Fewer but Better: Sudden Stops, Firm Entry, and Financial Selection

Sînâ T. Ates

University of Pennsylvania

Felipe E. Saffie

University of Maryland

NBER meeting of the EFJK Growth Group

February 26, 2015

Persistent effects of crises point to permanent productivity losses.

- Persistent effects of crises point to permanent productivity losses.
- What is the effect of a sudden stop on productivity?

Productivity loss due to distortions in firm entry.

- Persistent effects of crises point to permanent productivity losses.
- What is the effect of a **sudden stop** on productivity?

Productivity loss due to distortions in firm entry.

1. Net entry is an important driver of productivity.

- Persistent effects of crises point to permanent productivity losses.
- What is the effect of a sudden stop on productivity?

Productivity loss due to distortions in firm entry.

- 1. Net entry is an important driver of productivity.
- 2. Start-ups need funding.

- Persistent effects of crises point to permanent productivity losses.
- What is the effect of a sudden stop on productivity?

Productivity loss due to distortions in firm entry.

- 1. Net entry is an important driver of productivity.
- 2. Start-ups need funding.

Question:

What is the contribution to productivity of the forgone entrants?

1. Entrants are **heterogeneous** and good ideas are scarce.

- 1. Entrants are **heterogeneous** and good ideas are scarce.
- 2. There is financial **selection** in the allocation of funds.

- 1. Entrants are **heterogeneous** and good ideas are scarce.
- 2. There is financial **selection** in the allocation of funds.

Mass (quantity) *vs.* Composition (quality) trade-off. Sudden stops lead to *fewer* start-ups, which are on average *better*.

- 1. Entrants are **heterogeneous** and good ideas are scarce.
- 2. There is financial **selection** in the allocation of funds.

Mass (quantity) *vs.* Composition (quality) trade-off. Sudden stops lead to *fewer* start-ups, which are on average *better*.

Is the mass-composition margin quantitatively important for the macroeconomic consequences of a sudden stop?

This Paper

1. Model:

- ▶ Real business cycle small open economy framework.
- Endogenous technological change.
- Project heterogeneity and financial selection.

This Paper

1. Model:

- ▶ Real business cycle small open economy framework.
- Endogenous technological change.
- Project heterogeneity and financial selection.

2. Firm level evidence of the selection mechanism:

- Chilean sudden stop.
- During the crisis entrants are *fewer* (40% lower entry rate), *but better* (9 *p.p.* more profitable).

This Paper

1. Model:

- ▶ Real business cycle small open economy framework.
- Endogenous technological change.
- Project heterogeneity and financial selection.

2. Firm level evidence of the selection mechanism:

- Chilean sudden stop.
- During the crisis entrants are *fewer* (40% lower entry rate), *but better* (9 *p.p.* more profitable).

3. Quantitative analysis:

- Medium-run: amplification and persistence.
- Long-run: no heterogeneity doubles productivity loss, 30% larger consumption equivalent welfare cost.

Persistent Effects of Crises:

- ▶ Motivation: Cerra and Saxena (2008), Reinhart and Rogoff (2014).
- Linking the short and long run: Comin and Gertler (2006), Queralto (2014), Gornemann (2014), Guerron-Quintana and Jinnai (2014).

Firm Heterogeneity and Entry:

- Short run: Bilbiie, Ghironi and Melitz (2012), Clementi, Khan, Palazzo and Thomas (2014).
- **Long run**: Akcigit and Kerr (2013).

Model

Model Overview: Standard Components

Model Overview: Endogenous Technological Change

Model Overview: Small Open Economy

► FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); \quad j \in [0,1]$$

► FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); \quad j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

▶ FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

Profits:

$$\Pi_j^d(s^t) \quad = \quad X_j^D(s^t) \left(p_j(s^t) - \frac{W(s^t)}{q_j(s^t)} \right)$$

▶ FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

Profits:

$$\Pi_j^d(s^t) \quad = \quad \frac{\Gamma(s^t)}{p_j(s^t)} \left(p_j(s^t) - \frac{W(s^t)}{q_j(s^t)} \right)$$

▶ FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

Bertrand Competition:

$$\Pi_j^d(s^t) = \frac{\Gamma(s^t)}{\frac{W(s^t)}{\hat{q}_j(s^t)}} \left(\frac{W(s^t)}{\hat{q}_j(s^t)} - \frac{W(s^t)}{q_j(s^t)} \right)$$

