Structural Transformations with Long-Run Income and Price Effects

Martí Mestieri (TSE)

joint with Diego Comin (Dartmouth) and Danial Lashkari (Harvard)

EFJK Meeting February 26, 2015

Kaldor Facts

Aggregate

Technological Differences across Sectors

Sectorial

Kaldor Facts

Non-homothetic Engel Curves

Sectorial

Technological Differences across Sectors

Kaldor Facts

Non-homothetic Engel Curves

Demand side

 $C(C_{at}, C_{mt}, C_{st})$

Technological Differences across Sectors

Kaldor Facts

Non-homothetic Engel Curves

Stone-Geary

$$CES(C_{at} - \overline{C}_a, C_{mt}, C_{st} + \overline{C}_s)$$

Asymptotically Homothetic

Details

Non-homothetic Engel Curves

Supply side

$$Y_{it} = \mathcal{K}_{it}^{lpha_i} (A_{it} \mathcal{L}_{it})^{1-lpha_i}, \ i \in \{a, m, s\}.$$

- We introduce an alternative utility function (Hanoch, 75),
 - generates log-linear demand.
- Consistent with Kaldor facts, trends in relative prices, non-homothetic demand for *any* number of goods .

- We introduce an alternative utility function (Hanoch, 75),
 - generates log-linear demand.
- Consistent with Kaldor facts, trends in relative prices, non-homothetic demand for *any* number of goods .
- Additional desirable properties:
 - 1. Generates a hump-shape in manufacturing.
 - 2. Not relying on a knife-edge condition.
 - 3. Income and price elasticities as separate fundamentals.
 - 4. Generates a positive correlation between nominal and real VA.

- We introduce an alternative utility function (Hanoch, 75),
 - generates log-linear demand.
- Consistent with Kaldor facts, trends in relative prices, non-homothetic demand for *any* number of goods .
- Additional desirable properties:
 - 1. Generates a hump-shape in manufacturing.
 - 2. Not relying on a knife-edge condition.
 - 3. Income and price elasticities as separate fundamentals.
 - 4. Generates a positive correlation between nominal and real VA.
- Show it provides a parsimonious fit of the data.
 - Cross-country panel postwar period.
 - Household Expenditure micro-data for US and Mexico.

Outline

- 1. Theory
 - Intertemporal Problem
 - Within Period Problem
- 2. Empirics
 - Panel 30 Countries
 - Household micro-data estimation for the US
 - Extensions
- 3. Conclusions

Household Problem - Intertemporal Decision

• Household maximizes $\{C_t\}_{t=0}^{\infty}$

$$\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\theta} - 1}{1-\theta} \right), \tag{1}$$

subject to budget constraint

$$K_{t+1}+P_tC_t\leq w_t+K_t(1+r_t).$$

• Within period utility,

$$C_t(C_{1t},\ldots,C_{it},\ldots,C_{lt}).$$
(2)

Within Period Utility

$$\sum_{i=1}^{l} C_t^{\frac{\varepsilon_i - \sigma}{\sigma}} C_{it}^{\frac{\sigma-1}{\sigma}} = 1,$$

- σ is the elasticity of substitution.
- ε_i is the real income elasticity \rightarrow constant

$$arepsilon_{i} = rac{\partial \ln C_{it}}{\partial \ln C_{t}}.$$

- If $\varepsilon_i = 1$, we recover homothetic CES.
- Income and price elasticities are independent (Hanoch, 75).

