≥ 0, (1)

where Yt is a continuous Brownian semimartingale process and Jt is a jump process. Specifically, Yt
is defined by the equation

Yt = Y0 +

∫ t

0
asds+

∫ t

0
σsdWs, t ≥ 0, (2)

where a is a predictable locally bounded drift term, σ is an adapted càdlàg spot volatility process and
W is a standard Brownian motion that is not necessarily independent of σ (i.e. we allow for leverage
effects).

Although the asymptotic properties of the jump tests studied in this paper have been established
under very general conditions on at, σt and Jt (including leverage effects, possible jumps on σt and in-
finite activity processes; see e.g. Barndorff-Nielsen, Shephard and Winkel (2006)), we require stronger
assumptions to prove our bootstrap results. In particular, we rule out jumps in σt and assume that
Jt is a finite activity jump process. Formally, we make the following additional assumptions.

Assumption 1 σt is locally bounded away from zero and is a continuous semimartingale.

Assumption 2 Jt is a finite activity process defined as Jt =
Nt∑
j=1

cj , t ≥ 0, where cj represents the
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size of the jth jump and Nt is a counting process representing the number of jumps up to time
t. We assume that cj has a continuous distribution at 0 for all j, and Nt is finite for all t.

These assumptions are used by Mykland, Shephard and Sheppard (2012) to derive the asymp-
totic properties (consistency and CLT) of blocked multipower variation measures. By imposing these
assumptions, we are able to build on their results when proving our bootstrap results.

The quadratic variation process of X is given by [X]t = IVt + JVt, where IVt ≡
∫ t

0 σ
2
sds is the

quadratic variation of Yt, also known as the integrated volatility, and JVt ≡
∑

s≤t (∆Js)
2 is the jump

quadratic variation, with ∆Js = Js − Js− denoting the jumps in X. Without loss of generality, we let
t = 1 and we omit the index t. For instance, we write IV = IV1 and JV = JV1.

We assume that prices are observed within the fixed time interval [0, 1] (which we think of as a
given day) and that the log-prices Xt are recorded at regular time points ti = i/n, for i = 0, . . . , n,
from which we compute n intraday returns at frequency 1/n,

ri ≡ Xi/n −X(i−1)/n, i = 1, . . . , n,

where we omit the index n in ri to simplify the notation.
Our focus is on testing for “no jumps” using the bootstrap. In particular, following Aı̈t-Sahalia and

Jacod (2009), we would like to decide on the basis of the observed intraday returns {ri : i = 1, . . . , n}
in which of the two following complementary sets the path we actually observed falls:

Ω0 = {ω : t 7−→ Xt (ω) is continuous on [0, 1]}
Ω1 = {ω : t 7−→ Xt (ω) is discontinuous on [0, 1]} ,

where Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅. Formally, our null hypothesis can be defined as H0 : ω ∈ Ω0

whereas the alternative hypothesis is H1 : ω ∈ Ω1.
Let RVn =

∑n
i=1 r

2
i denote the realized volatility and let

BVn =
1

k2
1,1

n∑
i=2

|ri−1| |ri|

be the bipower variation, where we let k1,1 ≡ E
(∣∣χ2

1

∣∣1/2) = E (|Z|) =
√

2/
√
π, where Z ∼ N (0, 1).

This is a special case of

kM,q ≡ E
(∣∣χ2

M

∣∣q/2) = 2q/2
Γ
(
M+q

2

)
Γ
(
M
2

) , q > 0,

where χ2
M is the standard χ2 distribution with M degrees of freedom and Γ is the gamma function.

Writing χM ≡
(
χ2
M

)1/2
yields kM,q = E

(
χqM
)
. Note that for M = 1, k1,q = E (|Z|q) , with Z ∼

N (0, 1) .
The class of statistics we consider is based on the comparison between RVn and BVn. It is now

well known that under certain regularity conditions including the assumption that X is continuous
(BN-S (2006) in conjunction with, e.g., Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006))
that the following joint CLT holds:

√
n

(
RVn − IV
BVn − IV

)
st−→ N (0,Σ) , (3)

where
st−→ denotes stable convergence and

Σ =

(
2 2
2 θ

)
IQ, (4)
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with IQ ≡
∫ 1

0 σ
4
udu and θ =

(
k−4

1,1 − 1
)

+ 2
(
k−2

1,1 − 1
)
' 2.6090.

An implication of (3) is that under “no jumps”, i.e. in restriction to Ω0,

√
n (RVn −BVn)√

V

st−→ N (0, 1) ,

where V ≡ τ ·IQ is the asymptotic variance of
√
n (RVn −BVn) and τ = θ−2. Hence, a linear version

of the test is given by

Tn =

√
n (RVn −BVn)√

V̂n
, (5)

where V̂n ≡ τ · ÎQn and ÎQn is a consistent estimator of integrated quarticity IQ.
Among the many estimators of IQ that are robust to jumps, here we focus on the tripower realized

quarticity defined as

ÎQn =
n

k3
1, 4

3

n∑
i=3

|ri|4/3 |ri−1|4/3 |ri−2|4/3 . (6)

We can show that ÎQn
P−→ IQ on both Ω0 and Ω1. Thus, Tn

st−→ N (0, 1), in restriction to Ω0, and
the test that rejects the null of “no jumps” at significance level α whenever Tn > z1−α, where z1−α is
the 100 (1− α) % percentile of the N (0, 1) distribution has asymptotically correct size. More formally,
the critical region Cn = {Tn > z1−α} is such that for any measurable set S ⊂ Ω0 such that P (S) > 0,

lim
n→∞

P (ω ∈ Cn|S) = α.

Under the alternative hypothesis, we can show that the test Tn is alternative-consistent, i.e. the
probability that we make the incorrect decision of “accepting the null” when this is false goes to zero:

lim
n→∞

P
(
Ω1 ∩ C̄n

)
= 0,

where C̄n is the complement of Cn. Since the above condition implies that P
(
C̄n|Ω1

)
→ 0, as n→∞,

we have that P (Cn|Ω1)→ 1 as n→∞, which we can interpret as saying that the test has asymptotic
power equal to 1.

3 A general bootstrap method

We generate bootstrap intraday returns as

r∗i =
√
v̂ni · ηi, i = 1, . . . , n, (7)

for some variance measure v̂ni based on {ri : i = 1, . . . , n}, and where ηi is generated independently of
the data as an i.i.d. N (0, 1) random variable. For simplicity, we again write r∗i instead of r∗i,n.

According to (7), bootstrap intraday returns are conditionally (on the original sample) Gaussian
with mean zero and volatility v̂ni . This bootstrap DGP is motivated by the simplified model Xt =∫ t

0 σsdWs, where σ is independent of W and there is no drift nor jumps. Under these assumptions,

conditionally on the path of volatility, ri ∼ N (0, vni ) , where vni =
∫ i/n

(i−1)/n σ
2
udu independently across

i. Thus, we can think of v̂ni as the sample analogue of vni . Although (7) is motivated by this very
simple model, as we will prove below, this does not prevent the bootstrap method to be valid more
generally. In particular, its validity extends to the case where there is a leverage effect and the drift
is non-zero.
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The main feature of notice is that (7) generates bootstrap pseudo-returns that are (conditionally)
Gaussian and therefore do not contain jumps. Since our goal is to approximate the distribution of
jump tests under the null hypothesis of no jumps, this feature is not only natural, but it is important
to minimize the probability of a type I error. In particular, Davidson and MacKinnon (1999) (see also
MacKinnon (2009)) show that in order to minimize the error in rejection probability under the null
(type I error) of a bootstrap test, we should estimate the bootstrap DGP as efficiently as possible.
This entails imposing the null hypothesis on the bootstrap DGP.

Our main goal in this section is to discuss a set of high level conditions on v̂ni such that any bootstrap
method based on (7) is valid when testing for jumps using the BN-S test statistic. Asymptotic validity
here means that the bootstrap replicates the null distribution of the test statistic under the null and
the alternative hypothesis.

The class of bootstrap statistics that we consider can be described as

T ∗n =

√
n (RV ∗n −BV ∗n − E∗ (RV ∗n −BV ∗n ))√

V̂ ∗n

, (8)

where

RV ∗n =
n∑
i=1

r∗2i and BV ∗n =
1

k2
1,1

n∑
i=2

∣∣r∗i−1

∣∣ |r∗i |
denote the bootstrap analogues of RVn and BVn. For a given choice of v̂ni , the bootstrap expectation
E∗ (RV ∗n −BV ∗n ) is a known function of the data (see Lemma 3.1 below). Similarly, V̂ ∗n denotes an
estimator of the bootstrap variance V ∗n = V ar∗ (

√
n (RV ∗n −BV ∗n )) , whose form depends on the choice

of v̂ni (cf. (11) below for the exact definition of V̂ ∗n ).
In this context, a bootstrap test rejects the null of no jumps whenever Tn > q∗1−α, where q∗1−α is

the 100 (1− α) % quantile of the bootstrap distribution of T ∗n . Next we provide general conditions on

v̂ni under which T ∗n
d∗−→ N (0, 1) in prob-P independently of whether ω ∈ Ω0 or ω ∈ Ω1. This ensures

that the bootstrap test controls size and is consistent under the alternative. Before introducing these
conditions, we first provide several examples of v̂ni which can be used to implement (7).

3.1 Examples of v̂ni

Throughout, we let M ∈ N and assume that n/M is an integer. Although the estimate v̂ni depends
on M , we do not make this dependence explicit in order to simplify the notation. Note that M is a
fixed constant that does not grow with n. Hence, v̂ni is not a consistent estimate of vni . Consistency of
v̂ni is not required for bootstrap validity of jump tests, as our results in the next section make clear.
Instead, what is required is consistency of multipower variation measures of v̂ni . Fixing M rather than
letting it grow with n has the advantage that the bootstrap statistics reflect the choice M and this
improves finite sample performance of the bootstrap jump tests.

Example 1 (Local RV estimate) Let M = 1, 2, . . . . For j = 1, . . . , n/M , set
v̂ni+(j−1)M = 1

M

∑jM
`=(j−1)M+1 r

2
` ≡ R̄j , for all i = 1, . . . ,M.

The main idea is that we split the original sample into non-overlapping blocks of size M and
estimate vni within a given block by a local realized volatility measure computed over the M intraday
returns. When M = 1, R̄j = r2

j and we get v̂nj = r2
j , for all j = 1, . . . , n, we obtain the wild bootstrap

of Gonçalves and Meddahi (2009) based on a Gaussian external random variable. When M is larger
than one, we obtain the local Gaussian bootstrap of Hounyo (2013), who related it to the conditional
Gaussianity approach of Mykland and Zhang (2009).
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As we will see in the next section, Example 1 does not mimic the null distribution of the test when
the alternative is true. To understand this, note that the asymptotic normality of T ∗n requires the
convergence of V ∗n . This variance depends on

V ar∗
(√
nRV ∗n

)
= 2n

n∑
i=1

(v̂ni )2 ,

which for Example 1 with M = 1 is proportional to the standard realized quarticity estimator,

2n

n∑
i=1

(v̂ni )2 = 2n

n∑
i=1

r4
i .

As is well known in the literature, this estimator is not robust to jumps. In particular, it diverges
to +∞ under H1. In Section 4 we show that this may have a negative impact on the power of the
bootstrap test. To solve this problem, we propose the following choice of v̂ni .

Example 2 (Multipower local RV estimate) LetM = 1, 2, . . ., L = 1, 2, . . ., and {pl : l = 1, . . . , L}

such that
∑L

l=1 pl = 1, where pl ≥ 0. For j = L, . . . , n/M, set v̂ni+(j−1)M =
L∏
l=1

R̄plj−l+1, for all

i = 1, . . . ,M.

Example 2 generalizes Example 1 by multiplying together a finite number of local RV estimates
raised to some non-negative power. When L = 1, Example 2 contains Example 1 as a special case.

To understand why Example 2 ensures the convergence of V ∗n under H1 consider the simplest case
where M = 1. For any L ≥ 1, we obtain

v̂nj = |rj |2p1 |rj−1|2p2 . . . |rj−L+1|2pL , for j = L, . . . , n.

In this case,

n
n∑
j=1

(
v̂nj
)2

= n
n∑

j=L

|rj |4p1 |rj−1|4p2 . . . |rj−L+1|4pL

is a traditional multipower variation measure. This is a consistent estimator of (a multiple of) IQ
under both H0 and H1 when we choose pl such that max (4pl) < 2. If we use equal powers pl = 1

L ,
this restriction is satisfied when L > 2. The same idea generalizes to M > 1, with the difference
that the bootstrap variance of the test becomes a function of blocked multipower variation measures.
These measures were recently introduced by MSS (2012) as a way of improving the efficiency of the
traditional measures. Thus, Example 2 combines the bootstrap with the efficient blocked multipower
variation measures as a way of improving the finite sample properties of jump tests under both the
null and the alternative hypothesis.

Example 3 (Truncated squared return) We let v̂ni = r2
i I{|ri|≤α/n$}, α > 0, 0 < $ < 1

2 , where
I{·} is the usual indicator function.