Sînâ T. Ates and Felipe E. Saffie

▶ FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

Bertrand Competition:

$$\Pi_j^d(s^t) = \frac{\Gamma(s^t)}{\frac{W(s^t)}{\tilde{q}_j(s^t)}} \left(\frac{W(s^t)}{\tilde{q}_j(s^t)} - \frac{W(s^t)}{q_j(s^t)} \right) = \frac{\sigma^d}{1 + \sigma^d} \Gamma(s^t)$$

► FGP

Unit elastic demand from final good producer for variety *j*:

$$X_j^D(s^t) = \frac{\Gamma(s^t)}{p_j(s^t)}$$

Linear production function:

$$X_j(s^t) = L_j(s^t)q_j(s^t); j \in [0,1]$$

Labor productivity and entry:

$$\underbrace{q_{j}(s^{t})}_{\text{Leader's Productivity}} = \underbrace{\tilde{q}_{j}(s^{t})}_{\text{Follower's Productivity}} \left(1 + \underbrace{\sigma^{d}}_{\text{Step Size}}\right)$$

Bertrand Competition:

$$\Pi_j^d(s^t) = \frac{\Gamma(s^t)}{\frac{W(s^t)}{\bar{q}_j(s^t)}} \left(\frac{W(s^t)}{\tilde{q}_j(s^t)} - \frac{W(s^t)}{q_j(s^t)} \right) = \frac{\sigma^d}{1 + \sigma^d} \Gamma(s^t)$$

Every leader of type $d \in \{H, L\}$ earns the same profits ($\sigma^H > \sigma^L$).

Sînâ T. Ates and Felipe E. Saffie

► Good Ideas are Scarce: $Prob(\sigma^d = \sigma^H) = z^{\nu}$, where $z \sim U[0, 1]$

• $\nu \ge 1$: Scarcity of drastic ideas

- ► Good Ideas are Scarce: $Prob(\sigma^d = \sigma^H) = z^{\nu}$, where $z \sim U[0, 1]$
- Financial intermediary observes ž:

$$\tilde{z} = \begin{cases} \tilde{z} = z & \text{with probability } \rho \\ \tilde{z} \sim U[0, 1] & \text{with probability } 1 - \rho \end{cases}$$

- $\nu \ge 1$: Scarcity of drastic ideas
- ▶ $\rho \in [0, 1]$ Accuracy, financial development

Sînâ T. Ates and Felipe E. Saffie

- ► Good Ideas are Scarce: $Prob(\sigma^d = \sigma^H) = z^{\nu}$, where $z \sim U[0, 1]$
- ► Financial intermediary observes *ž*:

$$\tilde{z} = \begin{cases} \tilde{z} = z & \text{with probability } \rho \\ \tilde{z} \sim U[0, 1] & \text{with probability } 1 - \rho \end{cases}$$

• Optimal strategy: cut-off $\bar{z}^*(s^t)$ on the signal \tilde{z} .

- $\nu \ge 1$: Scarcity of drastic ideas
- ▶ $\rho \in [0, 1]$ Accuracy, financial development

Sînâ T. Ates and Felipe E. Saffie

- ► Good Ideas are Scarce: $Prob(\sigma^d = \sigma^H) = z^{\nu}$, where $z \sim U[0, 1]$
- Financial intermediary observes ž:

$$\tilde{z} = \begin{cases} \tilde{z} = z & \text{with probability } \rho \\ \tilde{z} \sim U[0, 1] & \text{with probability } 1 - \rho \end{cases}$$

- Optimal strategy: cut-off $\bar{z}^*(s^t)$ on the signal \tilde{z} .
- Implied proportion of *H*-type in the entrant cohort:

$$\tilde{\mu}^{H}\bar{z}^{*}(s^{t})) = \underbrace{\frac{1}{\nu+1}}_{\substack{\text{Proportion if}\\ \text{random selection}}} \times \underbrace{\left[1 - \rho + \rho \frac{1 - \left(\bar{z}^{*}(s^{t})\right)^{\nu+1}}{1 - \bar{z}^{*}(s^{t})} \right]}_{\geq 1 \text{ for } \nu > 0}$$

- $\nu \ge 1$: Scarcity of drastic ideas
- ▶ $\rho \in [0,1]$ Accuracy, financial development

Sînâ T. Ates and Felipe E. Saffie

Financial Intermediary Decision Problem

 λ : Entry probability.

