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Abstract: The conventional wisdom in health economics is that large differences in average 
productivity across hospitals are the result of idiosyncratic, institutional features of the healthcare 
sector which dull the role of market forces that exists in other sectors. Strikingly, however, 
productivity dispersion across hospitals is, if anything, smaller than in narrowly defined 
manufacturing industries such as concrete.  While this fact admits multiple interpretations, we 
also find evidence against the conventional wisdom that the healthcare sector does not operate 
like an industry subject to standard market forces. In particular, we find that more productive 
hospitals have higher market shares at a point in time and are more likely to expand over time.  
For example, a 10 percent increase in hospital productivity today is associated with about 4 
percent more patients in 5 years. Taken together, these facts suggest that the healthcare may have 
more in common with “traditional” sectors than is often assumed. 
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1. Introduction 

A central observation about the U.S. healthcare sector is the existence of substantial 

differences in productivity across regions and across hospitals. For example, annual Medicare 

spending per capita ranges from $6,264 to $15,571 across geographic areas (Skinner, Gottlieb, 

and Carmichael 2011), yet health outcomes do not positively covary with these spending 

differentials (e.g. Fisher et al 2003a, 2003b; Baicker and Chandra, 2004; Chandra, Staiger, and 

Skinner, 2010; Skinner 2011). Similar patterns have been documented across hospitals within 

geographic markets (e.g., Yasaitis et al 2009). These facts have in turn generated substantial 

academic interest in understanding the root causes of the underlying productivity dispersion, and 

what can increase productivity at under-performing hospitals (Skinner, Staiger and Fisher, 2006; 

Chandra and Staiger, 2007; Staiger and Skinner, 2009). Outside of academia, these “Dartmouth 

Atlas” facts have attracted consider popular attention (see e.g Gawande’s (2009) New Yorker 

article) and were heavily cited by the Obama administration during the discussions leading up to 

the 2010 Affordable Care Act (see e.g. Pear’s (2009) New York Times article or the Office of 

Management and Budget (2009).  

The conventional wisdom in health economics is that the driving force behind these large 

average productivity differences is various idiosyncratic, institutional features of the healthcare 

sector that effectively reduce competitive pressures on providers. Oft-cited culprits include: 

uninformed consumers who lack knowledge of the quality differences across providers, generous 

health insurance that insulates consumers from the direct financial consequences of their 

healthcare consumption decisions, and public sector reimbursement that provides little incentive 

for productive efficiency by providers. These are widely believed to dull the basic disciplining 
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force of demand-side competition that exists in most other sectors. Echoing and advancing this 

view, Cutler (2010) notes: 

“There are two fundamental barriers to organizational innovation in healthcare. 
The first is the lack of good information on quality. Within a market, it is 
difficult to tell which providers are high quality and which are low quality… 
Difficulty measuring quality also makes expansion of high-quality firms more 
difficult [emphasis added]… The second barrier is the stagnant compensation 
system of public insurance plans.” 
 

In a similar vein, Skinner (2011) states in his overview article on regional variations in 

healthcare: 

“[low productivity producers are]…unlikely to be shaken out by normal 
competitive forces, given the patchwork of providers, consumers and third-party 
payers each of which faces inadequate incentives to improve quality or lower 
costs…”  
 
This “healthcare exceptionalism” view stands in contrast to a large empirical literature 

outside of the healthcare sector that has documented extensively – almost without exception – 

enormous differences in average productivity across producers within narrowly defined 

industries (see Bartelsman and Doms 2000, Syverson 2011 and references therein). For example, 

on average within narrow US manufacturing (4-digit SIC) industries, the 90th productivity 

percentile firm creates twice as much output as the 10th percentile firm, given the same inputs 

(Syverson 2004a).  This dispersion exists both within and across geographic markets (e.g. 

Syverson 2004a,b). 

We estimate that productivity dispersion across hospitals in treating heart attacks is about 

the same order of magnitude as productivity dispersion within narrowly defined manufacturing 

industries. Figure 1 (whose construction we describe in much more detail later in the paper) 

shows, for example, that productivity dispersion across hospitals for heart attack treatment is 

slightly lower than productivity dispersion across ready-mixed concrete plants.  Ready-mixed 
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concrete is, like healthcare, a spatially differentiated good (in that it is produced and consumed 

locally), but one in which the product is less differentiated, insurance does not dampen price 

sensitivity, and prices aren’t set administratively. More generally, looking across 450 different 

narrowly defined (4-digit SIC code) manufacturing industries in the US, average within-industry 

productivity dispersion in manufacturing is quite similar to our estimates across hospitals for 

heart attack treatment (Syverson 2004a). 

