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Abstract

A fruitful emerging literature reveals that shocks to uncertainty can explain asset re-
turns, business cycles and financial crises. The literature equates uncertainty shocks with
changes in the variance of an innovation whose distribution is common knowledge. But
how do such shocks arise? This paper argues that people do not know the true distribution
of macroeconomic outcomes. Like Bayesian econometricians, they estimate a distribution.
Using real-time GDP data, we measure uncertainty as the conditional standard deviation
of GDP growth, which captures uncertainty about the distributions estimated parameters.
When the forecasting model admits only normally-distributed outcomes, we find small,
acyclical changes in uncertainty. But when agents can also estimate parameters that reg-
ulate skewness, uncertainty fluctuations become large and counter-cyclical. The reason
is that small changes in estimated skewness whip around probabilities of unobserved tail
events (black swans). The resulting forecasts resemble those of professional forecasters.
Our uncertainty estimates reveal that revisions in parameter estimates, especially those
that affect the risk of a black swan, explain most of the shocks to uncertainty.



A fruitful emerging literature has taught us that shocks to uncertainty can explain

asset price fluctuations, business cycles and financial crises. But these theories would

have stronger predictive power if we understood where these shocks come from. Instead,

researchers typically assume that agents become more uncertain because they suddenly

know, for certain, that future economic shocks will be more volatile. But real people do

not know what the true distribution of economic outcomes is, when it changes, or by

how much. They observe economic information and, conditional on that information, esti-

mate the probabilities of alternative outcomes. Much of their uncertainty comes from not

knowing if their estimates are correct. This paper argues that equating uncertainty with

stochastic volatility misses most uncertainty shocks. We use real-time data and develop

a change-of-variable technique for non-linear Bayesian forecasting to measure the uncer-

tainty (conditional standard deviation) that arises from not knowing the true model. A

combination of statistical and probability theory results explain why uncertainty is more

variable and more counter-cyclical than stochastic volatility alone. The results uncover the

following recipe for large uncertainty shocks: A long sequence of mild positive realizations,

followed by one or more negative observations causes the forecaster’s skewness estimate

to become more negative. When skewness dips, the probability of left-tail events (black

swans) surges. Because black swan events are so far from the mean forecast, changes in

their probability have an outsized effect on the standard deviation, which is uncertainty.

In short, it is not the variance of the realized data, but rather the time-varying risk of the

unobserved black swans that explains most fluctuations in uncertainty.

We illustrate and quantify these uncertainty effects with a forecasting model that has

two key features: 1) Outcomes are not conditionally normally distributed, and 2) Agents

use real-time data to re-estimate parameters that govern the distribution’s higher moments,

such as skewness. For each quarter, we use the vintage of U.S. (real) GDP growth data

that was available at that date to estimate the forecasting model, update the forecast,

and compute uncertainty. We define macroeconomic uncertainty as the standard deviation

of next-period GDP growth yt+1, conditional on all information observed through time t:

Std[yt+1|It]. We use this definition because in most models, this is the theoretically-relevant

moment. When there is an option value of waiting, forecasts with a higher conditional

variance (larger expected forecast error) raise the value of waiting to observe additional
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information. We use the resulting estimates to study how uncertainty changes and why.

This conceptually simple econometric exercise makes three contributions. (1) It pro-

vides a unified framework to explore the origins of and connections between uncertainty

shocks, news shocks (changes in the forecasts of future outcomes) and disaster risk. These

strands of the literature have evolved separately and have all suffered from the criticism

that the right beliefs can rationalize almost any economic outcome. Allowing all three

shocks to arise from observed macro outcomes offers the prospect of a unified information-

based macro theory and a way to discipline the shocks to beliefs. (2) The results teach

us about a natural amplification mechanism. They show how small economic events can

trigger large changes in beliefs. It is not obvious that parameter learning would amplify

shocks. Because most macro data is announced only quarterly and is highly persistent,

parameter learning is a slow, gradual process. Thus, one might think that learning would

make uncertainty shocks smoother than changes in volatility. Instead, we find that the op-

posite is true. This finding complements models that rely on large, counter-cyclical shocks

to uncertainty to generate interesting economic and financial effects. (3) The results are

consistent with the observed forecast data, in particular with the puzzling forecast bias

observed in professional forecasts of GDP growth. Our theoretical results use a change-of-

measure argument to prove that the combination of parameter uncertainty and skewness

produces such a bias. When the estimated model matches the degree of skewness observed

in the GDP growth data, it also matches the size of the forecast bias. The finding resolves

a puzzle in the forecasting literature. It also produces beliefs that look similar to what an

ambiguity-averse agent might report. But, just as importantly, this evidence suggests that

the model accurately describes how people form beliefs.

The key assumption of the model is that agents use everyday events to revise their

beliefs about probabilities over the entire state space. This is what allows small changes

in data to trigger large changes in black swan probabilities and sizeable fluctuations in

uncertainty. The idea that data in normal times would change how we assess tail risk

might strike one as implausible. But there is an abundance of evidence that perceptions

of tail risks vary on a daily basis.1 If we think that tail risks fluctuate in times when

no extreme events occur, then either beliefs are random and irrational, or there is some

1See data based on index options from Gao and Song (2013) or on firm cross-section from Kelley and
Jiang (2014).
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information in the everyday data that agents use to update their beliefs.

To build up intuition for how parameter learning creates uncertainty shocks, we start

(section 2) with one of the simplest forecasting models: a linear model of GDP growth

with a continuous hidden state and homoskedastic innovations. We hold the volatility of

the innovations fixed so that we can isolate the effects of parameter learning in generating

uncertainty shocks. Each period t, our forecaster observes time-t history of GDP growth

and uses Bayesian updating and this complete history of GDP data as seen at time t to

estimate her model and forecast GDP growth in t + 1. In such a setting, an agent with

known model parameters faces no uncertainty shocks because the estimated model is a

homoskedastic one. But the forecaster with parameter uncertainty experiences changes in

the conditional variance of her forecasts. These are uncertainty shocks. While this linear

model illustrates the possibility that parameter learning can create uncertainty shocks,

those shocks are small and not counter-cyclical.

Next (section 3), we relax the assumption that the forecasting model generates normally

distributed outcomes. Instead, we use a linear model with an exponential twist. The

parameters of the exponential twist regulate the conditional skewness of outcomes. Because

skewness is hard to learn in small samples, learning does not converge quickly. The resulting

uncertainty series remains both volatile and counter-cyclical throughout the sample. The

main source of uncertainty fluctuations is something we call “black swan risk,” which is

the conditional probability of an extreme growth realization that has not been observed.

When the forecasting model implies a normal distribution of outcomes, the probability of

an n-standard-deviation event is constant. But when we allow our forecaster to estimate a

non-normal model, the probability of negative outliers can fluctuate. A new piece of data

can lead the forecaster to estimate more negative skewness, which makes extreme negative

outcomes more likely and raises uncertainty. When we apply this model to GDP data, we

find that 75% of the variation in uncertainty can be explained by changes in the estimated

probability of black swans.

The skewed forecasting model appears to be a plausible model of beliefs formation

because it matches an important feature of professional economic forecasts: The average

forecast is nearly half a percentage point lower than the average GDP growth realization.

This bias has been a puzzle in the forecasting literature because an unbiased forecaster
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with a linear model and more than sixty years of data should not make such large sys-

tematic errors. We offer a new explanation for this forecasting puzzle: Forecast bias arises

from rational Bayesian beliefs updating when forecasters believe outcomes have negative

skewness and are uncertain about model parameters. While this bias might prompt one

to use another estimation procedure, keep in mind that the objective in this paper is to

describe a belief-formation process. The fact that our model has forecasts that are just

as biased as professional forecasts suggests that Bayesian estimation might offer a good

approximation to human behavior.

Section 3.6 investigates how volatility changes and parameter learning interact. To

do that, we estimate the same non-normal model as before, but with two volatility hid-

den Markov states. Adding stochastic volatility makes uncertainty shocks 1/3rd larger

on average. It also helps the model’s performance in two key respects. First, it prevents

a downward trend in uncertainty. When all parameters are believed to be constant, un-

certainty trends down partly because parameters are being more precisely estimated over

time, but mostly because the 70s and early 80s were much more volatile times for real

GDP than the 90s and 2000s. So, the forecaster revises down the variance parameters over

time and uncertainty trends down. When there are two (unobserved) volatility regimes,

the forecaster infers that the 70s and 80s were likely a high volatility regime and that the

regime switches in the mid 80s. Second, this model produces a larger surge in uncertainty

during the financial crisis. With constant volatility, uncertainty rises slightly. But upon

seeing a few pieces of highly-volatile data, the stochastic volatility forecaster quickly shifts

probability weight to the high-volatility regime, causing uncertainty to spike.

