Applications: Prediction

Matthew Gentzkow
Jesse M. Shapiro

Chicago Booth and NBER

Introduction

- Methods map high-dimensional x to low-dimensional z

Introduction

- Methods map high-dimensional x to low-dimensional z
- Three main uses of z
(1) Forecasting (e.g., what will inflation be next month?)
(2) Descriptive analysis (e.g., are there genes that predict risk aversion?)
(3) Input into subsequent causal analysis (e.g., as LHS var, RHS var, control, instrument, etc.)

Outline

- Brief overview of data \& applications
- Detailed discussion of text as data

Overview

Google Searches

"Big Data"

Google Searches

"Big Data"

Google Searches: Applications

- Prediction
- Google flu trends (Dukik et al. 2009)
- Unemployment claims, retail sales, consumer confidence, etc. (Choi \& Varian 2009, 2012)

Google Searches: Applications

- Prediction
- Google flu trends (Dukik et al. 2009)
- Unemployment claims, retail sales, consumer confidence, etc. (Choi \& Varian 2009, 2012)
- Descriptive
- What searches predict "consumer confidence" (Varian 2013)

Google Searches: Applications

- Prediction
- Google flu trends (Dukik et al. 2009)
- Unemployment claims, retail sales, consumer confidence, etc. (Choi \& Varian 2009, 2012)
- Descriptive
- What searches predict "consumer confidence" (Varian 2013)
- Input to analysis
- Saiz \& Simonsohn (2013) \rightarrow city-level corruption
- Stephens-Davidowitz (2013) \rightarrow racial animus \& effect on voting for Obama

Genes

- Genetic data has been one of the main applications of high-dimensional methods
- LHS: Physical or behavioral outcome
- RHS: Single-nucleotide polymorphisms (SNPs)
- Typical dataset is $N \approx 10,000$ and $K \approx 2,500,000$

Genes: Applications

- Descriptive: look for genetic predictors of...
- Risk aversion \& social preferences (Cesarini et al. 2009)
- Financial decision making (Cesarini et al. 2010)
- Political preferences (Benjamin et al. 2012)
- Self-employment (van der Loos et al. 2013)
- Educational attainment, subjective well being (Rietveld et al. forthcoming)

Genes: Applications

- Descriptive: look for genetic predictors of...
- Risk aversion \& social preferences (Cesarini et al. 2009)
- Financial decision making (Cesarini et al. 2010)
- Political preferences (Benjamin et al. 2012)
- Self-employment (van der Loos et al. 2013)
- Educational attainment, subjective well being (Rietveld et al. forthcoming)
- Early reported associations have been shown to be spurious \& non-replicable (Benjamin et al. 2012)

Medical Claims

- Big and high dimensional
- 10 years of Medicare data on the order of 100 TB
- (patient \times doctor \times hospital \times treatment \times cost...)

Medical Claims

- Big and high dimensional
- 10 years of Medicare data on the order of 100 TB
- (patient \times doctor \times hospital \times treatment \times cost...)
- Dimension reduction: How to collapse data into a single-dimensional index of "health" or "predicted spending"
- Medicare "risk scores" based on ad hoc criteria
- Johns Hopkins ACG system uses proprietary predictive model

Medical Claims: Applications

- Input into analysis
- Numerous studies use Medicare risk scores as a control variable or independent variable of interest
- Einav \& Finkelstein (forthcoming) use risk score as mediator of health plan choice
- Handel (2013) uses Johns Hopkins ACG score as measure of private information

Credit Scores

- Predicting default risk from consumer credit data is similar to predicting health risk from medical claims

Credit Scores

- Predicting default risk from consumer credit data is similar to predicting health risk from medical claims
- Forecasting
- Large literature applies machine learning tools to improve forecasting of default risks (e.g., Khandani et al. 2010)

Credit Scores

- Predicting default risk from consumer credit data is similar to predicting health risk from medical claims
- Forecasting
- Large literature applies machine learning tools to improve forecasting of default risks (e.g., Khandani et al. 2010)
- Input into analysis
- Adams, Einav and Levin (2009) and Einav, Jenkins and Levin (2012) evaluate auto dealer's proprietary credit scoring algorithm
- Rajan, Seru and Vig (forthcoming) look at market responses to using a limited set of variables in credit scoring

Online Purchases

amazon.com*

WETFIX

ebay

- Amazon, Ebay, and other large Internet firms use purchase and browsing history to make recommendations, target advertising, etc.
- "Netflix Prize" contest for best algorithm to predict future user ratings based on past ratings

Congressional Roll Call Votes

- Poole \& Rosenthal (1984, 1985, 1991, 2000, etc.) use factor analysis methods to project Roll Call votes into ideology scores
- Ask questions like
- Are there multiple dimensions of ideology?
- How has polarization changed over time?