In Example 3, we exclude all returns containing jumps over a given threshold when computing v̂ni .
See e.g., Mancini (2001) and Aı̈t-Sahalia and Jacod (2009), among others for similar truncated-based
statistics. The thresholding ensures the convergence of V ∗n under both H0 and H1, as can be verified
using results by Jacod and Protter (2012). For brevity, we will not discuss this example in detail and
focus instead on Examples 1 and 2. However, we will provide some simulation evidence on the three
examples in Section 6.

Next, we provide a set of high level conditions on v̂ni such that any such choice is asymptotically
valid when estimating the null distribution of the jump tests of BN-S.

7



3.2 Bootstrap validity under general conditions on v̂ni

We first provide a set of conditions under which a joint bootstrap CLT holds for (RV ∗n , BV
∗
n )′. In

particular, we would like to establish that

Σ∗
−1/2√

n

(
RV ∗n − E∗ (RV ∗n )
BV ∗n − E∗ (BV ∗n )

)
d∗−→ N (0, I2) ,

in prob-P , where Σ∗ is the probability limit of

Σ∗n ≡ V ar∗
(√

n

(
RV ∗n
BV ∗n

))
=

(
V ar∗ (

√
nRV ∗n ) Cov∗ (

√
nRV ∗n ,

√
nBV ∗n )

V ar∗ (
√
nBV ∗n )

)
.

The following result gives the first and second order bootstrap moments of (RV ∗n , BV
∗
n )′ . Note

that since r∗i =
√
v̂ni · ηi, we can write

RV ∗n =

n∑
i=1

v̂ni · ui and BV ∗n =
1

k2
1,1

n∑
i=2

(
v̂ni−1

)1/2
(v̂ni )1/2 · wi

where ui ≡ η2
i and wi ≡ |ηi−1| |ηi|, with ηi ∼ i.i.d. N (0, 1). The bootstrap moments of (RV ∗n , BV

∗
n )′

depend on the moments and dependence properties of (ui, wi) .

Lemma 3.1 If r∗i =
√
v̂ni · ηi, i = 1, . . . , n, where ηi ∼ i.i.d. N (0, 1), then

(a1) E∗ (RV ∗n ) =
n∑
i=1

v̂ni .

(a2) E∗ (BV ∗n ) =
n∑
i=2

(
v̂ni−1

)1/2
(v̂ni )1/2 .

(a3) V ar∗ (
√
nRV ∗n ) = 2n

n∑
i=1

(v̂ni )2 .

(a4) V ar∗ (
√
nBV ∗n ) =

(
k−4

1,1 − 1
)
n

n∑
i=2

(v̂ni )
(
v̂ni−1

)
+ 2

(
k−2

1,1 − 1
)
n

n∑
i=3

(v̂ni )1/2 (v̂ni−1

) (
v̂ni−2

)1/2
.

(a5) Cov∗ (
√
nRV ∗n ,

√
nBV ∗n ) = n

n∑
i=2

(v̂ni )3/2 (v̂ni−1

)1/2
+ n

n∑
i=2

(v̂ni )1/2 (v̂ni−1

)3/2
.

Lemma 3.1 shows that the bootstrap moments of RV ∗n and BV ∗n depend on multipower variation

measures of {v̂ni } . In particular, they depend on n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 , where K ∈ {1, 2, 3},

q ≡
∑K

k=1 qk ∈ {2, 4} , and q1 ∈ {2, 4} when K = 1, (q1, q2) ∈ {(1, 1) , (2, 2) , (1, 3) , (3, 1)} when K = 2
and (q1, q2, q3) = (1, 2, 1) when K = 3.

The following assumption imposes a convergence condition on these measures as well as other
additional high level conditions on v̂ni that are sufficient for a bootstrap CLT to hold. Note that this
is a high level condition that does not depend on specifying whether we are on Ω0 or on Ω1. However,
for some examples, such as Example 1, it might hold only in restriction to Ω0.

Condition A Suppose that {v̂ni } satisfies the following conditions.
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(i) ForK ∈ {1, 2, 3} , q ≡
∑K

k=1 qk ∈ {2, 4} and (q1, . . . , qK) ∈ {(2) , (4) , (1, 1) , (2, 2) , (1, 3) , (3, 1) , (1, 2, 1)} ,

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 P−→ cq1,...,qK ·
∫ 1

0
σqudu > 0,

as n→∞, where cq1,...,qK is a known constant that only depends on (qk : k = 1, . . . ,K) .

(ii) n1+δ
n∑
i=1

(v̂ni )2+δ = OP (1) , for some δ > 0, as n→∞.

(iii) For the same δ > 0 as in (ii), n
∑[n/(Ln+1)]

j=1

(
v̂nj(Ln+1)

)2
= oP (1), where Ln ∝ nα with 0 < α <

δ
2(1+δ) and [x] is the largest integer smaller or equal to x.

Condition A.(i) requires the multipower variations of v̂ni to converge to a multiple of
∫ 1

0 σ
q
udu, where

the constants cq1,...,qK are known and depend only on the powers (q1, . . . , qK) . Under this condition
(with q = 4), the probability limit of the bootstrap covariance matrix of (RV ∗n , BV

∗
n ) is a positive

definite matrix whose entries are proportional to IQ. As we will see later, it is verified for Example 1
in restriction to Ω0, but not to Ω1. For Example 2, Condition A.(i) is verified on both sets, provided
we choose L > 2. For both examples, cq1,...,qK are not equal to 1, unless we let M →∞ as n→∞.

Conditions A.(ii) and (iii) are conditions used to show that a CLT holds for (RV ∗n , BV
∗
n )′ in the

bootstrap world. Since the vector (ui, wi)
′ is lag-one dependent, we adopt a large-block-small-block

argument, where the large blocks are made of Ln consecutive observations and the small block is made
of a single element. Part (ii) is a Lyapunov type condition that drives the asymptotic normality of
the average of the large blocks whereas part (iii) ensures that the contribution of the small blocks is
asymptotically negligible.

Under this high level condition, we can prove the following results.

Theorem 3.1 Under Condition A, if n→∞,

(a1)

Σ∗−1/2√n
(
RV ∗n − E∗ (RV ∗n )
BV ∗n − E∗ (BV ∗n )

)
d∗−→ N (0, I2) , in prob-P,

where

Σ∗ =

(
β δ
δ α

)
IQ

and β, δ and α are known constants that depend on cq1,...,qK . In particular,

β = 2c4

δ = c3,1 + c1,3

α =
(
k−4

1,1 − 1
)
c2,2 + 2

(
k−2

1,1 − 1
)
c1,2,1.

(a2) Let τ∗ = β + α− 2δ. Then,

V ∗n ≡ V ar∗
(√
n (RV ∗n −BV ∗n )

) P−→ V ∗ ≡ τ∗ · IQ,

and

S∗n =

√
n ((RV ∗n −BV ∗n )− E∗ (RV ∗n −BV ∗n ))√

V ∗
d∗−→ N (0, 1) , in prob-P.
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Part (a1) of Theorem 3.1 shows that the bootstrap satisfies a joint CLT if we choose v̂ni according to
Condition A. The bootstrap covariance matrix of

√
n (RV ∗n , BV

∗
n )′ converges in probability to Σ∗, which

in general is not equal to Σ = limn→∞ V ar
(√
n (RVn, BVn)′

)
unless the constants cq1,...,qK are equal

to 1. The implication is that in general V ∗n converges to V ∗ ≡ τ∗ · IQ 6= τ · IQ ≡ V. However, since we
know τ∗, this does not create a problem if we adjust the bootstrap statistic accordingly. In particular,
part (a2) implies that the normalized statistic S∗n is asymptotically normal under Condition A. This
result justifies the following bootstrap test. Let Z∗n ≡

√
n ((RV ∗n −BV ∗n )− E∗ (RV ∗n −BV ∗n )) /

√
τ∗

and Zn ≡
√
n (RVn −BVn) /

√
τ . We reject the null of “no jumps” at level α if Zn > p∗1−α, where

p∗1−α is the (1− α)-percentile of the bootstrap distribution of Z∗n. Under Condition A, the statistic

Z∗n
d∗−→ N (0, IQ) , in prob-P , implying that this test controls the size under the null and is consistent

under the alternative.
In order to obtain asymptotic refinements, we should bootstrap an asymptotically pivotal test

statistic. This entails proposing a consistent bootstrap estimator of V ∗ = τ∗ · IQ. Consider the
bootstrap analogue of ÎQn,

ÎQ
∗
n =

n

k3
1, 4

3

n∑
i=3

|r∗i |
4/3
∣∣r∗i−1

∣∣4/3 ∣∣r∗i−2

∣∣4/3 . (9)

It is easy to show that

E∗
(
ÎQ
∗
n

)
= n

n∑
i=3

|v̂ni |
2/3
∣∣v̂ni−1

∣∣2/3 ∣∣v̂ni−2

∣∣2/3 .
By extending Condition A.(i) to include the power sequence (4/3, 4/3, 4/3), it follows that the prob-

ability limit of E∗
(
ÎQ
∗
n

)
is c4/3,4/3,4/3 · IQ, where the constant c4/3,4/3,4/3 is not necessarily equal to

one. Thus, we consider the following adjusted bootstrap estimator

ĨQ
∗
n =

1

c4/3,4/3,4/3

n

k3
1, 4

3

n∑
i=3

|r∗i |
4/3
∣∣r∗i−1

∣∣4/3 ∣∣r∗i−2

∣∣4/3 . (10)

To show the consistency of ĨQ
∗
n towards IQ, we impose the following high level condition.

Condition B Suppose {v̂ni } is such that

(i) n
n∑
i=3

3∏
k=1

(
v̂ni−k+1

)2/3 P−→ c4/3,4/3,4/3 ·
∫ 1

0 σ
4
udu.

(ii) For K ∈ {3, 4, 5} and q =
∑K

k=1 qk = 8,

n−2+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 = oP (1) ,

where (q1, . . . , qK)∈{(8/3, 8/3, 8/3) , (4/3, 8/3, 8/3, 4/3) , (4/3, 4/3, 8/3, 4/3, 4/3)} .

Part (i) ensures that E∗
(
ĨQ
∗
n

)
P−→ IQ whereas part (ii) suffices to show that V ar∗

(
ĨQ
∗
n

)
=

oP (1), thus ensuring that ĨQ
∗
n

P ∗−→ IQ, in prob-P. If v̂ni is such that n3
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 P−→

cq1,...,qK ·
∫ 1

0 σ
8
udu, then clearly part (ii) is satisfied. As we will see in the next sections, this is true

for both Examples 1 and 2 when X is continuous (or more generally, in restriction to Ω0), but not
necessarily when X has jumps (or in restriction to Ω1).
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The next theorem justifies a bootstrap jump test based on the quantiles of the bootstrap studentized
statistic T ∗n given in (8) with

V̂ ∗n = τ∗ · ĨQ
∗
n. (11)

Theorem 3.2 Suppose Conditions A and B hold. Then, if n→∞, (a1) ĨQ
∗
n

P ∗−→ IQ, in prob-P and

(a2) T ∗n
d∗−→ N (0, 1), in prob-P.

The first part of Theorem 3.2 implies the convergence of V̂ ∗n towards V ∗ whereas the second part

proves the asymptotic normality of T ∗n . Since Tn
st−→ N (0, 1) on Ω0, the fact that T ∗n

d∗−→ N (0, 1), in
prob-P, ensures that the test has correct size asymptotically. Under the alternative (i.e. on Ω1) since

Tn diverges at rate
√
n, but we still have that T ∗n

d∗−→ N (0, 1), the test has power asymptotically.
More formally, let the bootstrap critical region be defined as follows,

C∗n =
{
ω : Tn (ω) > q∗n,1−α (ω)

}
,

where q∗n,1−α (ω) is such that

P ∗
(
T ∗n (·, ω) ≤ q∗n,1−α (ω)

)
= 1− α.

The bootstrap test rejects H0 : ω ∈ Ω0 against H1 : ω ∈ Ω1 whenever ω ∈ C∗n. The following
theorem follows from Theorem 3.2 and the asymptotic properties of Tn under H0 and under H1.

Theorem 3.3 Suppose Tn
st−→ N (0, 1), in restriction to Ω0, and Tn

P−→ +∞ on Ω1. If Conditions A
and B hold, then the bootstrap test based on T ∗n controls the strong asymptotic size and is alternative-
consistent.

To control asymptotic size, it suffices that Conditions A and B hold in restriction to Ω0. Similarly,
to ensure consistency, it suffices that the bootstrap statistic T ∗n = OP ∗ (1), in prob-P . Here, we

impose Conditions A and B directly to ensure that T ∗n
d∗−→ N (0, 1), in prob-P , independently of

whether ω ∈ Ω0 or ω ∈ Ω1. This is the ideal situation for the bootstrap test to maximize power and
at the same time control size, as our simulation results in Section 6 show.

