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Abstract

This paper measures the impact of public R&D investments on innovation by private sector

firms. We quantify the returns to grant spending at the National Institutes of Health (NIH) in

terms of the biomedical patents it generates. Our paper makes two contributions. First, we use

newly constructed bibliometric data to develop a method for flexibly measuring the outcomes

of basic science investments. Second, we take advantage of the institutional features of NIH

peer review to address concerns about the endogeneity of grant funding. Our results show that

NIH funding generates more private patents than it crowds out. A $10 million increase in NIH

support generates 2.8 additional patents; given an average grant award of $1.34 million, this

means that we expect one additional patent private sector patent to be produced for every three

additional NIH grants. We document, moreover, substantial cross-disease spillovers in funding

for biomedical research; approximately half of all patents generated by NIH funding for one

disease area are primarily relevant for a different disease.
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1 Introduction

Governments of industrialized nations invest billions of dollars in scientific research with the

intention of generating economic advantage. In the life sciences, the culmination of this process

is the development of new diagnostics and treatments to improve health and productivity. Since

these final products are generally brought to market by private firms, assessing whether public

investments in research are delivering on their promise requires evaluating their impact on private

innovation. While this has been a longstanding concern in the literature (e.g. Murphy and Topel,

2003), measurement and inference challenges have hampered the development of strong empirical

evidence in this area.

In this paper, we analyze the impact of biomedical research funding by the National Institutes

of Health (NIH) on patenting by private sector firms within the United States. Our paper makes

three important contributions. First, we exploit the unique features of the funding process at the

National Institutes of Health (NIH) to overcome traditional concerns regarding omitted variable

bias to develop causal estimates of this relationship. Second, we develop a series of measures that

allow us to identify the impact of public funding in a way that does not make ex ante assumptions

about the time lags between basic R&D investments its future applications nor about the cross

elasticities between investments in one disease or research area and innovations in another. This

more flexible approach proves quite important, as our results show than nearly half of all public

funding impacts accrue outside of the disease area in which that public funding was placed. Such

impacts have been entirely missed in the prior literature which due to data constraints has limited

it attention to funding impacts within the same disease area. Lastly, we develop novel measures of

the net impacts of public research investments in order to address the potential crowd out or crowd

in of privately–funded research that might be induced by public action. Given its importance for

welfare, we also examine how those responses and the redeployment of capital that they imply alter

private sector innovation on other parts of their research portfolio.

Public investments in biomedical R&D are potentially very important for health. The drug

company Novartis, for example, made use of publicly funded research in the development of Gleevec,

a pathbreaking drug that transformed an extremely lethal cancer, chronic myeloid leukemia (CML),

into a manageable chronic condition. CML is caused by a single gene mutation that leads a common
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cell-signaling protein, tyrosine kinase, to become overactive, resulting in the proliferation of white

blood cells that characterizes many leukemias. This scientific understanding, shaped by decades

of public investment into the genetic foundations of cancer, pointed toward a specific strategy for

treating CML: find a way to inhibit the production of tyrosine kinase. It was only at this point

that research on CML moved into the private sector, where Novartis scientists adapted research on

the use of kinase inhibitors in a different setting, the treatment of vascular conditions associated

with diabetes, to push Gleevec from the laboratory to the clinic (Pray, 2008). In the years since

it received FDA approval in 2001, the success of Gleevec has inspired a wave of research aimed

at developing drugs that selectively target cancer cells (as opposed to all fast-growing cells, as

in traditional chemotherapy), and molecular targeting remains an extremely active area of cancer

research today.

While the story of Gleevec is frequently cited as evidence that public sector investments spur

private innovation, it also illustrates the pitfalls that accompany attempts to test this claim em-

pirically. The synthesis of imatinib mesylate, the chemical compound behind Gleevec, was the

culmination of decades of both private and public investment in research not just into cancer, but

into gene mutation, cellular signaling, and vascular disease as well. This complicated history means

that attempts to assess the role of public funding in developing this—or any other—medical treat-

ment must 1) track the unpredictable, and often convoluted, path between initial R&D investments

and final commercial products; and 2) isolate variation in public investments that are uncorrelated

with the factors that also drive private investments. We make progress on both issues.

Our first contribution is to develop new ways of linking basic science investments with com-

mercial outcomes. The most recent work in this area, Blume-Kohout (2012), Toole (2007), and

Manton et al. (2009), examines the effects of funding for a disease area on outcomes that can be

identified in that same area, with pre-specified lags. Instead our approach uses newly available data

on grant acknowledgements in research articles and patents and adds data on patent-publication

citations that we construct. This allows us to explicitly trace out the flow of knowledge between

funding and patents. Because this strategy does not require us to make ex ante assumptions about

when and where funding may have an effect, we are able to account for the products of public in-

vestments in R&D both over time and across disease areas. With this information, we create three

outcome measures that allow us to assess whether and to what extent NIH funding 1) directly
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generates patents; 2) supports research that aids firms in developing patents; and 3) increases total

private sector patenting.

Our second contribution is methodological. We use institutional features of the NIH to address

concerns about the endogeneity of public funding. Both public and private R&D investments may

respond, for instance, to changes in the disease burden associated with particular conditions (e.g.

Acemoglu and Lin, 2004). In this case, we would observe a correlation between public funding

and private patenting even if public investments were useless. One innovation in this paper is to

recognize that scientists do not simply propose research “on cancer”; instead, they propose research

on specific scientific questions as applied to cancer. This means that the total funding that the

NIH allocates to a disease does not necessarily reflect the true amount of research funding that

is relevant for any particular set of researchers. Funding for a cancer researcher using a mouse

model to study the physiology of tumors is unlikely to be useful for a cancer researcher using

high-throughput sequencing techniques to study gene expression. By recognizing that biomedical

research has both a “science” component—such as cell signaling, as in the case of Gleevec—as well

as a disease component, we are able to construct a finer grained measure of public investment in a

research area.

This level of granularity helps our analysis in two ways. First, we are able to include detailed

controls for omitted variables, such as unobserved, time-varying disease burden or specific scientific

breakthroughs, that have hampered other work. Second, we are able to take advantage of idiosyn-

cratic variation in NIH funding for research areas within a disease or science area in a given year.

Specifically, NIH funding rules require that grant proposals be awarded on the basis of their ordinal

ranking as opposed to cardinal measures of their quality (even though both measures are collected).

We adopt a method similar to Jacob and Lefgren (2007) and instrument NIH funding in a given

research area with the funding it receives by luck, e.g. because of differences in the rank assigned to

its applications, holding constant their absolute quality. This isolates a source of funding variation

generated by procedural rigidities rather than by conscious efforts to direct resources to areas with

more unobserved potential (see Section 5 for more details).

We show that NIH funding increases total private sector patenting. On net, an additional

$10 million in NIH funding for a research area generates 2.8 additional private sector patents.

Given that the average NIH grant award is $1.34 million, we expect three additional NIH grants to
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generate approximately one additional private sector patent. A back of the envelope calculation,

using parameters from the literature, indicates that a $10 million increase in NIH funding leads

to $5.7 million in the PDV of expected pharmaceutical sales. This figure does not include other

potential benefits of NIH funding, such as value from the development of medical devices or new

clinical protocols. Throughout our paper, we estimate an elasticity of private sector patenting to

public sector funding of about 0.4 to 0.7. These are comparable to elasticities estimated for the

returns to private R&D. Our assessment of the magnitude of these effects, however, are subject to

many caveats; Section 7.2 describes these in more detail.

Our results are also the first to quantitatively document the spillover effects that NIH funding

for research targeted toward one disease has on other disease areas. We show that fully half of the

patents resulting from NIH funding are for disease applications different from the one that funded

the initial research. The size of this effect underscores the importance of our approach to linking

patents with funding: by restricting to same area when measuring impacts, the prior literature in

this area may miss almost half of the impact of funding.

Our main estimates do not take into account the possibility that changes in NIH funding can

lead firms to reallocate resources to or from other projects. Reallocation can affect the interpretation

of our results in two ways: if increased funding in one area leads firms to divert resources away from

other projects, then this would lead us to overestimate the overall effect of funding; if, on the other

hand, it leads firms to divert their resources toward other areas, then we would underestimate the

impact of funding. We show in Section 9 that firms which work in an area of increased NIH funding

produce more patents in that area, but not at the cost of patenting in other areas of its portfolio.

This suggests that NIH funding spurs private patenting by increasing total firm R&D expenditure.

We proceed as follows. In Section 2, we discuss the various effects that NIH funding may have

on private patenting. We describe our empirical strategy in Sections 3 through 5 and Sections 6,

7, and 8 describe our data, results, and robustness checks. We discuss extensions in Section 9 and

Section 10 concludes.
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2 Possible Effects of NIH Funding

In this section, we discuss the various ways in which NIH funding can influence life science

patenting and outline impact measures that we use to explore these possibilities. Section 4 will

discuss our measures in more detail.

A first order question is whether NIH funding has any impact on the behavior of private firms

at all. Given the basic nature of much of what the NIH funds, it is possible that public funding

may focus on scientifically interesting questions with few practical applications.

We will test for this in a variety of ways. The most direct is to examine whether the NIH

supports research that directly generates patents. Thus, our first measure of impacts will focus

on patents that directly acknowledge NIH support (see Section 4.1 for more details). The key

motivation for the public funding of research, however, is not to generate innovations directly, but

to enable the discovery of basic scientific insights that form the building blocks of more applied

science. Innovations spurred by NIH funding, then, may not be those that are directly supported,

but those that build on NIH-funded work. To capture these impacts, we construct a measure of

patents that cite papers supported by the NIH (as detailed in Section 4.2). Finding an effect of NIH

funding on either measure would both indicate that firms make use of publicly-supported research

and elucidate an explicit mechanism through which they do so.

Next, we would like to understand how NIH funding impacts the incentives of private firms

to make their own investments. If private and public research are complements, then NIH funding

in an area may crowd-in private investment. This may occur if firms do not invest in foundational

research because of scientific uncertainty, the high fixed costs of R&D, or the inappropriability of

basic scientific knowledge. In this case, NIH investments may increase the expected returns to

private investment by generating knowledge that, for instance in the case of Gleevec, sheds light on

opportunities for new therapies. It is also possible, however, that public and private investments

are substitutes. In this case, NIH investments in a research area may crowd-out private efforts in

that area. This could happen for a variety of reasons: public funds could simply be subsidizing

the cost of a firm’s existing research investments or public funding may make it difficult for private

firms to capture profit from an innovation—by, for example, lowering the costs of entry for other

firms.
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If public funding purely crowded out private research, then we would see that private firms

make use of NIH-funding—e.g. we may find that increase NIH funding leads to an increase in

patents that either cite NIH funding or NIH funding research—but we should see no increase in

the total amount of innovation in an area. If, on the other hand, public investment generated

private crowd-in, we should see an overall effect on innovation. In practice, public investment

can both crowd in some types of private investment and crowd out others. Our third measure of

funding impacts is designed to capture the net impact of public funding on innovation in a research

area. We do this by measuring the number of patents that could have benefited from NIH funding.

Under crowd out, we would find no impact of public funding on this measure because the number

of patents that could have benefited from NIH funding would not change (see Section 4.3).

Finally, it is important to note that in our context the welfare implications of crowd our or

crowd in will depend, in part, on the larger impacts of these responses on the overall allocation of

research portfolios within the private sector: if NIH funding in an area crowds-in private invest-

ment, is that coming at the cost of private investment in a different area? Conversely, are private

investments that are crowd-out directed toward other research areas? While data limitations pre-

vent us from making complete welfare calculations, we directly examine the impact of NIH funding

on reallocations by examining the impact of NIH funding for an area on patenting in other parts

of a firm’s R&D portfolio (see Section 9 for details).

3 Empirical Overview

3.1 Challenges in the literature

How does funding impact the number of patents in disease area d, issued at time t (call this

Patentsdt)? The most direct way of answering this question would be to regress Patentsdt on a

set of variables describing funding for every disease area in every year prior to t. With random

variation in all these funding sources, and with sufficient data, we would be able to estimate all the

cross elasticities—across research areas and over time—associated with changes in funding.

In practice, however, this is infeasible. As a result, the literature in this area has traditionally

restricted the impact of funding to the same disease area within a well defined time horizon. Toole

(2012), for instance, estimates the following type of regression:
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Patentsdt = α0 + α1Fundingd,t−1 + α2Fundingd,t−2 (1)

+ · · · + αkFundingd,t−k + Controlsdt + εdt

Here, only the k lagged terms for Fundingd,t−i—funding in the same disease area—are assumed

to impact Patentsdt. Toole (2012), for instance, examines 12 years of lagged funding.

This approach, however, faces several major challenges. Restricting to the same disease area

misses the many cases in which studies targeted toward one disease finds its primarily application

in another area. Much of the research underlying the development of anti-retrovirals used in the

treatment of AIDS, for example, was originally funded by the National Cancer Institute in the

1950s and 1960s, at a time when the scientific consensus was that cancer was primarily caused by

viruses.1

In addition to where, it is also difficult to predict when basic research may find a practical

application (David, Mowery, and Steinmuller 1992). In the case of Gleevec, Brian Druker and his

collaborators at Novartis built on research published thirty years earlier, on a chromosomal mutation

associated with the cancer CML (Nowell and Hungerford 1960). In this case, the availability of

treatment lagged behind basic research by over forty years. Conversely, in other settings basic

research percolates almost immediately into applied work, such as when publications and patents

on the same piece of knowledge are released in tandem (Murray 2005).

The third major challenge in estimating Equation (1) is that funding may be endogenous. A

rise in childhood obesity, for instance, may increase public health concerns associated with diseases

such as diabetes and therefore increase NIH funding to this area. At the same time, however, it may

increase the potential market for diabetes drugs and thus independently spur private investments.

Simply regressing public funding on private outcomes would, in this case, yield spurious findings.