Section 4 compares our model-based uncertainty series to commonly-used uncertainty

proxies and find that it is less variable, but more persistent than the proxy variables. The

most highly correlated proxies are: Baker, Bloom, and Davis (2013) policy uncertainty

index, the price of a volatility option (VIX), and Jurado, Ludvigson, and Ng (2013) macro

uncertainty index.

Our message is that understanding and measuring economic uncertainty requires re-

laxing the full-information assumptions of rational expectations econometrics. In such a

full-information world, agents are assumed to know what the true distribution of economic

outcomes is. Their only uncertainty is about what realization will be drawn from a known
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distribution. To measure the uncertainty of such a forecaster, it makes sense to estimate a

model on as much data as possible, take the parameters as given, and estimate the condi-

tional standard deviation of model innovations. This is what stochastic volatility estimates

typically are. But in reality, the macroeconomy is not governed by a simple, known model

and we surely do not know its parameters. Instead, our forecast data (from the Survey

of Professional Forecasters or SPF) suggests that forecasters estimate simple models to

approximate complex processes and constantly use new data to update beliefs. Forecasters

are not irrational. They simply do not know the economy’s true data-generating process.

In such a setting, uncertainty and volatility can behave quite differently. Our findings teach

us that one important source of financial and business cycle fluctuations may be changes

in beliefs that come from learning about the distribution of economic outcomes.

Related Literature A new and growing literature uses uncertainty shocks as a driving

process to explain business cycles (e.g., Bloom, Floetotto, Jaimovich, Sapora-Eksten, and

Terry (2012), Basu and Bundick (2012), Christiano, Motto, and Rostagno (2014), Ilut and

Schneider (2014), Bidder and Smith (2012)), investment dynamics (Bachmann and Bayer,

2014), asset prices (e.g., Bansal and Shaliastovich (2010), Pastor and Veronesi (2012)), or

to explain banking panics (Bruno and Shin, 2014). These papers are complementary to

ours. We explain where uncertainty shocks come from, while these papers trace out the

economic and financial consequences of the shocks.

A small set of related theories explain why uncertainty fluctuates using nonlinearities

in a production economy (Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum, Schaal,

and Taschereau-Dumouchel (2014), Jovanovic (2006)), active experimentation (Bachmann

and Moscarini (2012)) or multiple equilibria (Bacchetta, Tille, and van Wincoop (2012)).

Bachmann and Bayer (2013) support this endogenous uncertainty approach by arguing

that uncertainty Granger-causes recessions, but not the other way around. In Nimark

(forthcoming), the key assumption is that only extreme events are reported. Thus, the

publication of a signal reveals that the true event is extreme, which raises uncertainty.

Our model differs because it does not depend on an economic environment, only on a

forecasting procedure. Our uncertainty shocks arise from agents applying Bayes’ law when

parameters are unknown. Our paper also contributes a framework that connects uncer-

tainty with disaster risk and news shocks, unifying the literature on the role of beliefs in
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macroeconomics.

Our exercise also connects with a set of papers that measure uncertainty shocks in var-

ious ways. Bloom (2009), Baker, Bloom, and Davis (2013), Stock and Watson (2012),

Jurado, Ludvigson, and Ng (2013), Fernandez-Villaverde, Guerron-Quintana, Kuester,

and Rubio-Ramirez (2013), Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and

Uribe (2011), Nakamura, Sergeyev, and Steinsson (2012), Justiniano and Primiceri (2008),

Born, Peter, and Pfeifer (2013) document the properties of uncertainty shocks in the U.S.

and in emerging economies, while Bachmann, Elstner, and Sims (2013) use forecaster data

to measure ex-ante and ex-post uncertainty in Germany. While our paper also engages in

a measurement exercise, we primarily contribute a quantitative model of why such shocks

arise.

The idea that the probability of rare events is time-varying also appears in models of

discrete, rare events (e.g., Rietz (1988), Barro (2006), and Wachter (2013) for asset pricing

and Gourio (2012) for business cycles). However, these papers assume that there is a time-

varying probability of a rare event and derive the consequences of that for asset prices. Our

paper is a complement to this literature; it describes a learning process that can generate

the necessary volatile, counter-cyclical beliefs about the probability of extreme, negative

outcomes.

Our approach is inspired by two preceding papers that both estimate Bayesian fore-

casting models to describe agents’ beliefs. Cogley and Sargent (2005) use such a model to

understand the behavior of monetary policy, while Johannes, Lochstoer, and Mou (2014)

estimate a model of consumption growth to capture properties of asset prices. While the

concept is similar, our use of a non-normal model, our measurement of uncertainty, and

our study of the effects of learning about skewness distinguish our work from its predeces-

sors. This approach is also motivated by Chen, Dou, and Kogan (2013), which critiques

models that give agents knowledge of parameters that econometricians cannot identify and

Hansen’s Ely Lecture (Hansen, 2007) which advocates modeling agents who struggle with

real-time model selection. In the spirit of Hansen (2014), our way of modeling economic

forecasters can be considered an example of inside uncertainty.
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1 Definitions and Data Description

A model, denoted M, has a vector of parameters θ. Together, M and θ determine a

probability distribution over a sequence of outcomes yt. Let yt ≡ {yτ}tτ=1 denote a series

of data (in our exercises, the GDP growth rates) available to the forecaster at time t. In

every model, agent i’s information set Iit will include the model M and the history yt of

observations up to and including time t. The state St, innovations, and the parameters θ

are never observed.

The agent, whom we call a forecaster and index by i, is not faced with any economic

choices. He simply uses Bayes’ law to forecast future outcomes. Specifically, at each date

t, the agent conditions on his information set Iit and forms beliefs about the distribution

of yt+1. We call the expected value E (yt+1|Iit) an agent i’s forecast and the square root of

the conditional variance V ar (yt+1|Iit) is what we call uncertainty. Forecasters’ forecasts

will differ from the realized growth rate. This difference is what we call a forecast error.

Definition 1. An agent i’s forecast error is the distance, in absolute value, between the

forecast and the realized growth rate: FEi,t+1 = |yt+1 − E[yt+1|Iit]|.

We date the forecast error t + 1 because it depends on a variable yt+1 that is not

observed at time t. Similarly, if there are Nt forecasters at date t, an average forecast error

is

F̄Et+1 =
1

Nt

Nt∑
i=1

FEi,t+1. (1)

We define forecast errors and uncertainty over one-period-ahead forecasts because that is

the horizon we focus on in this paper. But future work could use these same tools to

measure uncertainty at any horizon.

Definition 2. Uncertainty is the standard deviation of the time-(t + 1) GDP growth,

conditional on an agent’s time-t information: Uit =

√
E
[

(yt+1 − E[yt+1|Iit])2
∣∣∣ Iit].

Volatility is the same standard deviation as before, but now conditional on the history

yt, the model M and the parameters θ:

Definition 3. Volatility is the standard deviation of the unexpected innovations in yt+1,

taking the model and its parameters as given:
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Vt =

√
E
[

(yt+1 − E[yt+1|yt, θ,M])2
∣∣∣ yt,M, θ

]
.

If an agent knew the parameters (i.e., if Iit = {yt,M, θ}), then uncertainty and volatil-

ity would be identical. Thus, the only source of uncertainty shocks would be volatility

shocks.

Many papers equate volatility, uncertainty and squared forecast errors. These defini-

tions allow us to understand the conditions under which these are equivalent. Volatility

and uncertainty are both ex-ante measures because they are time-t expectations of t + 1

outcomes, that is they are time-t measurable. However, forecast errors are an ex-post

measure because it is not measurable at the time when the forecast is made. Combining

definition 1 and definition 3 reveals that Uit =
√
E[FE2

i,t+1|Iit]. So, uncertainty squared is

the same as the expected squared forecast error. Of course, what people measure with fore-

cast errors is typically not the expected squared forecast error. It is an average of realized

squared forecast errors:
√

1/Nt
∑

i FE
2
i,t+1.