3.3 Multipower variations of v̂ni and blocked multipower variations of ri

Conditions A and B depend on realized quantities of the form

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 , (12)

where K is a fixed natural number, qk ≥ 0 for all k, and q =
K∑
k=1

qk. These sums can be interpreted

as the multipower variations of v̂ni . As it turns out, for our Examples 1 and 2, (12) can be written
as a linear combination of blocked multipower variation measures of returns ri as introduced by MSS
(2012). For given q > 0, K ∈ N, q =

∑K
k=1 qk with qk ≥ 0, these are defined as

MV
[q,K]
M (q1, . . . , qK) = n−1+q/2 M q/2

K∏
k=1

kM,qk

M

n/M∑
i=K

K∏
k=1

(
R̄i−k+1

) qk
2 , (13)
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where kM,qk ≡ E
(∣∣χ2

M

∣∣qk/2). Note thatRVn = MV
[2,1]
M (2). We will sometimes writeMV

[q,K]
M ({qk}) =

MV
[q,K]
M (q1, . . . , qK) .
For j = 1, . . . , n/M, recall that Example 2 (which contains Example 1 as a special case when

L = 1) sets

v̂ni+(j−1)M =
L∏
l=1

R̄plj−l+1, i = 1, . . . ,M,

where {pl : l = 1, . . . , L} is such that
∑L

l=1 pl = 1, with pl ≥ 0. We adopt the convention that pl = 0
whenever l ≤ 0 or l > L.

The following lemma establishes the relation between the multipower variations of {v̂ni } for Exam-

ples 1 and 2 and the blocked multipower variations MV
[q,K]
M (q1, . . . , qK) .

Lemma 3.2 Let K be a natural fixed number and let {qk : k = 1, . . . ,K} be such that qk ≥ 0. Set
q =

∑K
k=1 qk and q̄k =

∑k
l=1 ql for k = 1, . . . ,K. Then,

(a1) For K = 1 and M ≥ 1,

n−1+q/2
n∑
i=1

(v̂ni )q/2 =

(
L∏
l=1

kM,qpl

M q/2

)
MV

[q,L]
M (qp1, . . . , qpL) .

(a2) For K ≥ 2 and any M ≥ K − 1, we have that

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 =
M −K + 1

M

(
L∏
l=1

kM,qpl

M q/2

)
MV

[q,L]
M (qp1, . . . , qpL)

+
1

M

K−1∑
k=1

(
L+1∏
l=1

kM,q̄kpl+(q−q̄k)pl−1

M q/2

)
MV

[q,L+1]
M ({q̄kpl + (q − q̄k) pl−1}) ,

where MV
[q,L+1]
M ({q̄kpl + (q − q̄k) pl−1}) ≡MV

[q,L+1]
M (q̄kp1, q̄kp2 + (q − q̄k) p1, . . . , (q − q̄k) pL) .

(a3) For M = 1, for any K ≥ 1,

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 =

(
L+K−1∏
l=1

k1,q1pl+...+qKpl−(K−1)

)
MV

[q,L+2]
1

({
q1pl + . . .+ qKpl−(K−1)

})
.

Part (a2) requires that M ≥ K − 1, where K ≥ 2. For K = 3, this restriction excludes the case1

of M = 1, which we include in (a3). We will rely on these results to evaluate the constant τ∗ needed
to compute T ∗n .

For the special case L = 1, part (a1) reads as

n−1+q/2
n∑
i=1

(v̂ni )q/2 =
kM,q

M q/2
·MV

[q,1]
M (q) ,

1Note that Conditions A and B involve the multipower variations of v̂ni for K ≤ 5, implying that the expression in
(a2) also does not cover the cases of M = 2 when K = 4 and of M ∈ {2, 3} when K = 5; the reason why we do not cover

explicitly these cases here is that for these values of K explicit knowledge of the constants multiplying the MV
[q.L]
M ({qk})

are not needed; we only need those constants for K = 3.
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whereas part (a2) is given by

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 =
M −K + 1

M

kM,q

M q/2
·MV

[q,1]
M (q)+

1

M

K−1∑
k=1

kM,q̄kkM,q−q̄k
M q/2

·MV
[q,2]
M (q̄k, q − q̄k) ,

for any K ≥ 2 and M ≥ K − 1.

The following lemma gives the asymptotic properties of MV
[q,K]
M (q1, . . . , qK). Part (a1) is in

restriction to Ω0, whereas (a2) holds for the entire sample space Ω.

Lemma 3.3 Suppose (1) and (2) and Assumptions 1 and 2 hold. Let q > 0 such that q =
∑K

k=1 qk
with qk ≥ 0 and K ∈ N. For any fixed integer M = 1, 2, . . . ,

(a1) MV
[q,K]
M (q1, . . . , qK)

P−→
∫ 1

0 σ
q
udu in restriction to Ω0.

(a2) MV
[q,K]
M (q1, . . . , qK)−

∫ 1
0 σ

q
udu = OP

(
n−1+max(qk)/2 |log n|

q−max(qk)
2

)
.

Part (a1) shows the convergence in probability of MV
[q,K]
M (q1, . . . , qK) towards

∫ 1
0 σ

q
udu for any

q > 0 and K ≥ 1 when we restrict ω ∈ Ω0. The proof follows from Theorem 3 of MSS (2012) under

Assumptions 1 and 2. Part (a2) gives a bound on the difference between MV
[q,K]
M (q1, . . . , qK) and∫ 1

0 σ
q
udu for any ω ∈ Ω. When max (qk) < 2, this bound converges to zero at the stated rate, implying

that MV
[q,K]
M (q1, . . . , qK) is a consistent estimator of

∫ 1
0 σ

q
udu even under jumps. When max (qk) ≥ 2,

we obtain a bound on MV
[q,K]
M (q1, . . . , qK). Although this bound is not necessarily sharp, it is sufficient

to prove our results (note in particular that the bound diverges to +∞ when max (qk) ≥ 2, which is
certainly not a sharp bound when either ω ∈ Ω0, or (ω ∈ Ω1 and max (qk) = 2)).

A version of Lemma 3.3 is proven by Barndorff-Nielsen et al. (2006) when M = 1 under very
general conditions on the drift a and the volatility process σ when X is continuous. In particular, they
do not rule out jumps in σ, as we do under Assumption 1. By imposing this assumption, we can rely

on Theorem 3 of MSS (2012) to obtain the convergence in probability of MV
[q,K]
M (q1, . . . , qK) towards∫ 1

0 σ
q
udu for any fixed value of M > 1.

4 Example 1: local RVn estimate

Given the results of Section 3, the asymptotic validity of a bootstrap jump test can be established by
verifying Conditions A and B. Here we do so for the choice of v̂ni given in Example 1. We first study
the asymptotic properties of T ∗n under the null of “no jumps” and then consider what happens under
the alternative of jumps.

4.1 Properties under the null of “no jumps”

Recall that T ∗n is given by (8), (10) and (11). Hence, to compute T ∗n we need to know the recentering

term E∗ (RV ∗n −BV ∗n ) ; the constant c4/3,4/3,4/3 that enters ĨQ
∗
n; and the constants c4, c2,2, c1,3, c3,1

and c1,2,1 that enter the definition of τ∗ given in Theorem 3.1.
Given Lemmas 3.1 and 3.2,

E∗ (RV ∗n −BV ∗n ) =

n∑
i=1

v̂ni −
n∑
i=2

(
v̂ni−1

)1/2
(v̂ni )1/2 = RVn −

M − 1

M
RVn −

1

M

k2
M,1

M
MV

[2,2]
M (1, 1) .
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This expression shows that for finite M , recentering RV ∗n −BV ∗n is important, but if M is sufficiently
large this becomes asymptotically negligible.

Our next result shows that Conditions A and B are satisfied for Example 1 under H0 : ω ∈ Ω0 and
identifies the constants needed to compute T ∗n . The proof is in Appendix B. It relies on Lemmas 3.2
and 3.3 for q ∈ {2, 4, 8} and K ∈ {1, 2, 3, 4, 5} .

Theorem 4.1 Suppose (1) and (2) hold and Assumption 1 holds. Then, for any fixed integer M ≥ 1,

(a1) Conditions A and B are satisfied under H0 : ω ∈ Ω0, where for any M ≥ 1,

c4 =
kM,4

M2
,

c1,3 = c3,1 =
(M − 1)

M

kM,4

M2
+

1

M

kM,1kM,3

M2
, and

c2,2 =

(
M − 1

M

)
kM,4

M2
+

1

M

k2
M,2

M2
.

In addition,

c1,2,1 =

{
k2

1,1k1,2 , for M = 1(
M−2
M

) kM,4
M2 + 2 1

M
kM,1kM,3

M2 , for M ≥ 2,

and

c4/3,4/3,4/3 =

{
k3

1,4/3 , for M = 1(
M−2
M

) kM,4
M2 + 2 1

M

kM,4/3kM,8/3
M2 , for M ≥ 2.

(a2) The conclusions of Theorems 3.1, 3.2 and 3.3 hold under H0 : ω ∈ Ω0.

Part (a1) identifies the constants needed to compute T ∗n . Part (a2) shows that the results of
Theorems 3.1, 3.2 and 3.3 apply to Example 1 under the null of “no jumps” (i.e. in restriction to
Ω0). In particular, under the null of no jumps, Σ∗n, the local Gaussian bootstrap covariance matrix of
(RV ∗n , BV

∗
n )′ , is such that

Σ∗n
P−→ Σ∗ ≡

(
βM δM
δM αM

)
IQ.

where

βM = 2c4

δM = c3,1 + c1,3

αM =
(
k−4

1,1 − 1
)
c2,2 + 2

(
k−2

1,1 − 1
)
c1,2,1,

with cq1,...,qK given in part (a1) of Theorem 4.1. This result in turn implies that on Ω0,

V ∗n ≡ V ar∗
(√
n (RV ∗n −BV ∗n )

) P−→ V ∗ ≡ τ∗ · IQ,

where
τ∗ ≡ βM + αM − 2δM .

When M = 1, β1,δ1 and α1 are different from 2, 2 and θ, respectively, which implies that Σ∗ 6= Σ.
Also, τ∗ 6= τ, implying that V ∗ 6= V . However, by Remark 2 of MSS (2012), as M →∞,

kM,q

M q/2
∼ 1 +

aq
M

+
bq
M2

,
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for some constants aq and bq. Consequently, the constants c4, c2,2, c1,3, c3,1 and c1,2,1 all tend to 1 as
M →∞, implying that

lim
M→∞

βM = lim
M→∞

δM = 2 and lim
M→∞

αM = θ ≡
(
k−4

1,1 − 1
)

+ 2
(
k−2

1,1 − 1
)
.

Hence, by letting M →∞ we ensure that V ∗ = τ∗ · IQ approaches V = τ · IQ (since then τ∗ → τ =
θ − 2). Nevertheless, in finite samples, fixing M and adjusting the bootstrap statistics accordingly
outperforms the approach based on letting M → ∞ and therefore we do not consider this approach
here.

4.2 Properties under the alternative of jumps

The results of the previous section imply that the local Gaussian bootstrap controls the size of the test.
In this section, we study what happens under the alternative of jumps. As it turns out, Conditions
A and B no longer hold. In particular, the bootstrap variances Σ∗n and V ∗n diverge to infinity. This
compromises the asymptotic normality of T ∗n under the alternative hypothesis of jumps.

To ensure that the test has power, the weaker condition that T ∗n = OP ∗ (1), in prob-P suffices.
Nevertheless, as we will see next, this is not guaranteed for the local Gaussian bootstrap. In particular,
we show that for the special case of M = 1, the fact that V ∗n diverges under the presence of jumps
implies that T ∗n diverges at the same rate as Tn. This may imply that the test is not alternative-
consistent.

Let us rewrite T ∗n as

T ∗n = Z∗n

√
n (V ∗n /n)

τ∗ĨQ
∗
n

,

where

Z∗n ≡
√
n (RV ∗n −BV ∗n − E∗ (RV ∗n −BV ∗n ))√

V ∗n
,

and

V ∗n = a1MV
[4,1]

1 (4) +a2MV
[4,2]

1 (2, 2) +a3MV
[4,3]

1 (1, 2, 1) +a4

(
MV

[4,2]
1 (3, 1) +MV

[4,2]
1 (1, 3)

)
, (14)

where the constants a1 through a4 are a function of c4, c2,2, c1,3, and c1,2,1 given in Theorem 4.1.(a1)
(the exact expression for V ∗n is easily obtained from Lemmas 3.1 and 3.2).

By Lemma 3.3, on Ω1, V ∗n has an asymptotic order of magnitude OP (n), the order of its first
(and dominant) term. Therefore, V ∗n may diverge at that rate. This is confirmed by Lemma B.1
in Appendix B which establishes that V ∗n /n converges to a random variable that is positive on Ω1,
implying that this rate is sharp so long as P (Ω1) > 0.

In addition, by Lemma B.2, ĨQ
∗
n is still convergent towards IQ under the presence of jumps whereas

Z∗n is OP ∗ (1) in prob-P by construction (since E∗ (Z∗n) = 0 and V ar∗ (Z∗n) = 1). Because we can also
show that Z∗n is not oP ∗ (1) (cf. Lemma B.3), the order of magnitude of T ∗n is equal to OP (

√
n). This

result is summarized in the following theorem.

Theorem 4.2 Suppose (1), (2) and Assumptions 1 and 2 hold. Then, for M = 1, if P (Ω1) > 0,
we have that on Ω1, T ∗n = OP ∗ (

√
n) , in prob-P , where the rate is sharp (i.e. T ∗n = OP ∗ (

√
n) and√

n = OP ∗ (T ∗n)).

Because the two test statistics Tn and T ∗n diverge at the same rate, we cannot draw any conclusions
on the exact asymptotic power of the bootstrap test. However, our simulations suggest that for the
models we have simulated the bootstrap test based on L = M = 1 has very poor power properties.
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5 Example 2: multipower local RV estimate

Here we verify Conditions A and B for Example 2 and identify the constants needed to compute T ∗n .
The following result is the analogue of Theorem 4.1 for Example 2.

