# Discussion of "Information Aggregation in a DSGE Model" 

by Tarek Hassan and Thomas Mertens

Guido Lorenzoni

NBER Macro Annual, 2014

## Agenda

- Models in which asset prices aggregate information (e.g., Grossman, Hellwig)
- Can we study their quantitative implications in dynamic general equilibrium models?
- Problem interesting both for its asset pricing side and for its business cycle side
- Computational challenge: once we move away from CARA-normal world, how do we handle signal-extraction problem?
- Paper proposes a new approach to deal with computational challenge and obtains some results


## A simple model without CARA

- Two period economy, OLG structure
- Continuum of young consumers $i \in[0,1]$ at date 1
- Supply $K$ is random (same role as noise traders)

1. 

Young work
Young observe private signal and price, buy $k_{i}$
2.

Productivity $A$ realized
Young (now old) consume $A k_{i}$

Old sell $K$ and consume

## Optimization

- Productivity

$$
\log A=\eta
$$

- Private signals

$$
s_{i}=\eta+v_{i}
$$

- Conjecture price monotone function of

$$
q=\eta+\psi \tau
$$

- So individual demand is

$$
K_{d}\left(\beta_{1} s+\beta_{2} q, Q\right)=\arg \max _{k} E_{i}[u(A k)-v(Q k) \mid s, q]
$$

## Market clearing

- Across agents $s$ is distributed normally with mean $\eta$, so given $\eta$ and $q$ we can compute aggregate demand

$$
\bar{K}_{d}\left(\beta_{1} \eta+\beta_{2} q, Q\right)=\int_{-\infty}^{\infty} K_{d}\left(\beta_{1} \eta+\beta_{2} q+\beta_{1} v, Q\right) d \Phi(v)
$$

- Market clearing requires

$$
\bar{K}_{d}\left(\beta_{1} \eta+\beta_{2} q, Q\right)=K
$$

- Can we make assumptions on random supply $K$ which ensure our conjecture is correct?
- Yes, by reverse engineering


## Reverse engineering

- Suppose all shock distributions are given, $\psi$ (in $q=\eta+\psi \tau$ ) is given and

$$
Q=H(q)
$$

for some given strictly monotone function $H$

- Then we can find a function $T(q, \tau)$ such that if $K=T(q, \tau)$, $Q$ is the equilibrium price in our model
- Just choose

$$
T(q, \tau)=\bar{K}_{d}\left(\beta_{1}(q-\psi \tau)+\beta_{2} q, H(q)\right)
$$

- That's too much freedom...


## Restrictions

- ...so the paper imposes restrictions
- Represent $T$ and $H$ as Taylor series

$$
T(q, \tau)=T_{0}+T_{q} q+T_{\tau} \tau+\frac{1}{2}\left(T_{q q} q^{2}+2 T_{q \tau} q \tau+T_{\tau \tau} \tau^{2}\right)+\ldots
$$

- Impose restrictions on coefficients $T_{0}, T_{q}, \ldots$
- Use them to compute $H_{0}, H_{1}, H_{2}, \ldots$ and $\psi$
- Setting $T_{0}=0$ gives $H_{0}$
- Setting $T_{q}=0$ and $T_{\tau}=\ldots$ gives $H_{1}$ and $\psi$ (here $\beta$ sare involved too)
- 2nd order and up we only have one unknown $H_{j}$, so I guess we can only impose one restriction


## A simple case I can solve by hand

- $u(c)$ CRRA with coeff. $\gamma$
- $v(n)$ linear
- Then demand for capital is

$$
k_{i}=\left\{E_{i}\left[A^{1-\gamma}\right] / Q\right\}^{1 / \gamma}
$$

- If we assume

$$
K=T(q, \tau)=e^{-T_{\tau} \tau}
$$

we can find equilibrium in closed form

- In particular

$$
\psi \beta_{1}=\frac{\gamma}{1-\gamma} T_{\tau}
$$

where

$$
\beta_{1}=\frac{1 / \sigma_{v}^{2}}{1 / \sigma_{\eta}^{2}+1 / \sigma_{v}^{2}+1 /\left(\psi^{2} \sigma_{\tau}^{2}\right)}
$$

## Comment 1

- There is a mapping between:
- $T_{\tau}$, first-order response of noise trading to shock $\tau$
- and $\psi$, price signal response to $\tau$
- My natural choice would be to set $T_{\tau}=1$ and find $\psi$ endogenously
- The paper does the opposite, sets $\psi=\sigma_{v}^{2} / \sigma_{\eta}^{2}$ and derives $T_{\tau}$ endogenously


## Comment 1 (continued)

- Does it matter? Yes



## Comment 2

- Where is the risk-free rate coming from?
- I think paper looks at interim period before private info and $Q$ observed
- That allows authors to avoid trading of bonds after private info received
- Avoids information revelation through the interest rate
- Does it matter? Yes. E.g., when $\gamma=1$ no info revelation through $Q$, but info revelation through interest rate


## Limitations

- Limitations of this approach is endogeneity of higher order terms like $T_{\tau \tau}$
- These terms may matter for asset pricing purposes
- The choice of restrictions is not obvious and may matter too
- Other important limitation is all info is shared at end of each period $t$ (Rondina-Walker show this can matter)
- But do we have alternatives?


## Bounded rationality

- Make assumptions on $T$
- Given $\beta$ 's solve for optimal demand

$$
\bar{K}_{d}\left(\beta_{1} \eta+\beta_{2} q, Q\right)=T(\tau)
$$

- Find $Q(\eta, \tau)$
- Replace expectation with linear projection

$$
P[\eta \mid Q, s]=\beta_{1} s+\beta_{2} \log Q
$$

(only requires covariances, does not require normality of $\log Q$, normality of $v_{i}$ can still be used for aggregation)

- Look for fixed point in $\beta_{1}, \beta_{2}$
- Can be extended to environments where agents info is not perfectly revealed after one period
- Higher order terms could be added to the projection step