3.2 Our approach

Instead of estimating Equation (1), we estimate a regression of the form:

1For other examples, see, Wurtman and Bettiker (1995); Gelijns, Rosenberg and Moskowitz (1998).
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Patents(dst)′ = α0 + α1Fundingdst + Controlsdst + εdst (2)

Equation (2) differs from (1) in two major ways.

Unit of Analysis: The first is that we have added an additional subscript, s. Instead of just

being at the disease–year level, our unit of analysis is a d isease–science–t ime (DST) combination.

We do so because biomedical research typically involves a science area and a disease application.

Researchers may study, for instance, “cell signaling in cancer” or “gene expression in diabetes.” As

such, DSTs are a natural way of grouping research projects into areas: projects within a DST are

ones funded in the same year, which share a similar disease interest, and which benefit from an

understanding of similar scientific mechanisms and processes.

Focusing our analysis at the DST-level has several advantages. The first is that DSTs are

policy relevant. If the government is interested in assessing the returns to additional investments in

the genetics of Alzheimer’s, for example, then the DST would be the appropriate unit of analysis.

Second, we construct our main explanatory variable, Fundingdst, to be the total amount of NIH

funding for grants in a particular disease–science area in a given year. This means we can tell

when, for example, cancer funding for cell–signaling increased relative to cancer funding for gene

expression. This specificity, in turn, gives us the variation necessary to include disease-science,

disease-year, and science-year fixed effects to address a variety of potential threats to identification.

We will also make use exogenous variation in DST–level funding to instrument for Fundingdst.

The first step in our analysis, then, is to assign NIH funded research projects to specific DSTs.

Ordinarily, this task would not be straightforward because grant proposals often have titles—

“Impact of Type II Glucocorticoid Receptor Impaired Function in Transgenic Mice”—where it is

difficult to identify either a disease or a science area. In our setting, however, we are able to infer

a grant’s DST because the NIH requires all grant applications to specify both a disease focus and

a scientific topic focus. To understand this, we first provide some background about the NIH.

The NIH is the world’s largest single funder of biomedical research. Its annual budget of

$30 billion comprises almost one-third of all US spending on biomedical research and development,
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private and public sector combined.2 The NIH is composed of 27 semi-autonomous Institutes

and Centers (ICs) that are typically organized around diseases (for example, the National Cancer

Institute). These ICs receive separate Congressional appropriations and are responsible for funding

relevant to their mission. In order to be considered, a grant proposal must first specify an area of

disease application because this determines the Institute that will likely be responsible for funding

the proposal in the event that it is approved. This is how we determine a proposal’s disease area.

Meanwhile, grant evaluation at the NIH is handled by a centralized peer review body. During

the span of our data, 1980-2000, the majority of grant review occurred in approximately 200

standing review committees, known as “study sections.” Each study section is organized around

a scientific topic—for instance, “Cellular Signaling and Regulatory Systems”—and is responsible

for evaluating the quality of applications in its area.3 We are thus able to determine a proposal’s

science area by observing the study section to which it is assigned.

Using administrative records, we gather the disease and science area for all grants over the

period 1980–2000. For ease of exposition, we use “disease area” as a general term to refer to re-

search funded by a particular NIH Institute and “science area” to refer to research reviewed by

a particular NIH study section. A DST area refers to all grants funded by a particular IC and

evaluated by a particular study section in a particular year.

Defining Fundingdst and Patents(dst)′ : The second major difference between our approach and

that of the previous literature is how we specify the dependent and independent variables. Instead

of using a system of funding lags, we study the impact of a single change in funding: Fundingdst.

Given that funding in one area can have impacts in other areas with unpredictable lags, it is not

clear how the dependent variable should be constructed. Imagine, for instance, if we knew that

cancer funding randomly increased in 1995. We then observe a series of patents and drugs being

approved in subsequent years: how would we know whether any of those innovations actually made

use of the research supported by that additional funding? Conversely, for any given patent, how

do we know what public funding sources were relevant in its development?

2See CBO “Research and Development in the Pharmaceuticals Industry” (2006).
3In 2006, the NIH reorganized its standing study sections. This involved closing or consolidating some study

sections, splitting others, and creating new study sections, for instance one on data analytics, to respond to new
topics and tools. The overall review process stayed largely the same. This change happens outside of our sample
frame and, throughout our analysis, we refer to the old system.
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A major innovation in our paper is that we construct new data to actually track the output

NIH funding using data on grant acknowledgments, patents, and patent citations. Our depen-

dent variable is Patents(dst)′—these are patents in potentially any research area but which can be

somehow “associated” with NIH funding for disease d, science area s at time t.

In the next section, we define several different definitions of what it means for a patent to

be “associated” with Fundingdst. What is true for all of these definitions is a patent included

in Patents(dst)′ need not be confined to the same disease area d, or the same science area s, or

be issued in the same year t as the original funding source Fundingdst. For example, if a patent

related to cardiovascular stents cites research funded with money allocated to diabetes, we would

be able to observe this in our citation and acknowledgement data and thus be able to associate this

cardiovascular patent to diabetes funding.

The next sections of this paper deal with how we address concerns about 1) how to define and

measure Patents(dst)′ and 2) the potential endogeneity of Fundingdst. We first define our outcome

variables and then describe our identification strategy.

4 Measuring Patent Outcomes

We construct three measures of Patents(dst)′ , which differ in how we count a patent as “asso-

ciated” to a DST; each measure is designed to answer a slightly different question about the impact

of NIH funding.

The first measure asks whether NIH funding directly supports the creation of patented inven-

tions. The second measure asks whether NIH-funded research is used by private firms in commercial

innovation. NIH-funding may be useful to private firms, but it may also crowd-out their own efforts.

Our third measure asks whether NIH funding leads to the net creation of private-sector patents

that would not have otherwise been developed. We describe these three measures below; the overall

data and variable construction process is summarized in Figure 1.
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4.1 Patents citing NIH funding

Our first outcome measure is designed to assess whether NIH funding directly produces

patentable knowledge. Patenting by NIH-funded researchers is the most immediate channel through

which NIH funding can have an impact on future patent output. It has also become more common

since the passage of the 1981 Bayh-Dole Act created incentives for academic and other public-sector

researchers to patent and license their discoveries.

Constructing a measure of the direct patent output of NIH funding is relatively straightfor-

ward: we use NIH administrative records to track all patents that directly acknowledge financial

support from the NIH (Figure 1, first column). We then aggregate the number of patents acknowl-

edging NIH grants to the DST level so that Patents(dst)′ is defined as the number of patents that

acknowledge funding from grants supported by the DST defined by disease d, science area s, and

year t.

4.2 Patents citing NIH-funded research

NIH funding may also impact patenting by producing research that private sector firms then

build on. Both economic theory (e.g. Nelson 1984) and policymakers (e.g. Bush 1945) characterize

this channel as the dominant way in which public sector research affects private-sector innovation.

We assess this claim directly by identifying the number of private-sector patents that explicitly

cite NIH-funded research. This is done by first linking NIH grants to the publications they sup-

port using grant-acknowledgement data, and then by linking those publications to the patents that

build on their findings (Figure 1, second column). To accomplish this second task, we construct

a new dataset describing patent to publication citations. We do this by finding and standardizing

all the in-text publication citations in patents granted by the USPTO. This approach represents

an innovation over the more commonly used patent-patent citation data for two reasons. First,

publications, rather than patents, are the main output of scientific researchers. Second, the vast

majority (over 90%) of patent-paper citations come from applicants rather than examiners and are

thus more plausibly indicators of real knowledge flows than patent-patent citations, for which only
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60% of citations are applicant generated.4 Taking the acknowledgment and citation data together,

we define Patents(dst)′ as the set of patents that cite publications that in turn acknowledge funding

from that DST.

The major advantage of these first two measures of patent outcomes is that they allow us to

identify innovations that build on NIH funding without having to make ex ante assumptions about

when and how this may occur: if cancer-cell-signaling funding in 1995 supports research that is

then cited by a 2002 patent related to diabetes treatment, the citation measure described above

would capture this.

There are, however, two important drawbacks to these outcome measures. First, relying on

grant-publication-patent citations dramatically limits the types of intellectual influence we can

observe. We would not, for instance, credit NIH funding if it leads to patenting through more

complicated citation patterns (e.g. a patent that cites a publication that cites a publication that

cites the NIH), informal interactions (e.g. two researchers meet and exchange ideas at a conference

supported by NIH funding), or the hiring of NIH funded researchers and trainees (e.g. graduate

students trained on an NIH grant go on to work in industry upon receiving their Ph.D.). Omitting

these channels may lead us to underestimate the impact of NIH funding.

The second concern is that these measures may also overstate the returns to public investments

by conflating the creation of research that leads to new patents with the crowd-out of privately

funded research that underlies existing patents. This occurs because the output measures we

have described so far treat patents that do not exist and patents that do exist—but which cite

only privately funded research—in the same way: neither are counted toward a DST. As a result,

if increased DST funding leads to an additional linked patent, we cannot tell whether this patent

would otherwise have not existed or whether private firms would have funded the necessary research

instead.

This means that our first two measures of patent outcomes tell us about whether NIH funding

is useful for private firms. While this is an interesting question in itself—it’s possible, after all,

that the NIH supports research with little practical application—identifying whether NIH funding

4See Agrawal and Henderson 2001, Sampat 2010, Alcacer, Gittleman and Sampat 2008, and Alcacer and Gittleman
2006. Details of this matching process are discussed in Section 6 and Appendix A.
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increases total private innovation requires a different outcome measure.

4.3 Patents that could have cited NIH-funded research

The key to identifying the impact of funding on the creation of patents is developing a way

of linking existing patents with DSTs, even if they do not cite NIH-funded research. Our third

measure of patent outcomes associates a patent with a DST if that patent cites research that could

have been funded by that DST. The logic behind this is as follows: if a DST is already linked

to all existing patents it could have supported—including ones that only rely on privately funded

research—then funding can only increase the number of patents linked in this way if it actual spurs

the creation of new patents. Thus, we use this measure to assess the impact of NIH funding on

total innovation in an area.

In practice, finding the set of publications that could have been funded by a DST requires some

assumptions. We assume that a publication could have been funded by a DST if it is intellectually

similar to any publication that that DST actually does fund. To construct this measure, we begin

with the universe of biomedical patents (see Figure 1, third column). We link each patent to the

publications that it actually cites and then we use a similarity measure calculated by the PubMed

Relatedness Algorithm (PMRA), which we discuss in more detail in Appendix A. Briefly, the PMRA

analyzes keywords and keyword combinations that are assigned to all life science publications by

the National Library of Medicine and defines similarity on the basis of how may of these keywords

overlap. The final step in our matching process is to link this broader set of publications to DSTs,

again via grant acknowledgments. Patents(dst)′ , as defined by this measure, is the number of patents

that cite research similar to the research funded by that DST.

The set of patents linked to a DST in this way can be thought of as patents in the same “intel-

lectual area” as a DST.5 This measure, then, potentially captures a richer set of channels through

which NIH funding may impact innovative output: patents by private-sector scientists trained with

5All of our outcome measures allow for funding from a particular NIH disease-science area to have impacts in
other disease or science areas. Thus, when we say that NIH funding for a DST increases private sector patenting in
its “area,” we mean that funding for a DST leads to more patents in research areas for which that DST’s funding is
relevant. For example, if cancer-related research articles about cell signaling are similar to diabetes-related articles
about cell signaling, then diabetes patents related to cell signaling would be considered “in the area” of funding for
cancer-cell signaling. If a random shock to funding for cancer-cell-signaling leads to an increase in diabetes-related
cell-signaling patents, our method would credit cancer funding with this increase.
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NIH funding, patents that cite publications that cite publications that cite the NIH—as long as

the patent cites a publication similar to work funded by that DST.

Finally, it is important to note that not all research outputs are patentable. 6 Yet, our outcome

measures may miss a range of economically and clinically important effects of NIH-supported

research, such as epidemiological knowledge about health risks; clinical research on drugs, devices;

or surgical procedures.7

5 Identification Strategy

Our generic regression is once again given by:

Patents(dst)′ = α0 + α1Fundingdst + Controlsdst + εdst (3)

The main explanatory variable, Fundingdst, is the total funding for NIH grants supported by

the NIH Institute responsible for disease d, evaluated in the study section responsible for science

area s, and granted in fiscal year t. We examine the impact of this funding on Patents(dst)′ , the

number of patents linked to funding from disease area d, science area s, at time (year) t using the

process described above. Recall that Patents(dst)′ is not the set of patents in disease area d, science

area s, and issued at time t. Rather, the only requirement for a patent to be counted as part of

Patents(dst)′ is that it be associated with NIH funding for disease d, science area s, in grant year t.

Having defined our outcome measures, the remaining challenge to estimating Equation (3) is

the concern that Fundingdst may be endogenous. We will deal with this in two ways: first, we will

include detailed fixed effects to control for possible omitted variables bias and, second, we will show

6Since the propensity to patent in the biopharmaceutical sector is, this is less of a generic concern in our setting
than it would be when evaluating, for example, the effects of NSF-supported research in computer science onto
industrial patenting (cf. Cohen, Nelson and Walsh [2000].

7Note that patent-to-publication linkages will capture some of these effects to the extent that industrial firms find
their initial inspiration for a research program in the epidemiological or clinical literature. To cite a famous case,
the patents granted to Eli Lilly concerning recombinant activated Protein C for the treatment of sepsis all refer to a
clinical study correlating mortality in a small sample of severely septic patients with depressed levels of Protein C in
these patients bloodstream (Fourrier et al. [1992]). This clinical correlation provided the impetus for Lillys attempt
to synthesize a recombinant version of this protein. This product was ultimately withdrawn from the market in 2011
after new evidence emerged regarding the bleeding risks associated with the use of this drug.
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that our results with fixed effects are robust to using an instrumental variables strategy to isolate

the part of funding variation that is driven by randomness in NIH’s peer review process.