Theorem 5.1 Suppose (1), (2) and Assumptions 1 and 2 hold. Then, for any fixed M ≥ 1, if
max (pl) <

1
2 , or equivalently, if L > 2 when pl = 1/L for all l = 1, . . . , L, then

(a1) Conditions A and B are verified under both Ω0 and Ω1, where for any M ≥ 1,

c4 =

L∏
l=1

kM,4pl

M2
,

c1,3 = c3,1 =
(M − 1)

M

(
L∏
l=1

kM,4pl

M2

)
+

1

M

(
L+1∏
l=1

kM,pl+3pl−1

M2

)
,

c2,2 =

(
M − 1

M

)( L∏
l=1

kM,4pl

M2

)
+

1

M

(
L+1∏
l=1

kM,2pl+2pl−1

M2

)
,

whereas

c1,2,1 =


L+2∏
l=1

k1,pl+2pl−1+pl−2
, for M = 1(

M−2
M

)( L∏
l=1

kM,4pl
M2

)
+ 2

M

(
L+1∏
l=1

kM,pl+3pl−1

M2

)
, for M ≥ 2,

and

c4/3,4/3,4/3 =


L+2∏
l=1

k1, 4
3
pl+

4
3
pl−1+ 4

3
pl−2

, for M = 1(
M−2
M

)( L∏
l=1

kM,4pl
M2

)
+ 2

M

(
L+1∏
l=1

k
M, 43 pl+

8
3 pl−1

M2

)
, for M ≥ 2.

(a2) The conclusions of Theorems 3.1, 3.2 and 3.3 hold under both Ω0 and Ω1.

Theorem 5.1 proves the asymptotic validity of the bootstrap test based on Example 2. In particular,
if we choose {pl} and L appropriately, the bootstrap test based on T ∗n has the correct asymptotic size
and is alternative-consistent.

The main difference with respect to the case where L = 1 is that we do not need to restrict
ω ∈ Ω0 to verify Conditions A and B. Because the multipower variations of v̂ni depend on linear
combinations of efficient blocked multipower variations of returns whose exponents are a function
of {pl : l = 1, . . . , L}, we can choose L and {pl} so as to guarantee that Conditions A and B are
verified without restricting ω to belong to Ω0. In particular, Condition A(i) involves multipower
variations of v̂ni with K ∈ {1, 2, 3} and q ∈ {2, 4} . When q = 4, this condition is crucial to show
that the bootstrap variance V ∗n converges to a multiple of IQ under both Ω0 and Ω1. By Lemma 3.2,

for q = 4, the multipower variations of v̂ni depend on linear combinations of MV
[4,L]
M (4p1, . . . , 4pL)

and MV
[4,L+1]
M (q̄kp1, q̄kp2 + (4− q̄k) p1, . . . , q̄kpL + (4− q̄k) pL−1, (4− q̄k) pL) , where q̄k =

∑k
j=1 qj ∈

{1, 2, 3} . Thus, by Lemma 3.3, if max (4pl) < 2 (or equivalently, L > 2 when pl = 1/L for all
l = 1, . . . , L), Condition A(i) is satisfied under both the null and the alternative hypothesis, ensuring
that V ∗n is robust to jumps.
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6 Monte Carlo simulations

In this section, we assess by Monte Carlo simulation the performance of our bootstrap tests. Along
with the asymptotic test of BN-S (2006), we report results with L ∈ {1, 5}, and M ∈ {1, 2, 3, 4, 6, 12}
with pl = 1/L (l = 1, . . . , L) for Examples 1 and 2. We also include results for Example 3 and report
results for $ = 0.4 and α = 2.3

√
BV , following Podolskij and Ziggel (2010).

We present results for the SV2F model given by2

dXt = adt+ σu,tσsv,tdWt + dJt,

σu,t = C +A · exp (−a1t) +B · exp (−a2 (1− t)) ,
σsv,t = s-exp (β0 + β1τ1,t + β2τ2,t) ,

dτ1,t = α1τ1,tdt+ dB1,t,

dτ2,t = α2τ2,tdt+ (1 + φτ2,t) dB2,t,

corr (dWt, dB1,t) = ρ1, corr (dWt, dB2,t) = ρ2.

The processes σu,t and σsv,t represent the components of the time-varying volatility in prices. In
particular, σsv,t denotes the two factors stochastic volatility model commonly used in this literature.
We follow Huang and Tauchen (2005) and set a = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137,
α2 = −1.386, φ = 0.25, ρ1 = ρ2 = −0.3. At the start of each interval, we initialize the persistent

factor τ1 by τ1,0 ∼ N
(

0, −1
2α1

)
, its unconditional distribution. The strongly mean-reverting factor τ2

is started at τ2,0 = 0. The process σu,t models the diurnal U -shaped pattern in intraday volatility. In
particular, we follow Hasbrouck (1999) and Andersen et al. (2012) and set the constants A = 0.75,
B = 0.25, C = 0.88929198, and a1 = a2 = 10. These parameters are calibrated so as to produce
a strong asymmetric U-shaped pattern, with variance at the open (close) more than 3 (1.5) times
that at the middle of the day. We let σu,t = 1 for t ∈ [0, 1] in the simple case of no diurnality
effects. Finally, Jt is a finite activity jump process modeled as a compound Poisson process with
constant jump intensity λ and random jump size distributed as N(0, σ2

jmp). We let σ2
jmp = 0 under

the null hypothesis of no jumps in the return process. Under the alternative, we let λ = 0.058,
and σ2

jmp = 1.7241. These parameters are motivated by empirical studies by Huang and Tauchen
(2005) and Barndorff-Nielsen, Shephard, and Winkel (2006), which suggest that the jump component
accounts for 10% of the variation of the price process.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23, 400, so that
[0, 1] is meant to span 6.5 hours. The observed X process is generated using an Euler scheme. We
then construct the n-horizon returns ri = Xi/n − X(i−1)/n based on samples of size n. Results are
presented for five different samples sizes: n = 48, 96, 288, 576, and 1152, corresponding approximately
to “8-minute”, “4-minute”, “1,35-minute”, “40-second” and “20-second” frequencies.

Figures 1 through 4 display the results. Figures 1 and 2 contain no diurnal effects, without jumps
and with finite activity jumps, respectively. Figures 3 and 4 give the corresponding results under
deterministic diurnal effects. In each figure, we present results based on the linear test statistic and
its log version3, with critical values obtained either by the asymptotic theory or by the bootstrap. All
tests are carried out at the 5% nominal level. The rejection rates reported in Figures 1 and 3 (under
no jumps) are obtained from 10,000 Monte Carlo replications with 999 bootstrap samples for each
simulated sample for the bootstrap tests. For finite activity jumps, since Jt is a compound Poisson
process, even under the alternative, it is possible that no jump occurs in some sample over the interval
[0,1] considered. Thus, to compute the rejection rates under the alternative of jumps (cf. Figures 2

2The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√

x0−x20+x2
if x > x0, with x0 = log(1.5).

3See Appendix C for details on the log-transform of the test statistic Tn and the bootstrap-related formulas.
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and 4) we rely on the number n0 of replications, out of the 10,000, for which at least one jump has
occurred. For our parameter configuration, n0 = 570.

Starting with Figure 1, the results show that the linear version of the test based on the asymptotic
theory of BN-S (2006) (labeled “AT” in the figures) is substantially distorted for the smaller sample
sizes. In particular, the rejection rate is three times larger than the nominal level of the test (at
15.21%) for n = 48. Although this rate drops as n increases, it remains significantly larger than the
nominal level even when n = 1152, with a value equal to 7.08%. As expected, the log version of the
test statistic (denoted “AT, log” in the figures) has smaller size distortions: the rejection rates are now
12.54% and 6.25% for n = 48 and n = 1152, respectively. The rejection rates of the bootstrap tests are
always smaller than those of the asymptotic tests and therefore the bootstrap uniformly dominates
the latter when controlling size. This is true for both L = 1 and L = 5 and for both versions of
the test, linear and log. However, when L = 1 and we rely on the linear version of the test (labeled
“L = 1”), the bootstrap is very conservative, rejecting the null less than 2% when n ≤ 288 and we
set M = 1. Increasing M from 1 to 2 reduces these distortions (for instance, for M = 2, this rejection
rate increases to 4.14% for n = 288) but further increases in M may result in overrejections when n
is small (this shows that there is a limit to letting M increase when n is small). Similarly, choosing
L = 5 (labeled “L = 5”) may induce slight overrejections under the null for the smaller sample sizes,
with rejection rates between 6 and 7% for n = 48 and n = 96. These rates are nevertheless much
smaller than those associated with the asymptotic theory-based tests. When n ≥ 288, we do not see
many differences between the bootstrap tests for the log and the linear version of the statistics (except
when L = M = 1, where the bootstrap log test does not suffer from the underrejection noted for the
linear test). Overall, Figure 1 shows that the bootstrap helps reduce the overrejections associated with
the asymptotic theory-based tests, for all values of L and M , and independently of using the linear or
the log versions of the test.

Turning now to the analysis of power, Figure 2 shows that the choice of L is very important. In
particular, there is a clear separation between L = 1 and L = 5, especially when M is small. In
particular, choosing L = 1 and M = 1 leads to virtually no power when the bootstrap is applied to
the linear test statistic. This confirms our theoretical result. Since T ∗n diverges to +∞ for these choices
of L and M , and the divergence rate is the same as that of Tn, the rejection rate under the alternative
hypothesis of this bootstrap method is not necessarily equal to 1, even for large n. In the context of
the linear version, this test seems to severely underreject under the alternative of jumps. Letting M
increase when L = 1 helps increase the rejection rates and seems to restore power. We conjecture that
the main reason why we see this behavior is that T ∗n = OP ∗ (1), in prob-P , when M ≥ 2 and L = 1.
Thus, even though the local Gaussian bootstrap is not asymptotically normally distributed in this
case, it is bounded in probability, which ensures that the bootstrap has power. The log version of the
bootstrap test with L = M = 1 does not appear to suffer from the almost zero power problem noted
for the linear test, but its rejection rate is lower than the rejection rates observed for L = 5. Overall,
Figure 2 shows that the best choice of L from the power perspective is L = 5. This is especially true
when using smaller values of M ; for M = 12, the differences are negligible. However, setting M too
large may lead to overrejections under the null. Therefore, our recommendation is to choose L = 5.

We also implemented the bootstrap with v̂ni given as described by Example 3. To conserve space,
we do not present the results (they are available upon request) but provide a brief discussion here.
Under the null of no jumps, using truncated squared returns to compute v̂ni resulted in rejection rates
varying between 2.80% for n = 48 and 3.37% for n = 1152 for the linear version of the bootstrap
jump test. Thus, the thresholding-based bootstrap test was rather conservative and it was dominated
by the use of multipower variation measures except when L = M = 1, which is characterized by
even lower null rejection rates. Using the log version of the test increased the null rejection rates of
the thresholding-based bootstrap test to values similar to those of Examples 1 and 2 (in particular,
they were equal to 8.5% when n = 48 and to 3.99% when n = 1152). From the viewpoint of power,
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the main conclusion that emerged from our simulations was that the thresholding-based bootstrap
test had less power than the multipower variation-based bootstrap tests (except when compared to
L = M = 1 for the linear test). Specifically, the power for Example 3 ranged between 35.14% (for
n = 48) and 46.28% (for n = 1152) for the linear test and between 72.47% (for n = 48) and 84.80%
(for n = 1152) for the log test.

Figures 3 and 4 contain results for the SV2F model with diurnal effects. For brevity, we only present
results for L = 5. For both the bootstrap and the asymptotic theory methods, two types of tests are
considered: tests that do not contain any correction for diurnal effects (labeled with the words “no
correction”) and tests that contain a nonparametric correction for the diurnal effects. Specifically, we
use the nonparametric jump robust estimation of intraday periodicity in volatility suggested by Boudt,
Croux and Laurent (2011). This amounts to estimating the intraday volatility pattern σ̂u,i using 2,000
days in the simulation and then using this to standardize the intraday returns. The modified data are
then used to compute the test statistics, including their bootstrap versions. The results obtained with
the transformed data are labeled with “correction” in Figures 3 and 4.