Production

• Follow Herrendorf, Rogerson and Valentinyi (2014)

$$Y_{it} = K_{it}^{\alpha} (A_{it}L_{it})^{1-\alpha}, \qquad i = 1, \dots, I,$$

$$X_t = K_{0t}^{\alpha} (A_{0t}L_{0t})^{1-\alpha}.$$

• There is sectoral-specific technological progress,

$$rac{A_{0,t+1}}{A_0 t} = 1 + \gamma_0, \qquad rac{A_{i,t+1}}{A_{it}} = 1 + \gamma_i.$$

Production

• Follow Herrendorf, Rogerson and Valentinyi (2014)

$$Y_{it} = K_{it}^{\alpha} (A_{it}L_{it})^{1-\alpha}, \qquad i = 1, \dots, I,$$

$$X_t = K_{0t}^{\alpha} (A_{0t}L_{0t})^{1-\alpha}.$$

• There is sectoral-specific technological progress,

$$rac{A_{0,t+1}}{A_0 t} = 1 + \gamma_0, \qquad rac{A_{i,t+1}}{A_{it}} = 1 + \gamma_i.$$

Study Competitive Equilibrium.
 Definition

Household Behavior

Within-Period Characterization

Given $\left\{w_t, r_t, \left\{p_{it}\right\}_{i \in I}, E_t\right\}_{t=0}^{\infty}$, Household choses,

$$C_{it} = \left(\frac{p_{it}}{P_t}\right)^{-\sigma} \left(\frac{E_t}{P_t}\right)^{\varepsilon_i}, \quad i \in \mathcal{I}.$$

Household Behavior

Within-Period Characterization

Given $\left\{w_t, r_t, \left\{p_{it}\right\}_{i \in I}, E_t\right\}_{t=0}^{\infty}$, Household choses,

$$C_{it} = \left(\frac{p_{it}}{P_t}\right)^{-\sigma} C_t^{\varepsilon_i}, \qquad i \in \mathcal{I},$$

$$P_t \equiv \frac{E_t}{C_t} = \frac{1}{C_t} \left[\sum_{i=1}^{I} C_t^{\varepsilon_i - \sigma} p_{it}^{1 - \sigma}\right]^{\frac{1}{1 - \sigma}}$$

•

Euler Equation

Household Behavior

Within-Period Characterization

Given $\left\{w_t, r_t, \left\{p_{it}\right\}_{i \in I}, E_t\right\}_{t=0}^{\infty}$, Household choses,

$$C_{it} = \left(\frac{p_{it}}{P_t}\right)^{-\sigma} C_t^{\varepsilon_i}, \quad i \in \mathcal{I},$$
$$P_t \equiv \frac{E_t}{C_t} = \frac{1}{C_t} \left[\sum_{i=1}^l C_t^{\varepsilon_i - \sigma} p_{it}^{1 - \sigma}\right]^{\frac{1}{1 - \sigma}}$$

Euler Equation

• Relative demand in logs:

$$\log\left(\frac{C_{it}}{C_{jt}}\right) = -\sigma \log\left(\frac{p_{it}}{p_{jt}}\right) + (\epsilon_i - \epsilon_j) \log C_t,$$

$$\log\left(\frac{\omega_{it}}{\omega_{jt}}\right) = (1 - \sigma) \log\left(\frac{p_{it}}{p_{jt}}\right) + (\epsilon_i - \epsilon_j) \log C_t, = \log\left(\frac{L_{it}}{L_{jt}}\right)$$

Constant Growth Path (CGP) Characterization

- There exists a unique CGP, $\frac{C_{t+1}}{C_t} = 1 + \gamma^*$.
- Suppose there is at least one sector with $\epsilon_i > \sigma$ and $\sigma < 1$,

$$\begin{split} \gamma^* &= \min_{i \in \mathcal{I}: \epsilon_i > \sigma} \left[(1 + \gamma_0)^{\alpha} \left(1 + \gamma_i \right)^{1 - \alpha} \right]^{\frac{1 - \sigma}{\epsilon_i - \sigma}} - 1, \quad \textcircled{Plot} \\ r^* &= \frac{1 + \gamma_0}{\beta \left(1 + \gamma^* \right)^{1 - \theta}} - 1. \end{split}$$