5.1 Fixed effects estimation

Our explanatory variable, Fundingdst, is defined at the disease–science–year level. Given this,

we are able to include pairwise fixed effects to control for disease–science (e.g. research area),

disease–year, and science–year effects. Our main estimates, then, are derived from the following

specification:

Patents(dst)′ = a0 + a1Fundingdst +Xdstβ + δds + γdt + νs′t + Xdstb + εdst (4)

Without any controls, the coefficient on funding, a1, in Equation (4) may be biased in a

number of ways. Some diseases, such as cancer for instance, may simply impact more people—and

thus command both more public and private interest—than others. To address this, our regressions

include fixed effects δds to control for any time-invariant differences between research areas defined

at the disease–science level. This not only controls for differences in disease burden, but also for

more complex unobservables such as the possibility that some research areas may be more tractable

than others, even within the same science area. Research into the genetic basis of CML, for instance,

is easier than research into the genetic basis for schizophrenia because the former only involves one

gene mutation.

Both the demand for innovations in an area and our understanding of its science, however,

can change over time. We may be concerned, for instance, that a rise in obesity increases both

the potential market for heart disease drugs and public funding devoted to developing them. To

control for this and other disease specific changes in demand (e.g. disease burden, popular interest)

or supply (e.g. changes in the feasibility of research), we also include disease–year fixed effects, γdt.

Another concern may be that NIH funding for a DST also changes in response to scientific

advances. New DNA-sequencing technologies in the late 1990s, for instance, may have increased

both public and private research funding for diseases with a genetic component. We also include
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science–year fixed effects, νs′t, to control for this type of variation.8 Finally, we include additional

controls for the the quality of grants in a DST and lagged measures of a DST’s patent productivity.9

To account for serial correlation, standard errors are clustered at the disease–science level.

Figure 8 plots residual variation in funding taking out, successively, fixed effects for disease–

science, disease–year, and science–year. At this point, our remaining variation in DST funding

comes from within-disease-year or within-science-year changes: why is it, for instance, that cancer–

cell-signaling may receive more funding in 1995 than cancer–tumor-physiology? Our identifying

assumption in the fixed effect estimation is that NIH funding for a specific DST is not corre-

lated with changes in the innovative or commercial potential associated to specific disease–science

combinations.

There are two general sources of endogeneity in NIH funding. The first is what we refer

to as “top-down” endogeneity; DST funding may be endogenous if Congress or an NIH Institute

allocates more funding to DSTs on the basis of its potential. In response to the success of Gleevec,

for example, the National Cancer Institute may decide to devote a greater percent of its budget

toward the study of cell-signaling or gene expression, scientific topics that are particularly relevant

for targeted cancer therapies. If private firms are doing the same, then Equation (4) would not be

able to identify the impact of public funding because we would expect changes in patenting for this

area even in the absence of additional funds.

While it seems plausible—and, indeed, efficient—that the NIH might direct funding to DSTs

on the basis of their evolving potential, in practice, NIH grant funding rules make this very difficult.

In particular, the way that an NIH grant application is funded is as follows: when grant application

is submitted, it is assigned, on the basis of its disease area, to an Institute (IC) for funding and,

on the basis of its science area, to a study section for review. Study sections cut across ICs in the

sense that they review applications in multiple disease areas as long as they share an interest in

8Our data contain 431 science areas as defined by study sections. Because it was difficult to estimate standard
errors with study section by year fixed effects, we included Integrated Review Group (IRG) by year fixed effects
instead. This is why we denote our fixed effects as νs′t, as opposed to as νst. IRGs, of which there are about 40 in
our data, are the broader science areas by which study sections are grouped. A study section on “Cellular Signaling
and Regulatory Systems,” for instance, is included in an IRG on cell biology.

9Application quality controls include cubics in the average raw score received by awarded grants and cubics
for the average score received by all applicants regardless of whether they are funded; ten annual lags of number
of publications produced by the DST and number of applications to the DST; and dummies for number of DST
applicants near the IC’s funding threshold. We also include ten years of lagged funding controls with indicators if a
DST is not observed in any year.
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the same science. Study sections assign each grant application a score which is then normalized.

After scoring, the NIH’s funding rule is mechanical: an IC lines up all applications it is assigned

and funds them in order of their normalized score until its budget has been exhausted (the worst

score that is still funded is known as the payline).

As a result, ICs have little purview to adjust the number of grants they fund from each

study section in response to their scientific relevance. Because scores are normalized within study

sections before being compared, an IC effectively can only fund the second-ranked application from

a study section after it has funded the first-ranked application from all other study sections. This

means that if cell-signaling were particularly “hot” in one year, the NCI could not decide to fund

the top 20 cancer-related cell-signaling applications without first funding the top 20 cancer-related

applications in all other science areas; most likely, it would not have the budget to do so.10 In fact,

the rigidity of this system was cited in an NIH-commissioned report from 2000, urging reform:

Researchers perceive that...applications describing some of the most productive, highest impact

work may be assigned to too few study sections, causing too much of the “best science” to

compete with itself; that the scope of some study sections is restricted to research with relatively

low impact, resulting in undeserved “entitlements”....11

Even if Congress or the NIH is not able to allocate funding top down, another possibility

is that NIH study sections may give higher scores to applications from disease areas with more

potential. This would generate increased funding for a DST from the “bottom up.” Returning to

the example of Gleevec, even if the National Cancer Institute were not able to earmark more funds

for cancer cell-signaling research, the cell signaling study section may decide to give higher scores to

cancer-related applications. Because higher raw scores generally translate into higher rank scores,

study section decisions may induce endogeneity in DST funding from the bottom up, even after

controlling for the fixed effects in Equation (4). We instrument for funding in order to address this

specific concern.

10The main way that ICs get around these rules is to either fund an application out of scoring order or to issue
a request for proposals (RFP or RFA) on a specific topic. RFPs and RFAs also account for only a small portion of
NIH grant spending. Grants responding to these are typically evaluated in one time “special” study sections, which
we exclude from our sample because it is difficult to assign them to a scientific area. See Section 8 for a discussion
of out of order grant funding.

11“Recommendations For Change At The NIH’S Center For Scientific Review” Final Phase 1 Report, Jan 14, 2000.
Available online. http:public.csr.nih.govaboutcsrCSROrganizationDocumentspsbrfinalphase1reportjan2000.doc.
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5.2 Instrumental variables estimation

To address concerns that NIH study sections may be giving higher scores to applications from

DSTs with high potential, we use an IV strategy that isolates variation in DST funding, holding

constant the innovative potential of its funded grants. Our instrument for DST funding is based on

the fact that grant applications with the same score may have different funding outcomes because of

differences in rankings. This means that there can be cases in which two DSTs contain applications

of the same quality, but one DST will receive more funding because more of its applications are

funded for reasons unrelated to its quality.

Specifically, the funding and evaluation process at the NIH works as follows: each grant appli-

cation that the NIH receives is assigned to an Institute or Center (IC) and to a study section. The

IC is responsible for funding that application if it is approved, and the study section is responsible

for evaluating the quality of that application. Within a study section, an application is evaluated

with other applications in the same science area, which are potentially assigned to different ICs

or disease areas. The study section assigns two scores to an application. The first is a raw score,

which, during the time of our data, ranged from 5.0 (the worst) to 1.0 (the best). This raw score is

meant to be a summary statistic for the study section’s assessment of the quality of that applica-

tion. Raw scores are then normalized within a study section and converted into a percentile. This

second score can be thought of as a within study section ranking.

Study sections, however, are not responsible for funding. Instead, applications are funded by

the ICs to which they are assigned. ICs, meanwhile, are assigned applications that are evaluated

by multiple study sections. ICs aggregate applications from multiple study sections by order appli-

cations from all study sections by their within study section rank. This, then, is essentially a rank

of ranks.

Given this system, there are three “scores” associated to each application: the raw score

given by the study section, the within study section rank that this implies, and, finally, the within-

Institute ranking that is obtained when study section ranks are combined. It is this final score,

which we call a “priority rank,” that determines whether an application is funded; the NIH requires

that ICs fund grant applications in order of their priority rank until they exhaust their budget.

Figure 9 illustrates an example of this funding process, and how it generates what we argue
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is exogenous variation in the funding levels for different DSTs. There are two ICs: the National

Cancer Institute (NCI) and the National Institute of Diabetes and Digestive and Kidney Diseases

(NIDDK) and they are responsible for funding grant applications from two study sections: cell-

signaling and tumor physiology. Panel 1 illustrates the raw scores that each study section assigns

to the applications that they review. These raw scores translate into normalized rankings, labeled

“Rank.”

Panel 2 of Figure 9 illustrates how study section ranks translate into priority ranks within

an IC, using raw scores as tie breakers. The solid line is the pay line; applications with priority

above the pay line are funded; ones with priority below are not. The highlighted cells in Panel

2 show that, within a disease-year, applications from two different science areas with the same

score may have different founding outcomes. In this case, tumor physiology applications are less

competitive than cell-signaling applications, meaning that—independent of quality—proposals to

study tumor physiology in cancer are more likely to be funded than proposals to study cell-signaling

in cancer. Similarly, within a science-year, applications from different disease areas with the same

score may also have different funding outcomes. In Panel 3, which, recreates Panel 1 but with

funding outcomes, cancer applications in tumor physiology have high priority rankings. These

applications will thus take up more NCI funding, leaving less for cancer-cell-signaling, even if the

latter are of higher absolute quality.

The idea behind our instrument is to take the total amount of funding for a DST, Fundingdst

and instrument it with the subset of this funding that is associated with applications that were

funded because of high priority ranks, not higher scores. In Figure 9, the cancer-tumor physiology

DST and the cancer-cell signaling DST both have applications with raw scores of 7.6, but only one

is funded, the tumor physiology application. The additional funding that cancer-tumor physiology

receives from this grant, then, can be thought of as “lucky” funding because it is not related to the

merits of the application. This is illustrated in Figure 10.

To capture this more generally, we compare DSTs that have the same number and quality of

grant applications near an Institute’s funding threshold and instrument Fundingdst with funding
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for the subset of those applications that are actually funded:

Lucky Fundingdst =
∑

g∈Gdt

Fgdst

where Gdt is the set of ten grant applications on either side of the funding threshold for disease

area d in year t.12 For the example given in Figure 9, Gdt would include all grant applications from

either cell-signaling or tumor physiology within a five-grant window from the payline at a given

disease-based Institute. For this set of applications near the threshold, we ask how many of a given

DST’s applications are funded and claim that, within the set Gdt, whether an application is funded

is uncorrelated with innovative potential in that application’s DST.

In general, this may not be true. DSTs with higher quality applications overall may have more

applications near the threshold, or conditional on being in near the threshold, some DSTs may have

applications with higher absolute quality. Thus, we use our instrument in conjunction with a full

set of indicator variables for the number of grant applications an given DST has near the threshold

set Gdt, as well as cubics in the average raw score of all grant applications to a DST, the average

raw score of all funded applications in a DST, and the average raw score of all applications within

the threshold set Gdt from a DST. Together, this isolates the portion of a DST’s total funding

that comes from grant applications near a funding threshold that are funded on the basis of their

priority rank, not their cardinal quality.

To deal with the possibility that ICs may fund grants out of order, we also construct G using

only grants that are funded in order.13 Section 8 discusses specification checks associated with this

IV strategy and presents results using two alternative instruments.

Finally, our strategy is similar to the one used by Jacob and Lefgren (2010) to investigate

the impact of receiving NIH funding on grant-level outcomes. Jacob and Lefgren use a regression

discontinuity design and compare outcomes for grant applications just above and just below an

Institute’s payline. In our case, we cannot use an RD because the running variable—priority

rank—applies to individual grants but not to DSTs. There is no DST-level discontinuity; instead

we aggregate discontinuities at the grant level to generate differences in funding among similar

12We can use different bandwidths; this changes the power of our instrument but not the magnitude of our results.
13A grant is considered to be funded in order if there are no grants with higher scores that are unfunded.
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DSTs.

6 Data Construction and Descriptives

Our analysis combines data from several primary sources: 1) Administrative data on NIH

funded grants from NIH RePORTER; 2) publication data from PubMed including information on

grant acknowledgements; 3) patent data from the USPTO; and 4) information on FDA-approved

drugs from the Orange book. In addition to these, we use data from iEdison to identify patents

developed as a direct result of NIH funding and NIH’s PMRA data linking all PubMed publications

to related publications. Our final analytic sample captures linkages between the universe of NIH-

funded grants from 1980-2000 at both the individual grant and DST levels, and the universe of all

life science patents citing biomedical research from 1985-2005. Figure 1 provides an overview of

our data construction.

6.1 Grant-level Patent Match

Our first set of outcome measures involves linking NIH grants to patents that they directly

produce and to patents citing research that they support. To do this, we begin with data on all

123,478 NIH grants from 1980-2000 that are evaluated in chartered study sections and funded by

biology-focused Institutes.14 The characteristics of these grants are described in Table 1. These

grants are funded by 16 ICs, representing disease areas and 443 study sections, representing science

areas. In total, we have grant-level data on the activities of 11,110 DSTs.

The average award size for grants in our sample is approximately $1.34 million. The majority

(68%) of grants are R01-equivalents—the R01 is a renewable, project-based grant that constitutes

the majority of NIH’s grant spending—and most (63%) are for new research projects (as opposed

to renewals of existing projects).

14For our primary analysis, we include grants funded by the National Cancer Institute, the National Eye Institute,
the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases,
the National Institute on Drug Abuse, the National Institute of Neurological Disorders and Stroke, National Institute
of Mental Health, the National Institute of Allergy and Infectious Diseases, the National Institute of Arthritis and
Musculoskeletal and Skin Diseases, the National Institute of Dental and Craniofacial Research, the National Institute
on Alcohol Abuse and Alcoholism, the National Institute on Aging, the National Institute on Deafness and Other
Communication Disorders, and the National Institute of Environmental Health Sciences, the National Institute for
Human Genome Research, and the National Institute for Biomedical Imaging. This set excludes NIH ICs devoted
to, for instance, nursing research or minority health disparities, which do not fit into our disease-science description
of NIH research.
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NIH-funded scientists rarely patent their research: we find that only 1,283 out of 123,478

grants, or just over 1%, are directly acknowledged by private-sector patents. These grants tend

to be much larger; the average award for a grant that financially supports at least one patent is

$3.08 million, reflecting the fact that translational and clinical research projects tend to be more

expensive. The upper left hand side panel of Figure 2 plots the distribution of the number of

patents by NIH-funded researchers.