Starting with Figure 3, which presents rejection rates under the null of no jumps, we can see that
for the test based on the asymptotic theory of BN-S (2006), a large distortion driven by the difference
in volatility across blocks appears even if the sample size is large. For n = 1152, the null rejection
rate is 10.9% for the linear version of the test, whereas it is 9.9% with the log version. These are
twice as large as the desired nominal level of 5%. When n is smaller, the overrejections are much
larger. For instance, for n = 48 they are equal to 32.8% and 28.7%, respectively. As expected, using
the asymptotic tests applied to the modified set of intraday returns helps reduce the distortions. For
n = 48, the rates are now equal to 15.7% and 12.9%, whereas for n = 1152 they are 7.8% and 7.45%.
The bootstrap null rejection rates are always smaller than those of the asymptotic theory-based tests,
implying that the bootstrap outperforms the latter. This is true even for the bootstrap test applied
to the non-transformed intraday returns (labeled “L = 5, no correction”), which yields rejection
rates that are closer to the nominal level than those obtained with the asymptotic tests based on the
correction of the diurnal effect. This is a very interesting finding since it implies that our bootstrap
method is robust to the presence of diurnal effects (whereas the asymptotic theory-based test is not).
Of course, even better results can be obtained for the bootstrap tests by resampling the transformed
intraday returns and this is confirmed by Figure 3, which shows that the results for “L = 5, correction”
are systematically closer to 5% than those for “L = 5, no correction” (and both are closer than the
corresponding asymptotic tests). Figure 4 looks at the power properties of these tests under diurnal
effects. The main feature of notice is that the bootstrap tests have lower power than their asymptotic
counterparts. This is expected given that the asymptotic tests have much larger rejections under the
null than the bootstrap tests. In particular, this explains the large discrepancy between the bootstrap
and the asymptotic test when both are applied to the non-transformed data. As n increases, we see
that this difference decreases. The results also show that power is largest for tests (both asymptotic
and bootstrap-based) applied to the transformed returns. For these tests, the difference in power
between the bootstrap and the asymptotic tests is very small. Given that the bootstrap essentially
eliminates the size distortions of the asymptotic test, these two findings strongly favor the bootstrap
over the asymptotic tests.

7 Empirical results

This empirical application uses trade data on the SPDR S&P 500 ETF (SPY), which is an exchange
traded fund (ETF) that tracks the S&P 500 index. Data on SPY have been used by MSS (2012)
(see also Bollerslev, Law and Tauchen (2008)). Our primary sample comprises 10 years of trade
data on SPY starting from June 15, 2004 through June 13, 2014 as available in the New York Stock
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Figure 1: SV2F model without diurnal effects, no jumps
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Figure 2: SV2F model without diurnal effects, finite activity jumps
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Figure 3: SV2F model with diurnal effects, no jumps
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Figure 4: SV2F model with diurnal effects, finite activity jumps
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Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has been cleaned according to
the procedure outlined by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). We also removed
short trading days leaving us with 2497 days of trade data.
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Figure 5: Daily returns on SPY from June 15, 2004 through June 13, 2014.

Figure 5 shows the series of daily returns on SPY over the 2497 trading days considered. The
2008 financial crisis is noticeable with large returns appearing in the third quarter of 2008 and the
first quarter of 2009. We can actually distinguish three subperiods for SPY: ‘Before crisis’, from the
beginning of the sample (June 15, 2004) through August 29 2008 (1053 trading days); ‘Crisis’, from
September 2, 2008 through May 29, 2009 (185 trading days), and ‘After crisis’, from June 2, 2009
through June 13, 2014 (1253 trading days).

Table 1 gives some summary statistics on daily returns and 5-min-return-based realized volatility
(RV ) and realized bipower variation (BV ) over the mentioned periods. The average daily returns
before and after the crisis are positive (1.53 and 7.2 basis points, respectively) whereas the average
return over the crisis is -12.9 basis points. Daily averages of RV and BV are also quite high during
the crisis with both culminating to 6 times their respective level across the whole sample. The average
contribution of jumps to realized volatility as measured by RJ = (RV −BV ) /RV also deepens during
the crisis period to 5%, whereas the 7% found for the full sample and in pre- and post-crisis periods
seems in line with the findings of Huang and Tauchen (2005) for S&P 500 future index.

Table 2 shows the percentage of days identified with a jump (jump days) by the asymptotic and
the bootstrap tests. Both the linear and the log versions of the test statistic are considered. In
line with the simulation findings, the asymptotic tests tend to over detect jumps compared to the
bootstrap tests. The asymptotic test based on the linear test statistic detects 26% of jump days in
the full sample while the bootstrap tests detect only up to about 16% of jump days. Our simulation
results with n = 96 (the closest to 78, the number of 5-min returns in a trading day) suggest that the
bootstrap test with L = 1 performs best at M = 3, 4 while the bootstrap with L = 5 is quite stable
through M , but may lead to overrejections under the null. Under the alternative of jumps, L = 5
yields larger rejections than L = 1 independently of M . The empirical results in Table 2 confirm these
patterns, with the choice of L = 5 detecting more jump days than L = 1. The lack of power of the
bootstrap test for L = 1, M = 1 (and its conservativeness under the null) means that the 2.8% of jump
days detected by this test should not be trusted. Similar observations apply to the periods before and
after crisis. During the crisis period, the gap between asymptotic and bootstrap tests narrows from
10 to 7 percentage points. The percentage of jump days detected by the asymptotic test also reduces
to 21% and the bootstrap tests to 14%. As expected, the asymptotic test based on the log statistic
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Table 1: This table gives the average daily return, realized volatility (RV), realized bipower variation
(BV) and the contribution of jumps to realized volatility (RJ) of SPY over each period along
with their standard deviations. RV and BV are based on 5-min intra-day returns. These
statistics are also given over days identified with and without jumps using the version of the
test based on log(RV/BV ) (α = 0.05)

Returns ×104 RV × 104 BV × 104 RJ

Full sample: June 15, 2004-June 13, 2014 (2497 days)

Mean 2.93 0.99 0.95 0.07
SD 126.00 2.60 2.52 0.11

Before crisis: June 15, 2004-August 29, 2008 (1053 days)

Mean 1.53 0.55 0.51 0.07
SD 86.91 0.66 0.64 0.11

During crisis: September 2, 2008-May 29, 2009 (185 days)

Mean -12.90 6.06 5.82 0.05
SD 313.03 7.31 7.03 0.11

After crisis: June 1, 2009-June 13, 2014 (1259 days)

Mean 7.20 0.93 0.89 0.07
SD 117.08 1.61 1.77 0.13

Days identified with jumps by the asymptotic log test (582 days)

Mean 10.80 0.82 0.64 0.22
SD 129.53 1.96 1.52 0.07

Days identified without jumps by the asymptotic log test (1915 days)

Mean 0.54 1.05 1.04 0.02
SD 124.53 2.76 2.75 0.08

Days identified with jumps by the bootstrap log test
(M = 1, L = 5, 361 days)

Mean 12.41 0.83 0.62 0.25
SD 139.96 1.92 1.42 0.07

Days identified without jumps by the bootstrap log test
(M = 1, L = 5, 2136 days)

Mean 1.33 1.02 1.00 0.04
SD 123.45 2.70 2.66 0.09
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Table 2: Percentage of days identified as jumps by the daily statistics (α = 0.05) based on 5-min
returns

Tests based on RV −BV Tests based on log(RV/BV )
Bootstrap tests Bootstrap tests

M M
1 2 3 4 6 1 2 3 4 6

Full sample: June 15, 2004 through June 13, 2014 (2497 days)

Asymp. 26.2 23.3
L = 1 2.8 12.0 13.3 13.5 15.1 16.0 16.0 16.5 16.1 17.2
L = 5 12.3 15.7 16.4 16.4 16.8 14.5 15.8 15.5 15.5 15.9

Before crisis: June 15, 2004 through August 29, 2008 (1053 days)

Asymp. 25.4 22.4
L = 1 3.1 11.9 13.7 13.4 15.4 15.6 15.8 16.6 16.1 17.4
L = 5 12.1 16.1 16.4 16.4 16.5 14.4 16.1 15.8 15.2 15.5

During crisis: September 2, 2008 through May 29, 2009 (185 days)

Asymp. 21.6 18.9
L = 1 1.6 10.3 11.4 13.0 12.4 14.1 14.1 13.0 14.1 13.5
L = 5 10.3 12.4 12.4 13.0 14.1 11.9 12.4 12.4 13.0 13.0

After crisis: June 1, 2009 through June 13, 2014 (1259 days)

Asymp. 27.6 24.6
L = 1 2.8 12.4 13.3 13.7 15.3 16.7 16.5 17.0 16.5 17.6
L = 5 12.8 15.8 17.0 16.8 17.4 14.9 16.1 15.8 16.0 16.8
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detects 3 percentage points less of jump days compared to the linear version. The bootstrap tests are
rather stable when applied to log or linear version of the statistic, as in our simulations.

We also investigate the presence of diurnal effect in our return series. The presence of diurnality
may further distort the asymptotic test, as shown by our Monte Carlo experiments. Figure 6 plots
the diurnal pattern of SPY. The graphs display average absolute 5-min returns over the days in the
specified sample. (See Andersen and Bollerslev (1997).) The U -shape of these graphs highlights the
presence of diurnality in volatility: higher volatility at the start and the end of the trading sessions.
This pattern looks stronger in the crisis period than in the other samples.
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Figure 6: Diurnal pattern of SPY. The graph displays the average (over the specified samples) of
absolute 5-min intraday returns of each trading day. ‘Before crisis’ refers to the sample from
June 15, 2004 through August 29, 2008 (before the 2008 financial crash). ‘During crisis’
refers to the period from September 2, 2008 through May 29, 2009 and ‘After crisis’ refers
to the period from June 1, 2009 through June 13, 2014.

Table 3 is analogue to Table 2 but with tests based on returns corrected for diurnal effect along the
procedure described in the section on Monte Carlo experiments. The most noticeable fact is that more
jump days are now detected in the period of crisis by the asymptotic test (an increase by 2 percentage
points) and less jumps are detected for the other periods. Overall, the jump pattern detected seems
uniform through the whole sample studied at about 24% of jump days. The bootstrap tests are rather
robust in non crisis periods but detect slightly more jumps in the period of crisis after correction
for diurnality. Overall, the bootstrap tests detect about 15% of jump days across the whole sample.
Accounting for diurnality also affects the test based on log-statistic. The asymptotic test detects less
jumps in non-crisis periods (than without correction for diurnality) and more jumps are detected in
the crisis period. The bootstrap tests lead to relatively unchanged conclusions over non crisis periods,
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Table 3: Percentage of days identified as jumps by the daily statistics (α = 0.05) based on 5-min
returns. The tests are applied to returns after correction for diurnal effect.

Tests based on RV −BV Tests based on log(RV/BV )
Bootstrap tests Bootstrap tests

M M
1 2 3 4 6 1 2 3 4 6

Full sample: June 15, 2004 through June 13, 2014 (2497 days)

Asymp. 24.0 20.5
L = 1 2.8 10.7 13.0 13.4 14.5 14.5 15.6 15.5 15.5 16.0
L = 5 11.1 14.8 15.3 15.4 15.4 12.7 14.6 14.5 14.6 13.9

Before crisis: June 15, 2004 through August 29, 2008 (1053 days)

Asymp. 22.4 19.0
L = 1 2.9 10.4 13.0 12.8 14.8 14.0 14.9 14.9 14.6 15.8
L = 5 11.2 14.4 15.4 14.9 15.2 12.3 14.4 14.3 14.2 13.8

During crisis: September 2, 2008 through May 29, 2009 (185 days)

Asymp. 23.8 21.6
L = 1 2.2 10.3 11.9 13.0 13.5 16.2 17.3 16.8 17.3 15.7
L = 5 10.8 15.7 14.6 15.7 15.1 13.5 14.6 15.1 13.5 11.9

After crisis: June 1, 2009 through June 13, 2014 (1259 days)

Asymp. 25.3 21.7
L = 1 2.9 11.0 13.1 13.9 14.3 14.7 15.9 15.8 16.0 16.2
L = 5 11.0 14.9 15.3 15.8 15.6 13.0 14.8 14.5 15.1 14.4

but detect slightly more jumps during the crisis. Overall, the log asymptotic test detects about 20%
of jump days whereas the bootstrap tests detect about 15% of jump days.

To conclude, the asymptotic tests over detect jumps compared to the bootstrap, with the log
version of the asymptotic test yielding the smallest detection rates among the asymptotic tests. These
rates are nevertheless larger than those obtained with the bootstrap by at least 5 percentage points
(when L = 5), whether the latter is applied to log or linear version of the test statistic and whether
the returns are corrected for diurnality or not.

8 Conclusion

The main contribution of this paper is to propose bootstrap methods for testing the null hypothesis
of “no jumps”. The methods generate bootstrap intraday returns from a Gaussian distribution with
variance given by a local realized measure of integrated volatility v̂ni . We first provide a set of high
level conditions on {v̂ni } such that any bootstrap method of this form is asymptotically valid when
testing for jumps using the test statistic proposed by Barndorff-Nielsen and Shephard (2006). This
means in particular that the bootstrap is able to control size and is consistent under the alternative
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of jumps.
We then provide a detailed analysis of two examples. The first example considers v̂ni equal to

a local realized volatility measure computed over non-overlapping intervals of size M (as suggested
by Hounyo (2013) in the context of bootstrap inference for realized volatility). We show that this
bootstrap method is able to mimic the null distribution of the bootstrap test of BN-S (2006), for any
fixed value of M , thus controlling size. Nevertheless, under the alternative of jumps, this bootstrap
method does not replicate the null distribution of the test, which can compromise its ability to reject
the null when this hypothesis is false. In particular, for the special case of M = 1 (in which case the
local Gaussian bootstrap becomes a regular Gaussian wild bootstrap), we show that the bootstrap
test statistic diverges to infinity under the alternative of jumps. Given that the two statistics diverge
at the same rate, sharp conclusions about the power of the test cannot be obtained. However, our
simulations show that this bootstrap method has very low power, even for large sample sizes.