There are two pieces of data that we use to estimate and to evaluate our forecasting

models. The first is real-time GDP data from the Philadelphia Federal Reserve. The

variable we denote yt is the growth rate of GDP. Specifically, it is the log-difference of

the real GDP series, times 400, so that it can be interpreted as an annualized percentage

change. We use real-time data because we want to accurately assess what agents know at

each date. Allowing them to observe final GDP estimates, which are not known until much

later, is not consistent with the goal2. Therefore, yt represents the estimate of GDP growth

between the end of quarter t − 1 and quarter t, based on the GDP estimates available at

time t. Similarly, yt is the history of GDP growth up to and including period t, based on

the data available at time t.

We use the second set of data, professional GDP forecasts, to evaluate our forecasting

models. We describe below the four key moments that we use to make that assessment.

The data come from the Survey of Professional Forecasters, released by the Philadelphia

Federal Reserve. The data are a panel of individual forecaster predictions of real US output

for both the current quarter and for one quarter ahead from quarterly surveys from 1968

Q4 to 2013 Q4. In each quarter, the number of forecasters varies from quarter-to-quarter,

2Naturally, forecasters may use other information in conjunction with past GDP growth realizations to
compute their forecasts. We explore this extension in Kozeniauskas, Orlik, and Veldkamp (2014).
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with an average of 40.5 forecasts per quarter.

Formally, t ∈ {1, 2, . . . , T} is the quarter in which the survey of professional forecasters

is given. Let i ∈ {1, 2, . . . , I} index a forecaster and It ⊂ {1, 2, . . . , I} be the subset of

forecasters who participate in a given quarter. Thus, the number of forecasts made at time

t is Nt =
∑I

i=1 I(i ∈ It). Finally, let yt+1 denote the GDP growth rate over the course of

period t. Thus, if GDPt is the GDP at the end of period t, observed at the start of quarter

t+ 1, then yt+1 ≡ ln(GDPt)− ln(GDPt−1). This timing convention may appear odd. But

we date the growth t+ 1 because it is not known until the start of date t+ 1.

2 A Linear-Normal Forecasting Model

The purpose of the paper is to explain why relaxing rational expectations and assuming

that agents do not know the true distribution of outcomes with certainty opens up an

additional source of uncertainty shocks. To isolate this new source of uncertainty shocks,

we consider first a simple, homoskedastic model. If an agent knew the true model (they

had rational expectations), their uncertainty would be only about the random realizations

of future shocks. Since the variance of these shocks is assumed to be constant over time,

there would be no uncertainty shocks.

We consider a forecaster who observes real-time GDP growth data, in every quarter and

forecasts the next period’s growth. The agent contemplates a linear-normal model with a

hidden state as a true data generating process for GDP growth, but does not know the

parameters of this model. Each period, he starts with prior beliefs about these parameters

and the current state, observes the new and past (potentially revised) GDP data (that is,

the real-time data vintages), and updates his beliefs using Bayes’ law.

We begin by examining the following continuous hidden-state process3

yt = α+ St + σεy,t (2)

St = ρSt−1 + σsεs,t (3)

where εy,t and εs,t are standard normal random variables independent of each other and

over time. In this model, the parameters are θ ≡ [α, ρ, σ, σs]
′.

3We have also explored a version of the model with a discrete hidden state. The results are very similar.
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Information assumptions Each forecaster has an identical information set: Iit =

{yt,M}, ∀i. The model M is described by (2) and (3). The state St and the parameters

θ are never observed.

To compute forecasts and the process for uncertainty, we use Bayesian updating. A

forecast is a conditional expectation of next-period growth, where the expectation is taken

over unknown parameters, states, and growth realizations. Using the law of iterated ex-

pectations, we can write this forecast as:

E
(
yt+1|yt

)
=

∫ ∫ ∫
yt+1p

(
yt+1|θ, St+1, y

t
)
p
(
St+1|θ, yt

)
p
(
θ|yt

)
dθdSt+1dyt+1 (4)

The first probability density function, p
(
yt+1|θ, St+1, y

t
)
, is the probability of t + 1 GDP

growth, given the state and the parameters.

The second probability density function, p
(
St+1|θ, yt

)
, is the probability of a hidden

state in a Kalman filtering system. This is a (conditional) normal density. When the

parameters are known, (2) and (3) form the observation and state equations of a Kalman

filtering system. The following equations describe the conditional mean and variance of

the first two probability terms, jointly

E
[
yt+1|yt, θ,M

]
= α+ E

[
St+1|yt, θ,M

]
= α+ ρE

[
St|yt, θ,M

]
where the following recursion characterizes the updating of state belief

E
[
St|yt, θ,M

]
= (1−Kt)E

[
St|yt−1, θ,M

]
+Ktyt

and where the termKt = V ar
[
yt|yt−1, θ,M

] (
V ar

[
yt|yt−1, θ,M

]
+ σ2s

)−1
is the Kalman

gain and the conditional variance is given by

V ar
[
yt+1|yt, θ,M

]
= ρ2

[
1

V ar [yt|yt−1, θ,M]
+

1

σ2s

]−1
+ σ2 (5)

Volatility is
√
V ar[yt+1|yt, θ,M], which is a constant. Constant volatility may or may

not be a realistic feature of the data. But it is a helpful starting point because it will allow

us to isolate the fluctuations in uncertainty that come from parameter uncertainty.

Finally, the third probability density function is the probability of the parameter vector
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θ, conditional on the t-history of observed GDP data. To estimate the posterior param-

eters distribution, we employ Markov Chain Monte Carlo (MCMC) techniques.4 At each

date t, the MCMC algorithm produces a sample of parameter vectors,
{
θd
}D
d=1

, such that

the probability of any parameter vector θd being in the sample is equal to the posterior

probability of those parameters, p
(
θd|yt

)
. Therefore, we can compute an approximation

to any integral by averaging over sample draws:
∫
f(θ)p(θ|yt)dθ ≈ 1/D

∑
d f(θd).

To estimate uncertainty, we compute these probability density terms and integrate

numerically to get a forecast. In similar fashion, we also calculate E
(
y2t+1|yt

)
. Applying

the variance formula V ar
(
yt+1|yt

)
= E

(
y2t+1|yt

)
−E

(
yt+1|yt

)2
, and taking the square root

yields uncertainty: Ut =
√
V ar (yt+1|yt).

2.1 Estimation and Results: Linear-Normal Model

Our forecaster needs prior distributions over all the parameters to start the updating

process. We start with a flat prior, estimate each parameter on GDP growth data from

1947:Q2-1968:Q3, and use the mean and variance of this estimate as the mean and variance

of prior beliefs. (See appendix for more details and prior estimation results.) Starting in

quarter 4 of 1968, each period, the agent observes yt and revisions of previous quarters’

data and updates his beliefs about future GDP growth using (4). We start the estimation

of the model in 1968:Q4 because this is the first quarter for which we have forecasts from

the Survey of Professional Forecasters.

To understand what properties of our forecasts come from parameter uncertainty, Fig-

ure 1 compares our uncertainty to that of an agent who takes the model parameters as

given (labeled volatility). To keep the results comparable, the parameters that are used to

compute volatility are the same as the mean posterior beliefs in our model.

The main takeaway is that parameter uncertainty generates uncertainty shocks, albeit

small ones. With known parameters, stdev(Ut) = 0. When parameters are updated every

period, stdev(Ut) = 0.48.

Our results also expose two aspects of our forecasts that do not look realistic. 1) Our

forecasters’ uncertainty is not counter-cyclical (Correl(Ut,GDP) = 13%). Every common

proxy for uncertainty is counter-cyclical and most theories use uncertainty to explain the

4More details are presented in the Appendix B.
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Figure 1: Uncertainty shocks in the linear model.
Volatility and uncertainty calculated using definition 2, 3 and equation (5).

onset of a recession. So, a forecasting model that fails to deliver this feature is suspect. 2)

The model does not explain the low average forecasts of GDP observed in the professional

forecaster data. The true average of GDP growth over 1968:Q4-2013:Q4 is 2.68%. The

average professional forecast of GDP growth is 2.24%, almost half a percentage point

lower.5 This model fails to explain that gap.

In the next section, we examine a nonlinear forecasting model that remedies these two

problems: It generates counter-cyclical uncertainty, forecasts that are low on average, and

larger uncertainty shocks.