Next, we consider how many patents explicitly build on NIH-funded research. This matching

process is described in the second column of Figure 1: we use NIH administrative data to link

grants with the publications that they produce and then we use our own algorithm to extract

publication references from the texts of patent applications in the USPTO database. Figure 6

illustrates our grant to publication to patent match with an example. In its first three years of

funding, the NIH grant CA-065823 was acknowledged by four publications, among which is the

article published by Thiesing et al. in the leading hematology journal Blood. We observe this

link because grant acknowledgements are reported for publications indexed in the National Library

of Medicine’s PubMed database. Next, the Thiesing et al. article is listed as prior art in patent

number 7,125,875 issued in 2006 to the pharmaceutical firm Bristol Myers Squibb. To capture

this link, we use natural language processing techniques to identify and standardize publication

references in the text of patent applications at the USPTO (see Appendix A for more details).

This matching process links the majority of grants in our sample, 81%, to at least one publi-

cation and 34% to at least one patent (via a publication that that patent references). The budgets

of these grants, moreover, is not considerably different from the budget of the average grant overall:

$1.96 million vs. $1.34 million. The middle left panel of Figure 2 plots the distribution of patents

linked to grants in this manner.

Our final set of outcome measures considers the number of patents citing research that could

have been funded by a DST. These are privately held patents that need not be associated to the

NIH in any way, but which may still be affected by changes to NIH funding. The third column

of Figure 1 illustrates our matching process. To construct this measure, we begin with all 173,631

science-based biomedical patents issued between 1985 and 2005. For each of the publications that

a patent cites, we find the set of related publications published within five years of the original

publication. Then, for this set of directly cited or related publications, we find the DSTs of any
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NIH funding that they acknowledge. The goal of this procedure is to infer what NIH funding areas

are relevant for any given patent by finding the DSTs that funded research similar to the work

cited by the patent.

Figure 7 illustrates this process. Patent number 6,894,051was issued to Novartis in May 2005,

one of the five patents listed in the FDA Orange book as associated with the drug imatinib mesylate,

better known by its brand name, Gleevec. Patent 6,894,051 does not cite any publications which are

directly supported by the NIH so it would not be linked to an NIH DST under our citation-linkage

measure of innovative output. It does, however, cite PubMed publication 8548747, published in

Cancer Research in 1996. The PubMed Related Citation Algorithm [PMRA] indicates that this

publication is closely related to PubMed article 9389713, which acknowledges funding from NIH

grant CA-0011422. These indirect bibliometric linkages are valuable to us because they enable us

to link the great majority of life science patents to an NIH disease-science area. In other words,

most patents can be traced back to one or more NIH grants, because most patents cite publications

that are similar to publications that acknowledge NIH funding.

We match 141,356 patents (∼80 % of our universe) to at least one NIH DST using either

the direct or PMRA citation approach. These patents, meanwhile, are not concentrated in a small

subset of DSTs. Table 2 indicates that approximately 90% of DSTs produce research that is

potentially relevant for patenting. Counting the number of patents in the vicinity of an DST leads

to a significantly greater number of patent matches: the median DST is linked to 340 patents, the

75th percentile, to 1,649. Again, these grants do not require considerably more investment than

the average grant: $1.53 million vs. $1.34 million. The bottom-left panel of Figure 2 graphs the

distribution of the number of adjacent patents for both individual grants and DSTs.

One important detail to note is that Figure 2 reports unweighted patent counts. That is, a

patent that is linked to multiple DSTs continues to count as one for each DST. This means that the

number of citation- and PMRA-linked patents are not directly comparable; under a PMRA-match,

the same patent can be linked to many more DSTs through the inclusion of related publications so

that the total patent count per DST is mechanically higher. In our regressions, we report estimates

where patent counts are weighted in the following way: regardless of what outcome measure we

use, if a patent is linked to N DSTs, it counts as 1/N of a patent in each DST. This means that

patents are restricted to being counted once across all DSTs to which they are linked. The correct
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way to weight patents depends on the nature of the production function for patents with respect

to NIH-funded research. Ideally the weight assigned to a patent at any particular DST should be

the probability that support from that DST was pivotal for the production of the patent. We will

discuss the implications of weighting for the interpretation of our results in Section 7.

Our data allow us to document, for the first time, new patterns in the dissemination of basic

science investments over time and across disciplines. Figures 3, 4, and 5 describe how the time lag

between NIH-funded research and patent output varies. Figure 3 documents substantial variation

in the relevance of NIH funding for patenting across disease applications. Approximately 15 years

after funding, almost 60% of grants funded by the National Institutes for Allergy and Infectious

Diseases have produced research that has been cited by a patent. In contrast, this is true of only

20% of grants funded by the National Institutes of Mental Health. These differences likely reflect

differences in the ease of biomedical innovation across disease areas, as opposed to differences in

the efficacy of NIH funds. Figure 4, meanwhile, shows that time-to-patent has been decreasing

over time. Only 20% of grants awarded between 1980 and 1985 produced research that is relevant

for a patent in the ten years following. For grants awarded between 1991 and 1995, this figure

was almost 40%. Finally, Figure 5 examines time-lags for different types of patents. We see that

a grant is most likely to produce research relevant to patents in its own disease area. Perhaps

more surprisingly, though, is that it is still quite likely to produce research relevant for patents in

different disease areas. Grants are also just as likely to produce publications cited by private sector

patents as public sector patents (though rates of citations differ, as there are more private sector

patents). Finally, patents associated with successful drugs are still rare.

6.2 DST-level Patent Match

Our empirical variation, however, resides at the level of the DST, not the level of the individual

grant. This is because we are interested in the impact of funding for research areas, rather than

the returns that accrue to particular projects. Table 2 describes our DSTs and how they are linked

to patents. The average DST supports 11 grants totaling $14 million in funding.

Nine percent of DSTs produce research that is directly patentable, but the average number of

patents associated with a DST through direct patent acknowledgements is small: even conditional

on directly producing at least one patent, the median DST produces only half a private sector
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patent; the 75th percentile DST provides financial support for only one patent. If NIH funding has

any impact on patenting behavior, it does not seem to be primarily through this route.

NIH funding plays a larger role in funding research that is cited by patents. Using this

definition of a link, 65,745 patents or 38% of our universe of patents, can be matched to 7,133

DSTs, or 64%, of our DST sample. The median DST is linked to 7.5 private sector patents in

this way; the 75th percentile to 19. Conditional on being linked to a patent, the median DST is

linked to 9, the 75th percentile to 20. Our PMRA match increases the number of patents that we

associate with DSTs: the median DST is linked to 19 weighted patents, the 75th percentile to 40.

The right-hand-side panel of Figure 2 illustrates the distribution of patents linked at the DST-level.

7 Main Results

Tables 3 through 5 show our main results for each of our three sets of outcome measures.

Table 3 describes the impact of NIH funding for a DST on the number of patents that it produces

directly. Panel 1, Column 1 of Table 3 reports the raw correlation between the patents a DST

produces and the amount of funding it receives, controlling only for year effects. The coefficient

that we estimate, 0.035. This coefficient remains similar as we add increasingly detailed fixed

effects. In our most detailed specification in Column 5, with fixed effects for disease–science area,

disease–year, broad science area–year, and controls for application quality and lagged funding, our

coefficient only drops to 0.033 and remains highly significant. A coefficient of 0.033 indicates that

a $10 million increase in DST leads to the direct production of 0.033 additional patents. Given

the fact that the average grant costs $1.34 million dollars, this says that we expect to produce one

patent directly for every 226 NIH grants.

The results in Panel 1 report our estimates with patents weighted such that, if a patent is

linked to N DSTs, each DST receives credit for 1/Nth of that patent. This assumes, essentially,

that all DSTs are perfect substitutes for the production of patents. In general, the appropriate

weighting will, of course, depend on the innovation production function and the degree to which

any particular piece of knowledge is instrumental in generating the patent. If workarounds are

straightforward, then the support from any given DST will have only a small effect on obtaining

the patent, and thus should be down-weighted appropriately. If, instead, the contributions of
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various DSTs are complements, then a patent should count for more than 1/Nth; in the extreme,

where all pieces are critical such that production is Leontief, every DST should receive full credit

for the patents that acknowledge its support.

Panel 2 presents our results under this more generous assumption. This assumption is plausible

in this case because our measure of DST-patent linkage is financial support; it is not hard to imagine

that losing support from one source can endanger the entire project, especially in a setting where

the public sector makes up such a large proportion of total R&D investment. Again, our estimates

are very stable even as we move from only year fixed effects to our full set of fixed effects. The

coefficient of 0.16 indicates that $10 million in funding leads to 0.16 patents or that, on average,

we expect one patent for every 47 grants. The elasticity of NIH-funded patenting with respect to

DST funding is similar under both weightings: approximately 0.8 to 1.0. Both weighting strategies

indicate that while direct-patent production is relatively elastic with respect to the NIH funding,

it accounts for only a small proportion of total patenting.

Table 4 expands the set of patents potentially affected by NIH funding to include those that

cite publications supported by public funding. We find larger effects of NIH funding using this

measure. Adding fixed effects for research areas (disease–science groupings) reduces this coefficient

to 2.1. Interestingly, adding disease-year fixed effects does not change this coefficient much; this is

consistent with the possibility that NIH funding does not respond to time-varying disease interests

that are correlated with the success of private innovative efforts. With our full set of controls, we

estimate that a $10 million increase in funding leads to 2.3 additional patents, or one patent for

every three grants. Panel 2 reports these same results under the assumption that every publication

a patent cites is necessary for that patent’s production and cannot be substituted with another

non-NIH funded patent. The first part of this assumption is plausible; the median patent cites only

four publications and 90% of those citations are added by the patent’s inventors, as opposed to by a

patent examiner (Sampat 2010, Alcacer, Gittleman and Sampat 2008). Those cited publications are

likely to have contributed important insights in the development of the patent. Without weighting,

we estimate that $10 million leads to 14.9 more patents, or about 2 patents for every NIH grant.

NIH funding, then, appears to be much more effective in generating innovation through producing

research that private firms can then later build on.

The estimates in Tables 3 and 4, however, may not reflect the true value of NIH funding if
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public support for science either crowds out private investment or if it spurs patenting in ways that

cannot be captured by a direct grant-publication-patent link. Table 5 repeats our estimates using

our third outcome measure, the number of patents that could have drawn on research funded by the

NIH. These specifications are meant to assess the net impact of NIH funding on total innovation

in an area, accounting for both the possibility of crowd-out and the possibility that not all patents

spurred by NIH funding can be linked via direct citations. Column 5 of Table 5 finds that, on net,

a $10 million increase in DST funding increases the number of private sector patents in its area

by 2.8; or about one patent for every two to three NIH grants. The magnitude of the impact of

NIH funding on total patenting in an area is slightly larger than its effect on patenting that can be

directly linked to NIH funds. This indicates that even if NIH funding does crowd out private efforts,

it generates more patents through non-direct citation means than it crowds out. This may occur if,

for instance, NIH funding increases the productivity of private R&D investments by clarifying the

scientific potential of various research areas. In this case, even if firms reduce their investments,

total private patenting in an area may still increase.

Panel 2 reports these results with unweighted patent counts and estimates effects that are an

order of magnitude larger. These results, however, are unlikely to reflect the true effect of NIH

funding. Recall that this final outcome measure is designed to capture the influence that NIH

funding may have on patenting that does not require a direct citation linkage between funding

and patents. In this measure, patents are linked to study sections through shared intellectual foci,

reflecting the notion that public funding in a particular area produces knowledge that enhances

productivity of others working in that area. Each DST is associated to many more patents this

way, thus driving a large wedge between weighted and unweighted impacts. Unlike the direct

approaches which connect patents to a small number of study sections, our indirect method often

yields connections to hundreds of study sections in related intellectual realms. While all linkages

may be important, it is harder to imagine that each unit of knowledge is instrumental and thus

we favor the more conservative weighted approach in this case. Going forward, we will discuss

estimates of the effect of funding on overall patent production using only our more conservative

weighted counts. The unweighted results, however, are still reported in our tables.

Table 6 reports our estimates using our funding instrument. Columns 1 and 2 report our first

stage estimates of the relationship between total DST funding and DST funding coming just from
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grant applications that are funded because of their study section rankings (as opposed to their

absolute quality). This relationship is statistically significant at the one percent level, but short of

the conventional F-statistic of 10. Columns 4 and 6 present our preferred specifications with full

controls for application quality and number of DST applications near the funding threshold for a

given disease-year. Using the IV, we find a stronger effect of NIH funding on the number of directly

cited patents (3.3 vs. 2.3) and a similar effect for the total number of patents related to an NIH

research area. In sum, our estimates translate into an elasticity of about 0.7 to 1.0 for directly cited

patents and 0.4 to 0.5 for net private sector patenting.

7.1 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine

which types of patents rely most on NIH support. Holding constant its impact on total patenting,

understanding the characteristics of the marginal patents that NIH funding supports is important

for understanding the role that NIH funding plays in biomedical research.

Even though investments in R&D are generally targeted toward specific disease areas, our

next set of results show that stories like Gleevec are common in the sense that drugs and patents

often build on research originally intended for other diseases. To measure this, we assign a primary

disease affiliation to each patent in our data by examining the set of publications that it cites. Using

information on the DSTs that these publications are either directly supported by or in the same

area as, we construct two different measures of disease affiliation. The first is a binary variable that

identifies the disease area (IC) to which the majority of a patent’s cited publications are linked.

The second is a fractional measure: if one third of the publications that a patent cites are linked to,

for instance, the National Cancer Institute, then we record that patent as having a cancer affiliation

of one third.