The main reason for the failure of the bootstrap method based on the local realized volatility
measure is that this choice leads to a bootstrap test variance that is not robust to jumps. Therefore,
we consider a second choice of v̂ni that ensures that the bootstrap variance is robust to jumps. More
specifically, we let v̂ni be equal to multiproducts of powers of local realized volatility measures, where the
number of products is L and the multipowers are given by {pl : l = 1, . . . , L} such that

∑L
l=1 pl = 1.

When L = 1, we obtain the choice of v̂ni proposed by Hounyo (2013). We show that if we let
max (pl) < 1/2, which is equivalent to letting L > 2 when pl = 1/L for all l = 1, . . . , L, then the
bootstrap test statistic is asymptotically N (0, 1) under both the null and the alternative hypothesis.
This implies that under these conditions the bootstrap test controls size and is alternative-consistent.
In our Monte Carlo experiments, choosing L = 5 ensures good size and power properties of the
bootstrap across the two different models we simulate.

Although our simulations clearly indicate that the bootstrap provides more accurate inference than
the existing asymptotic tests, we do not prove in this paper that the bootstrap provides asymptotic re-
finements over the asymptotic theory. Because the tests considered here involve multipower variations,
computing the necessary higher order cumulants would be extremely cumbersome and would require
imposing restrictive conditions such as no leverage effects and no drift. Instead, we have decided to
focus on the properties of the tests under the absence and the presence of jumps and leave the study
of higher order asymptotic refinements for further research.

A Appendix A: proofs of the general bootstrap results in Section 2

Proof of Lemma 3.1. Part (a1) follows from E∗ (ui) = E∗
(
η2
i

)
= 1 and (a2) from E∗ (wi) =

E∗ (|ηi−1| |ηi|) = k2
1,1. For (a3), note that ui is i.i.d. χ2

1, which implies that V ar∗ (
√
n
∑n

i=1 v̂
n
i · ui) =

n
∑n

i=1 (v̂ni )2·V ar∗ (ui) = 2n
∑n

i=1 (v̂ni )2 . For (a4), note that wi is one lag-dependent, i.e. Cov∗ (wi, wj) =
0 for |i− j| > 1. Thus,

V ar∗
(√
nBV ∗n

)
=

1

k4
1,1

n

(
n∑
i=2

(v̂ni )
(
v̂ni−1

)
V ar∗ (wi) + 2

n∑
i=3

(v̂ni )1/2 (v̂ni−1

) (
v̂ni−2

)1/2
Cov∗ (wi, wi−1) .

)
The result follows by noting that V ar∗ (wi) = V ar∗ (|ηi−1| |ηi|) = 1−k4

1,1 and Cov∗ (wi, wi−1) = k2
1,1−

k4
1,1. For part (a5), note that for all i = 1, . . . , n, Cov∗ (ui, wi) = k1,3k1,1− k2

1,1, Cov∗ (ui, wi−j) = 0 for

j > 0, and Cov∗ (ui, wi+j) = 0 for all j > 0 except when j = 1, where Cov∗ (ui, wi+1) = k1,3k1,1− k2
1,1.

The result follows from standard calculations noting that k1,3 = 2k1,1.
Proof of Theorem 3.1. Part (a1): Write

Z∗n = Σ∗
−1/2

n

√
n

n∑
i=1

Die
∗
i ≡
√
n

n∑
i=1

z∗i ,
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with z∗i ≡ Σ
∗−1/2
n Die

∗
i , and

Di =

(
v̂ni 0

0 1
k21,1

(v̂ni )1/2 (v̂ni−1

)1/2 ) , and e∗i =

(
ui − E∗(ui)
wi − E∗(wi)

)
,

where we set v̂n0 = 0 and where ui = η2
i and wi = |ηi| |ηi−1| and ηi ∼ i.i.d. N (0, 1). Note that e∗i is a

zero mean vector that is one-dependent. We follow Pauly (2011) and rely on a modified Cramer-Wold
device to establish the bootstrap CLT. Let D = {λk : k ∈ N} be a countable dense subset of the unit

circle of R2. We have to show that for any λ ∈ D, λ′Z∗n
d∗→ N(0, 1), in prob-P , as n→∞.

From Lemma 3.1, we have V ar∗(λ′Z∗n) = 1 for all n. Hence, to conclude, it remains to establish that
λ′Z∗n is asymptotically normally distributed, conditionally on the original sample and with probability
P approaching one. Since z∗i ’s are lag-one dependent, we adopt the large-block-small-block type of
argument to prove this central limit result (see Shao (2010) for an example of this idea). The large
blocks are made of Ln successive observations followed by a small bock that is made of a single element.

More precisely, let Ln be an integer such that Ln ∝ nα for 0 < α < δ
2(1+δ)some δ > 0. Let

kn = b n
Ln+1c. Define the (large) blocks Lj = {i ∈ N : (j − 1)(Ln + 1) + 1 ≤ i ≤ j (Ln + 1)− 1}, where

1 ≤ j ≤ kn and Lkn+1 = {i ∈ N : kn(Ln + 1) + 1 ≤ i ≤ n}. Let U∗j =
∑

i∈Lj λ
′z∗i , j = 1, . . . , kn + 1.

Clearly,

λ′Z∗n =
√
n

kn+1∑
j=1

U∗j +
√
n

kn∑
j=1

z∗j(Ln+1).

Next, we show that under Condition A,
(i)
√
n
∑kn

j=1 z
∗
j(Ln+1) = oP ∗(1), in prob-P ; and

(ii) for some δ > 0,
kn+1∑
j=1

E∗
∣∣√nU∗j ∣∣2+δ P→ 0.

Condition (ii) suffices to show that
√
n
∑kn+1

j=1 U∗j →d∗ N (0, 1), in prob-P , since
{
U∗j

}
form an in-

dependent array, conditionally on the sample. The result then follows given condition (i). Let us
establish (i). Since E∗(z∗i ) = 0 for all i, it suffices to show that V ar∗(

√
n
∑kn

j=1 z
∗
j(Ln+1)) = oP (1).

For this, since Ln ≥ 1 for n sufficiently large, z∗j(Ln+1)’s are independent along j conditionally on the
sample so that

V ar∗

√n kn∑
j=1

z∗j(Ln+1)

 = λ′Σ∗
−1/2

n Ω∗nΣ∗
−1/2

n λ,

where Ω∗n ≡ V ar∗
(√

n
∑kn

j=1Dj(Ln+1)e
∗
j(Ln+1)

)
. It follows that∥∥∥∥∥∥V ar∗

√n kn∑
j=1

z∗j(Ln+1)

∥∥∥∥∥∥ ≤ ‖λ‖2
∥∥∥Σ∗−1/2

n

∥∥∥2
‖Ω∗n‖ .

Since Σ∗n →P Σ∗ > 0 (by Condition A, and given Lemma 3.1), it follows that
∥∥∥Σ
∗−1/2
n

∥∥∥2
= tr

(
Σ∗−1
n

)
→P

tr
(
Σ∗−1

)
=
∥∥Σ∗−1

∥∥2
= 2λ2

max

(
Σ∗−1

)
= 2λ−2

min (Σ∗) = OP (1), given that IQ > 0 a.s. Next we analyze
‖Ω∗n‖ . We have that

Ω∗n = n

kn∑
j=1

Dj(Ln+1)E
∗
(
e∗j(Ln+1)e

∗′
j(Ln+1)

)
D′j(Ln+1),
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which implies that

‖Ω∗n‖ ≤ n
kn∑
j=1

∥∥Dj(Ln+1)

∥∥2
∥∥∥E∗ (e∗j(Ln+1)e

∗′
j(Ln+1)

)∥∥∥ ≤ Cn kn∑
j=1

∥∥Dj(Ln+1)

∥∥2
,

for some constant C independent of n (note that the moments of e∗i do not depend on n). In the
following, we use C to denote any constant that is independent of n where the definition may change
from line to line. Since for any i,

‖Di‖2 = (v̂ni )2 +
1

k4
1,1

(v̂ni )
(
v̂ni−1

)
, (15)

it follows that

‖Ω∗n‖ ≤ Cn
kn∑
j=1

∥∥Dj(Ln+1)

∥∥2 ≤ Cn
kn∑
j=1

((
v̂nj(Ln+1)

)2
+

1

k4
1,1

(
v̂nj(Ln+1)

)(
v̂nj(Ln+1)−1

))
,

where kn = b n
Ln+1c ≤

n
Ln

= n1−α by letting Ln = cnα. By Condition A.(iii), xn ≡ n
∑kn

j=1

(
v̂nj(Ln+1)

)2
=

oP (1) and this suffices to prove that ‖Ω∗n‖ = oP (1) . Next, we verify (ii). For any 1 ≤ j ≤ kn, by the
c-r inequality,

∣∣U∗j ∣∣2+δ ≤

∣∣∣∣∣∣
∑
i∈Lj

λ′z∗i

∣∣∣∣∣∣
2+δ

≤ L2+δ−1
n ‖λ‖2+δ

∥∥∥Σ∗−1/2
n

∥∥∥2+δ ∑
i∈Lj

‖Di‖2+δ ‖e∗i ‖
2+δ .

It follows that

E∗
∣∣U∗j ∣∣2+δ ≤ L1+δ

n ‖λ‖2+δ
∥∥∥Σ∗−1/2

n

∥∥∥2+δ ∑
i∈Lj

‖Di‖2+δ E∗ ‖e∗i ‖
2+δ

≤ CL1+δ
n

∥∥∥Σ∗−1/2
n

∥∥∥2+δ ∑
i∈Lj

‖Di‖2+δ ,

implying that

kn+1∑
j=1

E∗
∣∣√nU∗j ∣∣2+δ ≤ Cn1+δ/2L1+δ

n

∥∥∥Σ∗−1/2
n

∥∥∥2+δ
kn+1∑
j=1

∑
i∈Lj

‖Di‖2+δ

≤ Cn1+δ/2L1+δ
n

∥∥∥Σ∗−1/2
n

∥∥∥2+δ
kn+1∑
j=1

∑
i∈Lj

(
(v̂ni )(2+δ) + (v̂ni )

2+δ
2
(
v̂ni−1

) 2+δ
2

)

≤ Cn1+δ/2L1+δ
n

∥∥∥Σ∗−1/2
n

∥∥∥2+δ
n∑
i=1

(
(v̂ni )(2+δ) + (v̂ni )

2+δ
2
(
v̂ni−1

) 2+δ
2

)

≤ C
∥∥∥Σ∗−1/2

n

∥∥∥2+δ
L1+δ
n n−δ/2

(
n1+δ

n∑
i=1

(v̂ni )(2+δ)

)
,

where the second inequality follows from (15) and the last by the c-r inequality. Given Condition A.(ii),

the sum in parenthesis is OP (1) and therefore the whole term is OP

(
L1+δ
n

nδ/2

)
. Setting Ln = Cnα, this

term is of order O
(
nα(1+δ)

nδ/2

)
= O

(
nα(1+δ)−δ/2) = o (1) if α (1 + δ) − δ/2 < 0, or equivalently, if
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α < δ
2(1+δ) . This concludes the proof of part (a1). Part (a2) follows from an application of the delta

method.
Proof of Theorem 3.2. Given Theorem 3.1, part (a2) follows from (a1). To show (a1), note that

E∗
(
ĨQ
∗
n

)
=

1

c4/3,4/3,4/3
n

n∑
i=3

|v̂ni |
2/3
∣∣v̂ni−1

∣∣2/3 ∣∣v̂ni−2

∣∣2/3 →P IQ,

under Condition B.(i) whereas B.(ii) ensures that V ar∗
(
ĨQ
∗
n

)
→P 0. In particular, let x∗i =

|r∗i |
4
3 |r∗i−1|

4
3 |r∗i−2|

4
3 and note that x∗i is lag-2-dependent. Hence,

V ar∗
(
ĨQ
∗
n

)
=

n2

k6
1, 4

3

V ar∗

(
n∑
i=3

x∗i

)

=
n2

k6
1, 4

3

(
n∑
i=3

V ar∗ (x∗i ) + 2

n∑
i=4

Cov∗
(
x∗i−1, x

∗
i

)
+ 2

n∑
i=5

Cov∗
(
x∗i−2, x

∗
i

))

≤ C

(
n2

n∑
i=3

(v̂ni )4/3 (v̂ni−1

)4/3 (
v̂ni−2

)4/3
+ n2

n∑
i=4

(v̂ni )2/3 (v̂ni−1

)4/3 (
v̂ni−2

)4/3 (
v̂ni−3

)2/3
+ n2

n∑
i=5

(v̂ni )2/3 (v̂ni−1

)2/3 (
v̂ni−2

)4/3 (
v̂ni−3

)2/3 (
v̂ni−4

)2/3)
,

for some constant C that does not depend on n. By Condition B.(ii), each of the sums inside the
parenthesis is oP (1) .
Proof of Theorem 3.3. Strong asymptotic size control: Let S ⊂ Ω0 denote any measurable subset

of Ω0 with P (S) > 0. Since Tn
st−→ N(0, 1), in restriction to Ω0, we have (see Aı̈t-Sahalia and

Jacod (2014, Theorem 10.1, p. 339)) that for any x ∈ R, P (Tn ≤ x|S) → Φ(x), as n → ∞, where
Φ(x) is the cumulative distribution function of the standard normal random variable. Since Φ(x) is
continuous, supx∈R |P (Tn ≤ x|S)− Φ(x)| → 0, as n → ∞. By the validity of the bootstrap on Ω0

under Conditions A and B, we have that supx∈R |F ∗n(x) − Φ(x)| P→ 0, where F ∗n(x) ≡ P ∗(T ∗n ≤ x).