3 A Skewed Forecasting Model

The linear-normal model of the previous section was a starting point. It is a commonly-used

framework where we shut down all sources of uncertainty shocks besides our estimation

uncertainty and could see that mechanism at work. But that model misses important

features of the forecast data and its uncertainty shocks are modest. One reason that

uncertainty varies so little is that all the random variables are normally distributed. The

normal distribution has the unusual properties that the conditional variance is the same

5This gap only arises in final GDP estimates. The average initial GDP announcement has 2.3% growth
on average, in line with the forecasts. But if these initial announcements are themselves BEA forecasts of
what the final GDP estimate will be, there is still a puzzle about why early estimates are systematically
lower than final estimates.
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no matter what the conditional mean is and that an n-standard deviation event is always

equally unlikely. Since uncertainty is a conditional variance, the normal distribution shuts

down much scope for changes in uncertainty. Therefore, we explore a model that has non-

normal shocks. This skewed model is still too simplistic to be a state-of-the art forecasting

model. For one, the forecaster only uses one source of information, past GDP growth, to

forecast. But the simplicity of the model allows us to understand its mechanics and to

better understand how parameter revisions affect the probability of extreme events, why

forecasts are downward biased, and what triggers large uncertainty shocks.

Moving away from normality, there is an infinite set of possibilities. But one natural

choice is to focus on a distribution with skewness. Negative skewness is a salient feature

of GDP data. In the real GDP (1968:Q4-2013:Q4) data we use for our forecasting model

estimation, the skewness of GDP growth is -0.30. Skewness is also a feature of many

models. Models where workers lose jobs quickly and find jobs gradually, or models where

borrowing constraints amplify downturns are just a couple of examples of models that

generate booms that are more gradual than crashes. Finally, we find that a model with

skewness both does a better job of matching features of forecast data and generates much

larger uncertainty shocks.

Updating non-normal variables is typically cumbersome. Combining this with param-

eter uncertainty typically requires particle filtering, which is possible, but slow. We make

this problem tractable by doing a change of measure. The Radon-Nikodym theorem tells

us that, for any measure g that is absolutely continuous with respect to a measure in-

duced by a normal distribution, we can find a change-of-measure function f such that

g(x) =
∫
f(x)dΦ(x), where Φ is a normal cdf. If we estimate such an f function, then we

use f−1 to take data from a skewed distribution and transform it into normal data that

we can then use the tools from the last section to learn about.

Of course, allowing a forecaster to explore the whole function space of possible f ’s is

not viable. We focus the problem by considering a family of functions and allowing the

forecaster to consider parameter estimates that govern the properties of the distribution.

The change of measure function should have three desirable properties: 1) Its range is the

real line; 2) it is monotone; and 3) it can be either globally concave or globally convex,

depending on the estimated parameters. A class of transformations that satisfy this criteria
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is6

f(X̃t) = c+ b exp(−X̃t) (6)

If we have estimates for b and c, we can do a change of variable: Use f−1(yt) to transform

GDP growth into a variable X̃t = St + σεt, which is a normally-distributed continuous

variable with a persistent hidden state. Then we can write our skewed forecasting model

as

yt = c+ b exp (−St − σεt)
St = ρSt−1 + σsεt

where εt ∼ N(0, 1) and εt ∼ N(0, 1). This change-of-variable procedure allows our fore-

caster to consider a family of non-normal distributions of GDP growth and convert each

one into a linear-normal filtering problem with unknown parameters that can be estimated

jointly using the same tools as in the previous section. The only additional complication

is that the parameters b and c also need to be estimated.

The b parameter governs the mean of the X̃ process. To see this, note that for b < 0, we

can rewrite b exp(−X̃t) = −exp(−X̃t + ln(|b|)). To streamline our code, we simply remove

the time-t sample mean of the X̃t and set b = −1. After estimating the parameters of the

mean-zero process, we add back in the sample mean. This approach is supported by the

fact that when we have estimated b in less complex settings, we come up with consistently

negative values and quantitatively similar estimates.

We start with priors (see Appendix) and use MCMC techniques to form beliefs about

the ρ, σ, σs and c parameters. For each parameter draw θi from the MCMC algorithm, we

compute E[yt+1|It, θi] and E[y2t+1|It, θi]. We average these expectations over all parameter

draws and compute uncertainty as Ut =
√
E[y2t+1|It]− (E[yt+1|It])2.

The key feature of this model is that it produces a skewed distribution of outcomes and

6What we are doing is estimating a probability density from a set of discrete data. A typical approach
is to use a Kernel density estimator, such as the Parzen-Rosenblatt window. But we want to account for
parameter uncertainty. Standard Kernel densities have too many parameters to feasibly estimate their
joint distribution. Therefore, statisticians often use the g-and-h family to estimate the distribution of data
with skewness, using a small number of parameters. See textbook expositions Headrick (2010) or Hoaglin,
Mosteller, and Tukey (1985). Our transformation is a simple, limiting case of this g-and-h transformation
where h = 0.
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that the forecaster has to estimate parameters that govern the skewness. Skewness in this

model is most sensitive to the b and c parameters because they govern the curvature of the

transformation f of the normal variable. Any function with similar curvature, such as a

polynomial or sine function, would deliver a similar mechanism7.

3.1 Results: Uncertainty Shocks

Volatility
Normal
Skewed

Volatility
Normal
Skewed

1970 1980 1990 2000 2010

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 2: Uncertainty implied by linear and skewed models (detrended and demeaned)
.

Figure 2 compares the time series of uncertainty in both models. Column ”skewed” of

Table 1 shows that updating beliefs about the skewness of the GDP growth distribution

has a large effect on uncertainty. Such learning increases the average level of uncertainty

by only 8%. But it amplifies uncertainty shocks. The standard deviation of the uncertainty

series was 0.48% with normally-distributed outcomes and rises to 1.50% when our forecaster

updates beliefs about skewness. One can interpret the magnitude of this standard deviation

relative to the mean. A 1-standard deviation shock to uncertainty raises uncertainty 33%

above its mean. That is quite a volatile process and offers a stark contrast to the relatively

modest changes in volatility typically measured.

Since using growth rates of GDP is a form of trend-removal, it makes sense to correlate

a stationary series with another stationary series. Therefore, we detrend volatility and

7Our work in progress is forecasting with a concave, piecewise polynomial function. Results are available
upon request.
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model: unc/vol normal skewed

Mean Ut 4.20% 4.53%
Vt 3.45% 4.01%

Std deviation Ut 0.48% 1.50%
Vt 0% 0.05%

Autocorrelation Ut 0.99 0.97
Vt 0 0.93

Detrended uncertainty/volatility

Corr(Ũt, Et[yt+1]) 0.04 -0.78

Corr(Ṽt, Et[yt+1]) 0 -0.74

Forecast properties
data normal skewed

Mean forecast 2.29% 2.82% 2.27%
Mean |F Err| 1.87% 2.25% 2.51%
Std forecast 2.25% 1.17% 0.64%
Std |F Err| 1.46% 2.17% 2.39%

Table 1: Properties of model uncertainty series. Forecasts are computed using equation
(4). Forecast error is (forecast - final GDP growth). Uncertainty, denoted Ut, is computed as in Definition
2. Volatilities, denoted Vt, are computed as in Definition 3 assuming that the parameters θ are known and
equal to the mean posterior beliefs at the end of the sample for the parameter learning models.

uncertainty in order to discern the nature of their cyclical components (Table 1, middle

panel). We remove the trend in uncertainty using log deviations from an exponential trend:

Ũt ≡ ln(Ut)− ln(U trendt ) (7)

The resulting series, plotted in figure 2, reveals large, highly counter-cyclical uncertainty

shocks. Not only is the level higher, uncertainty rose noticeably during each of the reces-

sions since 1970.

Keep in mind that there is still no stochastic volatility in this model. To the extent that

we believe that there are volatility shocks to GDP, this would create additional shocks to

uncertainty, above and beyond those we have already measured. These series are not yet

a complete picture of macroeconomic uncertainty. Instead, they are a look at what part of

uncertainty is missed when we just measure volatility.

Clearly, the model is not forecasting GDP as accurately as the forecasters in the Survey
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of Professional Forecasters do (Table 1, bottom panel). However, this is a problem that

we can remedy, without changing our main message. The forecasts in the model are

based only on prior GDP releases. In reality, forecasters have access to other sources of

data that improve the accuracy of their forecasts. The fact that the model produces a

forecast error that is too large and too volatile reflects this problem. Kozeniauskas, Orlik,

and Veldkamp (2014) develop a non-normal forecasting model with additional forecasting

information (signals) that remedies this forecast accuracy problem and still generates large,

counter-cyclical uncertainty shocks.