We find that NIH funding directed toward one disease area is nearly as likely to translate into

patenting in other disease areas as it is to translate into patenting in its own area. To see this,

compare Columns 1 and 2 of Table 7. The coefficient reported in Column 1 indicates that a $10

million increase in funding for a DST generates 1.02 additional citation-linked patents with the same

primary disease affiliation. This is likely the effect that Congress is interested in when allocating

funds for particular diseases. Column 2, however, shows that this same funding also generates 1.3
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additional patents in other disease areas. Similarly, Columns 3 and 4 show the similar results for

net patenting: an additional $10 million dollars in NIH funding leads to 1.6 more patents in the

same disease area and 1.15 additional patents in different disease areas.

This result highlights the importance of using a patent-linking strategy that does not assume

that funding only impacts innovation in its intended area. Had we done this in our setting, we

would have undervalued the returns to NIH R&D investments by almost 50%. Our results in Table

7, moreover, show that the elasticities of both same and other disease area patenting with respect

to NIH funding appear identical. This means that, the marginal patent generated by NIH funding

is also just as likely to be in another disease area as not. Appendix Table 11 reports these results for

our second measure, which allows a patent to have multiple disease affiliations. Using this measure,

we find similar effects.

We also examine the impact of NIH funding on the number of highly cited patents, patents

associated with FDA approved drugs, and patenting by small or large firms. Columns 1-3 of Table

8 focus on highly cited patents, those which are among the top 5% most cited patents of their three-

digit patent class–issue-year cohort. We estimate that $10 million in funding leads to net increase

of 0.2 such patents in a DST area. This magnitude of this effect means that, at approximately $1.34

million per grant, one out of every 50 NIH grants can be expected to produce a highly cited patent.

This translates into an elasticity of highly cited patents with respect to funding of 0.44, which is

similar to the elasticity that we estimate for the production of private sector patents overall (0.48).

We also report results for unweighted patent counts with, again, the caveat that this weighting

scheme is unlikely to be appropriate for our broadest outcome measure, that of the number of

high-value patents in the area of a DST.

Columns 4-6 repeat this exercise for patents associated with FDA-approved drugs. Column 6

indicates that a $10 million increase in funding leads to a net increase of 0.066 patents, meaning

that one out of every 125 grants produces a patent that is linked with new pharmaceuticals. This

translates into an elasticity of patenting with respect to NIH funding of 0.42, again, similar to the

overall patent population. Table 9 asks whether small firms (those with fewer than 500 employees)

or large firms are more responsive to NIH funding and finds no difference.
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7.2 Magnitudes

Our results indicate that a $10 million increase in NIH funding leads to an increase of 2.8

weighted patents. Restricting to the set of Orange Book patents, we find that $10 million dollars

leads to an increase of 0.066 patents. What are the magnitudes of these effects?

Ideally, one would like an estimate of the return to public R&D investments in monetary terms.

Coming up with this figure, however, requires making strong assumptions about the distribution

of patent quality, the probability that patents translate into drugs, and the market or social value

of those drugs. Our estimates in this section should be taken with the understanding that there is

currently little agreement in the literature about those parameters.

Much of the previous literature valuing patents relates patent stocks to firm market values,

and finds weak and noisy relationships between the two (Griliches 1981; Hall et al 2007). When

restricting attention to the life sciences, valuing the output of R&D investments is on the one hand

easier because the vast majority of innovations are patented (Arundel and Kabal 1998; Cohen et al

2000), but on the other hand harder because the returns to innovation vary considerably. In drugs,

for example, firms seek out patents on all potentially promising molecular compounds, but only a

tiny share of candidate compounds ever enter clinical trials. Of those, only about a fifth of survive

testing and are approved by the FDA and, of these, the top decile accounts for the vast majority

of revenues (Grabowsksi and Vernon 2000).

Not all biomedical patents in our sample are for drugs, let alone those that are ultimately

approved by the FDA. However, for this set we can provide at least a rough benchmark of magni-

tudes. Grabowski and Vernon (2000) report that, conditional on FDA approval, an average product

yields present discounted sales of about $300 million (2013 dollars). On average, there are about

3.5 patents associated with every FDA approved drug (Ouellette, 2010). In our data, a $10 million

dollar increase in funding results in 0.066 patents associated with drugs. Then we would expect

this funding amount to translate into 0.066/3.5=0.019 drugs, with an expected PDV of 0.019×$300

million = $5.7 million. This number is a plausible order of magnitude, but should be taken with

caution because it relies on many assumptions and does not take into account the option value

associated with experimentation or the value of patents associated with innovations other than

drugs, for instance, medical devices.
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Another way to assess the magnitude of our estimates is to compare our estimated elasticities

with previous estimates from the literature. The earliest firm-level study by Pakes and Griliches

(1980) report an elasticity of 0.61 using a panel of 121 US firms from 1968 to 1975, including firm

fixed effects. Hall et al.s (1986) estimates range from 0.29 to 0.38, also using within-firm variation

in R&D spending from their panel of 342 US manufacturing firms. Blundell et al. (2002) reports

an elasticity of 0.34.

As several of these authors emphasize, these estimates should be interpreted with caution. One

issue is that the lag structure between expenditures and patent output is assumed to be invariant

across industries and is estimated through the use of distributed lag terms. Second, these estimates

rely on firm fixed effects to deal with the endogeneity of R&D expenditures, which is problematic.

These caveats aside, we note that the elasticities we estimate in this paper, which range from

0.4 to 0.7, are similar in magnitude. Unless there were complete crowd-out, we would expect a

firm’s patent output to be more responsive to its own expenditures than to the expenditures of

the public sector in the areas relevant to the firms innovative efforts. From this perspective, our

estimates may seem high. It is difficult, however, to say for sure: the literature reports estimates for

manufacturing and other industries using identification strategies that are limited in their ability

to control for potential endogeneity. The ideal baseline for comparison would be credible estimates

of the patent-R&D relationship for the life sciences. To our knowledge, these do not exist.

8 Alternative Explanations and Robustness Checks

The estimates in Section 7 identify the causal impact of NIH funding under the assumption

that NIH funding for a DST does not respond to changes in the specific innovative potential of a

disease–science area combination. There are several stories that would violate this assumption.

Congress may, for instance, allocate funding to NIH Institutes based on changes in the pro-

ductivity of scientific methods relevant to their disease areas. Advances in genetics, for instance,

may lead Congress to allocate relatively more funding to the National Cancer Institute than to

the National Institute on Allergy and Infectious Disease. If this were the case, then differences in

DST finding within a disease-year might reflect differences in scientific potential, thus violating our

identifying assumption. Differences in the budgets for cancer-genetics vs. cancer-tumor-physiology,
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for instance, might reflect the fact that the NCI is responding to increased promise in genetics

research.

Even though our IV strategy is designed to address this concern, there are several reasons

to believe that this does not occur. The first is that, in practice, funding determinations for

NIH Institutes tend to be justified on the basis of disease-level concerns: how great is the burden

of disease associated with conditions that fall under an IC’s purview and what are the trends

associated with those conditions?15 Appendix Figure A provides an example of language from

an appropriations bill for the National Cancer Institute; here, Congress uses the disease burden

associated with pancreatic cancer to underscore the need for more research in this field. Appendix

Figure A also attempts to formalize this example by compiling a list of the mostly commonly used

words in the Congressional appropriations documents for all NIH Institutes, for a sample year. The

highest-frequency word in both House and Senate appropriations is, unsurprisingly, “research.”

The majority of the remaining list are medicine or disease focused: “disease,” “health,” “child,”

“behavior,” “patients,” “syndrome,” etc. This reasoning is supported by research showing that

NIH funding is more highly correlated with disease burden and public demand than with scientific

advances (Gillum et al., 2011). These motivations, meanwhile, do not present a problem for our

identification because we include disease by year fixed effects.

Another way NIH may be able to direct funding toward areas with more potential is by

funding grants out of the order in which they are scored. Approximately four to five percent of

grants are funded as exceptions. While this usually occurs in response to the emergence of new data

to strengthen the application, grants are also sometimes funded out of order if they were evaluated

in an exceptionally strong committee and received a lower relative score than their absolute quality

should indicate.16

We show that this possibility does not affect our results in two ways. First, if NIH Institutes do

selectively fund grant applications from competitive, high-interest science areas out of order, then we

would expect that the amount of funding for DSTs that share the same scientific interests should be

correlated; that is, if the NCI (cancer) were allocating more money to genetics because of increased

potential in that area, then we should weakly expect the NIDDK (diabetes) to do the same.

15In practice, many critiques of the NIH are that ICs do not respond to even that–rather, IC funding may also be
justified on the basis of politics or path dependencies.

16Authors’ conversation with Stefano Bertuzzi, NIH Center for Scientific Review.
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Similarly, if Congress increased funding for all Institutes whose disease focus has a strong hereditary

component, we would also expect cancer-genetics and heart disease-genetics funding to be positively

correlated. Appendix Table B examines the correlation between own-disease funding for a science

area, Fundingdst, and funding for that same science area from other diseases Funding−d,st. Column

1, which includes only year fixed effects, shows a strong negative correlation between own and other

funding. This, however, is likely due to the mechanical relationship between the size of one’s own

disease area in a given science area, and the size of other disease areas. Column 2 controls for

this confounder by introducing disease by year fixed effects; we find no correlation between own

and other disease funding. This is also true if we add disease by year fixed effects as we do in

Column 3. Column 3 includes the same set of controls as we use in estimating our main results.

Columns 4 through 6 repeat this exercise using the proportion of a disease area’s funding devoted

to a particular science area as the variable of interest. This asks: if the NCI begins spending a

greater proportion of its budget on genetics, does it appear that other disease areas do the same?

Again, we find that this does not appear to be the case.

Another way to address the possibility that out-of-order scoring matters is to instrument for

DST funding using funding from grants that are not funded out of order. Ideally, we would add

up requested funding amounts for the top ranked applications, regardless of whether they were

actually funded, but we do not have data on funding requests for unfunded applications. Instead,

we count funding amounts for the subset of DST grants that are funded in order. Appendix Table

C presents our findings using this alternative strategy. Columns 1 and 2 indicate that we have

a strong first stage and, using this instrument, we find that an additional $10 million in ordered

funding increases net patenting by 3.7, compared with 2.8 in our main OLS specification and 2.9

in our preferred IV specification.17 The implied elasticities of all these estimates are similar.

Our next test checks the plausibility of the exclusion restriction on our instrument. Specifically,

Appendix Table D tests whether, after controlling for our primary set of regressors, our instrument

for funding is correlated with any measures of lagged application quality or lagged patent output.

Column 1 reports the F-test of the joint significance of 30 variables describing ten years of lagged

patent output (and indicators if a lagged value is not available) and fails to reject a hypothesis of

no effect. Column 2 does the same for 20 variables describing ten year lags of average raw scores

17Note that our original lucky funding instrument already purges funding dollars to out of order grants.
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of applicants to a DST. Again, we fail to reject a hypothesis of no effect.

Another potential concern is that our patent-matching strategy may lead us to link more

patents to DSTs when those DSTs receive more funding. This is because we associate patents to

a DST if they cite publications related to those funded by DST grants. If DST funding increases

the number of directly-cited publications, then this may make it more likely that a given patent is

linked to that DST. If this is the case, any increase in the number of patents associated with that

DST will be partially driven by our matching strategy, as opposed to a true effect of NIH funding.

Using weighted counts of patents partially alleviates this concern by ensuring that a given patent

can be counted for at most one weighted patent across all DSTs. If matching leads more patents

to be linked to more DSTs, each patent will count for less at each DST.

Nonetheless, it is still possible that the number of citation-linked patents directly influences

the number of patents associated with a DST’s area. To check that our results are not driven by

this effect, Appendix Table E examines the impact of NIH funding on the total number of patents

in the intellectual vicinity of an NIH research area, controlling directly for the number of citation-

linked patents. Holding constant the number of citation-linked patents, we still find a positive

and significant effect of NIH funding: a $10 million increase in funding leads to 1.8 more weighted

patents, for an estimated elasticity of 0.05. This is about a third smaller than our main estimates,

but our qualitative results continue to hold.

9 Assessing Reallocation

So far, our results have examined the impact of NIH funding on patenting within the same

intellectual area. Yet in the cases of both crowd in and crowd out, the additional resources that

a firm devotes to—or diverts from—a DST must come from somewhere else in its budget. One

possibility is that these resources come from either an expansion in the firm’s total R&D budget

(in the case of crowd-in) or a contraction in the firm’s R&D budget (in the case of crowd-out). In

this case, the main effect of NIH funding in an area on investments in that same area is the effect

on firm R&D.

Another possibility, however, is that firms respond to public investments by reallocating re-

sources to and from other parts of their R&D portfolio. In this case, one needs to know the
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consequences of these investments in other areas in order to assess the full impact of NIH funding

on private innovation. In terms of reallocation, there are two possibilities.

1. Reallocated crowd-in: Here, firms respond to increased public funding for an NIH-funded

research area by reallocating funds from other parts of its research portfolio. In this case,

the effect of NIH funding in a research area on private innovation is two-fold: the direct

effect of NIH funding is to increase private innovation in the same area and the countervailing

reallocation effect is to decrease private innovation in the areas that a firm diverts resources

from.

2. Reallocated crowd-out: Similarly, firms may divert resources away from the NIH-funded area

toward other research projects. Again, the overall effect of NIH funding on total private

innovation will be twofold: the direct effect of public funding is to reduce private innovation

within the same intellectual area, but the reallocation effect is to increase private innovation

in areas to which funds are reallocated.

We attempt to directly measure the extent of firm reallocation in response to NIH funding.

First, we note that our final outcome measure, that of the number of patents that draw on research

related to a DST, is already likely to take into account some of the impact of reallocation. This is

because our patent linking approach defines the area of a DST quite broadly. If the NIH increases

spending on, for instance, cancer (D) cell-signaling (S) research in 1990 (T), we measure net impact

of this change on total innovation in all parts of the firm’s R&D portfolio that are related to cancer

and cell signaling research from 1990. This may include patents related to cell signaling in other

disease areas, cancer patents unrelated to cell signaling, or any other set of projects similar to

research that is supported by the DST. Firm relocation within this set of research would already

be captured in our results from Table 5.