κ: Cost in units of labor of enacting a project.

Values

Financial Intermediary Decision Problem

 \Rightarrow Direct effect of sudden stop

 λ : Entry probability.

κ: Cost in units of labor of enacting a project.

- \Rightarrow Direct effect of sudden stop
- \Rightarrow Indirect effect of sudden stop

κ: Cost in units of labor of enacting a project.

Values

 $[\]lambda$: Entry probability.

Aggregate Productivity

We can rewrite the production function as:

$$Y(s^{t}) = \underbrace{e^{\alpha \int_{0}^{1} \ln q_{j}(s^{t}) dj}}_{(A(s^{t}))^{\alpha}} \left[\left(L^{H}(s^{t}) \right)^{\mu(s^{t})} \left(L^{L}(s^{t}) \right)^{1-\mu(s^{t})} \right]^{\alpha} \left(K(s^{t-1}) \right)^{1-\alpha}$$

Aggregate Productivity

▶ HH ▶ CM ▶ EQ

We can rewrite the production function as:

$$Y(s^{t}) = \underbrace{e^{\alpha \int_{0}^{1} \ln q_{j}(s^{t}) dj}}_{(A(s^{t}))^{\alpha}} \left[\left(L^{H}(s^{t}) \right)^{\mu(s^{t})} \left(L^{L}(s^{t}) \right)^{1-\mu(s^{t})} \right]^{\alpha} \left(K(s^{t-1}) \right)^{1-\alpha}$$

Productivity Growth:

$$\frac{A(s^t)}{A(s^{t-1})} = \left(\left(1 + \sigma^H\right)^{\tilde{\mu}(s^t)} \left(1 + \sigma^L\right)^{1 - \tilde{\mu}(s^t)} \right)^{\lambda(1 - \bar{z}(s^t))}$$

Aggregate Productivity

▶ HH ▶ CM ▶ EQ

We can rewrite the production function as:

$$Y(s^{t}) = \underbrace{e^{\alpha \int_{0}^{1} \ln q_{j}(s^{t}) dj}}_{(A(s^{t}))^{\alpha}} \left[\left(L^{H}(s^{t}) \right)^{\mu(s^{t})} \left(L^{L}(s^{t}) \right)^{1-\mu(s^{t})} \right]^{\alpha} \left(K(s^{t-1}) \right)^{1-\alpha}$$

Productivity Growth:

$$\frac{A(s^t)}{A(s^{t-1})} = \left(\left(1 + \sigma^H \right)^{\tilde{\mu}(s^t)} \left(1 + \sigma^L \right)^{1 - \tilde{\mu}(s^t)} \right)^{\lambda(1 - \bar{z}(s^t))}$$

 \Rightarrow Composition effect

We can rewrite the production function as:

$$Y(s^t) = \underbrace{e^{\alpha \int_0^1 \ln q_j(s^t) dj}}_{(A(s^t))^{\alpha}} \left[\left(L^H(s^t) \right)^{\mu(s^t)} \left(L^L(s^t) \right)^{1-\mu(s^t)} \right]^{\alpha} \left(K(s^{t-1}) \right)^{1-\alpha}$$

Productivity Growth:

$$\frac{A(s^t)}{A(s^{t-1})} = \left(\left(1 + \sigma^H \right)^{\tilde{\mu}(s^t)} \left(1 + \sigma^L \right)^{1 - \tilde{\mu}(s^t)} \right)^{\lambda (1 - \bar{z}(s^t))}$$

- \Rightarrow Composition effect
- \Rightarrow Mass effect

Empirical Results

▶ Reduced form evidence of the *mass-composition* margin.

▶ Reduced form evidence of the *mass-composition* margin.

Chile as an application:

1. Small open economy.

▶ Reduced form evidence of the *mass-composition* margin.

Chile as an application:

- 1. Small open economy.
- 2. Plant level data (ENIA).
 - All manufacturing plants that employ at least ten individuals.
 - ▶ Information on revenues, costs, employment, etc between 1995 and 2007.
 - Unique plant identifiers allows identification of the entry year

▶ Reduced form evidence of the *mass-composition* margin.

Chile as an application:

- 1. Small open economy.
- 2. Plant level data (ENIA).
 - All manufacturing plants that employ at least ten individuals.
 - ▶ Information on revenues, costs, employment, etc between 1995 and 2007.
 - Unique plant identifiers allows identification of the entry year

3. Exogeneous sudden stop.

- August 1998: Russia defaulted on domestic debt and declared a moratorium on foreign creditors.
- ▶ Interest rate spread rose by 270 bp the week after the default.
- ▶ Non FDI financial flows decreased by more than 40%.