Text as Data

Sources

- News
- Books
- Web content
- Congressional speeches
- Corporate filings
- Twitter \& Facebook

Less Obvious Sources

- Amazon and eBay listings
- Google search ads
- Medical records
- Central bank announcements

Bag of Words

Document

Bag of Words

Document

- Can apply to " N -grams" as well as single words

Bag of Words

- Can apply to " N -grams" as well as single words
- This seems crude, but it works remarkably well in practice, and gains to more sophisticated representations prove to be small

The Science and the Art

- General theme: Real research always combines automated dimension reduction techniques with "manual" steps based on priors

The Science and the Art

- General theme: Real research always combines automated dimension reduction techniques with "manual" steps based on priors
- E.g.,
- Keep only words occurring more than X times
- Drop very common "stopwords" like "the," "at," a"
- "Stem" words to combine, e.g., "economics," "economic," "economically"
- Drop HTML tags

The Science and the Art

- General theme: Real research always combines automated dimension reduction techniques with "manual" steps based on priors
- E.g.,
- Keep only words occurring more than X times
- Drop very common "stopwords" like "the," "at," a"
- "Stem" words to combine, e.g., "economics," "economic," "economically"
- Drop HTML tags
- In fact, 90% of text analysis in economics does not automated dimension reduction at all
- Saiz \& Simonsohn (2013) \rightarrow city name + "corruption"
- Baker, Bloom, and Davis (2013) \rightarrow "economic" + "policy" + "uncertainty", etc.
- Lucca \& Trebbi (2011) \rightarrow "'hawkish/dovish," "loose/tight," + "Federal Open Market Committee"

Interfaces

- Bag of words assumes access to full text (at least for N-grams of interest)

Interfaces

- Bag of words assumes access to full text (at least for N-grams of interest)
- Many researchers, however, can only access text via search interfaces (e.g., Google page counts, news archives, etc.)

Interfaces

- Bag of words assumes access to full text (at least for N-grams of interest)
- Many researchers, however, can only access text via search interfaces (e.g., Google page counts, news archives, etc.)
- This requires some external method of feature selection to narrow down vocabulary

Sentiment Analysis

Setup

- Outcome y_{i}
- Features x_{i}
- Data:

$$
\underbrace{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{3}\right\}, \ldots,\left\{x_{N}, y_{N}\right\}}_{\text {Training set }}, \underbrace{\left\{x_{N+1}, ?\right\}}_{\text {Target }}
$$

Spam Filter

- Outcome $y_{i} \in\{$ spam, ham $\}$
- Human coder classifies N cases as spam or ham
- Must decide whether to deliver the $(N+1)$ message or send it to the filter

Issues

- What features x_{i} do we use?
- Counts of words?
- Counts of characters?
- Complete machine representation of e-mail?
- How do we avoid overfitting?
- >1m words in English language
- ASCII file with 100 printable characters has 95^{100} possible realizations

Applications

- Partisanship in the news media [TODAY]
- Turn millions of words into an index of media slant or bias
- Sentiment in financial news [TODAY]
- Classify news, chat room discussions, etc. as positive or negative
- Estimating causal effects [TOMORROW]
- Turn a huge dataset into a low-dimensional control for endogeneity

Sentiment Analysis: Partisanship in the News Media

Overview

- Questions
- How centrist are the news media?
- What factors (owners, readers) predict how a newspaper portrays the news?
- Need measure of partisan orientation of news media
- Challenges
- Training set: research assistants? surveys?
- Dimensionality
- Feature selection: words? phrases? images?
- Parsimony: millions of possible words/phrases

Groseclose and Milyo (2005)

- Training set: US Congress
- Assign members an ideology score y_{i} based on roll-call voting
- Dimensionality
- Count frequency of citations to think tanks x_{i} in Congressional Record
- Feature selection "by hand": use ex ante criterion to control dimensionality

Groseclose and Milyo (2005)

The Library of Conaress > THOMAS Home > Search the Congressional Record

Search the Congressional Record 105th Congress (1997-1998)

The Congressional Record is the official record of the proceedings and debates of the U.S. Congress. $\boldsymbol{\theta}$ More about the Congressional Record

Search the Congressional Record | Latest Daily Digest | Browse Daily Issues
Browse the Keyword Index | Congressional Record App

Select Congress:

$\underline{113}|\underline{112}| \underline{111}|\underline{110}| \underline{109}|\underline{108}| \underline{107}|\underline{106}| 105|\underline{104}| \underline{103}|\underline{102}| \underline{101}$
Congress-to-Year Conversion

Member of Congress

Any Representative	A	Any Senator	a	
Abercrombie, Neil (HI-1)	E	Abraham, Spencer (Ml)	E	
Ackerman, Gary L. (NY-5)		Akaka, Daniel K. (HI) Aderholt, Robert B. (AL-4)	-	Alard, Wayne (CO)

Mombor cnoaking or montioned © All occurroncoc

Groseclose and Milyo (2005)

Mr. DORGAN. Mr. President, I come to the floor to speak first about the Congressional Budget Office, which last week released its monthly budget projection. And I noticed that this projection, this estimate, received prominent coverage in the Washington Post and in other major daily newspapers around the country last week....