Firms, however, may also choose to reallocate funds to or from projects that are completely

unrelated to a DST’s research. If NIH funding in one DST leads firms to reallocate funds away from

that DST, then we should observe an increase in non-DST patenting within that firm. If, instead,

NIH investments in a DST lead firms to reallocate funding away from other projects toward the

area of NIH investment, then we should observe a decrease in non-DST patenting within that firm.

To measure the extent of reallocation, we would ideally like to focus on the set of firms
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that actually faced a decision about whether to invest more or less in a DST as a result of NIH

funding. In the absence of these data, we focus on firms that actively patent in a DST area and

construct a measure of the number of non d, non s patents that they produce in the same year.

We have two final variables of interest. Total Patents−d,−s,t measures the total number of non d,

non s patents that are produced by firms that also produce a DST-linked patent in the same year.

Average Patents−d,−s,t measures the average number of non d, non s patents a firm produces for

every DST-linked patent it produces, averaged over all firms in that DST.

The advantage of this approach is that we restrict our analysis to firms that are definitely

affected by changes in DST funding. If these firms spend more resources in another area, it is likely

that these funds could have also been spent on DST research. The downside of this approach,

however, is that it limits the kinds of reallocation we can study. If NIH funding pulls firm resources

toward a DST and away from other areas, we will observe this to the extent that it leads to DST

patenting. If, however, NIH funding pulls firm resources away from a DST, we will only observe

this if that firm still produces at least one DST-linked patent. If NIH funding for a DST leads a

firm to reallocate toward other areas entirely, then we will not be able to observe this. We think

of our measures of reallocation, then, as an estimate of the extent of reallocation on the intensive

margin, conditional on firms not switching away entirely.

Our results show that firms do reallocate resources in response to changes in NIH-funding.

Table 10 shows that, in general, an increase in NIH-funding for one area of a firm’s R&D portfolio

increases the number of patents that those firms develop in other areas of its portfolio. This is

consistent with crowd-out: more public investment in one area frees firms up to invest in other

areas. Our estimate in Column 1 indicates that a $10 million increase in DST funding leads to

the production of 10.6 additional patents in other areas. NIH funding for a DST also increases the

average number of non-DST patents we identify, consistent again with reallocated crowd-out. Our

results in Tables 4 and 5, however, tell us that overall patenting in the area of the funded DST

also increases. In order for both these finding to be true, it must either be that NIH funding in

a DST increases by more than the amount that firms divert to other areas or that NIH funding

increases a firm’s total R&D investment. Another interpretation for this finding is that there are

more direct spillovers from NIH funding for a DST than we capture through our outcome measures.

If, for instance, firms respond to increased NIH funding by expanding their scientific labor force,
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and these scientists work on a variety of projects, then an increase in NIH funding for one DST

can impact other patenting areas in ways our outcome measures cannot observe.

The elasticities we estimate under all of these specifications are smaller than the ones we

estimate for the direct effect of DST funding on patenting in the same area. This is smaller

magnitude makes sense theoretically. In the case of reallocated crowd-in, the patents that are lost

in the area from which the firm diverts funds should be fewer than the number that are gained, as

long the firm is reallocating optimally. Similarly, in the case of reallocated crowd-out, the patents

that are gained in the area to which firms divert funds should be fewer than the number that are

lost in the original area, as long as firms had initially allocated their investments optimally.

We should note that while our results indicate NIH funding increases total private R&D,

assessing the welfare implications of NIH funding is beyond the scope of this paper. In particular,

this is because neither crowd-in nor crowd-out translate easily into welfare assessments. While

crowd-in is generally thought of as welfare enhancing, at least from the perspective of increasing

innovation it need not be: firms might divert funds from worthy non R&D purposes or crowd-in

might encourage too many firms to enter a research area. The logic that the direct effect of NIH

funding on same-area private research dominates reallocation effects applies only within one firm;

if multiple firms divert funds from other, different R&D projects in order to pursue similar research

in the area of NIH funding, this could result in business stealing and a decline in overall innovation.

Similarly, to the extent that there is a shadow cost of public funds, crowd-out is generally thought

of as welfare-reducing. This may not be true, however, if NIH funding improves the efficiency of

private R&D allocation by showing that a particular area has little innovative potential.

10 Conclusion

This paper generates a causal estimate of the impact of public investments in biomedical

research on subsequent private sector patenting. Our results show that NIH investments in an area

increase subsequent private sector patenting in that area; a $10 million increase in funding for an

area leads to 2.8 additional patents or, equivalently, we expect one private sector patent generated

for every two to three NIH-funded grants. This positive effect, meanwhile, does not appear to

be associated with lower private investments in other research areas. We also demonstrate that
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investments in basic research are difficult to target. In our sample, the returns to NIH funding are

just as often felt outside of the disease area for which they were intended.

Our estimates indicate that NIH investments in R&D lead to returns in drug development

that, as valued by the present discounted value of expected future sales, are of a similar magnitude:

$10 million in funding leads to $5.7 million in drug sales, in addition to the value of any non–drug

innovations that we are currently unable to price.

Another way to interpret our returns is in terms of a lottery. The distribution of patent quality

is highly skewed and, in practice, the majority of life science patents have little value because they

are often associated with molecular compounds that are later shown to be ineffective. The returns

to NIH funding, then, might be more effectively thought of not in terms of the realized value of

the patents it generates, but in terms of its ex ante chance of generating a blockbuster drug or

treatment.

The probability that a patent will result in a breakthrough, of course, depends on the kind

of research that firms choose to engage in. Our results focus, for the most part, on how NIH

funding impacts the volume of private R&D investments and outcomes. Equally important is

the impact of public funding on the types of projects that they pursue. Our finding that the

marginal patent generated by NIH funding is less likely to be commercially successful, for instance,

is consistent with the view that NIH funding lowers the risks associated with exploratory work.

It would also, of course, be consistent with the view that the public sector funds lower-quality

research. Distinguishing between these cases and, more generally, investigating how firms choose

among potential R&D investments in light of public funding is an important area for future work.
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Figure 8: Identifying Variation in DST Funding
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Priority Rank Disease
Raw 
Score

Priority Rank Disease
Raw 
Score

1 1 Cancer 10 2 1 Cancer 8.2

1 2 Diabetes 9.8 3 2 Cancer 8.1

4 3 Cancer 9.2 5 3 Cancer 7.6

6 4 Cancer 9.1 7 4 Cancer 6.4

8 5 Cancer 8.3 9 5 Cancer 5.4

2 6 Diabetes 7.6 3 6 Diabetes 5.2

10 7 Cancer 7.6 4 7 Diabetes 4.8

5 8 Diabetes 7.5 6 8 Diabetes 4.4

Priority Rank
Study 
Section

Raw 
Score

Priority Rank
Study 
Section

Raw 
Score

1 1 Cell 10 1 2 Cell 9.8

2 1 Tumor 8.2 2 6 Cell 7.6

3 2 Tumor 8.1 3 6 Tumor 5.2

4 3 Cell 9.2 4 7 Tumor 4.8

5 3 Tumor 7.6 5 8 Cell 7.5

6 4 Cell 9.1 6 8 Tumor 4.4

7 4 Tumor 6.4

8 5 Cell 8.3
9 5 Tumor 5.4
10 7 Cell 7.6

Priority Rank Disease
Raw 
Score

Priority Rank Disease
Raw 
Score

1 1 Cancer 10 2 1 Cancer 8.2

1 2 Diabetes 9.8 3 2 Cancer 8.1

4 3 Cancer 9.2 5 3 Cancer 7.6

6 4 Cancer 9.1 7 4 Cancer 6.4

8 5 Cancer 8.3 9 5 Cancer 5.4

2 6 Diabetes 7.6 3 6 Diabetes 5.2

10 7 Cancer 7.6 4 7 Diabetes 4.8

5 8 Diabetes 7.5 6 8 Diabetes 4.4

Panel 1: Initial Study Section Scores and Rankings

Panel 2: Institute Funding Outcomes

Panel 3: Study Section Funding Outcomes

Cell Signaling Study Section Tumor Physiology Study Section

Cancer Institute (NCI) Diabetes Institute (NIDDK)

Cell Signaling Study Section Tumor Physiology Study Section

Figure 9: Example of variation in funding unrelated to quality
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Full Sample NIH-funded Citation PMRA

Sample Coverage

# Grants (Type 1 and 2 only) 123,478 1,283 41,369 96,557

# Disease Areas (Institutes/Centers) 16 16 16 16

# Science Areas (Study Sections) 443 179 371 416

# DSTs 11,110 984 7,133 10,172

Grant Characteristics

% R01 equivalent 68.09 79.50 77.70 75.42

% Center grants 3.26 11.46 5.64 3.44

% Teaching grants 15.58 5.07 10.37 12.26

% New (Type 1) 63.40 30.79 48.30 57.12

Funding amount (Total project 
allocation, 2010 dollars) $1,344,661 $3,078,722 $1,958,900 $1,527,456

(1,972,101) (4,617,934) (2,881,154) (2,132,951)

Publication Match

% with at least one matched 
publication

81.49 100.00 100.00 100.00

# of matched publications 6.90 20.47 13.18 8.75
(12.70) (35.26) (19.33) (13.80)

Patent Match

# of private sector patents by NIH-
funded researchers (weighted sum) 0.01 0.55 0.01 0.01

(0.10) (0.86) (0.17) (118.00)

# of citation-linked private sector 
patents (weighted sum) 0.43 2.53 1.27 0.55

(2.19) (5.32) (3.64) (2.46)

# of PRMA linked private sector 
patents (weighted sum) 0.82 2.95 -1.80 1.04

(2.00) (4.93) (3.05) (2.20)

Table 1: Grant Characteristics, 1980-2000

Notes: Sample is the set of all NIH-funded grants from 1980-2000, with the restriction that these grants be funded by disease or body 
systems focused Institutes (see text for a full list) and evaluated by chartered study sections.  The sample is restricted to new and 
competitive renewal grants so that there is one observation per successful grant application cycle.  A grant is defined to be matched with 
a publication if it acknowledges the project number of the grant and is published within 5 years of the grant's funding year.  A patent is 
considered to be by an NIH-funded researcher if it directly acknowledges funding from that grant.  A patent is citation-linked to a grant 
if it cites a publication that is linked to a grant.  A patent is PRMA linked if it cites a publication that is similar (as defined by the 
PubMed Relatedness Matching Algorithm--see Appendix) to a publication that is linked to a patent.  In this paper, we require that 
similar publications be published within 5 years of each other.  Patent counts are weighted in the sense that if a patent is matched to N 
distinct grants, it counts as 1/Nth of a patent for each grant. A patent is defined as private sector if its assignee is a US or foreign firm.  

Grants Linked to Private Sector Patents
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Full Sample NIH-Funded Citation PMRA

Average # of Grants
11.11 31.19 15.77 12.01
(16.88) (23.82) (19.25) (17.37)

Funding Amount (DST)
$46,733,370 $74,337,140 $50,293,620 $47,226,450
(49,248,420) (68,411,190) (49,969,720) (49,290,640)

# of Private Sector Patents by NIH 
Funded Researchers (weighted counts) 0.19 0.76 0.21 0.19

(0.61) (1.03) (0.64) (0.61)

Unweighted
0.71 2.84 0.77 0.71
(2.01) (3.18) (2.09) (2.02)

# Citation-Linked Private Sector 
Patents (weighted counts) 14.43 26.29 15.83 14.59

(18.86) (22.97) (19.19) (18.91)

Unweighted
104.00 200.00 115.00 106.00
(141.00) (186.00) (144.00) (142.00)

# PMRA Linked Private Sector 
Patents (weighted counts) 27.24 45.15 29.76 27.54

(27.36) (33.27) (27.38) (27.36)

Unweighted
3248.00 5611.00 3556.00 3283.00
(3151.00) (3771.00) (3135.00) (3149.00)

N 11,110 984 7,133 10,172

Table 2: Characteristics of NIH Research Areas (DSTs), 1980-2000

Notes: Sample is same as from Table 1, except aggregated to the NIH Disease-Science-Time level.  Please see the notes to 
Table 1 for additional definitions.  The weighting on patent counts is modified from the grant-level weights so that if a patent 
is matched to N distinct DSTs, it counts as 1/Nth of a patent for each DST.  Funding amounts are in 2010 dollars.  

DSTs Linked to Patents

Output Characteristics (weighted by DST size)
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(1) (2) (3) (4) (5)

0.035*** 0.031*** 0.033*** 0.030*** 0.033***
(0.004) (0.008) (0.008) (0.006) (0.007)

Elasticity 0.868 0.762 0.816 0.728 0.811

R-squared 0.089 0.307 0.371 0.766 0.772

0.149*** 0.117*** 0.117*** 0.129*** 0.157***
(0.016) (0.030) (0.027) (0.020) (0.028)

Elasticity 0.989 0.772 0.778 0.854 1.033

R-squared 0.139 0.421 0.461 0.795 0.802

Observations 11,110 11,110 11,110 11,110 11,110

Year FEs X X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X

Science X Year FEs X X

X

Table 3: Effect of NIH Investments on Private Sector Patenting
by NIH-Funded Researchers

Weighted Patent Counts

Notes: Each observation is Disease-Science Area-Time (DST) combination.   A patent is considered to be 
by an NIH-funded researcher if it directly acknowledges funding from an NIH grant. For more details on 
this sample, please see the notes to Tables 1 and 2.  Funding is defined by the sum of project-cycle 
allocations for all associated new and competing renewal grants.  A patent is defined as private sector if 
its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application quality 
controls include cubics in the average raw score received by awarded grants and cubics for the average; 10 
year lags of number of publications produced by the DST and number of applications to the DST; and 
dummies for number of DST applicants near the IC's funding threshold.  We also include 10 years of 
lagged funding controls with indicators if a DST is not observed in any year.  