Finally, uncertainty is very persistent. It is highest at the start of the sample, when

data is most scarce, and then slowly decays over the rest of the sample. As noted by

Collin-Dufresne, Johannes, and Lochstoer (2013), the persistent uncertainty process comes

from the nature of learning: A single large shock to GDP growth results in a quick reeval-

uation of the parameter and model probabilities. Because beliefs about parameters are

martingales, these parameter revisions act as permanent, non-stationary shocks even when

the underlying shock is transitory.

3.2 Skewness Shocks and Time-Varying Black Swan Risk

To understand why uncertainty varies so much, it is helpful to look at the probability

of tail events. Since our estimated probability distribution is negatively skewed, negative

outliers are more likely than positive ones. For a concrete example, let us consider the

probability of a particular negative growth event. The historical mean of GDP growth is

2.68%, while its standard deviation is 3.32%. If GDP growth were normally distributed,

then yt+1 ≤ −6.8% would be a 1-in-100-year event (Pr= 0.0025 quarterly). Let us call this

rare event a black swan.

Black SwanRiskt = Prob[yt+1 ≤ −6.8%|It]. (8)

The correlation between black swan risk and uncertainty is 97% (75% for the detrended

series). This illustrates that uncertainty shocks arise in times when the estimated proba-

bilities of extreme events change. Our model suggests that uncertainty builds up gradually

over time as more and more unusual observations are realized.
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When the distribution of GDP growth is non-normal and states and parameter esti-

mates change over time, the probability of this black swan event fluctuates. Figure 3.2

plots the estimated black swan probability each period. The black swan probability varies

Uncertainty
Black Swan Risk

1970 1980 1990 2000 2010

−0.4

−0.2

0

0.2

Figure 3: When the probability of a black swan event is high, uncertainty is high. Black
Swan Risk is defined in (8). It is evaluated in the model where the skewness parameter c is estimated
every period. Both black swan risk and the uncertainty series are exponentially detrended.

considerably. Leading up to the 2008 financial crisis, the black swan probability rose from

3.5% in 2007:Q1 to over 4.6% in 2009:Q3.

These results teach us that when we include parameter uncertainty in our notion of

economic uncertainty, and we consider a model with skewed outcomes, then most changes

in uncertainty coincide with changes in the estimated probability of rare events. Most of

these uncertainty shocks were not present when we did not allow the forecaster to update

his skewness beliefs. When we allow for learning about skewness, new pieces of data

cause changes in the skewness estimates. Tail event probabilities are very sensitive to this

skewness parameter. When the probability of extreme events is high, uncertainty is high

as well.

This explanation raises the question: What types of data realizations make estimated

skewness more negative, increase black swan risk, and thereby generate uncertainty shocks?

We find two types of episodes that set up large uncertainty shocks. The first is simply a

large negative GDP growth realization. When a negative outlier is observed, the forecaster

revises skewness to be more negative and increases the estimated variance of shocks, both

of which cause the probability of a black swan event and uncertainty to rise. This is

what happens in 2008 and in the early 1980s. But there is a second, more subtle cause of

uncertainty shocks that comes from a sequence of mild positive GDP growth realizations
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in a row. These observations cause the forecaster to increase the estimated mean of the

distribution. When the mean increases, the existing negative outlier data points become

further from the mean. Because the previously-observed negative realizations are more

extreme, the estimate of skewness rises and the probability of rare negative events can

rise as well. This is what happens in the early 1970s. A sequence of positive growth

realizations causes a rise and then a fall in uncertainty. But the persistence of the high

estimated skewness sets the stage for the large rise in uncertainty in the second half of

the 1970s. This mechanism provides one explanation for why uncertainty seems to rise

particularly at the end of long spells of consistently positive growth.
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Figure 4: An example of a positive growth episode that increased the estimated mean,
skewness and black swan probability.

3.3 Negative Skewness as a Force for Counter-Cyclical Uncertainty

One way of understanding the cyclical effect skewness has on uncertainty is by thinking

about the skewed distribution as a non-linear transformation of a normal distribution. The

transformation has no economic interpretation. It does not represent a utility function,

production function or anything other than an estimated change-of-measure function that

regulates the skewness of outcomes.8 But since many problems in economics use normal

8Although this paper does not try to explain the negative skewness of outcomes, many other theories
do. Negative skewness can arise when the economy is functioning very well (high X̃t), then improving its
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shocks and compute means and variances of concave functions of these shocks, we can

leverage that intuition here to understand the role of skewness. (See Albagli, Hellwig,

and Tsyvinski (2013) for a similar approach.) The following result shows that a concave

transformation of a variable with a normal probability density results in a variable whose

distribution has negative skewness. For proof see Appendix A.

Lemma 1. Suppose that y is a random variable with a probability density function φ(g−1(y)),

where φ is a standard normal density and g is an increasing, concave function. Then,

E[(y − E[y])3] < 0.

The unconditional distribution of GDP growth rates is negatively skewed. Therefore,

when we estimate the change of measure function that maps a normal variable x into

GDP growth (6), we consistently find that the coefficient b is negative, meaning that the

transformation is increasing and concave. A concave transformation of a normal variable

puts more weight on very low realizations and makes very high realizations extremely

unlikely. In other words, the concave transformation creates a negatively-skewed variable.

Breaking the probability density into a normal and a concave function is helpful because

it allows us to understand where counter-cyclical uncertainty comes from. We can use the

Radon-Nikodym theorem to characterize the conditional variance of a skewed variable as

the conditional variance of a normal variable, times a Radon-Nikodym derivative.

V ar[yt+1|yt] =

∫
(yt+1 − E[yt+1|yt])2f(yt+1|yt)dyt+1

If f(yt+1|yt) = f(g(xt+1)|yt) = φ(xt+1|xt), then by the Radon-Nikodym theorem,

V ar[yt+1|yt] =

∫
(xt+1 − E[xt+1|xt])2

dg

dx
φ(xt+1|xt)dxt+1

V ar[yt+1|yt] = E

[
dg(xt+1)

dx

∣∣∣∣xt]V ar[xt+1|xt] + cov(
dg

dx
, (xt+1 − E[xt+1|xt])2)

The conditional variance of the normal variable xt+1 obviously depends on its history xt,

efficiency results in a small increase in GDP. But if there is a high degree of dysfunction or inefficiency
(low X̃), then the economy can fall into depression. Many models generate exactly this type of effect
through borrowing or collateral constraints, other financial accelerator mechanisms, matching frictions, or
information frictions. Even a simple diminishing returns story could explain such skewness.
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but it is not affected by what the expected value of xt+1 is. Normal variables have the

property that their conditional variance is the same throughout the state-space. Condi-

tional variance is not mean-dependent. That is not true of the skewed variable y. Because

g is an increasing, concave function, dg/dx is largest when x is low and falls as x rises.

This tells us that V ar[yt+1|yt] is largest when E[yt+1|yt] is low and falls as the expected

GDP growth rate rises. This is the origin of counter-cyclical uncertainty. It arises naturally

if a variable has a negatively-skewed distribution that can be characterized as a concave

transformation of a normal variable.

GDP

Growth (y)

State (x)

y uncertainty

x uncertainty

Figure 5: Nonlinear change of measure and counter-cyclical uncertainty. A given amount of
uncertainty about x creates more uncertainty about y when x is low than it does when x is high.

Figure 5 illustrates why uncertainty is counter-cyclical. The concave line is a mapping

from x into GDP growth, y. The slope of this curve is a Radon-Nikodym derivative. A

given amount of uncertainty is like a band of possible x’s. If x was uniform, the band would

represent the positive-probability set and the width of the band would measure uncertainty

about x. If that band is projected on to the y-space, the implied amount of uncertainty

about y depends on the state x. When x is high, the mapping is flat, and the resulting

width of the band projected on the y-axis (y uncertainty) is small. When x is low, the band

projected on the y axis is larger and uncertainty is high. This mechanism for generating

counter-cyclical uncertainty is related to Straub and Ulbricht (2013), except that in their

model, the concave function arises from assumptions about an economic environment. In

this paper, the concave function is estimated and captures only the fact that GDP growth

data is negatively skewed.
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Learning about skewness causes this concave curve to shift over time. When a negative

outlier is observed, the estimated state falls and estimated skewness becomes more negative.