A study by a tax expert at the Brookings Institution says if you have a national sales tax, the rates would probably be over 30 percent, and then add the State and local taxes, and that would be on almost everything. So say you would like to buy a house and here is the price we have agreed on, and then have someone tell you, oh, yes, you have a 37-percent sales tax applied to that price, 30 percent Federal, 7 percent State and local.

Groseclose and Milyo (2005)

- Count references to think tanks in news media

Groseclose and Milyo (2005)

- Let y_{i} be ADA score of senator i
- Let $x_{i j t}$ be indicator for senator i cites think tank j on occasion t
- Then

$$
\operatorname{Pr}\left(x_{i j t}=1\right)=\frac{\exp \left(\alpha_{j}+\beta_{j} y_{i}\right)}{\sum_{j^{\prime}} \exp \left(\alpha_{j^{\prime}}+\beta_{j^{\prime}} y_{i}\right)}
$$

- Assume same model applies to news media m but treat y_{m} as unknown
- Estimate $\alpha_{j}, \beta_{j}, y_{m}$ via joint maximum likelihood

Groseclose and Milyo (2005)

- Dimension of data $p=50$
- Start with 200 think tanks
- Collapse all but top 44 into 6 groups
- Dimension of data $n=535$
- Less those who don't cite think tanks

Groseclose and Milyo (2005)

Senator	Partisanship	News Outlet	Partisanship
John McCain	12.7	Fox News	
Arlen Specter	51.3	USA Today	
Joe Lieberman	74.2	New York Times	

Groseclose and Milyo (2005)

Senator	Partisanship	News Outlet	Partisanship
John McCain	12.7	Fox News	39.7
Arlen Specter	51.3	USA Today	63.4
Joe Lieberman	74.2	New York Times	73.7

Groseclose and Milyo (2005)

Gentzkow and Shapiro (2010)

- Text of 2005 Congressional Record
- Scripted pipeline:
- Download text
- Split up text into individual speeches
- Identify speaker
- Count all two-word/three-word phrases

Gentzkow and Shapiro (2010)

- Training set: US Congress
- Assign members an ideology score y_{i} based on partisanship of constituents
- Dimensionality
- Compute frequency table of phrase counts by party
- Compute χ^{2} statistic of independence
- Identify 1000 phrases with highest χ^{2}

Example: Social Security

- Memo to Rep. candidates: "Never say 'privatization/private accounts.' Instead say 'personalization/personal accounts.' Two-thirds of America want to personalize Social Security while only one-third would privatize it. Why? Personalizing Social Security suggests ownership and control over your retirement savings, while privatizing it suggests a profit motive and winners and losers."

Example: Social Security

- Memo to Rep. candidates: "Never say 'privatization/private accounts.' Instead say 'personalization/personal accounts.' Two-thirds of America want to personalize Social Security while only one-third would privatize it. Why? Personalizing Social Security suggests ownership and control over your retirement savings, while privatizing it suggests a profit motive and winners and losers."
- Congress: "personal account" (48 D vs 184 R); "private account" (542 D vs 5 R)

Top Phrases

Republicans: 2-word	Republicans: 3-word	Democrats: 2-word	Democrats: 3-word
stem cell	embryonic stem cell	private accounts	veterans health care
natural gas	hate crimes legislation	trade agreement	congressional black caucus
death tax	adult stem cells	american people	va health care
illegal aliens	oil for food program	tax breaks	billion in tax cuts
class action	personal retirement accounts	trade deficit	credit card companies
war on terror	energy and natural resources	oil companies	security trust fund
embryonic stem	global war on terror	credit card	social security trust
tax relief	hate crimes law	nuclear option	privatize social security
illegal immigration	change hearts and minds	war in iraq	american free trade
date the time	class action fairness	middle class	central american free
boy scouts	committee on foreign relations	budget cuts	national wildlife refuge
hate crimes	deficit reduction bill	nuclear weapons	dependence on foreign oil
oil for food	boy scouts of america	checks and balances	tax cuts for the wealthy
global war	repeal of the death tax	civil rights	arctic national wildlife
medical liability	highway trust fund	veterans health	bring our troops home
highway bill	action fairness act	committee on commerce science	foreign oil
adult stem	cord blood stem	mesident plan	social security privatization
democratic leader	million trade deficit		
federal spending	gun violence	asian pacific american reform	president bush took office
tax increase			