Application Quality and  Lagged Funding Controls

DST Funding ($10 mill)

DST Funding ($10 mill)

Unweighted Patent Counts
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(1) (2) (3) (4) (5)

2.352*** 2.055*** 2.045*** 1.911*** 2.306***
(0.228) (0.376) (0.318) (0.202) (0.242)

Elasticity 0.762 0.666 0.662 0.619 0.746

R-squared 0.414 0.650 0.695 0.877 0.890

17.985*** 13.803*** 14.209*** 11.409*** 14.857***
(1.696) (3.217) (2.740) (1.553) (1.571)

Elasticity 0.802 0.616 0.634 0.509 0.667

R-squared 0.426 0.706 0.746 0.905 0.919

Observations 11,110 11,110 11,110 11,110 11,110

Year FEs X X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X

Science X Year FEs X X

X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is citation-linked to 
a DST if it cites research that acknowledges funding from that DST. For more details on this sample, 
please see the notes to Tables 1 and 2.  Funding is defined by the sum of project-cycle allocations for all 
associated new and competing renewal grants.  A patent is defined as private sector if its assignee is a US 
or foreign firm.  Elasticities are evaluated at sample means.  Application quality controls include cubics in 
the average raw score received by awarded grants and cubics for the average; 10 year lags of number of 
publications produced by the DST and number of applications to the DST; and dummies for number of 
DST applicants near the IC's funding threshold.  We also include 10 years of lagged funding controls with 
indicators if a DST is not observed in any year.  

Application Quality and Lagged Funding Controls

DST Funding ($10 mill)

Unweighted Patent Counts

DST Funding ($10 mill)

Weighted Patent Counts

Table 4: Effect of NIH Investments on Citation-Linked Patenting
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(1) (2) (3) (4) (5)

3.921*** 2.748*** 2.839*** 2.255*** 2.786***
(0.415) (0.741) (0.605) (0.330) (0.238)

Elasticity 0.673 0.471 0.487 0.387 0.478

R-squared
0.520 0.807 0.829 0.954 0.965

438.041*** 284.866*** 292.464*** 243.370*** 307.134***
(44.197) (73.635) (62.360) (37.219) (30.074)

Elasticity 0.63 0.41 0.421 0.350 0.442

R-squared 0.494 0.857 0.876 0.959 0.967

Observations 11,110 11,110 11,110 11,110 11,110

Year FEs X X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X

Science X Year FEs X X

X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is PMRA linked to a 
DST if it cites publications that are related to publications supported by a DST. For more details on this 
sample, please see the notes to Tables 1 and 2.  Funding is defined by the sum of project-cycle allocations 
for all associated new and competing renewal grants.  A patent is defined as private sector if its assignee is 
a US or foreign firm.   Elasticities are evaluated at sample means.  Application quality controls include 
cubics in the average raw score received by awarded grants and cubics for the average score received by 
all applicants regardless of whether they are funded 10 year lags of number of publications produced by 
the DST and number of applications to the DST; and dummies for number of DST applicants near the 
IC's funding threshold.  We also include 10 years of lagged funding controls with indicators if a DST is not 
observed in any year.  

Unweighted Patent Counts

DST Funding ($10 mill)

Weighted Patent Counts

DST Funding ($10 mill)

Application Quality and  Lagged Funding Controls

Table 5: Effect of NIH Investments on PMRA-Linked Patenting
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(1) (2) (3) (4) (5) (6)

2.772*** 1.718*** 3.140*** 3.319** 3.885*** 2.890*
(0.732) (0.544) (1.193) (1.666) (1.433) (1.579)

Elasticity 1.016 1.074 0.666 0.495

R-squared 0.414 0.414 0.349 0.417 0.453 0.564

Observations 11,110 11,110 10,536 10,536 10,536 10,536

Year FEs X X X X X X

Disease X Science FEs X X X X X X

Disease X Year FEs X X X X X X

Science X Year Linear 
Trends

X X X X X X

X X X

DST Funding 
($10 mill)

IV Estimates

Citation-Linked PMRA-Linked

First Stage

DST Funding ($10 mill)

DST Funding, just awarded 
grants ($10 mill) 

Table 6: Instrumental Variables Estimate, Lucky DST Funding

Notes: The instrument is the total amount of funding for awarded DST grants within 5 grants of the award cutoff.  Columns 2, 4, and 6 
control for cardinal application quality and number of grants near the threshold.  Each observation is Disease-Science Area-Time (DST) 
combination.  A patent is citation-linked to a DST if it cites research that acknowledges funding from that DST. A patent is PMRA linked 
to a DST if it cites publications that are related to publications supported by a DST.  For more details on this sample, please see the notes 
to Tables 1 and 2.  Funding is defined by the sum of project-cycle allocations for all associated new and competing renewal grants.  A 
patent is defined as private sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application quality 
controls include cubics in the average raw score received by awarded grants and cubics for the average; 10 year lags of number of 
publications produced by the DST and number of applications to the DST; and dummies for number of DST applicants near the IC's 
funding threshold.  We also include 10 years of lagged funding controls with indicators if a DST is not observed in any year.  

Application Quality and Lagged Funding 
Controls
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(1) (2) (3) (4)

Same Disease Different Disease Same Disease Different Disease

1.015*** 1.292*** 1.633*** 1.152***
(0.153) (0.139) (0.145) (0.116)

Elasticity 0.777 0.724 0.476 0.479

R-squared 0.835 0.903 0.956 0.964

1.633*** 13.225*** 51.116*** 256.018***
(0.228) (1.453) (4.154) (26.487)

Elasticity 0.654 0.663 0.496 0.432

R-squared 0.876 0.917 0.968 0.965

Observations 11,110 11,110 11,110 11,110

Year FEs X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X X

Science X Year FEs X X X X

Application Quality and  
Lagged Funding Controls

X X X X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is citation-linked to a DST if it cites 
research that acknowledges funding from that DST. A patent is PMRA linked to a DST if it cites publications that are related 
to publications supported by a DST.  For more details on this sample, please see the notes to Tables 1 and 2.  Funding is 
defined by the sum of project-cycle allocations for all associated new and competing renewal grants.  A patent is defined as 
private sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application quality controls 
include cubics in the average raw score received by awarded grants and cubics for the average; 10 year lags of number of 
publications produced by the DST and number of applications to the DST; and dummies for number of DST applicants near 
the IC's funding threshold.  We also include 10 years of lagged funding controls with indicators if a DST is not observed in any 
year.  A patent is affiliated to the disease area to which it is most often associated.  If this disease area is not the same as the 
DST, then this patent is considered to be in a different disease area.  

DST Funding ($10 mill)

Citation-Linked Patents PMRA-Linked Patents

Table 7: Effect of NIH Investments on Own vs. Other Disease Area Patenting

DST Funding ($10 mill)

Weighted Patent Counts

Unweighted Patent Counts
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(1) (2) (3) (4) (5) (6)

NIH-Funded Citation PMRA NIH-Funded Citation PMRA

0.002 0.090*** 0.148*** 0.001 0.062*** 0.066***
(0.001) (0.022) (0.018) (0.001) (0.016) (0.012)

Elasticity 0.753 0.512 0.435 0.778 0.669 0.416

R-squared 0.747 0.752 0.927 0.879 0.783 0.916

0.007* 0.896*** 16.538*** 0.003 0.393*** 8.537***
(0.004) (0.152) (1.738) (0.002) (0.102) (0.982)

Elasticity 0.646 0.594 0.397 0.796 0.465 0.384

R-squared 0.819 0.835 0.960 0.824 0.465 0.384

Observations 11,110 11,110 11,110 11,110 11,110 11,110

Year FEs X X X X X X

Disease X Science FEs X X X X X X

Disease X Year FEs X X X X X X

Science X Year FEs X X X X X X

Application Quality and  
Lagged Funding Controls

X X X X X X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is considered to be by an NIH-
funded researcher if it directly acknowledges funding from an NIH grant.  A patent is citation-linked to a DST if it cites 
research that acknowledges funding from that DST. A patent is PMRA linked to a DST if it cites publications that are 
related to publications supported by a DST.  For more details on this sample, please see the notes to Tables 1 and 2.  
Funding is defined by the sum of project-cycle allocations for all associated new and competing renewal grants.  A patent 
is defined as private sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application 
quality controls include cubics in the average raw score received by awarded grants and cubics for the average; 10 year 
lags of number of publications produced by the DST and number of applications to the DST; and dummies for number of 
DST applicants near the IC's funding threshold.  We also include 10 years of lagged funding controls with indicators if a 
DST is not observed in any year.  A patent is highly cited if it is in the top 5 percentile for citations among patents in the 
same three digit class, issued in the same year.  A patent is associated with an FDA approved drug if it is listed in the 
Orange Book.

Table 8: Effect of NIH Investments on Private Sector High-Value Patenting

Highly Cited Patents

DST Funding ($10 mill)

FDA Approved Drugs

DST Funding ($10 mill)

Weighted Patent Counts

Unweighted Patent Counts
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(1) (2) (3) (4) (5) (6)

NIH-Funded Citation PMRA NIH-Funded Citation PMRA

0.011*** 0.510*** 0.446*** 0.022*** 1.796*** 2.340***
(0.004) (0.056) (0.044) (0.006) (0.214) (0.199)

Elasticity 0.566 0.811 0.450 1.032 0.730 0.483

R-squared 0.785 0.878 0.958 0.741 0.877 0.963

0.070*** 3.429*** 61.954*** 0.088*** 11.429*** 245.180***
(0.014) (0.315) (6.116) (0.021) (1.309) (24.074)

Elasticity 1.004 0.678 0.437 1.079 0.657 0.443

R-squared 0.766 0.921 0.969 0.790 0.909 0.965

Observations 11,110 11,110 11,110 11,110 11,110 11,110

Year FEs X X X X X X

Disease X Science FEs X X X X X X

Disease X Year FEs X X X X X X

Science X Year FEs X X X X X X

Application Quality and  
Lagged Funding Controls

X X X X X X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is considered to be by an NIH-funded 
researcher if it directly acknowledges funding from an NIH grant.  A patent is citation-linked to a DST if it cites research that 
acknowledges funding from that DST. A patent is PMRA linked to a DST if it cites publications that are related to 
publications supported by a DST.  For more details on this sample, please see the notes to Tables 1 and 2.  Funding is defined 
by the sum of project-cycle allocations for all associated new and competing renewal grants.  A patent is defined as private 
sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application quality controls include 
cubics in the average raw score received by awarded grants and cubics for the average; 10 year lags of number of publications 
produced by the DST and number of applications to the DST; and dummies for number of DST applicants near the IC's 
funding threshold.  We also include 10 years of lagged funding controls with indicators if a DST is not observed in any year.  
A firm is considered small if it has fewer than 500 employees.  

Table 9: Effect of NIH Investments By Firm Size

Small Large

Unweighted Patent Counts

DST Funding ($10 mill)

DST Funding ($10 mill)

Weighted Patent Counts
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(1) (2) (3) (4)

Citation PMRA Citation PMRA

0.812 4.890*** 1.062*** 0.935***
(5.859) (1.003) (0.114) (0.130)

Elasticity
0.027 0.113*** 0.165 0.075***
(0.196) (0.023) (0.148) (0.026)

R-squared 0.272 0.321 0.483 0.866

28.430 971.446*** 6.044 8.416***
(61.775) (339.737) (6.055) (3.102)

Elasticity
0.060 0.104*** 0.124 0.057***
(0.131) (0.036) (0.124) (0.021)

R-squared 0.318 0.450 0.788 0.935

Observations 11110 11110 11110 11110

Year FEs X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X X

Science X Year FEs X X X X

Table 10: Effect of NIH Investments on Firm Reallocation of R&D Investments

Total non-DST patents
Average non-DST patents, per DST-

linked patent

Weighted Patent Counts

Annual Research Area 
(DST) Funding ($10 mill)

Unweighted Patent Counts

Annual Research Area 
(DST) Funding ($10 mill)
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A DST-Patent Matching Details

A.1 Patents directly resulting from NIH research

The first is measure a count of patents directly resulting from NIH-funded grants from an

DST. The 1981 Bayh-Dole Act created incentives for these researchers and their institutions to

patent their discoveries, so that they could be licensed to private firms. The Act also required

that patents resulting from public funding acknowledge this fact and list specific grants in their

“Government Interest” statements. We obtained this information from the NIH’s iEdison database

and count the number of unique patents that acknowledge support from each NIH DST.

A.2 Patents citing NIH-funded research

Our next measure of innovative output uses patent-publication citation information to identify

patents that build on NIH-funded research. Patent applicants are required to disclose any previous

patents and publications that are related to their research. Failure to do so can result in strong

penalties for the applicant and attorney, and invalidation of the patent (Sampat 2009). There is a

long history of using citation data as measures of intellectual influence or knowledge flows between

public and private sector research (Jaffe and Trajtenberg 2005; Narin and Olivastro 1992). Recent

work (Sampat 2010, Alcacer, Gittleman and Sampat 2008), however, shows that patent examiners

rather than applicants insert many of these citations, casting doubt on their utility as measures of

knowledge flows or spillovers (Alcacer and Gittleman 2006).

We will instead use information on patent citations to published scientific articles. This is

appealing both because publications rather than patents are the main output of scientific researchers

(Agrawal and Henderson 2001), but also because the vast majority of patent-paper citations, over

90 percent, come from applicants rather than examiners, and are thus more plausibly indicators of

real knowledge flows than patent-patent citations (Lemley and Sampat 2010). Roach and Cohen

(2012) provide empirical evidence on this point.

In previous work, systematic analyses of these non-patent references has been limited, since

they are free-form text and difficult to link to other data. Our work relies on a novel match between

non-patent references and biomedical articles indexed in PubMed. Developing this match was more

difficult than for patent-patent citations: while the cited patents are unique seven-digit numbers,
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cited publications are free-form text. Moreover, the USPTO does not require that applicants submit

references to literature in a standard format. For example, Harold Varmus’s 1988 Science article

“Retroviruses” is cited in 29 distinct patents, but in numerous different formats, including Varmus.