▶ Reduced form evidence of the *mass-composition* margin.

Chile as an application:

- 1. Small open economy.
- 2. Plant level data (ENIA).
 - All manufacturing plants that employ at least ten individuals.
 - ▶ Information on revenues, costs, employment, etc between 1995 and 2007.
 - Unique plant identifiers allows identification of the entry year

3. Exogeneous sudden stop.

- August 1998: Russia defaulted on domestic debt and declared a moratorium on foreign creditors.
- Interest rate spread rose by 270 bp the week after the default.
- ▶ Non FDI financial flows decreased by more than 40%.

Were firms born during the sudden stop fewer, but better?

Fewer...

Figure: Mass (quantity)

▶ Mass: Firm entry drops on average by 40% during the crisis.

Summary:

- 1. The average firm born during crisis is 9*pp* more profitable.
- 2. The average firm born during crisis has higher labor productivity.
- 3. The average firm born during crisis accumulates capital faster.
- 4. The average firm born during crisis does not face higher exit risk.
- 5. Even during tranquil times, larger cohorts at the industry level are associated with lower average profitability.

Quantitative Exploration

Parameter	Symbol	Value	Main identification
Patience parameter	β	0.9975	$\beta = (1+a)^{\gamma} / \bar{R}$
Success probability	λ	5.36%	Entry rate
Enaction cost	κ	6.65%	Entry cost
Labor disutility level	Θ_l	1.73	Working time
Screening accuracy	ρ	69.7%	Fast exit
Scarcity	ν	4.51	Growth
Capital adjustment cost	φ	20	Investment volatility

Target	Model	Data	Expression
Entry rate	2.71%	2.71%	$\lambda \left(1-ar{z} ight)$
Entry Cost	12.1%	12.1%	$\kappa(w/y)$
Working time	33.0%	33.0%	L
Fast exit	15.0%	15.0%	$(1- ho)ar{z}$
Growth	0.62%	0.62%	$a = \left(\left(1 + \sigma^{H}\right)^{\mu^{H}} \left(1 + \sigma^{L}\right)^{1 - \mu^{H}} \right)^{\lambda(1 - \bar{z})} - 1$

▶ Ext. Calibrated Parameters: In accordance with SOE-RBC literature.

Parameter	Symbol	Value	Main identification
Patience parameter	β	0.9975	$\beta = (1+a)^{\gamma} / \bar{R}$
Success probability	λ	5.36%	Entry rate
Enaction cost	κ	6.65%	Entry cost
Labor disutility level	Θ_l	1.73	Working time
Screening accuracy	ρ	69.7%	Fast exit
Scarcity	ν	4.51	Growth
Capital adjustment cost	φ	20	Investment volatility

Target	Model	Data	Expression
Entry rate	2.71%	2.71%	$\lambda \left(1-ar{z} ight)$
Entry Cost	12.1%	12.1%	$\kappa(w/y)$
Working time	33.0%	33.0%	L
Fast exit	15.0%	15.0%	$(1- ho)ar{z}$
Growth	0.62%	0.62%	$a = \left(\left(1 + \sigma^H \right)^{\mu^H} \left(1 + \sigma^L \right)^{1 - \mu^H} \right)^{\lambda(1 - z)} - 1$

▶ Ext. Calibrated Parameters: In accordance with SOE-RBC literature.

Parameter	Symbol	Value	Main identification
Patience parameter	β	0.9975	$\beta = (1+a)^{\gamma} / \bar{R}$
Success probability	λ	5.36%	Entry rate
Enaction cost	κ	6.65%	Entry cost
Labor disutility level	Θ_l	1.73	Working time
Screening accuracy	ρ	69.7%	Fast exit
Scarcity	ν	4.51	Growth
Capital adjustment cost	φ	20	Investment volatility

Target	Model	Data	Expression
Entry rate	2.71%	2.71%	$\lambda \left(1-ar{z} ight)$
Entry Cost	12.1%	12.1%	$\kappa(w/y)$
Working time	33.0%	33.0%	L
Fast exit	15.0%	15.0%	$(1- ho)ar{z}$
Growth	0.62%	0.62%	$a = \left(\left(1 + \sigma^H \right)^{\mu^H} \left(1 + \sigma^L \right)^{1 - \mu^H} \right)^{\lambda(1 - z)} - 1$

▶ Ext. Calibrated Parameters: In accordance with SOE-RBC literature.