Top Phrases: Social Security

Republicans: 2-word	Republicans: 3-word	Democrats: 2-word	Democrats: 3-word
stem cell	embryonic stem cell	private accounts	veterans health care
natural gas	hate crimes legislation	trade agreement	congressional black caucus
death tax	adult stem cells	american people	va health care
illegal aliens	oil for food program	tax breaks	billion in tax cuts
class action	personal retirement accounts	trade deficit	credit card companies
war on terror	energy and natural resources	oil companies	security trust fund
embryonic stem	global war on terror	credit card	social security trust
tax relief	hate crimes law	nuclear option	privatize social security
illegal immigration	change hearts and minds	war in iraq	american free trade
date the time	global war on terrorism	middle class	central american free
boy scouts	class action fairness	african american	national wildlife refuge
hate crimes	committee on foreign relations	budget cuts	dependence on foreign oil
oil for food	deficit reduction bill	nuclear weapons	tax cuts for the wealthy
global war	boy scouts of america	checks and balances	vice president cheney
medical liability	repeal of the death tax	civil rights	arctic national wildlife
highway bill	highway trust fund	veterans health	bring our troops home
adult stem	action fairness act	cut medicaid	social security privatization
democratic leader	committee on commerce science	foreign oil	billion trade deficit
federal spending	cord blood stem	president plan	asian pacific american
tax increase	medical liability reform	gun violence	president bush took office

Other R: personal accounts; social security reform; social security system
Other D: privatization plan; security trust; security trust fund; social security trust; privatize social security; social security privatization; privatization of social security; cut social security

Top Phrases: Foreign Policy

Republicans: 2-word	Republicans: 3-word	Democrats: 2-word	Democrats: 3-word
stem cell	embryonic stem cell	private accounts	veterans health care
natural gas	hate crimes legislation	trade agreement	congressional black caucus
death tax	adult stem cells	american people	va health care
illegal aliens	oil for food program	tax breaks	billion in tax cuts
class action	ersonal retirement accounts	trade deficit	credit card companies
war on terror natural resources	oil companies	security trust fund	
embryonic stem	global war on terror	credit card	social security trust
tax relief	hate crimes law	nuclear option	privatize social security
illegal immigration	global war on terrorism	war in iraq	american free trade
date the time	committee on foreign relations	african american	budget cuts

Other R: saddam hussein, war on terrorism, iraqi people
Other D : funding for veterans health; war in iraq and afghanistan; improvised explosive device

Top Phrases: Fiscal Policy

Republicans: 2-word	Republicans: 3-word	Democrats: 2-word	Democrats: 3-word
stem cell	embryonic stem cell	private accounts	veterans health care
natural gas	hate crimes legislation	trade agreement	congressional black caucus
death tax	adult stem cells	american people	va health care
illegal aliens	oil for food program	tax breaks	billion in tax cuts
class action	personal retirement accounts	trade deficit	credit card companies
war on terror	energy and natural resources	oil companies	security trust fund
embryonic stem	global war on terror	credit card	social security trust
tax relief	hate crimes law	nuclear option	privatize social security
illegal immigration	global war on terrorism	class action fairness	middle class

Other R: raise taxes; percent growth; increase taxes; growth rate; government spending; raising taxes; death tax repeal; million jobs created; percent growth rate
Other D : estate tax; budget deficit; bill cuts; medicaid cuts; cut funding; spending cuts; pay for tax cuts; cut student loans; cut food stamps; cut social security; billion in tax breaks

Obtain Phrase Counts from Newspapers

advertisement

NewsLilbrary

Discover Your Ancestors in Newspapers 1690-Today!
\square Search Now ,
Eenealogybank

Log In | Register

Obtain Phrase Counts from Newspapers

ProQuest ProQuest Newsstand

"personal retirement account" AND pub(washington times)
\square Full text
Suggested subjects Hide Washington Times (Company/Org) Washington Times (Company/Org) AND Newspapers Washington Times (Company/Org) AND Moon, Sun Myung (Person) Washington Times (Company/Org) AND Washington DC (Place)

53 Results *	* Search within	Create alert	Create RSS feed	Save search
\square Select 1-20	Brief view \| Detailed view			
$\square 1$	Tin ears on Social Security: [2 Edition 1]			
	Ferrara, Peter. Washington Times [Washington, D.C] 13 July 1999: A17.			
	...who wanted to advance a personal retirement account option to Social Security ...worker's wages into a personal retirement account for the worker. These payments ...and proposed a sound personal retirement account plan. He would have granted			
	Citation/Abstract Full text			
$\square 2$	Washington's financial miscreants sucker us			
	Hurt, Charles. Washington Times [Washington, D.C] 05 Dec 2012: A.6.			
	...billions out of our personal retirement account to fund an obscene lavishness			
	Citation/Abstract Full text			
Q 3	Brickbats blur Bush proposal for Social Security ; Plan backers say 'truth' obscured			
	Lambro, Donald. Washington Times [Washington, D.C] 06 Feb 2005: A03. Mr. Bush's personal retirement account (PRA) plan has been attacked by			
	Citation/Abstract Full text			

Example: Social Security

- "House GOP offers plan for Social Security; Bush's private accounts would be scaled back" (Washington Post, 6/23/05)
- "GOP backs use of Social Security surplus; Finds funding for personal accounts" (Washington Times, 6/23/05)