Constant Growth Path (CGP) Characterization

- There exists a unique CGP, $\frac{C_{t+1}}{C_t} = 1 + \gamma^*$.
- Suppose there is at least one sector with $\epsilon_i > \sigma$ and $\sigma < 1$,

$$egin{aligned} &\gamma^* &=& \min_{i\in\mathcal{I}:\epsilon_i>\sigma}\left[(1+\gamma_0)^lpha\,(1+\gamma_i)^{1-lpha}
ight]^{rac{1-\sigma}{\epsilon_i-\sigma}}-1, & ullet ext{Plot} \ &r^* &=& rac{1+\gamma_0}{eta\,(1+\gamma^*)^{1- heta}}-1. \end{aligned}$$

• Preferences remain asymptotically non-homothetic,

$$\frac{C_{it+1}}{C_{it}} = (1+\gamma_i)^{(1-\alpha)\sigma} (1+\gamma_0)^{\alpha\sigma} (1+\gamma^*)^{\epsilon_i-\sigma}.$$

Hump-Shape in Manufacturing Aggregation

Empirical Application: 30 Country Panel, 1947-2005

- 10 Asian, 9 European, 9 Latin Am., US and South Africa.
- Estimating equations:

$$\log\left(\frac{L_{a,t}^{c}}{L_{m,t}^{c}}\right) = \alpha_{am}^{c} + (1-\sigma)\log\left(\frac{p_{a,t}^{c}}{p_{m,t}^{c}}\right) + (\varepsilon_{a} - \varepsilon_{m})\log C_{t}^{c} + \nu_{am,t}^{c},$$
$$\log\left(\frac{L_{s,t}^{c}}{L_{m,t}^{c}}\right) = \alpha_{sm}^{c} + (1-\sigma)\log\left(\frac{p_{s,t}^{c}}{p_{m,t}^{c}}\right) + (\varepsilon_{s} - \varepsilon_{m})\log C_{t}^{c} + \nu_{sm,t}^{c}.$$

Baseline Estimation

Dep. Var.:		World	
Rel. Emp.	(1)	(2)	(3)
σ	0.66	0.75	0.72
	(0.19)	(0.11)	(0.11)
$\varepsilon_{a} - \varepsilon_{m}$	-0.81	-1.09	-1.03
	(0.24)	(0.10)	(0.14)
$\varepsilon_s - \varepsilon_m$	0.32	0.32	0.32
	(0.08)	(0.10)	(0.13)
Obs.	1006	1006	916
<i>c</i> · <i>sm</i> FE	Ν	Y	Y
Trade Controls	Ν	Ν	Y

Standard Errors Clustered by Country

Estimation Fit

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Estimation Fit

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

- % Variation Accounted by Income Effects in median year
 - ▶ 86% for Agriculture,
 - 57% for Manufacturing,
 - 82% for Services.

Consumption Expenditure + Random Timing Tax Rebates

$$\log\left(\frac{\omega_{i,t}^{h}}{\omega_{nd,t}^{h}}\right) = (1-\sigma)\log\left(\frac{p_{i,t}}{p_{nd,t}}\right) + (\epsilon_{i} - \epsilon_{nd})\log C_{t}^{h} + \delta^{h} + \delta_{i,t} + \eta_{i,t}^{h}.$$

	(1)	(2)	(3)	(4)
σ	0.69	0.64	0.69	0.64
	(0.02)	(0.02)	(0.02)	(0.02)
ϵ Food — ϵ Non-Durables	-0.44	-0.43	-0.45	-0.44
	(0.02)	(0.02)	(0.02)	(0.02)
$\epsilon_{\text{Housing}} - \epsilon_{\text{Non-Durables}}$	-0.17	-0.16	-0.18	-0.17
6	(0.03)	(0.03)	(0.03)	(0.03)
ϵ Services — ϵ Non-Durables	0.51	0.52	0.51	0.52
	(0.04)	(0.04)	(0.04)	(0.04)
ϵ Durables — ϵ Non-Durables		1.31		0.93
		(0.09)		(0.09)
			First	Stage
Tax Rebate Indicator			0.02	0.02
			(0.01)	(0.01)

Non-durables exclude Food Consumption. Std. Err. clustered at HH level.