More skewness translates into more curvature in the change of measure function. Combined

with a low estimated state, this generates even more uncertainty. Thus, bad events trigger

larger increases in uncertainty. This is reflected is the more negative correlation between

forecasts and uncertainty in the skewed model in Table 1.

3.4 Why Skewness and Model Uncertainty Lower Forecasts

Aside from generating larger uncertainty shocks, the model with skewness also explains

the low GDP growth forecasts in the professional forecaster data. The average forecast is

2.27% in the model and 2.29% in the forecaster (SPF) data.9 These forecasts are puzzling

because the average GDP growth rate is 2.68%. It cannot be that over 70 years of post-war

history, forecasters have not figured out that the sample mean is 0.4% higher than their

forecasts on average. Our next result shows that these low forecasts are entirely rational

for a Bayesian who believes that outcomes are negatively skewed and faces parameter

uncertainty.

Lemma 2. Suppose that y is a random variable with a probability density function f that

can be expressed as f(y|µ, σ) = φ((g−1(y) − µ)/σ) where φ is a standard normal density

and g is a concave function. Let the mean of y be ȳ ≡
∫
yf(y|µ, σ)dy. A forecaster does

not know the true parameters µ and σ, but estimates probability densities h(µ) and k(σ),

with means µ and σ. The forecaster uses these parameter densities to construct a forecast:

ŷ ≡
∫ ∫ ∫

y f(y|µ′, σ′)h(µ′) k(σ′) dy dµ′ dσ′. Then ŷ < ȳ.

The logic of the result is the following: If GDP growth is a concave transformation

of a normal underlying variable, Jensen’s inequality tells us that expected values will be

systematically lower than the mean realization. But by itself, Jensen’s inequality does not

explain the forecast bias because the expected GDP growth and the mean GDP growth

should both be lowered by the concave transformation (see figure 6, left panel). It must

be that there is some additional uncertainty in expectations, making the Jensen inequality

effect larger for forecasts than it is for the unconditional mean of the true distribution (see

9Elliott and Timmermann (2008) confirm our finding of forecast bias. They argue that stock analysts
over-estimate earnings growth and the Federal Reserve under-estimates GDP growth.
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Figure 6: Explaining why average forecasts are lower than mean GDP growth. The result has
two key ingredients: The forecaster faces more uncertainty than he would if he knew the true distribution
of outcomes, and a Jensen inequality effect from the concave change of measure.

figure 6, right panel). This would explain why our results tell us that most of the time the

sample mean is greater than the average forecast. If the agent knew the true parameters,

he would have less uncertainty about yt+1. Less uncertainty would make the Jensen effect

smaller and raise his estimate of yt+1, on average. Thus, it is the combination of parameter

uncertainty and a skewed distribution that can explain the forecast bias.

3.5 Convergence and the Downward Trend in Uncertainty

Since the parameters in this model are constant, eventually agents will learn them if the

model is correctly specified. Even in our 45-year sample, there is evidence of convergence.

There is a downward trend in uncertainty, some of which comes from the decline in the

uncertainty about the parameter values. Between 1970 and 2013, uncertainty falls from

6.2% to 3.5%. Does this decline imply that all parameter uncertainty should be resolved

in the near future and these effects will disappear? There are three reasons why parameter

uncertainty would persist.

First, our forecasting model is clearly not a complete description of the macroeconomy.

Our simple specification represents the idea that people use simple models to understand

complex economic processes. Bayesian learning converges when the model is correctly

specified. But when the estimated model and the true data-generating process differ, there

is no guarantee that parameter beliefs will converge to the truth. Even as the data sample

becomes large, parameter beliefs can continue to fluctuate, generating uncertainty shocks.
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Second, much of the trend decline in uncertainty comes from lower estimated volatility.

The mean estimate of the transitory shock variance (σ2) falls by 46% between 1970:Q1 and

2013:Q4. The mean estimate of variances decline simply because GDP growth becomes

less volatile in the second half of the sample and agents react to that by revising down their

estimates of the variance parameters. Lower innovation variance also reduces uncertainty.

Finally, simply adding time-varying parameters can prevent convergence. If we assume

that some or all of the parameters drift over time, then beliefs about these parameters will

continue to change over time. One example of a model with time-varying parameters is a

stochastic volatility model. We turn to these results next.

3.6 Adding Stochastic Volatility

So far, we have explored homoskedastic models, in order to isolate the uncertainty shocks

that come from parameter learning. But both changes in volatility and in parameter

estimates can contribute to uncertainty shocks. To quantify the contribution of each,

we estimate a model with stochastic volatility and parameter learning. The result is an

uncertainty series that is a bit more volatile than before, but without the downward trend

in uncertainty and with a larger spike in uncertainty around the time of the financial crisis.

We estimate the following skewed forecasting model with stochastic volatility

yt = c− exp(−Xt)

Xt = α+ σStεt

In this model, the variance is itself a hidden state that can take on one of two values

σSt ∈ {σSL, σSH}. State changes are governed by a Markov transition matrix whose entries

are also estimated by our forecaster.

Figure 7 plots the uncertainty that results with parameter learning and stochastic

volatility in the skewed model. This plot is not detrended, and yet, we see no downward

trend in uncertainty after 1990. The average level of uncertainty is 4.29%, which is lower

primarily because the forecaster viewed the highly-volatile 1970s data as a transitory state,

not a permanent feature of the data. The forecaster with the homoskedastic model needs

to accumulate lots of low-volatility observations to revise down her estimate of σS over
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Figure 7: Uncertainty Ut and volatility Vt in the skewed model with stochastic volatility.

time. The forecaster with the stochastic volatility model revises her beliefs by increasing

the probability of being in the low-volatility state and in doing so, lowers her uncertainty

within a few quarters. Allowing volatility to be stochastic does make uncertainty fluctuate

more. The standard deviation of Ut rises from 1.5% in the homoskedastic model to 2.0%

with stochastic volatility. But adding stochastic volatility has only a small effect on the

correlation of uncertainty with GDP growth (-0.72).

Uncertainty Volatility

Mean 4.29% 3.43%
Std deviation 2.00% 0.34%
Autocorrelation 0.83 0.22
Mean forecast 2.05% 2.35%
Mean |F Err| 2.61% 2.42%
Std forecast 0.54% 0.09%
Std |F Err| 2.37% 2.30%

Table 2: Properties of stochastic volatility model. Forecasts are computed using equation
(4). Uncertainty, denoted Ut is computed as in Definition 2. Volatilities, denoted Vt, are computed as in
Definition 3 assuming that the parameters θ are known and equal to the the mean posterior beliefs at the
end of the sample for the parameter learning model.

The main lessons from combining the stochastic volatility view with the parameter

learning view of uncertainty shocks are that 1) Both channels contribute to our under-

standing of uncertainty shocks; 2) Stochastic volatility allows the model to explain high

uncertainty during the financial crisis; and 3) Incorporating stochastic volatility helps to

avoid the downward trend in uncertainty that arises with a homoskedastic model. It pre-

vents uncertainty from converging to a constant level. The more realistic version of this
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effect is that all parameters of the model can change or drift over time. Such a model

would keep learning active and might be a better description of reality. But such a rich

model is obviously difficult to estimate. The hope is that this simple first step in that

direction might give us some insight about how time-varying parameters and parameter

learning might interact more generally.

4 Data Used to Proxy for Uncertainty

Our model generates a measure of economic uncertainty. In this section, we describe the

commonly used proxies of uncertainty, analyze their theoretical relationship with condi-

tional variance and then compare their statical properties to those of our measure.

Forecast Dispersion Some authors use forecast dispersion as a measure of uncertainty10

often because it is regarded as “model-free.” It turns out that dispersion is only equivalent

to uncertainty in models with uncorrelated signal noise and no parameter uncertainty.

Any unbiased forecast can be written as the difference between the true variable being

forecast and some forecast noise that is orthogonal to the forecast:

yt+1 = E[yt+1|Iit] + ηt + eit (9)

where the forecast error (ηt + eit) is mean-zero and orthogonal to the forecast. We can

further decompose any forecast error into a component that is common to all forecasters

ηt and a component that is the idiosyncratic error eit of forecaster i.