Linear Model of Phrase Frequency

- Let y_{i} be Republican vote share in senator i's state
- Let $x_{i j}$ be share of senator $i^{\prime} s$ speech going to phrase j

$$
\mathrm{E}\left(x_{i j} \mid y_{i}\right)=\alpha_{j}+\beta_{j} y_{i}
$$

- Estimate via least squares
- Procedure called marginal regression
- Apply same model to newspapers to infer y_{m}

Validation

How to Validate

- Newspaper rankings consistent with external sources
- Phrases make sense
- Sensitivity analysis
- Change scores y_{i} (ADA, NOMINATE)
- Change set of phrases
- Check agreement across sources
- Go look at the newspapers

Audit

TABLE A.I
Audit of Search Results ${ }^{\text {a }}$

Phrase	Total Hits	Share of Hits in Quotes	Share of Hits That Are					
			AP Wire Stories	Other Wire Stories	Letters to the Editor	Maybe Opinion	Clearly Opinion	Independently Produced News
Global war on terrorism	2064	16\%	3\%	4\%	1\%	2\%	10\%	80\%
Malpractice insurance	2190	5\%	0\%	0\%	1\%	3\%	12\%	84\%
Universal health care	1523	9\%	1\%	0\%	7\%	8\%	28\%	56\%
Assault weapons	1411	9\%	3\%	12\%	4\%	1\%	25\%	56\%
Child support enforcement	1054	3\%	0\%	0\%	1\%	2\%	11\%	86\%
Public broadcasting	3375	8\%	1\%	0\%	2\%	4\%	22\%	71\%
Death tax	595	36\%	0\%	0\%	2\%	5\%	46\%	47\%
Average (hit weighted)		10\%	1\%	2%	3\%	3\%	19\%	71\%

${ }^{\text {a }}$ Authors' calculations based on ProQuest and NewsLibrary data base searches. See Appendix A for details.

Economic Hypotheses

- Now that we have a measure, we can use it to model newspaper ideology
- Possible drivers
- Consumer ideology
- Owner ideology
- Influence of incumbent politicians

Role of Consumer Ideology

Possible Confounds

- Reverse causality
- Slant is proxying for other newspaper attributes (e.g. emphasis on sports vs. business)
- Slant is proxying for other market attributes (e.g. geography)

Soda vs. Pop

Solutions

- Control carefully for geography when relating slant to other variables
- Incorporate geography into predictive model
- Predict the component of congressperson ideology that is orthogonal to Census division

Broader Lesson

- Can use predictive modeling as an aid to social science
- But
- You get out what you put in
- Consider possible sources of bias and misspecification

Taddy (2013)

- Two main limitations of Gentzkow \& Shapiro (2010)
- Feature selection separate from model estimation
- Linear model doesn't exploit multinomial structure of data

Taddy (2013)

- Let y_{i} be Republican vote share in senator i's state
- Let $x_{i j t}$ be an indicator for senator i says phrase j at occasion t
- Then

$$
\operatorname{Pr}\left(x_{i j}=1\right)=\frac{\exp \left(\alpha_{j}+\beta_{j} y_{i}\right)}{\sum_{j^{\prime}} \exp \left(\alpha_{j^{\prime}}+\beta_{j^{\prime}} y_{i}\right)}
$$

- Estimate via maximum likelihood
- Uses log penalty for regularization
- Uses novel algorithm for maximization
- Penalty imposes sparsity in β_{j} s
- Means we can use a very large number of phrases p
- Can think of this as a way to maximize performance subject to a phrase "budget"

Taddy (2013)

Political Speech

- Note: LDA = latent Dirichlet allocation (stay tuned)

Taddy (2013)

109th Congress Vote-Shares

Sentiment Analysis：Financial News

Overview

- Questions
- What explains time-series/cross-section of equity returns?
- Is there information beyond what is reflected in quantitative fundamentals (e.g. earnings)?

Tetlock (2007)

- Data: counts of words in WSJ "Abreast of the Market" column

Tetlock (2007)

- Features: Counts of words in each of 77 "Harvard-IV General Inquirer" categories
- Weak
- Positive
- Negative
- Active
- Passive
- etc.

Tetlock (2007)

List of entries in tag category:

Weak

List shows first 100 entries. Total number of entries in this category:
755

Entries for this category are shown with all tags assigned and sense definitions:

ABANDON

H4Lvd Negativ Ngtv Weak Fail IAV AffLoss AffTot SUPV
ABANDONMENT

H4 Negativ Weak Fail Noun
ABDICATE
H4 Negativ Weak Submit Passive Finish IAV SUPV

Tetlock (2007)

- Regressors
- Weak words
- Negative words
- First principal component ("pessimism")

Tetlock (2007)

Table II

Predicting Dow Jones Returns Using Negative Sentiment
The table data come from CRSP, NYSE, and the General Inquirer program. This table shows OLS estimates of the coefficient γ_{1} in equation (1). Each coefficient measures the impact of a onestandard deviation increase in negative investor sentiment on returns in basis points (one basis point equals a daily return of 0.01%). The regression is based on 3,709 observations from January 1, 1984, to September 17, 1999. I use Newey and West (1987) standard errors that are robust to heteroskedasticity and autocorrelation up to five lags. Bold denotes significance at the 5% level; italics and bold denotes significance at the 1% level.