This finding is striking and, we believe, surprising. But, it admits multiple possible 

explanations. Productivity dispersion has been shown, both theoretically and empirically, to 

shrink with greater competition within and across industries (e.g. Syverson, 2004a,b, Martin 

2008, Balasubramanian and Sivadasan 2009). However, we would not be comfortable drawing 

any direct inferences about the role of competition in these two very different sectors from 

comparisons of their productivity dispersion.   

Rather, these facts serve as a point of departure that motivates us to re-examine 

productivity and allocation in the healthcare sector using the analytical insights from this broader 

productivity literature. In particular, we draw on a long tradition of theoretical and empirical 

work in manufacturing examining whether higher productivity producers are systematically 

allocated greater market shares; in healthcare, the prevailing wisdom captured by the Cutler 

(2010) and Skinner (2011) quotations above –  is that these re-allocation forces are weak or non-

existent. 

Our findings suggest otherwise. Figures 2a and 2b (again discussed in more detail later in 

the paper) give a qualitative flavor for our results. They show that within a market-year, higher 

productivity hospitals tend to have greater market share (i.e., patients) at a point in time (Figure 

2a) and experience more growth over time (Figure 2b). Quantitatively, we find, for example, that 
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a 10 percent increase in hospital productivity is associated with about a 25 percent higher market 

share at a point in time and 4 percent more growth over the next 5 years. These findings suggest 

that market forces indeed have some self-correcting influence on productivity in health care.  

Similar static and dynamic allocation metrics have been examined in a variety of 

different manufacturing industries. A finding that the market allocates more market share to 

more productive firms at a point in time and over time is a robust characteristic of US 

manufacturing industries (Syverson 2011 provides a recent review) but is noticeable absent from 

manufacturing in less competitive settings such as Central and Eastern European countries at the 

beginning of their transition to a market economy (Bartelsman, Haltiwanger, and Scarpetta 

2009), Chile prior to trade reforms (Pavcnik 2002), or the US steel industry in the 1960s 

(Collard-Wexler and de Loecker 2012).  As a result, these allocation metrics are often interpreted 

as “signposts of competition.”�

As in this previous work in manufacturing, we do not establish a causal link between 

competition and the signs of competition in the data.  It could be that competitive market forces 

re-allocate market share to higher productivity hospitals, or that higher productivity hospitals 

have other features – such as nice lobbies or good managers – which separately increase demand. 

But whatever the driving force behind them, some force or forces in the healthcare sector lead it 

to evolve in a manner favorable to higher productivity producers. This finding puts US 

healthcare on a very different part of the map than, say, Romanian or Slovenian manufacturing in 

the early 1990s, where there appears to have been little (or even negative) correlation between a 

firm’s productivity and its market share (Bartelsman et al, 2009). The results are particularly 

noteworthy given the context of heart attack treatments, where the acute nature of the condition 

might be expected to generate a smaller role for market forces in allocating patients to the more 
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productive hospitals than for less time-sensitive conditions such as cancer treatment, the 

management of chronic conditions, or elective procedures. 

Taken together our results suggest that healthcare may have more in common with 

“traditional” sectors than is commonly recognized in popular discussion and academic research. 

Continued efforts to uncover what may improve productivity in the US healthcare sector may 

therefore benefit from greater attention to the theoretical and empirical insights from the 

manufacturing productivity literature.  Naturally, the converse applies as well. 

The rest of the paper proceeds as follows. Section 2 describes the analytical framework. 

Section 3 discusses our estimation of hospital productivity; this is the key empirical input to all 

our analyses. Section 4 presents our main results on hospital productivity and resource 

allocation. Section 5 discusses some questions of interpretation, including possible mechanisms 

behind the findings and various gauges of their magnitude. Section 6 shows that our main 

findings are robust to a variety of alternative specifications. A concluding section follows. 

2. Analytical approach: static and dynamic allocation 

Our primary empirical exercise examines the correlation between producer (i.e. hospital) 

productivity and market share at a point in time, and the correlation between producer 

productivity and growth in market share over time. These relationships have been examined in a 

variety of different industries and countries as a proxy for the role of competition in these 

settings (e.g., Olley and Pakes 1996; Pavcnik 2002; Escribano and Guasch 2005; Bartelsman, 

Haltiwanger, and Scarpetta 2009; Collard-Wexler and De Loecker 2012). Intuitively, 

competitive forces exert pressure on low productivity firms, causing them to either become more 

efficient, shrink, or exit.  
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Models of such reallocation mechanisms among heterogeneous-productivity producers 

have found applications in a number of fields, including industrial organization, trade, and 

macroeconomics.1  While these models differ considerably in their specifics, they share a 

common intuition: greater competition – as reflected in greater consumer willingness or ability to 

substitute to alternate producers – makes it more difficult for higher-cost (lower-productivity) 

firms to earn positive profits, since demand is more responsive to their cost and price differential 

relative to other firms in the industry. As substitutability increases, purchases are reallocated to 

more productive firms, raising the correlation between productivity and market share at a point 

in time (“static allocation”) and causing more productive firms to experience higher growth over 

time (“dynamic allocation”).  Appendix A describes this archetypical mechanism slightly more 

formally.  