Validating the Model

Figure: Non Targeted Macro Series

Two additional models for comparison with baseline model (*Base*):

1. Exogenous Growth Model (Exo):

- ▶ No entry: productivity grows at a constant and exogenous rate.
- ▶ No long-run cost: return to the original path after a shock.
- 2. No Heterogeneity Model (*NoHet*):
 - Only one step size: homogeneous entry, no selection.
 - Long-run cost: back to a parallel but lower path.

Same common parameters and same long run growth.

IRF: Mass and Composition

Figure: 33 basis point increase in interest rate.

The Importance of Heterogeneity and Selection

Figure: The Impact of Selection.

- 1. *Exo*: No long-run cost by construction.
- 2. *Base* versus *Exo*: Long-run cost is 1/3 of welfare cost.
- 3. NoHet versus Base: 2 times higher long-run cost. 30% higher welfare cost.

▶ LRC

Financial Development

Figure: Financial Development.

- 1. i) **Baseline**: $\rho = 70\%$ ii) High: $\rho = 91\%$ iii) Low: $\rho = 49\%$.
- 2. *Lower ρ*: *more* medium-run amplification and persistence, *higher* long-run cost and *lower* short-run impact.

- 1. Tractable framework for studying heterogeneity and financial selection in a dynamic stochastic small open economy model.
- 2. Firm level evidence of novel *mass-composition* trade-off: Cohorts born during the Chilean sudden stop were *fewer, but better*.
- 3. Heterogeneity and selection are quantitatively important:
 - 3.1 No heterogeneity doubles the long-run cost.
 - 3.2 No heterogeneity increases the welfare cost by 30%.
- 4. Financial development introduces a trade-off between short-run impact, and long-run cost.

APPENDIX

Representative Final Good Producer

Intermediate inputs and capital are combined to produce the final good:

$$\ln Y(s^{t}) = \alpha \int_{0}^{1} \ln X_{j}^{D}(s^{t}) dj + (1 - \alpha) \ln K^{D}(s^{t-1})$$

Working capital constraint on intermediate goods.

$$\max_{K(s^{t-1}), \left\{X_j^{D}(s^{t})\right\}_{j \in [0,1]}} \left\{ Y(s^{t}) - \left(1 + \underbrace{\eta(R(s^{t}) - 1)}_{\text{Cost wedge}}\right) \int_0^1 X_{j,t}^{D} p_j(s^{t}) dj - K^{D}(s^{t-1}) r(s^{t}) \right\}$$

Demand for variety *j*:

$$X_j^D(s^t) = \frac{\alpha Y(s^t)}{p_j(s^t) \left(1 + \eta(R(s^t) - 1)\right)} \equiv \frac{\Gamma(s^t)}{p_j(s^t)}$$

- η : Fraction of intermediate expenditure to be held as working capital.
- Final good is the numeraire.

Sînâ T. Ates and Felipe E. Saffie

Value of a type *d* product line:

$$V^{d}(s^{t}) = \underbrace{(1-\tau)\Pi^{d}(s^{t})}_{\text{After-tax Profits}} + E \left[\underbrace{\underline{m(s^{t}, s_{t+1})}_{\text{Stochastic Discount}} \underbrace{(1-\lambda M(s^{t}, s_{t+1}))}_{\text{Survival Probability}} V^{d}(s^{t}, s_{t+1}) | s^{t} \right]$$

τ: Corporate tax.

 $M(s^t, s_{t+1})$: Mass of projects enacted.

 λ : Entry probability.

 $m(s^t, s_{t+1})$: Stochastic discount factor of the household.

$$\max_{\left\{B(s^{t}), C(s^{t}), L(s^{t}), I(s^{t})\right\}_{t=0}^{\infty}} \sum_{s=0}^{\infty} \sum_{s^{t}} \beta^{t} \pi(s^{t}) \frac{1}{1-\gamma} \left(C(s^{t}) - \Theta_{l}A(s^{t}) \left(L(s^{t})\right)^{v}\right)^{1-\gamma}$$

subject to:

$$C(s^{t}) \leq W(s^{t})L(s^{t}) + r(s^{t})K(s^{t-1}) + B(s^{t-1})R(s^{t-1}) + T(s^{t}) - I(s^{t}) - B(s^{t}) - \psi(\bullet)$$

where

$$I(s^t) = K(s^t) - (1-\delta)K(s^{t-1}) + \Phi(\bullet)$$

As in Neumeyer and Perri (2005):