	Regressand: Dow Jones Returns		
News Measure	Pessimism	Negative	Weak
$B d N w s_{t-1}$	$-\mathbf{8 . 1}$	$-\mathbf{4 . 4}$	$-\mathbf{6 . 0}$
$B d N w s_{t-2}$	0.4	3.6	2.0
$B d N w s_{t-3}$	0.5	-2.4	-1.2
$B d N w s_{t-4}$	$\mathbf{4 . 7}$	$\mathbf{4 . 4}$	$\mathbf{6 . 3}$
$B d N w s_{t-5}$	1.2	2.9	$\mathbf{3 . 6}$
$\chi^{2}(5)[$ Joint $]$	$\mathbf{2 0 . 0}$	$\mathbf{2 0 . 8}$	$\mathbf{2 6 . 5}$
p-value	0.001	0.001	0.000
Sum of 2 to 5	$\mathbf{6 . 8}$	$\mathbf{9 . 5}$	$\mathbf{1 0 . 7}$
$\chi^{2}(\mathbf{1})[$ Reversal $]$	$\mathbf{4 . 0 5}$	$\mathbf{8 . 3 5}$	$\mathbf{1 0 . 1}$
p-value	0.044	0.004	0.002

Antweiler and Frank (2004)

- Data: Message board contents on Yahoo! Finance and Raging Bull

```
FROM YF
COMP ETYS
MGID 13639
NAME CaptainLihai
LINK 1
DATE 2000/01/25 04:11
SKIP
TITL ETYS will surprise all pt II
SKIP
TEXT ETYS will surprise all when it drops to below 15$ a pop, and even then
TEXT it will be too expensive.
TEXT
TEXT If the DOJ report is real, there will definately be a backlash against
TEXT the stock. Watch your asses. Get out while you can.
FROM YF
COMP IBM
MGID 43653
NAME plainfielder
LINK 1
DATE 2000/03/29 11:39
SKIP
TITL BUY ON DIPS - This is the opportunity
SKIP
TEXT to make $$$ when IBM will be going up again following this profit taking
TEXT bout by Abbey Cohen and her brokerage firm.
TEXT
TEXT IBM shall go up again after today.
```


Antweiler and Frank (2004)

- Count words
- Create training set of 1000 messages hand-coded as buy, sell, hold
- Compute "naive Bayes classification:" posterior guess assuming words are independent

Table I

Naive Bayes Classification Accuracy within Sample and Overall
 Classification Distribution

The first percentage column shows the actual shares of 1,000 hand-coded messages that were classified as buy (B), hold (H), or sell (S). The buy-hold-sell matrix entries show the in-sample prediction accuracy of the classification algorithm with respect to the learned samples, which were classified by the authors (Us).

Classified:		By Algorithm		
by Us	$\%$	Buy	Hold	Sell
Buy	25.2	18.1	7.1	0.0
Hold	69.3	3.4	65.9	0.0
Sell	5.5	0.2	7.2	4.1
1,000 messages $^{\mathrm{a}}$		21.7	78.2	4.1
All messages $^{\mathrm{b}}$		20.0	1.3	

[^0]
Antweiler and Frank (2004)

- Small amount of predictability in returns
- Messages predict volatility
- Disagreement (variable recommendations) predicts volume

Other Examples

- Li (2010): Uses naive Bayes to measure sentiment of forward-looking statements in 10Ks/10Qs
- Hanley and Hoberg (2012): Use cosine distance to measure revisions to IPO prospectuses

Topic Models

Factor Models

- "Unsupervised" methods (factor analysis, PCA) project high-dimensional data into low-dimensional measures, preserving as much variation as possible.

Factor Models

- "Unsupervised" methods (factor analysis, PCA) project high-dimensional data into low-dimensional measures, preserving as much variation as possible.
- E.g.,
- Congressional roll call votes \rightarrow "Common space" scores
- Survey responses \rightarrow "Big 5" personality traits

Factor Models

- "Unsupervised" methods (factor analysis, PCA) project high-dimensional data into low-dimensional measures, preserving as much variation as possible.
- E.g.,
- Congressional roll call votes \rightarrow "Common space" scores
- Survey responses \rightarrow "Big 5" personality traits
- Low dimensional measures are then inputs into subsequent analysis