For the static allocation analysis, we will use the following regression framework:  

log 𝑁!,! = 𝛽! + 𝛽!𝑎!,! + 𝛾!" + 𝜀!!                                     (1) 

where 𝑁!! is a measure of the market size of hospital h in year t, 𝛾!"   are market-year fixed 

effects, and 𝑎!! is our estimate of logged TFP of hospital h in year t; we discuss in detail below 

how we estimate 𝑎!! . Thus β1 reflects the static relationship between a hospital’s log TFP and its 

market share, within a hospital market-year.  If it is positive, as has been found in many U.S. 

industries (e.g., Olley and Pakes 1996; Hortaçsu and Syverson 2007; Bartelsman, Haltiwanger 

and Scarpetta 2009), it indicates that higher productivity producers have a greater share of 

activity.  If β1 is zero or negative, as has been found for example in some former Soviet-bloc 

countries in the early 1990s (Bartelsman, Haltiwanger and Scarpetta 2009), in Chile prior to 

trade reforms (Pavcnik 2002), and in the U.S. Steel industry circa 1960-70 (Collard-Wexler and 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
1 See, for example, Ericson and Pakes (1995), Melitz (2003), and Asplund and Nocke (2006). 
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De Loecker 2012), it indicates that less productive industry producers are the same size or larger 

than their high productivity counterparts and suggests that forces beyond standard competition 

are driving the allocation of market activity. 

The static allocation analysis in equation (1) can reflect the market’s ability to reallocate 

activity from less productive hospitals to more productive ones. But it shows the outcome of this 

process rather than the process itself.  To measure the actual dynamics of the market’s selection 

and reallocation mechanisms, we employ two additional metrics. 

Our first dynamic allocation metric examines the relationship between hospital TFP and 

its probability of closing. We will estimate: 

𝐼 𝑒𝑥𝑖𝑡!,!!! = 𝛽! + 𝛽!𝑎!,! + 𝛾!" + 𝜀!!                                         (2) 

where I[exith,t+1] is an indicator equal to one if hospital h exits at time t+1, and the right hand 

side variables are defined as in equation (1). Thus β1 reflects the relationship between a 

hospital’s TFP and its probability of exit, controlling for any changes in aggregate exit 

probabilities across market-years. A negative relationship between TFP and hospital exit is one 

of the most robust findings in the productivity literature (See Bartelsman and Doms 2000 and 

Syverson 2011 for surveys). It is indicative of a Darwinian selection process at work: less 

productive producers find it more difficult to survive.   

Our second dynamic measure is the relationship between hospital TFP and future hospital 

growth.  We will estimate: 

∆!,!,!!!= 𝛽! + 𝛽!𝑎!,! + 𝛾!" + 𝜀!!                                             (3) 

where Δh,t,t+1 is a measure of the hospital’s growth rate (in terms of number of heart attack 

patients treated) between year t and t+1. A positive correlation between TFP and growth 

indicates that more productive hospitals see larger gains in patient traffic, and points to the 
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operation of a selection and reallocation process. While not as robust as the negative TFP-exit 

relationship, there is widespread evidence in developed country manufacturing and retail that 

higher TFP producers experience growth in market shares (e.g, Scarpetta, Hemmings, Tressel, 

and Woo 2002; Disney, Haskel, and Heden 2003; Foster, Haltiwanger, and Krizan 2006).  

Regression equations (1) through (3) form the heart of our empirical analysis. They 

describe the associations between a hospital’s productivity and market share and indicate 

whether forces exist that are favorable to the expansion of higher productivity producers. 

Although motivated by models in which competitive forces create these re-allocation pressures, 

the correlations are naturally not causal evidence of the impact of competition in the healthcare 

sector.  After presenting our results, we discuss possible uses and interpretations in light of other 

forces that may mimic the effects of competition. 

 

3. Estimation of the hospital production function. 

The key empirical input for estimation of our analytical equations (1) through (3) is a 

measure of a producer’s (i.e. hospital’s) total factor productivity, or TFP. We estimate hospital 

TFP in the specific context of hospital treatment of heart attacks, analyzing the treatment and 

outcomes of about 3.5 million heart attack patients from 1993 through 2007.  TFP is the amount 

of output a supplier can produce per unit input. In our setting, variation in TFP across hospitals 

reflects differences in patient survival (output) conditional on treatments (inputs) the patient 

receives.  We describe the data and approach we use to estimate hospital TFP, and discuss key 

estimation challenges.  