Thus, supx∈R |F ∗n(x)− P (Tn ≤ x|S)| P→ 0. It follows that∣∣F ∗n(q∗n,1−α)− P (Tn ≤ q∗n,1−α|S)
∣∣ =

∣∣1− α− 1 + P (Tn > q∗n,1−α|S)
∣∣ P→ 0,

i.e. P (Tn > q∗n,1−α|S)
P→ α as n→∞. This establishes the first part of the theorem.

Alternative-consistency: Given Definition 5.19 of Aı̈t-Sahalia and Jacod (2014), this amounts to
showing that

P (
{
Tn ≤ q∗n,1−α

}
∩ Ω1)→ 0 as n→∞. (16)

Let ε > 0. Since T ∗n = OP ∗(1) in prob-P , we have q∗n,1−α = OP (1). (See proof below.) Hence,

∃N1 ∈ N and M0 > 0 : P (q∗n,1−α ≤M0) > 1− ε, ∀n ≥ N1.

Also, since Tn
P→ +∞ on Ω1, for any M <∞, P ({Tn ≤M}∩Ω1) < ε for all n sufficiently large. Thus,

in particular,
∃N2 ∈ N : P ({Tn ≤M0} ∩ Ω1) < ε, ∀n ≥ N2. (17)
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Hence, for n ≥ max(N1, N2),

P (
{
Tn ≤ q∗n,1−α

}
∩ Ω1) = P

({
Tn ≤ q∗n,1−α ∩ q∗n,1−α ≤M0

}
∩ Ω1

)
+ P

({
Tn ≤ q∗n,1−α ∩ q∗n,1−α > M0

}
∩ Ω1

)
≤ P ({Tn ≤M0} ∩ Ω1) + P

({
Tn ≤ q∗n,1−α ∩ q∗n,1−α > M0

}
∩ Ω1

)
≤ P ({Tn ≤M0} ∩ Ω1) + P

({
q∗n,1−α > M0

}
∩ Ω1

)
≤ P ({Tn ≤M0} ∩ Ω1) + P

(
q∗n,1−α > M0

)
< ε+ ε = 2ε.

Since ε is arbitrary, this proves (16). To complete the proof, we prove that q∗n,1−α = OP (1). Let ε > 0.
Since T ∗n = OP ∗(1), in probability-P , by definition, there exists M > 0 such that

P (P ∗ (T ∗n > M) < α) > 1− ε,

for any n large enough. By definition of q∗n,1−α, {P ∗(T ∗n > M) < α} implies that
{
q∗n,1−α ≤M

}
. Hence,

P (P ∗(T ∗n > M) < α) ≤ P (q∗n,1−α ≤ M). As a result, P
(
q∗n,1−α ≤M

)
> 1 − ε for n large enough,

proving that q∗n,1−α = OP (1).
To prove Lemma 3.2, we rely on the following auxiliary result; the proof of which is omitted since

it follows from simple algebra.

Lemma A.1 Let {ai : i = 1, . . . , n} be any sequence such that for j = 1, . . . , n/M, ai+(j−1)M = āj,

i = 1, . . . ,M . Then, for any {s1, . . . , sK} such that s =
∑K

k=1 sk and s̄k =
∑k

l=1 sl, we have that for
M ≥ K − 1,

n∑
i=1

K∏
k=1

aski−k+1 = (M −K + 1)

n/M∑
j=1

(āj)
s +

K−1∑
k=1

n/M∑
j=2

(āj)
s̄k (āj−1)s−s̄k .

Proof of Lemma 3.2. Parts (a1) and (a2) follow from Lemma A.1. Part (a3) follows from replacing
v̂ni = |ri|2p1 |ri−1|2p2 . . . |ri−L+1|2pL in the multipower variation of v̂ni , collecting terms and using the

definition of MV
[q,K]
M ({qk}) with M = 1.

Proof of Lemma 3.3. Proof of part (a1): SinceXt is continuous on [0, 1] for any ω ∈ Ω0, Jt =
∑Nt

j=1 cj

is constant in t ∈ [0, 1] for any ω ∈ Ω0. Hence Jt −
∑N0

j=1 cj = 0 on Ω0, and for all t ∈ [0, 1]. Consider

X ′t = Yt +

N0∑
j=1

cj ,

where Yt as defined by Equation (2). Since
∑N0

j=1 cj is constant in t, X ′t is a continuous process as

a result of the continuity of Yt. Let MV
[q,K]
M,X′(qk) be associated with X ′ as MV

[q,K]
M (qk) is associated

with X. Since X ′t is continuous, by Theorem 3 of Mykland, Sheppard and Shephard (2012),

MV
[q,K]
M,X′(qk)

P→
∫ 1

0
σqsds.

Hence, so long as P (Ω0) > 0,

P

(∣∣∣∣MV
[q,K]
M,X′(qk)−

∫ 1

0
σqsds

∣∣∣∣ > ε

∣∣∣∣Ω0

)
→ 0, as n→∞, ∀ε > 0.

Also, Xt = X ′t + Jt −
∑N0

j=1 cj and for all ω ∈ Ω0, Xt = X ′t, for t ∈ [0, 1]. Therefore, on Ω0,

MV
[q,K]
M,X′(qk) = MV

[q,K]
M (qk). This completes the proof of (a.1) since

P

(∣∣∣∣MV
[q,K]
M (qk)−

∫ 1

0
σqsds

∣∣∣∣ > ε

∣∣∣∣Ω0

)
= P

(∣∣∣∣MV
[q,K]
M,X′(qk)−

∫ 1

0
σqsds

∣∣∣∣ > ε

∣∣∣∣Ω0

)
.
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Proof of (a2): Using the decomposition given in equation (2), and letting MV
[q,K]
M,Y (qk) denote the

blocked multipower variation associated with the process Y , we have that

MV
[q,K]
M (qk)−

∫ 1

0
σqsds =

(
MV

[q,K]
M,Y (qk)−

∫ 1

0
σqsds

)
+
(
MV

[q,K]
M (qk)−MV

[q,K]
M,Y (qk)

)
≡ A1+A2. (18)

By part (a1) of this lemma, A1 = oP (1) given that Y is continuous. Therefore, we only need to
establish the order of magnitude of A2. We use arguments similar to those of Barndorff-Nielsen,
Shephard and Winkel (2005, cf. Section 3.1) to do so. For simplicity, we only give the details for

K = 2. Letting ri = yi + zi, where yi = Yi/n − Y(i−1)/n and zi =
∑Ni/n

j=N(i−1)/n+1 cj , we can write

R̄j ≡
1

M

M∑
i=1

r2
i+(j−1)M =

1

M

M∑
i=1

(
yi+(j−1)M + zi+(j−1)M

)2
=

1

M

M∑
i=1

y2
i+(j−1)M +

1

M

M∑
i=1

(
2yi+(j−1)Mzi+(j−1)M + z2

i+(j−1)M

)
≡ Ȳj + Z̄j ,

for any j = 1, . . . , n/M . Thus,

A2 = n−1+q/2 M q/2

2∏
k=1

kM,qk

M

n/M∑
j=2

∣∣R̄j∣∣q1/2 ∣∣R̄j−1

∣∣q2/2 − n−1+q/2 M q/2

2∏
k=1

kM,qk

M

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2

= n−1+q/2 M q/2

2∏
k=1

kM,qk

M

n/M∑
j=2

∣∣Ȳj + Z̄j
∣∣q1/2 ∣∣Ȳj−1 + Z̄j−1

∣∣q2/2 − n−1+q/2 M q/2

2∏
k=1

kM,qk

M

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2 .
Suppose max (qk) < 2, which implies that 0 < q1/2 < 1, and

∣∣Ȳj + Z̄j
∣∣q1/2 ≤ ∣∣Ȳj∣∣q1/2 +

∣∣Z̄j∣∣q1/2 by the
Cr inequality (and similarly for the factor whose exponent is q2/2). It follows that

|A2| ≤ n−1+q/2

n/M∑
j=2

∣∣Z̄j∣∣q1/2 ∣∣Z̄j−1

∣∣q2/2 +n−1+q/2

n/M∑
j=2

∣∣Z̄j∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2 +n−1+q/2

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Z̄j−1

∣∣q2/2
where we omit the factors depending on M (this is without loss of generality, since M is fixed). The
first term is oP (1) because the probability that two jumps (or more) occur in two consecutive intervals
of length M/n goes to zero as n→∞ for finite activity processes. Next we show that the same is true
for the second and third terms. In particular, the second term can be bounded as follows,

n−1+q/2

n/M∑
j=2

∣∣Z̄j∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2 ≤ n−1+q/2

(
max

2≤j≤n/M

∣∣Ȳj−1

∣∣q2/2)︸ ︷︷ ︸
=OP (n−q2/2|logn|q2/2)

n/M∑
j=2

∣∣Z̄j∣∣q1/2︸ ︷︷ ︸
=OP (1)

= OP

(
n−1+q1/2 |log n|q2/2

)
,

(19)
where we use Levy’s continuity theorem (see e.g. Proposition 1 of Barndorff-Nielsen, Shephard and
Winkel (2005)) to bound the first factor and we use the fact that there are a finite number of jumps

to bound the second factor (in particular,
n/M∑
j=2

∣∣Z̄j∣∣q1/2 ≤ N1∑
i=1
|ci|q1 = OP (1)). By a similar argument,

n−1+q/2

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Z̄j−1

∣∣q2/2 = OP

(
n−1+q2/2 |log n|q1/2

)
. (20)
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The dominant term among (19) and (20) is the one associated with max (q1, q2). Thus, |A2| =

OP

(
n−1+max(qk)/2 |log n|

q−max(qk)
2

)
, which is oP (1) when max (qk) < 2.

Suppose now that max (qk) ≥ 2. Then, either q1 ≥ 2 or q2 ≥ 2 (or both). By the Cr-inequality, we

have that
∣∣Ȳj + Z̄j

∣∣q1/2 ≤ 2
q1
2
−1
(∣∣Ȳj∣∣q1/2 +

∣∣Z̄j∣∣q1/2) ,where now the constant in front of the paren-

thesis is larger than one (since 2q1/2 ≥ 2) (and similarly for the term depending on q2). It follows that
for some constant Cq that depends on q1, q2 but not on n, we can bound A2 as follows:

|A2| ≤ Cq

n−1+q/2

n/M∑
j=2

∣∣Z̄j∣∣q1/2 ∣∣Z̄j−1

∣∣q2/2 + n−1+q/2

n/M∑
j=2

∣∣Z̄j∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2
+n−1+q/2

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Z̄j−1

∣∣q2/2 + n−1+q/2

n/M∑
j=2

∣∣Ȳj∣∣q1/2 ∣∣Ȳj−1

∣∣q2/2 .

The first three terms can be analyzed as above whereas the last term is OP (1) (since it depends
only on the continuous process Yt). Since max (q1, q2) ≥ 2, the dominant term is given by ei-
ther the second or the third terms, depending on the value of max (q1, q2) . If max (q1, q2) = q1,
the second term will be dominant, otherwise it will be the third term. We can conclude that

|A2| ≤ OP
(
n−1+max(qk)/2 |log n|

q−max(qk)
2

)
, proving the result.

B Appendix B: proofs of results for Examples 1 and 2

This Appendix is organized as follows. First, we provide some auxiliary results used in proving
Theorem 4.2, followed by their proofs. Then, we provide the proofs of Theorems 4.1, 4.2 and 5.1.

Our first result shows that V ∗n diverges at rate n in restriction to Ω1.

Lemma B.1 Suppose (1), (2) and Assumptions 1 and 2 hold. Then, for M = 1, on Ω1,

V ∗n
n

= a1
1

n
MV

[4,1]
1 (4) + oP (1) ,

where a1
1
nMV

[4,1]
1 (4)

P−→ v∗ in restriction to Ω1, for some r.v. v∗. Hence, V ∗n
n

P−→ v∗. Furthermore,
if P (Ω1) > 0, then P (v∗ > 0|Ω1) = 1.

Next we show that ĨQ
∗
n

P ∗−→ IQ, in prob-P on Ω1.

Lemma B.2 Suppose (1), (2) and Assumptions 1 and 2 hold. Then, for M = 1, ĨQ
∗
n

P ∗−→ IQ, in
prob-P.

Finally, we show that the order of magnitude of Z∗n = OP ∗ (1) defined in Section 4.2 is sharp.

Lemma B.3 Suppose (1), (2) and Assumptions 1 and 2 hold. Then, for M = 1,

RV ∗n −BV ∗n − E∗ (RV ∗n −BV ∗n )
d∗−→ x∗

for some r.v. x∗ which, conditionally on Ω1 is non degenerate at 0. Consequently, Z∗n = OP ∗ (1),
where this is a sharp order of magnitude.
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Proof of Lemma B.1. The order of magnitude of the last three terms in V ∗n given in (14) is
obtained from Lemma 3.3(a2) and is equal to op (1) when divided by n. Thus, we only need to derive

the probability limit of 1
nMV

[4,1]
1 (4) . We can write

1

n
MV

[4,1]
1 (4) =

1

n

(
n

n∑
i=1

|ri|4
)

=

n∑
i=1

|ri|4 .