Factor Models

- "Unsupervised" methods (factor analysis, PCA) project high-dimensional data into low-dimensional measures, preserving as much variation as possible.
- E.g.,
- Congressional roll call votes \rightarrow "Common space" scores
- Survey responses \rightarrow "Big 5" personality traits
- Low dimensional measures are then inputs into subsequent analysis
- E.g.,
- How has polarization in Congress changed over time? (Poole \& Rosenthal 1984)
- How does personality correlate with job performance (Tett et al. 1991)

Topic Models

- Topic models extend these methods to multinomial data such as text
- Relevant to measuring, e.g.,
- What people talk about on social networks
- What products share similar descriptions on Amazon / EBay
- What "stories" are in the news today
- What are economists studying

Purpose

- As with other unsupervised methods, topic models are of most interest to social scientists as an input into subsequent analysis

Purpose

- As with other unsupervised methods, topic models are of most interest to social scientists as an input into subsequent analysis
- E.g.,
- Do discussions of particular topics on Twitter predict stock movements?
- Which products are close substitutes on EBay?
- Is media slant driven by what you talk about or how you talk about it?
- How has the distribution of topics in economics changed over time?

Purpose

- As with other unsupervised methods, topic models are of most interest to social scientists as an input into subsequent analysis
- E.g.,
- Do discussions of particular topics on Twitter predict stock movements?
- Which products are close substitutes on EBay?
- Is media slant driven by what you talk about or how you talk about it?
- How has the distribution of topics in economics changed over time?
- A fair critique of topic modeling literature is that it hasn't progressed much beyond the measurement stage

Topic Models: Blei \& Lafferty (2006)

Input

- OCR text of Science 1880-2002 (from JSTOR)
- Count words used 25 or more times (after stemming and removing stopwords)
- Vocabulary: 15, 955 words
- Total documents: 30,000 articles

Output

$\boxed{11}$	$\boxed{2}$	$\boxed{3}$	$\boxed{4}$
human	evolution	disease	computer
genome	evolutionary	host	models dna genetic
species	bacteria	information	
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Output

"Theoretical Physics"

"Neuroscience"

Model: LDA

- Latent Dirichlet Allocation (LDA) introduced by Blei et al. (2003) as an extension of factor models to discrete data

Model: LDA

- Setup
- Documents $i \in\{1, \ldots, n\}$
- Words $j \in\{1, \ldots, p\}$
- Data \mathbf{x}_{i} is $(1 \times p)$ vector of word counts for document i

Model: LDA

- Setup
- Documents $i \in\{1, \ldots, n\}$
- Words $j \in\{1, \ldots, p\}$
- Data \mathbf{x}_{i} is $(1 \times p)$ vector of word counts for document i
- Factor model
- $\theta_{i k}$ is value of k-th factor for document i
- $\boldsymbol{\beta}_{\boldsymbol{k}}$ is $(1 \times p)$ vector of loadings for factor k

$$
E\left(\mathbf{x}_{i}\right)=\boldsymbol{\beta}_{1} \theta_{i 1}+\ldots \boldsymbol{\beta}_{K} \theta_{i K}
$$

Model: LDA

- Setup
- Documents $i \in\{1, \ldots, n\}$
- Words $j \in\{1, \ldots, p\}$
- Data \mathbf{x}_{i} is $(1 \times p)$ vector of word counts for document i
- Factor model
- $\theta_{i k}$ is value of k-th factor for document i
- $\boldsymbol{\beta}_{\boldsymbol{k}}$ is $(1 \times p)$ vector of loadings for factor k

$$
E\left(\mathbf{x}_{i}\right)=\boldsymbol{\beta}_{1} \theta_{i 1}+\ldots \boldsymbol{\beta}_{K} \theta_{i K}
$$

- LDA
- $\theta_{i k}$ is weight on k-th topic for document i
- $\boldsymbol{\beta}_{\boldsymbol{k}}$ is $(1 \times p)$ vector of word probabilities for topic k

$$
\mathbf{x}_{i} \sim \operatorname{Multinomial}\left(\boldsymbol{\beta}_{1} \theta_{i 1}+\ldots \boldsymbol{\beta}_{K} \theta_{i K}\right)
$$

Model: LDA

Seeking Life's Bare (Genetic) Necessities

COld Spring Harbor, New YorkHow many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the hasic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job-but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

[^1]"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

Stripping down. Computer analysis yields an estimate of the minimum modern and ancient genomes.