Concluding Remarks

- Introduced a new non-homothetic demand to growth theory.
- More desirable properties than Stone-Geary:
 - Asymptotically non-homothetic.
 - Can have hump-shape in manufacturing.
 - No knife-edge condition for existence of CGP.
- Can be combined with trends in relative prices (à la Ngai-Pissarides and/or Acemoglu-Guerrieri).
 - Positive correlation between nominal and real variables.
- Parsimonious fit of data.

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(\left(C_{at} - \overline{c}_a \right)^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + \left(C_{st} + \overline{c}_s \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(\left(C_{at} - \overline{c}_a \right)^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + \left(C_{st} + \overline{c}_s \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

• Cannot have sectorial price trends to generate BGP.

$$p_{at}C_{at} + p_{mt}C_{mt} + p_{st}C_{st} = E_t + p_{at}\overline{c}_a - p_{st}\overline{c}_s,$$
$$\implies p_{at}\overline{c}_a = p_{st}\overline{c}_s.$$

Estimates of Trends in Relative Prices

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(\left(C_{at} - \overline{c}_a \right)^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + \left(C_{st} + \overline{c}_s \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

- Cannot have sectorial price trends to generate BGP.
- Constant Expenditure/Employment Share in manufacturing,

$$\frac{p_{mt}C_{mt}}{E_t} = \left(\frac{p_{mt}}{P_t}\right)^{1-\sigma}.$$

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(\left(C_{at} - \overline{c}_a \right)^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + \left(C_{st} + \overline{c}_s \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

- Cannot have sectorial price trends to generate BGP.
- Constant Expenditure/Employment Share in manufacturing,
- Asymptotically Homothetic (non-homotheticity is transitional)

$$C_{it} \gg \overline{c}_i \implies \varepsilon_i \equiv \frac{\partial \ln C_{it}}{\partial \ln C_t} \to 1.$$

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(C_{at}^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + C_{st}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}},$$
$$\frac{A_{it+1}}{A_t} = 1 + \gamma_i, \quad i \in \{a, m, s\}.$$

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(C_{at}^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + C_{st}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}},$$
$$\frac{A_{it+1}}{A_t} = 1 + \gamma_i, \quad i \in \{a, m, s\}.$$

• As 0 < σ < 1 \Rightarrow cannot fit real and nominal VA (corr > .8).

• Sectoral Demands,

Nominal:
$$\frac{p_{at} C_{at}}{p_{mt} C_{mt}} = \left(\frac{p_{mt}}{p_{at}}\right)^{(1-\sigma)}$$
, Real: $\frac{C_{at}}{C_{mt}} = \left(\frac{p_{mt}}{p_{at}}\right)^{-\sigma}$

Back

•

$$C_t(C_{at}, C_{mt}, C_{st}) = \left(C_{at}^{\frac{\sigma-1}{\sigma}} + C_{mt}^{\frac{\sigma-1}{\sigma}} + C_{st}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}},$$
$$\frac{A_{it+1}}{A_t} = 1 + \gamma_i, \quad i \in \{a, m, s\}.$$

- As $0 < \sigma < 1 \Rightarrow$ cannot fit real and nominal VA (corr > .8).
- Expenditure Share Uncorrelated with Income

$$\frac{p_{it}C_{it}}{E_t} = \left(\frac{p_{it}}{P_t}\right)^{1-\sigma}, \qquad i \in \{a, m, s\}.$$

Partial Correlation Log Manufacturing Share - Log Income

Partial Correlation Log Agriculture Share - Log Income

Partial Correlation Log Services Share - Log Income

Aggregate Engel Curves Across OECD Countries

- Partial correlations between shares of consumption expenditure and income, regressing out prices.
- OECD National Accounts: 26 Countries, 1970–2007.