- ▶ Preferences: Greenwood, Hercowitz, and Huffman (1988).
- Bond holding costs:

$$\Psi(B(s^t), Y(s^t)) = \frac{\psi}{2}Y(s^t)\left(\frac{B(s^t)}{Y(s^t)} - \bar{b}\right)^2$$

Capital adjustment costs:

$$\Phi(K(s^{t-1}), K(s^t)) = \frac{\phi}{2}K(s^{t-1}) \left[\frac{K(s^t)}{K(s^{t-1})} - (1+\bar{g})\right]^2$$

Sînâ T. Ates and Felipe E. Saffie

Closing the Model

- 1. Representative household as in Neumeyer and Perri (2005)
- **2**. The interest rate $R(s^t)$:

$$\ln\left(\frac{R(s^t)}{\bar{R}}\right) = \rho_R \ln\left(\frac{R(s^{t-1})}{\bar{R}}\right) + \sigma_s \epsilon(s^t)$$

3. Net exports:

$$NX(s^t) = Y(s^t) - C(s^t) - I(s^t) - \Psi(\bullet)$$

4. Debt position of the country:

$$D(s^t) = B(s^{t-1}) - \eta H(s^t) - (1 - \overline{z}(s^t))\kappa W(s^t)$$

Working Capital and Project Enaction

5. Composition of the intermediate good producers:

$$\mu(s^t) = \mu(s^{t-1}) + \lambda(1 - \bar{z}(s^t)) \left(\tilde{\mu}(\bar{z}(s^t)) - \mu(s^{t-1}) \right)$$

Sînâ T. Ates and Felipe E. Saffie

Equilibrium Definition

Let a lower case variable, e.g. $e(s^t) = \frac{E(s^t)}{A(s^t)}$, denote normalized variables where

$$\ln(A(s^t)) \equiv \int_0^1 \ln q_j(s^t) dj.$$

This transformation renders the model stationary.

Equilibrium

A competitive equilibrium for this small open economy, given initial conditions:

- 1. Households optimally choose $\{c(s^t), b(s^t), k(s^t), L(s^t)\}$.
- 2. Final good producers optimally choose $\left\{\left\{x_j^D(s^t)\right\}_{j\in[0,1]}, k^D(s^{t-1})\right\}$.
- 3. Intermediate good producers optimally choose $\{x_j(s^t), p_j(s^t), L_j(s^t)\}_{j \in [0,1]}$.
- 4. Financial intermediary optimally chooses $\{\bar{z}(s^t)\}$;
- 5. Government budget is balanced every period.
- 6. Labor, asset, capital, final and intermediate good markets clear.
- 7. $\{q_j(s^t), v_j(s^t)\}_{j \in [0,1]}$ and $\{\mu(s^t), \tilde{\mu}(s^t)\}$ evolve according to their law of motion.

Back

Probability of a Superstar

• **Superstar:** one standard deviation above average $P_t = \frac{Revenue_t - Cost_t}{Revenue_t}$.

$$Pr(\text{Superstar} = 1|\text{age} = 1) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}} \quad \text{where} \quad x_i'\beta = \alpha + \alpha_j + \alpha_r + \beta \ln(L_{i,0}) + \gamma_{\text{cohort}} + u_{i,t}$$

Probability of a Superstar

• **Superstar:** one standard deviation above average $P_t = \frac{Revenue_t - Cost_t}{Revenue_t}$.

$$Pr(\text{Superstar} = 1|\text{age} = 1) = \frac{e^{x_i^{\prime}\beta}}{1 + e^{x_i^{\prime}\beta}} \quad \text{where} \quad x_i^{\prime}\beta = \alpha + \alpha_j + \alpha_r + \beta \ln(L_{i,0}) + \gamma_{\text{cohort}} + u_{i,t}$$

	(1) Suj	(2) perstar at ag	(3) je 1	(4) Superstar at age 0	(5) Superstar at age 2
Crisis Dummy	0.540*** (0.110)			0.295*** (0.0970)	0.312** (0.135)
In Crisis		0.697*** (0.134)			
After Crisis		0.240* (0.126)			
entry _{j,0}			-1.575** (0.803)		
$\ln(L_{i,0})$	0.222*** (0.0527)	0.216*** (0.0526)	0.209*** (0.0521)	0.146*** (0.0436)	0.153** (0.0605)
Observations	3197	3197	3197	4220	2618