Dispersion Dt is the average squared difference of each forecast from the average fore-

cast. We can write each forecast as yt+1−ηt−eit. Then, with a large number of forecasters,

we can apply the law of large numbers, set the average eit to 0 and write the average forecast

as Ē[yt+1] = yt+1 − ηt. Thus,

Dt ≡
1

N

∑
i

(E[yt+1|Iit]− Ē[yt+1])
2 =

1

N

∑
i

e2it (10)

Note that dispersion reflects only private noise eit, not public noise ηt. Uncertainty is

10See e.g. Baker, Bloom, and Davis (2013) or Diether, Malloy, and Scherbina (2002), or Johnson (2004).
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the conditional standard deviation of the forecast error, which is
√
E[(ηt + eit)2|Iit] and

depends on both sources of noise. Thus, whether dispersion accurately reflects uncertainty

depends on the private or public nature of information.

Mean-Squared Forecast Error A measure that captures both private and common

forecast errors is the forecast mean-squared error.

A mean-squared error (MSEt+1) of a forecast of yt+1 made in quarter t is the square

root of the average squared distance between the forecast and the realized value

MSEt+1 =

√∑
i∈It(E[yt+1|Iit]− yt+1)2

Nt
. (11)

If forecast errors were completely idiosyncratic, with no common component, then

dispersion in forecasts and mean-squared forecasting errors would be equal. 11 We use this

insight to measure how much variation in mean-squared errors (MSE) comes from changes

in the accuracy of average forecasts and how much comes from changes in dispersion. Using

SPF data, we regress MSE2 on (Ēt[yt+1]− yt+1)
2. We find that the R2 of this regression

is 80%. The remaining variation is due to changes in forecast dispersion. This teaches

us that most of the fluctuation in MSE come from changes in average forecast errors. It

implies that using forecast dispersion as a proxy for uncertainty will miss an important

source of variation.

Volatility and Confidence Measures Jurado, Ludvigson, and Ng (2013) is a state-

of-the-art macro volatility measure. It uses a rich set of time series, computes conditional

volatility of the unforecastable component of the future value of each of these series, and

then aggregates these individual conditional volatilities into a macro uncertainty index.

Other proxy variables for uncertainty are informative, but have a less clear connection to a

conditional variance definition of uncertainty. The market volatility index (VIX) is a traded

blend of options that measures expected percentage changes of the S&P500 in the next 30

11To see this, note that FE2
jt = (E[yt+1|Ijt]− yt+1)2. We can split up FE2

jt into the sum ((E[yt+1|Ijt]−
Ēt[yt+1]) + (Ē[yt+1] − yt+1))2, where Ēt[yt+1] =

∫
j
E[yt+1|Ijt] is the average forecast. If the first term in

parentheses is orthogonal to the second, 1/N
∑
j FE

2
jt = MSE2

t is simply the sum of forecast dispersion

and the squared error in the average forecast: E[yt+1|Ijt]− Ēt[yt+1])2 + (Ēt[yt+1]− yt+1)2.
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days. It captures expected volatility of equity prices. It would require a complex model

to link macroeconomic uncertainty to the VIX. Nevertheless, we compare its statistical

properties to those of our uncertainty measure in Figure 8.

Another commonly cited measure of uncertainty is business or consumer confidence.

The confidence survey asks respondents whether their outlook on future business or em-

ployment conditions is “positive, negative or neutral.” Likewise, the index of consumer

sentiment asks respondents whether future business conditions and personal finances will

be “better, worse or about the same.” These questions are about the direction of future

changes and not about any variance or uncertainty. They may be correlated with uncer-

tainty because uncertainty is counter-cyclical.

Finally, Baker, Bloom, and Davis (2013) use newspaper text analysis, the number of

expiring tax laws, and forecast dispersion to create a policy uncertainty index. While

the qualitative nature of the data precludes any theoretical comparison, we include it for

comparison as an influential alternative.

VIX
JLN index
Forecast Dispersion
Mean Sq Error
BBD index

VIX
JLN index
Forecast Dispersion
Mean Sq Error
BBD index

1970 1980 1990 2000 2010

−1

0

1

2

3

4

5

Figure 8: Comparing variables used to measure uncertainty in the literature. See Table 3 for
definitions and sources.

Comparing Uncertainty Proxies to Model-Generated Uncertainty Figure 8 plots

each of the uncertainty proxies. There is considerable comovement, but also substantial

variation in the dynamics of each process. These are clearly not measures of the same

stochastic process, each with independent observation noise. Furthermore, they have prop-
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Mean Standard autocorr correlation correlation

deviation with yt+1 with Ũt
JLN index 69.78 9.54 0.32 -0.51 30.6%
forecast MSE 2.64% 1.53% 0.48 0.04 -15.4%
forecast dispersion 1.54% 0.95% 0.74 -0.19 -15.2%
VIX 20.55 7.81 0.58 -0.41 40.2%
BBD index 105.95 31.79 0.65 -0.41 60.0%

Table 3: Properties of uncertainty measures used in the literature. JLN index is
the uncertainty measure from Jurado, Ludvigson, and Ng (2013). Forecast MSE and dispersion are defined
in (11) and (10) and use data from 1968:Q4-2011:Q4. Growth forecast is constructed as ln(Et(GDPt)) −
ln(Et(GDPt−1)). V IXt is the Chicago Board Options Exchange Volatility Index closing price on the last
day of quarter t, from 1990:Q1-2011:Q4. BBD index is the uncertainty measure from Baker, Bloom, and
Davis (2013). Ũt is uncertainty from our skewed model, measured as the log deviation from trend (eq. 7).

erties that are quite different from our model-implied uncertainty metric. Table 3 shows

that our uncertainty metric is negatively correlated with traditional measures of volatility,

but is highly correlated with Baker, Bloom, and Davis (2013) policy uncertainty index,

the volatility index (VIX) and the Jurado, Ludvigson, and Ng (2013) stochastic volatility

measure.

Inferring Uncertainty From Probability Forecasts One way to infer the uncertainty

of an economic forecaster is to ask them about the probabilities of various events. The

SPF asks about the probability that GDP growth exceeds 6%, is between 5-5.9%, between

4-4.9%, . . . , and below -2%. The survey averages across all forecasters and reports a single

average probability for each bin. Since this data does not completely describe a conditional

distribution, computing the conditional variance requires approximation. The most obvious

approximation is to assume that these are probabilities of ten discrete growth rates, each

corresponding to the mid-point of a bin.12

The resulting conditional variance series is not very informative. It hardly varies (range

is [0.0072, 0.0099]). It does not spike in the financial crisis. In fact, it suggests that

12For example, when agents assign a probability to 1 − 2% GDP growth, we treat this as if that is the
probability placed on the outcome of 1.5% GDP growth. When the agent says that there is probability p6.5
of growth above 6%, we treat this as probability p6.5 placed on the outcome yt+1 = 6.5%. And if the agent
reports probability p−2.5 of growth below -2%, we place probability of p−2.5 on yt+1 = −2.5%. Then, the
expected rate of GDP growth is ȳ =

∑
mεM pmm for M = {−2.5,−1.5, . . . , 6.5}. Finally, the conditional

variance of beliefs about GDP growth are var[y|I] =
∑
mεM pm(m− ȳ)2.

29



uncertainty in 2008 was roughly the same as it was in 2003. The problem is that the

growth rates are top- and bottom-coded. All extremely bad GDP events are grouped in

the bin “growth less than 2%.” If there is a very high probability of growth below 2%, then

since most of the probability is concentrated in one bin, variance and, thus, uncertainty is

low.

The main point of our paper is that most uncertainty shocks come from changes in

the probabilities of extreme events. This survey truncates extremes and, therefore, fails to

capture most changes in uncertainty.

5 Conclusions

Most approaches to measuring economic uncertainty ignore parameter estimation uncer-

tainty. Sometimes referred to as “rational expectations econometrics,” the traditional

approach entails estimating a model on the full sample of data and then treating the es-

timated parameters as truth to infer what the volatility of innovations was in each period

in the past. In equating volatility with uncertainty, the econometrician assumes that the

uncertain agent knows the true distribution of outcomes at every moment in time and is

only uncertain about which outcome will be chosen from this distribution. Assuming such

precise knowledge of the economic model rules out most uncertainty and ignores many

sources of uncertainty shocks.