Trends in Relative Prices

Table: Gro	wth Rates of R	elative Prices in	30-Country Pan
$\log\left(\frac{p_{i,t}^{c}}{p_{m,t}^{c}}\right)$	$\left(\right) = \alpha_{im}^{c} + \beta_{i}$	• Year + $\varepsilon^{c}_{im,t}$,	$i = \{s, a\}$
		$\log\left(rac{p_a^c}{p_m^c} ight)$	$\log\left(rac{p_s^c}{p_m^c} ight)$
Yea	r	-0.59	0.13
		(0.05)	(0.04)
Cou	intry-Sector F	E Yes	Yes
R^2		0.49	0.41
Obs	servations	1680	1680
Not	e: Year ha	as been re-so	caled to
Yea	r/100.		

Aggregate Engel Curves for the US

- How stable is this pattern over time?
- Compare the patter when income is below and above median

Aggregate Engel Curves Across OECD Countries

- How stable is this pattern over time?
- Compare the patter when income is below and above median

Employment, Real VA and Nominal VA

Shares for USA

Asia

Uses Asia Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

OECD

Uses OECD Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Latin America

Uses Latin America Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Competitive Equilibrium

Definition

Given initial stock of capital K_0 and a sequence of sectoral productivities $\left\{ \{A_{it}\}_{i=1}^{I} \right\}_{t\geq 0}$, the equilibrium is characterized as a sequence of allocations $\{C_t, K_{t+1}, X_t\}_{t=0}^{\infty}, \left\{ \{C_{it}, K_{it}, L_{it}\}_{i\in\mathcal{I}} \right\}_{t=0}^{\infty}$ and a sequence of prices $\left\{ w_t, r_t, \{p_{it}\}_{i\in\mathcal{I}}, P_t \right\}_{t=0}^{\infty}$ such that

1. Household maximizes utility s.t. budget constraint.

Competitive Equilibrium

Definition

Given initial stock of capital K_0 and a sequence of sectoral productivities $\left\{ \left\{ A_{it} \right\}_{i=1}^{I} \right\}_{t\geq 0}$, the equilibrium is characterized as a sequence of allocations $\{C_t, K_{t+1}, X_t\}_{t=0}^{\infty}, \left\{ \left\{ C_{it}, K_{it}, L_{it} \right\}_{i\in\mathcal{I}} \right\}_{t=0}^{\infty}$ and a sequence of prices $\left\{ w_t, r_t, \left\{ p_{it} \right\}_{i\in\mathcal{I}}, P_t \right\}_{t=0}^{\infty}$ such that

- 1. Household maximizes utility s.t. budget constraint.
- 2. Firms maximize profits,

$$\max_{L_{it},K_{it}} \quad p_{it}K_{it}^{\alpha} \left(A_{it}L_{it}\right)^{1-\alpha} - w_t L_{it} - r_t K_{it}, \quad i \in \mathcal{I} \cup 0.$$

Competitive Equilibrium

Definition

Given initial stock of capital K_0 and a sequence of sectoral productivities $\left\{ \left\{ A_{it} \right\}_{i=1}^{I} \right\}_{t\geq 0}$, the equilibrium is characterized as a sequence of allocations $\left\{ C_t, K_{t+1}, X_t \right\}_{t=0}^{\infty}$, $\left\{ \left\{ C_{it}, K_{it}, L_{it} \right\}_{i\in\mathcal{I}} \right\}_{t=0}^{\infty}$ and a sequence of prices $\left\{ w_t, r_t, \left\{ p_{it} \right\}_{i\in\mathcal{I}}, P_t \right\}_{t=0}^{\infty}$ such that

- 1. Household maximizes utility s.t. budget constraint.
- 2. Firms maximize profits.
- 3. Markets clear,

$$1 = L_{0t} + \sum_{i=1}^{l} L_{it}, \qquad Y_{it} = C_{it},$$

$$K_t = K_{0t} + \sum_{i=1}^{l} K_{it}, \qquad \Delta K_{t+1} = X_t.$$

Household Behavior - Intertemporal Problem

Intertemporal Characterization (Euler Equation)

Given price indices, real aggregate consumption:

$$C_t^{-\theta} = (1 + r_t) \frac{P_t}{P_{t+1}} \left(\frac{\overline{\varepsilon_t} - \sigma}{\overline{\varepsilon_{t+1}} - \sigma} \right) C_{t+1}^{-\theta},$$

where

$$\overline{\varepsilon_t} = \sum_{i=1}^{l} \omega_{it} \varepsilon_i.$$

plus No-Ponzi condition.