Recall that for any t ≥ 0, Xt = Yt + Jt, where Jt =
∑Nt

j=1 cj . It follows that ri = yi + zi, where

yi = Yi/n − Y(i−1)/n and zi =
∑Ni/n

j=N(i−1)/n+1
cj . Therefore,

n∑
i=1

|ri|4 =

n∑
i=1

|yi + zi|4 =

n∑
i=1

|zi|4 +

(
n∑
i=1

|yi + zi|4 −
n∑
i=1

|zi|4
)
≡ R1 +R2.

By the Minkowski inequality,∣∣∣∣∣∣
(

n∑
i=1

|yi + zi|4
)1/4

−

(
n∑
i=1

|zi|4
)1/4

∣∣∣∣∣∣ ≤
(

n∑
i=1

|yi|4
)1/4

= OP

(
n−1/4

)
= oP (1) ,

since yi is the intraday return from the continuous part. This implies that R2 = oP (1). Next, under
finite activity jumps,

R1 =
n∑
i=1

|zi|4
P−→

N(1)∑
j=1

|cj |4 ≡ v∗.

Clearly, v∗ > 0 on Ω1; which concludes the proof.
Proof of Lemma B.2. First, note that for M = 1,

E∗
(
ĨQ
∗
n

)
=

1

k3
1,4/3

n

n∑
i=1

|ri|4/3 |ri−1|4/3 |ri−2|4/3 .

By Lemma 3.3(a1), E∗
(
ĨQ
∗
n

)
P−→ IQ under Assumptions 1 and 2, since max (qk) = 4/3 < 2. Next,

we analyze the variance of ĨQ
∗
n. This variance is bounded by

V ar∗
(
ĨQ
∗
n

)
≤ Cn−1

(
n3

n∑
i=3
|ri|8/3 |ri−1|8/3 |ri−2|8/3

+n3
n∑
i=4
|ri|4/3 |ri−1|8/3 |ri−2|8/3 |ri−3|4/3

+ n3
n∑
i=5
|ri|4/3 |ri−1|4/3 |ri−2|8/3 |ri−3|4/3 |ri−4|4/3

)
.

By Lemma 3.3(a2), each of the terms above is of order

n−1OP

(
n−1+max(qk)/2 |log (n)|

q−max(qk)
2

)
= OP

(
n−2+max(qk)/2 |log (n)|

q−max(qk)
2

)
,

which is oP (1) provided max (qk) < 4. Since here q = 8 and max (qk) = 8/3, this condition is satisfied.
Proof of Lemma B.3. We can write

RV ∗n −BV ∗n − E∗ (RV ∗n −BV ∗n ) = (RV ∗n − E∗ (RV ∗n ))− (BV ∗n − E∗ (BV ∗n )) .
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We can show that the second term converges to zero under P ∗, in prob-P. Indeed, by construction
E∗ (BV ∗n − E∗ (BV ∗n )) = 0 and

V ar∗ (BV ∗n ) =
1

n
V ar∗

(√
nBV ∗n

)
= OP

(
| log(n)|

n

)
= oP (1) ,

The order of magnitude of V ar∗ (BV ∗n ) is explained by the fact that V ar∗ (
√
nBV ∗n ) is a function of

n
∑n

i=1 |ri|
2 |ri−1|2 and n

∑n
i=1 |ri| |ri−1|2 |ri−2|, which from Lemma 3.3(a2) are OP (| log(n)|).

The first term RV ∗n − E∗ (RV ∗n ) =
∑n

i=1 r
2
i,n

(
η2
i − 1

)
where ri is replaced by ri,n to stress its

dependence on n and η2
i ∼ i.i.d. χ2

1. Thanks to the assumption of rare jumps, for n large enough, we
can assume that each time interval [ i−1

n , in ] has at most one jump and let In be the set of i’s such that
[ i−1
n , in ] contains a jump. Let IIn(·) be the usual indicator function. We have that

n∑
i=1

r2
i,n

(
η2
i − 1

)
=

n∑
i=1

r2
i,n

(
η2
i − 1

)
IIn(i) +

n∑
i=1

r2
i,n

(
η2
i − 1

)
(1− IIn(i)) ≡ A∗1n +A∗2n.

Clearly, E∗(A∗2n) = 0 and

V ar∗(A∗2n) =
n∑
i=1

r4
i,n(1− IIn(i))V ar∗(η2

i − 1) = 2
n∑
i=1

r4
i,n(1− IIn(i)) ≤ 2

n∑
i=1

y4
i,n = oP (1).

As a result, A∗2n
P ∗→ 0, Prob-P . Consider now A∗1n and note that A∗1n =

∑n
i=1 r

2
i,n

(
η2
i − 1

)
IIn(i) =∑N1

i=1 r
2
i,n

(
η2
i − 1

)
, with ri,n = yi,n + ci. Let x∗ =

N1∑
i=1

c2
i (η

2
i − 1). We have

A∗1n − x∗ =

N1∑
i=1

(r2
i,n − c2

i )(η
2
i − 1).

From Proposition 1 of Barndorff-Nielsen, Shephard and Winkel (2006), we claim that, for every i =
1, . . . , N1,

r2
i,n − c2

i = (yi,n + ci)
2 − c2

i = y2
i,n + 2ciyi,n = oP (1).

Thus, (r2
i,n − c2

i )(η
2
i − 1) = oP (1)OP ∗(1) = oP ∗(1), in prob-P . Since N1 is finite P -almost surely, it

follows that A∗1n − x∗ = oP ∗(1), prob-P . We deduce that

A∗1n
d∗→ x∗,

in prob-P . We complete the proof by showing that conditionally on Ω1, x∗ is non degenerate at 0, i.e.
P (x∗ = 0|Ω1) < 1. (Note that x∗ is not necessarily measurable with respect to the original probability
space (Ω,F , P ). In this expression, P must be seen as the natural extension of the original probability
space that makes ηi’s measurable. We keep the same notation for simplicity.) We actually show
that P (x∗ = 0|Ω1) = 0. Clearly, x∗ is function of (N1, c1, . . . , cN1 , η1, . . . , ηN1) with (N1, c1, . . . , cN1)
independent of (η1, . . . , ηN1). Hence,

P (x∗ = 0|Ω1) = P

(
N1∑
i=1

c2
i (η

2
i − 1) = 0

∣∣∣∣N1 ≥ 1

)

=
∑
m≥1

{
P (N1 = m|N1 ≥ 1)

∫
z1,...,zm

P

(
N1∑
i=1

c2
i (η

2
i − 1) = 0

∣∣∣∣ c = z,N1 = m

)
dFc(z|N1 = m)

}

=
∑
m≥1

{
P (N1 = m|N1 ≥ 1)

∫
z1,...,zm

P

(
m∑
i=1

z2
i (η2

i − 1) = 0

)
dFc(z|N1 = m)

}
.
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Since η2
i − 1 for i = 1, 2, . . . are independent with continuous distributions, so are z2

i (η2
i − 1) for

i = 1, 2, . . . (so long as zi 6= 0). Hence, if at least one zi is different from 0, the random variable∑m
i=1 z

2
i (η2

i −1) has a continuous distribution and hence, P
(∑m

i=1 z
2
i (η2

i − 1) = 0
)

= 0. It follows that
P (x∗ = 0|Ω1) = 0 since, from Assumption 2, P (ci = 0) = 0 for all i = 1, 2, . . . which ensures that
P (c = 0|N1 = m) = 0 for all m ≥ 1.
Proof of Theorem 4.1. Part (a1): Condition A(i) is a consequence of Lemmas 3.2 and 3.3. In fact,

from Lemma 3.3(a1), RVn and MV
[2,2]
M (1, 1) converge in probability to

∫ 1
0 σ

2
udu in restriction to Ω0

and MV
[4,1]
M (4), MV

[4,2]
M (2, 2), MV

[4,2]
M (3, 1), MV

[4,2]
M (1, 3), MV

[4,3]
M (1, 2, 1) converge in probability to∫ 1

0 σ
4
udu in restriction to Ω0. The constants cq1,...,qK are obtained by collecting the coefficients that

multiply the integrated quantities. For Condition A(ii), we have

n1+δ
n∑
i=1

(v̂ni )2+δ = n1+δ

n/M∑
j=1

M∑
i=1

(
v̂ni+(j−1)M

)2+δ
= n1+δ

n/M∑
j=1

MR̄2+δ
j =

kM,4+2δ

M2+δ
MV

[4+2δ,1]
M (4 + 2δ).

From Lemma 3.3(a1), MV
[4+2δ,1]
M (4 + 2δ) converges in probability to

∫ 1
0 σ

4+2δ
s ds in restriction to Ω0.

This shows that n1+δ
∑n

i=1 (v̂ni )2+δ = OP (1). For Condition A(iii), let δ > 0, α ∈ (0, δ/(2(1 + δ))

and Ln ∝ nα. We have to show that n
∑kn

j=1

(
v̂nj(Ln+1)

)2
= oP (1), with kn =

[
n

Ln+1

]
, where

v̂nj = R̄j =
∑jM

`=(j−1)M+1 r
2
`/M . As seen in the proof of Lemma 3.3, on Ω0, Xt coincides with the

continuous process X ′t and, through the same trick as in that proof, we can deal with Xt as though it
is a continuous process. From Proposition 1 of Barndorff-Nielsen, Shephard and Winkel (2005),

max
1≤`≤n

|r`| = OP

(√
log n

n

)
.

Hence, R̄j = OP

(
logn
n

)
uniformly over j = 1, . . . , n/M . Therefore

n

kn∑
j=1

(
v̂nj(Ln+1)

)2
= nknOP

(
log2(n)

n2

)
= OP (n−α) = oP (1). (21)

Condition B(i) follows from Lemmas 3.2 and 3.3 similarly to Condition A(i). Finally, for Condition
B(ii), let K ∈ {3, 4, 5} and q denote a K-vector of nonnegative numbers with

∑K
k=1 qk = q. We show

that

n−2+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 = oP (1).

Note that this quantity is equal to n−1 times a linear combination of terms such as MV
[q,K′]
M ({q′`})

with coefficients that only depend on M and {q′` : ` = 1, . . . ,K ′}. See parts (a2) and (a3) of Lemma
3.2. The result now follows from Lemma 3.3(a1) since for any fixed M ≥ 1, we can deduce that, in
restriction to Ω0,

n−2+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 = OP (n−1) = oP (1),

for any K ∈ {3, 4, 5} and any K-vector of nonnegative numbers q. Part (a2) follows from Theorems
3.1, 3.2 and 3.3.
Proof of Theorem 4.2. The proof follows from Lemmas B.1, B.2 and B.3.
Proof of Theorem 5.1. The proof follows the same arguments as that of Theorem 4.1 with the
difference that we now rely on the condition that max (pl) < 1/2 to apply part (a2) of Lemma 3.3
under both Ω0 and Ω1.
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C Appendix C: Bootstrap test statistic for the log version of the
jump test

The asymptotic test based on logarithm transformation of the linear version of the jump test as given
by (5) has been proposed by Huang and Tauchen (2005). It follows from (3) and 4 that

√
n (logRVn − logBVn)

st→ N

(
0, τ

IQ

IV 2

)
, τ = θ − 2,

and the test statistic of the log version of the jump test is given by

Tlog,n =

√
n (logRVn − logBVn)√

τ max
(

1, ÎQn
BV 2

n

) .

The bootstrap test statistic T ∗log,n for Tlog,n derives from Theorem 3.1(a1). By a Taylor expansion, we
have

√
n

(
log

RV ∗n
BV ∗n

− log
E∗(RV ∗n )

E∗(BV ∗n )

)
=
(

1
E∗(RV ∗n ) − 1

E∗(BV ∗n )

)√
n

(
RV ∗n − E∗(RV ∗n )
BV ∗n − E∗(BV ∗n )

)
+oP ∗(1), Prob-P.

Conditionally on no jump, E∗(RV ∗n )
P→ c2IV and E∗(BV ∗n )

P→ c1,1IV . In Example 1, c2 = 1 and

c1,1 = 1− 1
M +

k2M,1
M2 . In Example 2,

c2 =
kL
M, 2

L

M
and c1,1 =

(
1− 1

M

) kL
M, 2

L

M
+
k2
M, 1

L

kL−1
M, 2

L

M2
; (L = 5),

and in Example 3, c2 = k1,2 and c1,1 = k2
1,1.

From Theorem 3.1(a1), we deduce that

√
n
(

log RV ∗n
BV ∗n
− log E∗(RV ∗n )

E∗(BV ∗n )

)
√
τ∗log

IQ
IV 2

d∗→ N(0, 1), in Prob-P,

with τ∗log = β
c22
− 2 δ

c1,1c2
+ α

c21,1
. The bootstrap test statistic for Tlog,n is given by

T ∗log,n =

√
n
(

log RV ∗n
BV ∗n
− log E∗(RV ∗n )

E∗(BV ∗n )

)
√
τ∗log max

(
1, c2

1,1
ĨQ
∗
n

(BV ∗n )2

) .

Under (1), (2) and Assumption 1, Tlog,n satisfies the conditions of Theorem 3.3 and if Conditions (A)
and (B) are satisfied, the conclusions of that theorem hold for T ∗log,n and the resulting bootstrap test
controls the strong asymptotic size and is alternative-consistent.
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