“Retroviruses” Science 240:1427-1435 (1988) (in patent 6794141) and Varmus et al., 1988, Science

240:1427-1439 (in patent 6805882). As this example illustrates, there can be errors in author lists

and page numbers. Even more problematic, in some cases certain fields (e.g. author name) are

included, in others they are not. Journal names may be abbreviated in some patents, but not in

others. We use a fuzzy-matching algorithm to overcome these difficulties, and thus have matched

all non-patent references in over 3 million biomedical patents (issued from 1976 onwards) to articles

in PubMed (Sampat and Lichthenberg 2010). We also link the full set of NIH funded grants from

1972-2002 to the set of scientific articles that it supports using grant acknowledgement data from

PubMed. We combine these datasets to create links from grants funded by an DST to articles to

citing patents.

A.3 Patents in the intellectual vicinity of NIH research

Our final outcome measure captures all patents in the intellectual vicinity of an NIH fund-

ing area. To do this, we rely on the National Library of Medicine’s PubMed Related Citations

Algorithm (PMRA) to determined which publications are similar to each other. The following

paragraphs were extracted from a brief description of PMRA:18

The neighbors of a document are those documents in the database that are the most similar to it. The similarity

between documents is measured by the words they have in common, with some adjustment for document lengths.

To carry out such a program, one must first define what a word is. For us, a word is basically an unbroken string

of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens, spaces, new lines,

and punctuation. A list of 310 common, but uninformative, words (also known as stopwords) are eliminated

from processing at this stage. Next, a limited amount of stemming of words is done, but no thesaurus is used

in processing. Words from the abstract of a document are classified as text words. Words from titles are also

classified as text words, but words from titles are added in a second time to give them a small advantage in

the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term with a subheading

qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is starred (indicating a

major concept in a document), the star is ignored. These three categories of words (or phrases in the case of

MeSH) comprise the representation of a document. No other fields, such as Author or Journal, enter into the

calculations.

18Available at http://ii.nlm.nih.gov/MTI/related.shtml

63



Having obtained the set of terms that represent each document, the next step is to recognize that not all words

are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is

based on information that the computer can obtain by automatic processing. Automatic processing is important

because the number of different terms that have to be assigned weights is close to two million for this system.

The weight or value of a term is dependent on three types of information: 1) the number of different documents

in the database that contain the term; 2) the number of times the term occurs in a particular document; and

3) the number of term occurrences in the document. The first of these pieces of information is used to produce

a number called the global weight of the term. The global weight is used in weighting the term throughout the

database. The second and third pieces of information pertain only to a particular document and are used to

produce a number called the local weight of the term in that specific document. When a word occurs in two

documents, its weight is computed as the product of the global weight times the two local weights (one pertaining

to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a

term that occurred in most of the documents would really tell one very little about a document. On the other

hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of

documents of interest. A word that occurred in only 10 documents is likely to be even more informative and will

receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more

frequent a term is within a document, the more important it is in representing the content of that document.

However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word

increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be

considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two documents

have in common. Once the similarity score of a document in relation to each of the other documents in the

database has been computed, that document’s neighbors are identified as the most similar (highest scoring)

documents found. These closely related documents are pre-computed for each document in PubMed so that when

one selects Related Articles, the system has only to retrieve this list. This enables a fast response time for such

queries.

We illustrate the use of PMRA with an example taken from our sample. Brian Druker is a faculty member at the

University of Oregon whose NIH grant CA-001422 (first awarded in 1990) yielded 9 publications. “CGP 57148, a

tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion pro-

teins” (PubMed ID #9389713) appeared in the December 1997 issue of the journal Blood and lists 16 MeSH terms.

PubMed ID #8548747 is its fifth-most related paper according to the PMRA algorithm; it appeared in Cancer Re-

search in January 1996 and has 13 MeSH terms, 6 of which overlap with the Druker article. These terms include

common terms such as Mice and Pyrimidines as well as more specific keywords including Oncogene Proteins v-abl and

Receptors, Platelet-Derived Growth Factor.
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PMRA and MeSH Terms Overlap — An Example

Source Article PMRA-Linked Article

Carroll et al., “CGP 57148, a tyrosine kinase 
inhibitor, inhibits the growth of cells expressing 
BCR-ABL, TEL-ABL, and TEL-PDGFR fusion 

proteins.” Blood , 1997.

Buchdunger et al. “Inhibition of the Abl protein-
tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative.” Cancer 

Research , 1996.

PMID #9389713 PMID #8548747
MeSH Terms MeSH Terms
Animals 3T3 Cells
Antineoplastic Agents Animals
Cell Division Cell Line, Transformed
Cell Line Growth Substances
DNA-Binding Proteins* Mice
Enzyme Inhibitors* Mice, Inbred BALB C
Fusion Proteins, bcr-abl* Oncogene Proteins v-abl*
Mice Piperazines*
Oncogene Proteins v-abl* Piperidines*
Piperazines* Proto-Oncogene Proteins c-fos
Protein-Tyrosine Kinases* Pyrimidines*
Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor*
Pyrimidines* Tumor Cells, Cultured
Receptors, Platelet-Derived Growth Factor*
Repressor Proteins*
Transcription Factors*

Substances Substances
Antineoplastic Agents Growth Substances
DNA-Binding Proteins Oncogene Proteins v-abl
ETS translocation variant 6 protein Piperazines
Enzyme Inhibitors Piperidines
Fusion Proteins, bcr-abl Proto-Oncogene Proteins c-fos
Oncogene Proteins v-abl Pyrimidines
Piperazines imatinib
Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor
Pyrimidines
Repressor Proteins
Transcription Factors
imatinib
Protein-Tyrosine Kinases
Receptors, Platelet-Derived Growth Factor
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mittee encourages NCI to further accelerate advances in breast 
cancer screening technology and to capitalize on existing and create 
new technologies that improve early diagnosis, health outcomes, 
and survival. 

Ovarian cancer.—The Committee remains concerned that sur-
vival rates associated with ovarian cancer have improved only 
slightly over the past 20 years. Ovarian cancer is the deadliest of 
all gynecological cancers. For all women diagnosed with ovarian 
cancer, the five-year survival rate is 45 percent. More than two-
thirds of the women have advanced disease at the time of diag-
nosis, and for this group, the 5–year survival rate is 29 percent. 
The Committee commends NCI for its recognition of the impor-
tance of studying this deadly women’s disease and appreciates the 
NCI’s recent investment that is helping to increase the under-
standing of the unique molecular pathways associated with ovarian 
cancer through its SPOREs program. The Committee encourages 
NCI to sustain and strengthen its commitment to and investment 
in ovarian cancer and maintain the specialized programs of re-
search excellence (SPORE) initiatives directed toward ovarian can-
cer in fiscal year 2006. 

Liver Cancer.—The Committee remains concerned with the in-
creasing incidence of primary liver cancer, which is in sharp con-
trast to many other forms of cancer where the incidence is declin-
ing and the treatment options are rapidly increasing. The Com-
mittee is aware that NCI, working with NIDDK, has convened an 
Experts Conference and is moving ahead with plans to increase re-
sources dedicated to this disease. The Committee urges NCI to 
make a strong commitment to research on primary liver cancer 
with particular focus on the development of drugs that target the 
cancer without killing healthy cells by interfering with the cellular 
pathways of the disease. The Committee further urges NCI to con-
tinue to support the NIDDK sponsored HALT–C clinical trial which 
has particular relevance to the NCI mission. 

Pancreatic cancer.—Pancreatic cancer is the country’s fourth 
leading cause of cancer death. Most patients present with advanced 
disease at diagnosis and the median overall survival rate for people 
diagnosed with metastatic disease is only about six months. The 
Committee is concerned that there are too few scientists research-
ing pancreatic cancer and compliments the NCI’s past efforts for 
increasing the research field through its program of a 50 percent 
formalized extended payline for grants that were 100 percent rel-
evant to pancreatic cancer. The Committee considers this an impor-
tant method for attracting both young and experienced investiga-
tors to develop careers in pancreatic cancer. In 2004, the NCI es-
tablished a new policy for awarding additional grants in pancreatic 
cancer research and extended this initiative to research that is 50 
percent relevant to pancreatic cancer. The Committee requests NCI 
to report in February, 2006 on how the two changes in policy have 
affected the pancreatic cancer portfolio, including the percentage 
relevancy of each grant to pancreatic cancer, and urges NCI to con-
tinue its commitment to fertilize the pancreatic cancer field. 

Lymphoma.—Lymphoma is the fifth most common cancer and 
the most common hematological cancer. Unlike many other can-
cers, lymphoma often strikes individuals in young adulthood and 
the middle years, significantly impacting their professional produc-
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(1) (2) (3) (4)

Same Disease Different Disease Same Disease Different Disease

1.656*** 0.651*** 1.028*** 1.758***
(0.194) (0.069) (0.098) (0.168)

Elasticity 0.774 0.685 0.424 0.515

R-squared 0.875 0.894 0.956 0.964

7.188*** 7.669*** 62.507*** 244.626***
(0.838) (0.833) (6.064) (26.277)

Elasticity 0.672 0.653 0.389 0.457

R-squared 0.920 0.904 0.976 0.963

Observations 11,110 11,110 11,110 11,110

Year FEs X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X X X

Science X Year FEs X X X X

Application Quality and  
Lagged Funding Controls

X X X X

Notes: Each observation is Disease-Science Area-Time (DST) combination.  A patent is citation-linked to a DST if it cites 
research that acknowledges funding from that DST. A patent is PMRA linked to a DST if it cites publications that are 
related to publications supported by a DST.  For more details on this sample, please see the notes to Tables 1 and 2.  
Funding is defined by the sum of project-cycle allocations for all associated new and competing renewal grants.  A patent 
is defined as private sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application 
quality controls include cubics in the average raw score received by awarded grants and cubics for the average; 10 year 
lags of number of publications produced by the DST and number of applications to the DST; and dummies for number of 
DST applicants near the IC's funding threshold.  We also include 10 years of lagged funding controls with indicators if a 
DST is not observed in any year.  If X percent of a patent's publications are linked to a disease area, then that patent is 
counted as 0.X toward that disease area.  

Appendix Table A: Effect of NIH Investments on Own vs. Other Disease Area 
Patenting; Disease affiliations defined as fractions

Citation-Linked Patents PMRA-Linked Patents

Weighted Patent Counts

DST Funding ($10 mill)

DST Funding ($10 mill)

Unweighted Patent Counts
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(1) (2) (3) (4) (5) (6)

-0.467*** 0.017 0.021
(0.025) (0.046) (0.051)

0.064 0.060 -0.052
(0.072) (0.070) (0.035)

Observations 11,110 11,110 11,110 11,110 11,110 11,110

R-squared 0.103 0.800 0.830 0.873 0.876 0.909

Year FEs X X X X X X

Disease X Science FEs X X X X

Disease X Year FEs X X

Notes: Each cell is a study section - IC - year.   Funding is defined by the sum of project-cycle allocations for all Type I 
and II grants reviewed by that study section.  

D'ST Funding/D'T 
Funding, Other Diseases, 
Same Science

D'ST Funding, Other 
Diseases, Same Science (10 
mill)

DST Funding (10 mill)                                               
Mean: 4.67, SD: 4.92

Appendix Table B: Relationship Between Own DST Funding and Funding by 
Other Ics for the same Science Area

DST Funding/DT Funding                                       
Mean: 0.079, SD: 0.105
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(1) (2) (3) (4) (5) (6)

0.989*** 0.910*** 2.341*** 2.573*** 3.185*** 3.658***
(0.122) (0.098) (0.253) (0.214) (0.582) (0.378)

Elasticity 0.758 0.833 0.546 0.627

R-squared 0.945 0.953 0.376 0.433 0.473 0.562

Observations 11,110 11,110 10,536 10,536 10,536 10,536

Year FEs X X X X X X

Disease X Science FEs X X X X X X

Disease X Year FEs X X X X X X

Science X Year Linear 
Trends

X X X X X X

X X X

DST Funding, grants 
funded in order only

DST Funding 
($10 mill)

Application Quality and Lagged 
Funding Controls
Notes: The instrument is the total amount of funding for awarded DST grants within 5 grants of the award cutoff, divided by the 
total number of applications within 5 grants of the cutoff on either side. Columns 2, 4, and 6 control for cardinal application quality 
and number of grants near the threshold. Each observation is Disease-Science Area-Time (DST) combination.  A patent is citation-
linked to a DST if it cites research that acknowledges funding from that DST. A patent is PMRA linked to a DST if it cites 
publications that are related to publications supported by a DST.  For more details on this sample, please see the notes to Tables 1 
and 2.  Funding is defined by the sum of project-cycle allocations for all associated new and competing renewal grants.  A patent is 
defined as private sector if its assignee is a US or foreign firm.  Elasticities are evaluated at sample means.  Application quality 
controls include cubics in the average raw score received by awarded grants and cubics for the average; 10 year lags of number of 
publications produced by the DST and number of applications to the DST; and dummies for number of DST applicants near the IC's 
funding threshold.  We also include 10 years of lagged funding controls with indicators if a DST is not observed in any year.  

Appendix Table C: Instrumental Variables Estimate, Grants Funded in Order Only

First Stage IV Estimates

DST Funding ($10 mill) Citation-Linked PMRA-Linked
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(1) (2)

RHS includes 10 Years of Lags for: Past Patent Output
Raw Application 

Scores

1.508 0.039
(1.109) (0.049)

Year FEs X X

Disease X Science FEs X X

Disease X Year FEs X X

Science X Year FEs X X

Application Quality and  Lagged Funding Controls X X

F-test for Joint Signficance

Lucky Funding

Appendix Table D: Correlation of Instrument with Measures of DST Quality

Notes: Each observation is Disease-Science Area-Time (DST) combination.  Each column reports a regression of our 
lucky funding instrument on measures of DST input and output quality.  Column 1 reports an F-test for the joint 
significance of one to ten year lags of past DST patent production: NIH-funded, citation-linked, and total (30 
variables).  Column 2 reports the same but for one to ten year lags of average raw scores among funded grants and 
all applicants to a DST (20 variables). 
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