• "Wedge" from E_t to C_t depends on $\bar{\varepsilon} = \sum_{i=1}^{l} \varepsilon_i \omega_{it}$.

▶ Back

Four Sector Model

Suppose there are three setors in the economy satisfying

$$\epsilon_s > \epsilon_m > \epsilon_a, \tag{3}$$

$$\gamma_a > \gamma_m > \gamma_s. \tag{4}$$

Structural Transformation

Let $K_0 < \underline{K}$. Then Employment Shares and Nominal Consumption shares are increasing for services, decreasing for agriculture and hump shaped for manufacturing.

Aggregation

- Consider an economy composed of $h \sim F(h)$ households.
- Individual expenditure shares,

$$\omega_{it}^{h} = \Omega_{i}^{h} \left(\frac{p_{it}}{P_{t}^{h}}\right)^{1-\sigma} \left(C_{t}^{h}\right)^{\varepsilon_{i}-1}, \quad \text{for all } h.$$

• Aggregating across households

$$\begin{split} \omega_{it} &\equiv \int \omega_{it}^{h} dF(h) = \phi_{it} \left(\frac{p_{it}}{P_{t}}\right)^{1-\sigma} C_{t}^{\varepsilon_{i}-1}, \\ \phi_{it} &= \int dF(h) \left(\frac{C_{t}^{h}}{C_{t}}\right)^{\varepsilon_{i}} \frac{\sum_{j=1}^{I} C_{t}^{\varepsilon_{i}} p_{i}^{1-\sigma}}{\sum_{j=1}^{I} (C_{t}^{h})^{\varepsilon_{i}} p_{i}^{1-\sigma}}. \end{split}$$

• Along CGP,
$$\phi_{it} = \phi_i$$
.

More than One Sector Can Survive Asymptotically

Estimation By Regions

Dep. Var.:		World		OE	CD	As	sia	Latin A	Merica
Rel. Emp.	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
σ	0.66	0.75	0.72	0.69	0.69	0.73	0.77	0.77	0.68
	(0.19)	(0.11)	(0.11)	(0.17)	(0.19)	(0.18)	(0.23)	(0.08)	(0.05)
$\varepsilon_a - \varepsilon_m$	-0.81	-1.09	-1.03	-0.99	-0.94	-1.19	-1.26	-1.20	-0.90
	(0.24)	(0.10)	(0.14)	(0.19)	(0.18)	(0.12)	(0.17)	(0.25)	(0.17)
$\varepsilon_s - \varepsilon_m$	0.32	0.32	0.32	0.40	0.49	0.07	0.09	0.59	0.54
	(0.08)	(0.10)	(0.13)	(0.19)	(0.15)	(0.04)	(0.08)	(0.14)	(0.11)
Obs.	1006	1006	916	436	407	319	297	295	245
<i>c</i> ⋅ <i>sm</i> FE	Ν	Y	Y	Y	Y	Y	Y	Y	Y
Trade Controls	Ν	N	Y	Ν	Y	Ν	Y	N	Y

Asia

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Asia

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Latin America

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

OECD

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

Partial Correlation

Partial Correlations					
Reg.	Consu	mption	Relative Prices		
Equation	Part. Corr.	Part. Corr. ²	Part. Corr.	Part. Corr. ²	
L_a/L_m	-0.89	0.78	0.16	0.02	
L_s/L_m	0.47	0.22	0.14	0.02	