Standard errors in parentheses, bootstrapped (250), * p < 0.10, ** p < 0.05, *** p < 0.01

Sînâ T. Ates and Felipe E. Saffie

Cohort Effect, Age 1

Figure: Logit Estimation by Cohort

Main Equation:

*Profitability*_{*i*,*t*} = $\alpha + \beta X_{i,t} + \gamma Z_i + \bar{\gamma}$ *Born in Crisis* + $\mu_i + \epsilon_{i,t}$

- ► *X*_{*i*,*t*}: Firm level variables (e.g: size) and macro variables (e.g: unemployment).
- *Z_i*: Initial conditions (e.g: size at entry) and industry and region controls.
- ► *Born in Crisis* is 1 if the firm was born in 1998 2000. Main focus is to estimate $\overline{\gamma}$.

Estimation by Hausman and Taylor (1981).

	(1) P _{i,t}	(2) P _{i,t}	(3) P _{i,t}	(4) P _{i,t}	(5) $\log \frac{Y_{i,t}}{L_{i,t}}$	$\overset{(6)}{\frac{K_{i,t}-K_{i,t-1}}{K_{i,t}}}$
Crisis dummy	0.0877** (0.0423)			0.0814*** (0.0313)	0.325** (0.136)	0.0527** (0.0233)
In Crisis		0.0861** (0.0397)				
After Crisis		0.00952 (0.0241)				
avg. Entry _{j,t0}			-0.682** (0.337)			
Relative effect at means	-31.2%	-31.3%	_	-28.4%	-32.5%	-29.2%
Sargan-Hansen (p) Observations	0.4545 16834	0.2333 16834	0.1230 16834	0.0476 16371	0.0395 15583	0.7702 16388

Controls: Macro controls (unemp. manuf. prod. labor cost, PPI), Elec. cons., labor, capital, age, initial HHI, initial workers, industry, and geography.

Fewer but Better: 9 *p.p.* more profitable

Fewer but Better

Sînâ T. Ates and Felipe E. Saffie

Standard errors in parentheses (bootstrapped (250), clustered by firm)

* p < 0.10, ** p < 0.05, *** p < 0.01

Regressions (4) and (5) use initial capital to control for entry size instead of workers.

Appendix 28

Back

Ex post selection?

 $\begin{aligned} h_{mn}\left(t, \mathbf{X}_{i}\right) &= h_{0mn}\left(t\right) \exp\left[\beta_{1}\log(elec_{it}) + \beta_{2}\log\left(worker_{it}\right) \right. \\ &+ \beta_{3}\log\left(worker_{i0}\right) + \beta_{4}\log(elec_{i0}) + \beta_{5}\log(prft_{jt}) + \gamma \cdot industry\right]^{1} \end{aligned}$

- 1. Proportional hazard model is not rejected.
- 2. Firms born in crisis do not die more: ex ante Selection!

Back

¹Stratified by region (m) and period (n)

	D1.	
	- раск	
ς.		

Parameter	Symbol	Value	Source
Capital share	$1 - \alpha$	0.32	Mendoza (1991)
Elasticity of Substitution $(1/\gamma)$	γ	2	Mendoza (1991)
Frisch Elasticity $(1/(1-\chi))$	χ	1.455	Mendoza (1991)
Working Capital	η	1	Neumeyer and Perri (2005)
Debt adjustment cost	ψ	0.0001	Low
Depreciation rate	δ	1.94%	Bergoeing et al (2002)
Corporate tax rate	τ	0.17	Data
Long-run interest rate	R	1.015	Chilean Central Bank Data
Persistence of interest rate	ρ_r	0.836	Chilean Central Bank Data
Dispersion of interest rate shock	σ_r	0.33%	Chilean Central Bank Data
Long-run debt to GDP ratio	\bar{b}	4 * (-0.44)	Chilean Central Bank Data
Low profitability $(\sigma^L/(1+\sigma^L))$	σ^L	14.5%	ENIA
High profitability $(\sigma^H/(1+\sigma^H))$	σ^{H}	55.5%	ENIA

► In accordance with SOE-RBC literature.

Figure: Monthly Manufacturing Production (log)