Model: LDA

Seeking Life's Bare (Genetic) Necessities

Model: LDA

- For each document $i . .$.
- Draw topic proportions θ_{i} from Dirichlet distribution with parameter α
- For each word j...
- Draw a topic assignment $k \sim \operatorname{Multinomial}\left(\theta_{i}\right)$
- Draw word $x_{i j} \sim$ Multinomial $\left(\beta_{k}\right)$

Model: Dynamic

- One limitation of LDA is it assumes documents are exchangeable; in many settings of interest, topics evolve systematically over time

Model: Dynamic

"Instantaneous Photography" (1890)

"Infrared Reflectance in Leaf-Sitting Neotropical Frogs" (1977)

Model: Dynamic

- Divide text into sequential slices (e.g., by year)
- Assume each slice's documents drawn from LDA model
- Allow word distribution within topics β and distribution over topics α to evolve via markov process

Estimation

- Bayesian inference intractable using standard methods (e.g., Gibbs sampling)
- Blei (2006) \rightarrow variational inference
- Taddy R package \rightarrow MAP estimation
- Current favorite \rightarrow Stochastic gradient descent
- Main estimates are for 20 topic model

Results: LDA

1	2	2	4
human	2 evolution genome evolutionary dna	disease host	computer models
genetic	organisms	bacteria	diseases
genes	life	resistance	data
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Results: Dynamic

"Theoretical Physics"

"Neuroscience"

Results: Dynamic

$\mathbf{1 8 8 0}$ electric machine power engine steam two machines iron battery wire		1890 electric power company steam electrical machine two system motor engine	\rightarrow	1900 apparatus steam power engine engineering water construction engineer room feet		$\mathbf{1 9 1 0}$ air water engineering apparatus room laboratory engineer made gas tube		1920 apparatus tube air pressure water glass gas made laboratory mercury		1930 tube apparatus glass air mercury laboratory pressure made gas small		1940 air tube apparatus glass laboratory rubber pressure small mercury gas

Results: Dynamic

The Brain of the Orang (1880)

Results: Dynamic

Representation of the Visual Field on the Medial Wall of Occipital-Parietal Cortex in the Owl Monkey (1976)

Topic Models: Quinn et al. (2010)

Input

- Full text of speeches in US Senate 1995-2004
- Count words appearing in 0.5% or more of speeches (after stemming)
- Vocabulary: 3,807 words
- Total documents: 118,065 speeches

Model

- Like Blei \& Lafferty (2006), except
(1) Each document is in exactly one topic
(2) Dynamic distribution of topics, but topics themselves are static

Model

- Blei \& Lafferty (2006)
- $\mathbf{x}_{\boldsymbol{i}} \sim \operatorname{Multinomial}\left(\boldsymbol{\beta}_{1} \theta_{i 1}+\ldots \boldsymbol{\beta}_{K} \theta_{i K}\right)$
- $\boldsymbol{\theta}_{\boldsymbol{i}} \sim F(\alpha)$
- β and α both evolve over time
- Quinn et al. (2010)
- $\mathbf{x}_{\boldsymbol{i}} \sim$ Multinomial $\left(\beta_{k(i)}\right)$
- $\operatorname{Pr}(k(i)=j)=\alpha_{j}$
- α evolves over time; β constant

Estimation

- Estimate using ECM algorithm
- Main estimates are for 42 topic model (chosen based on "substantive and conceptual" criteria)

Table 3 Topic Keywords for 42-Topic Model

Topic (Short Label)

Keys

1. Judicial Nominations
2. Constitutional
3. Campaign Finance
4. Abortion
5. Crime 1 [Violent]
6. Child Protection
7. Health 1 [Medical]
8. Social Welfare
9. Education
10. Military 1 [Manpower]
11. Military 2 [Infrastructure]
12. Intelligence
13. Crime 2 [Federal]
14. Environment 1 [Public Lands]
15. Commercial Infrastructure
16. Banking / Finance
17. Labor 1 [Workers]
nomine, confirm, nomin, circuit, hear, court, judg, judici, case, vacanc case, court, attornei, supreme, justic, nomin, judg, m, decis, constitut campaign, candid, elect, monei, contribut, polit, soft, ad, parti, limit procedur, abort, babi, thi, life, doctor, human, ban, decis, or enforc, act, crime, gun, law, victim, violenc, abus, prevent, juvenil gun, tobacco, smoke, kid, show, firearm, crime, kill, law, school diseas, cancer, research, health, prevent, patient, treatment, devic, food care, health, act, home, hospit, support, children, educ, student, nurs school, teacher, educ, student, children, test, local, learn, district, class veteran, va, forc, militari, care, reserv, serv, men, guard, member appropri, defens, forc, report, request, confer, guard, depart, fund, project intellig, homeland, commiss, depart, agenc, director, secur, base, defens act, inform, enforc, record, law, court, section, crimin, internet, investig land, water, park, act, river, natur, wildlif, area, conserv, forest small, busi, act, highwai, transport, internet, loan, credit, local, capit bankruptci, bank, credit, case, ir, compani, file, card, financi, lawyer worker, social, retir, benefit, plan, act, employ, pension, small, employe

Defense [Use of Force]

Conclusion

Conclusion

- Today
- Prediction with high-dimensional data
- Applications
- Tomorrow
- Estimating treatment effects with high-dimensional data
- Application

[^0]: ${ }^{\text {a }}$ These are the 1,000 messages contained in the training data set.
 ${ }^{\mathrm{b}}$ This line provides summary statistics for the out-of-sample classification of all $1,559,621$ messages.

[^1]: * Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12 .