▶ Back

First Differences Estimation

	(1)	(2)	(3)	(4)
σ	0.64	0.64	0.63	0.63
	(0.02)	(0.01)	(0.01)	(0.01)
Food	-0.46	-0.44	-0.49	-0.48
	(0.02)	(0.02)	(0.02)	(0.02)
Housing	-0.31	-0.31	-0.27	-0.26
	(0.02)	(0.02)	(0.02)	(0.02)
Services	0.57	0.52	0.62	0.57
	(0.02)	(0.03)	(0.03)	(0.03)
Durables			0.94	0.93
			(0.06)	(0.06)
Time FE	Ν	Y	Ν	Y

Std. Err. Clustered at Household Level. HH FE for all estimates.

IV Strategy

• Use (detrended) total earnings (and wage).

	(1)	(2)			
σ	0.70	.69			
	(0.01)	(0.01)			
Food	-0.70	69			
	(0.02)	(0.02)			
Housing	-0.69	69			
	(0.02)	(0.02)			
Services	0.69	.69			
	(0.04)	(0.03)			
Time FE	Ν	Y			
First Stage					
Total Earnings	1.25	1.22			
_	(.19)	(.19)			

Std. Err. Clustered at Household Level. HH FE for all estimates.

Estimation By Quartiles

Elas	Elasticities relative to non-durables (excl. Food)					
		(1)	(2)	(3)	(4)	
σ		0.63	0.76	0.75	0.67	
		(0.01)	(0.01)	(0.01)	(0.01)	
F	ood	-0.44	-0.31	-0.41	-0.48	
		(0.02)	(0.07)	(0.09)	(0.02)	
F	lousing	-0.20	-0.44	-0.37	-0.23	
		(0.02)	(0.06)	(0.07)	(0.02)	
S	ervices	0.47	0.75	0.77	0.68	
		(0.03)	(0.15)	(0.18)	(0.04)	

Std. Err. Clustered at Household Level. HH FE for all estimates.

HH CPI

	(1)	(2)	(3)	(4)
σ	0.64	0.60	0.64	0.60
	(0.02)	(0.02)	(0.02)	(0.02)
Food	-0.38	-0.38	-0.37	-0.36
	(0.02)	(0.02)	(0.02)	(0.02)
Housing	-0.14	-0.13	-0.14	-0.13
	(0.02)	(0.02)	(0.02)	(0.02)
Services	0.52	0.52	0.47	0.47
	(0.03)	(0.03)	(0.03)	(0.03)
Durables		2.74		2.75
		(0.06)		(0.06)
Time FE	Ν	Ν	Y	Y

Std. Err. Clustered at Household Level. HH FE for all estimates.

Mexico - Progresa

- Construct consumption categories from HH surveys.
- Use median price per village.
- Progresa: conditional cash transfer program, ≤750 Pesos/month.
- Instrument expenditure with eligibility for Progresa.
- For now, these categories:
 - Food (baseline),
 - ▶ Health & Hygiene (soap, cleaning, medical exp.,...),
 - Fuel & Energy (electricity, gas, carbon,...),
 - Durables (cooking utensils, furniture, cars, blankets,...).

Mexico - Progresa

$\log\left(\frac{\omega_{i,t}^{h}}{\omega_{food,t}^{h}}\right) = (1 - 1)^{-1}$	$(-\sigma) \log \left(\frac{p_{i,t}}{p_{food,t}} \right) + (\epsilon_i)$	$-\epsilon_{food})$ la	$\log C_t^h + \delta^h + \delta_{i,t} + \eta_{i,t}^h.$
	σ	0.84	
		(0.01)	
	Health & Hygiene	.41	
		(0.86)	
	Fuel & Energy	.33	
		(0.9)	
	Durables	1.57	
		(1.12)	
	First Stage		
	Eligibility	1.50	
	-	(.83)	

Std. Err. Clustered at Household Level. HH FE for all estimates. Pack