We explore the uncertainty shocks that arise when an agent is not endowed with knowl-

edge of the true economic model and needs to estimate it, just like an econometrician. The

conditional variance of this agent’s forecast, his uncertainty, is much higher and varies more

than volatility does. When the agent considers skewed distributions of outcomes, new data

or real-time revisions to existing data can change his beliefs about the skewness of the

distribution, and thus the probability of extreme events. Small changes in the estimated

skewness can increase or decrease the probability of these tail events many-fold. Because

tail events are so far from the mean outcome, changes in their probability have a large

effect on conditional variance, which translates into large shocks to uncertainty. Thus, our

message is that beliefs about black swans, extreme events that are never observed, but

whose probability is inferred from a forecasting model, are responsible for much of the

shocks to macroeconomic uncertainty.
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This paper is a foundation on which other theories can build. As such, it is simple and

focused purely on the belief formation process. Kozeniauskas, Orlik, and Veldkamp (2014)

show how this mechanism can be embedded in a production economy with heterogeneous

information, forecast dispersion and heterogeneous firm outputs. Our mechanism could

also be used to model default risk. Since “black swan” probabilities could be interpreted

as default probabilities, the model would then tell us what kinds of data realizations trigger

high default premia and debt crises. In another project, our mechanism could be embedded

in a consumption-based asset pricing model. We know that a well-engineered stochastic

process for time-varying rare event probabilities can match many features of equity returns.

Our tools could be used to estimate these rare event probabilities and assess whether the

estimates explain asset return puzzles.
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A Proofs

Lemma 1: Skewness and the concave change of measure We can write the skew-
ness of y (times the variance, which is always positive) as

E[(y − E[y])3] =

∫
(y − E[y])3φ(g−1(y))dy (12)

where φ(g−1(y)) is the probability density of y, by assumption. Using the change of variable
rule, we can replace y with g(x).

E[(g(x)− E[g(x)])3] =

∫
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx (13)

Note that we replaced φ(g−1(g(x))) = φ(x), meaning that x is a standard normal variable.
Because g is increasing and concave, ∂g/∂x is positive and decreasing in x.
If ∂g/∂x were a constant, then 13 would be the skewness of a normal variable, which

is zero. Thus,

−
∫ 0

−∞
(g(x)− E[g(x)])3φ(x)dx =

∫ ∞
0

(g(x)− E[g(x)])3φ(x)dx

Since ∂g/∂x is positive and decreasing, it is higher for any y < 0 than it is for any y > 0
and since both sides of the inequality are positive

−
∫ 0

−∞
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx >

∫ ∞
0

(g(x)− E[g(x)])3
∂g

∂x
φ(x)dx

Adding the negative of the left side to both sides of the inequality reveals that

E[(g(x)− E[g(x)])3] =

∫
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx < 0.
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Lemma 2: Forecast bias. In the forecast ŷ ≡
∫ ∫ ∫

yf(y|µ′, σ′)g(µ′)h(σ′)dydµ′dσ′, we
can substitute g(x) for y and substitute x = g−1(y) into φ((g−1(y)− µ)/σ) = f(y) to get

ŷ =

∫ ∫ ∫
g(x)φ((x− µ′)/σ′)g(µ′)h(σ′)dg(x)dµ′dσ′

Then, we can define x̃ = (x− µ)/σ and substitute it in for x:

ŷ =

∫ ∫ ∫
g(µ′ + σ′x̃)φ(x̃)g(µ′)h(σ′)dg(x)dµ′dσ′

Note that the inside integral evaluated at µ′ = µ and σ′ = σ is the true mean of y:
ȳ ≡

∫
yf(y|µ, σ)dy =

∫
g(µ + σx̃)φ(x̃)dg(x). Let us use the notation ỹ(µ′, σ′) =

∫
g(µ′ +

σ′x̃)φ(x̃)dg(x) to denote the mean of y, given any mean and variance parameters µ′ and σ′.
Notice that since g is assumed to be a concave function, ỹ is concave in the parameters µ′

and σ′. Then, by Jensen’s inequality, we know that for any concave function ỹ, E[ỹ(µ, σ)] <
ỹ(µ, σ). Note by inspection that E[ỹ(µ, σ)] = ŷ and ỹ(µ, σ) = ȳ and the result follows.

B Estimating the model

In what follows we show how to use Metropolis-Hastings algorithm to generate samples
from p

(
θ|yt

)
for each t = 1, 2, .., T . 13

The general idea of MCMC methods is to design a Markov chain whose stationary
distribution, π (with πT = π where T is a transitional kernel), is the distribution p we
are seeking to characterize. In particular, the Metropolis-Hastings sampling algorithm
constructs an ergodic Markov chain that satisfies a detailed balance property with respect
to p and, therefore, produces the respective approximate samples. The transition kernel of
that chain, T , is constructed based on sampling from a proposal conditional distribution
q
(
θ|θ(d)

)
where d denotes the number of the sampling step. Specifically, given the d-step

in the random walk θ(d) the next-step θ(d+1) is generated as follows

θ(d+1) =

 θ′ with probability α
(
θ(d), θ′

)
= min

(
1,

p(θ′|yt)
p(θ(d)|yt)

q(θ(d)|θ′)
q(θ′|θ(d))

)
θ(d) with probability 1− α

(
θ(d), θ′

)
where θ′ ∼ q

(
θ|θ(d)

)
.

In our application, the simulation of the parameters is done through simple random
walk proposals or multiplicative random walk proposals in case of variance parameters14.

The standard deviations of the shocks in the random walk proposals can be adjusted to
optimize the performance of the sampler. Choosing a proposal with small variance would

13We drop here the dependence on M hoping that no confusion arises.
14In the case of the transition probability matrix for the hidden state in the skewed stochastic volatility

model, the move is slightly more involved due to the constraint on the sum of rows. We reparameterize
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result in relatively high acceptance rates but with strongly correlated consecutive samples.
See Roberts, Gelman, and Gilks (1997) for the results on optimal scaling of the random
walk Metropolis algorithm.

Since the proposals are independent of each other and symmetric in all the cases, we

have q (θ|θ′) = q (θ′|θ), and the acceptance probability simplifies to min

(
1,

p(θ′|yt)
p(θ(d)|yt)

)
. To

compute that acceptance ratio, note that the posterior distribution p
(
θ|yt

)
is given by

p
(
θ|yt

)
=
p
(
yt|θ

)
p (θ)

p (yt)

where p
(
yt
)

=
∫
p
(
yt|θ

)
p (θ) dθ is the marginal likelihood (or data density).

In turn, the predictive distribution of the data, p
(
yt+1|yt, θ

)
can be obtained as an

integral against the filtering distribution obtained through the Kalman filter.

Estimating Prior Beliefs To discipline the priors, we use historical data, i.e. the
vintage of the data as of 1968:Q3 (1947:Q2-1968:Q2). We use uniform priors on all the
parameters, and estimate respective models using Bayesian techniques described above.
The mean and standard deviations of the posterior parameter distributions as of 1968:Q3
become the moments of the prior distributions for respective parameters that will be used
in the real-time estimation from 1968:Q4 onwards. The results for the respective models
are reported in the tables below.

To compute volatility in these models, we fix parameters at the estimated means of
these prior distributions. Figures 9 and 10 plot the priors and the evolution of parameter
beliefs over the sample for the linear-normal and skewed models.

Parameter Mean Stdev

α 2.35 0.68
ρ 0.47 0.12
σ2 4.89 3.45
σ2s 15.92 4.47

Table 4: Moments of the prior distributions in the linear-normal model

each row (qi1, ..., qiN ) as

qij =
ωij∑
j ωij

, ωij > 0, j ∈ {1, ..., N}

so that the summation constraint does not hinder the random walk. The proposed move on ωij is then
given by

logω′ij = logωij + τωξω (14)

where ξω ∼ N (0, 1). Note that this reparametrization requires that we select a prior distribution on ωij
rather than on qij .
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Parameter Mean Stdev

c 41.27 6.97
ρ 0.05 0.07
σ2 0.02 0.01
σ2s 0.005 0.007

Table 5: Moments of the prior distributions in the model with skewness.
α

1970:Q4 1980:Q4 1990:Q4 2000:Q4 2010:Q4

1

1.5

2

2.5

3

3.5

ρ

1970:Q4 1980:Q4 1990:Q4 2000:Q4 2010:Q4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ2

1970:Q4 1980:Q4 1990:Q4 2000:Q4 2010:Q4

2

4

6

8

10

12
σ s2

1970:Q4 1980:Q4 1990:Q4 2000:Q4 2010:Q4

8

10

12

14

16

18

20

22

24

Figure 9: Linear-Normal Model: Posterior Parameter Means, Medians, and 95%- Credible
Sets.
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Figure 10: Skewed Model: Posterior Parameter Means, Medians, and 95%- Credible Sets.
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