3.1 Setting: Heart Attack Treatments in US Hospitals 
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For a number of reasons, heart attacks present an excellent setting for studying hospital 

productivity. First, cardiovascular disease, of which heart attacks (AMIs) are the primary 

manifestation, is the leading cause of death in the United States.  Second, the high post-AMI 

mortality (survival rates at one year are less than 70 percent in our Medicare population) 

provides an accurately measured outcome with a great deal of variation across hospitals.  There 

is broad agreement that for AMIs, survival is the most important endpoint both clinically and in 

terms of patient preferences, and therefore a key measure of output, particularly in an elderly 

population.2 Third, the emergency nature of heart attacks provides a setting in which the sorting 

of patients across providers is likely to be more limited than in many other healthcare settings, 

reducing empirical concerns arising from patients selecting into hospitals on the basis of their 

underlying health. At the same time, the reduced scope for sorting also makes the null hypothesis 

that higher productivity hospitals do not attract greater market share a particularly plausible one 

in this context. Finally, inputs are well measured and there exist rich data on the relevant health 

characteristics of the patients (called risk-adjusters) which can be used in the estimation. Not 

surprisingly, therefore, heart attacks have been the subject of considerable study in the medical 

and economics literature on the value of medical technology and the returns to medical spending 

(e.g. Cutler, McClellan, Newhouse and Remler, 1998; Cutler and McClellan, 2001; Skinner, 

Staiger and Fisher, 2006; Chandra and Staiger, 2007). 

3.2 The Hospital Production Function for AMI Patients 

We posit a patient-level health production function of the following form: 

𝑦! = 𝐴!! 𝑅!,!
!!

! 𝑥!
!𝑒!!,                                                 (4) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
2 Clinical trials for heart-attack therapies compare treatments by focusing on survival as the key outcome (see for 
example, Anderson et al., 2003), but this is not true for trials of treatments for more elective coronary conditions 
such as stable coronary disease where quality of life concerns make it difficult to measure output. A review of over 
twenty-three trials for heart-attack treatments is provided by Keeley, Boura and Grines (2003). 
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where 𝑦! is the number of post-AMI survival days of patient p treated at hospital h in year t, and 

xp is a measure of hospital inputs used to treat this patient. All production functions relate outputs 

to inputs; our particular function uses patient survival days as a measure of output and a single 

index of (dollar-weighted) resources spent on the patient as inputs.3 Because patients are 

inherently heterogeneous, survival may also depend on characteristics of the patient, which could 

potentially also be correlated with input choices. In addition, the marginal effect of inputs on 

survival may vary with patient characteristics. To capture both of these effects, we follow the 

literature and adjust inputs for a vector of observable patient-level risk factors, Rp,k, where k 

indexes the factors.  The parameters αk capture the influence of these risk factors on health.  Thus 

the expression in the parentheses reflects risk-adjusted inputs on the patient. The parameter µ is 

the elasticity of survival days with respect to risk-adjusted inputs.  Finally, the expression 𝑒!! is 

a patient-level error term that accounts for random variations in health outcomes.  

The key input into all of our analyses described in Section 2 is Aht.  Aht measures the total 

factor productivity (TFP) of hospital h in year t. It is common across all (risk-adjusted) patients 

in that hospital in that year.4  Holding risk-adjusted inputs constant, differences in Aht across 

hospitals produces systematic differences in survival length.  

The hospital production function model in (4) allows variation across providers in the 

marginal health product of inputs (i.e. 𝐴!!𝜇 varies across hospital-years) but constrains them to 

have the same elasticity of output with respect to input (i.e. 𝜇 is common across hospitals).  Our 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
3 � This sort of single-input production function is unusual but convenient; one could reasonably interpret the single 
input as an index of the use of multiple inputs that go into producing health. If, conditional on a total spending level, 
the hospital chooses this input mix optimally, there is no loss from collapsing these inputs to a single (dollar-
weighted) index. In Appendix C we show the results are robust to the use of a multi-input production function 
instead. �
4 We allow hospital productivity to vary across years because it allows us to capture intertemporal variation in 
hospitals’ efficiencies and because it is consistent with standard practice in the broader productivity literature 
outside the healthcare sector.   
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empirical specification therefore allows for the possibility that the “marginal return to inputs” 

curve to vary across hospitals, as suggested by Chandra and Staiger (2007) and Garber and 

Skinner (2008). Figure 3 provides a stylized illustration of our production function specification. 

Taking logs, we have our main estimating equation for the hospital production function: 

 𝑙𝑛 𝑦! = 𝑙𝑛 𝐴!! + 𝜇 𝛼!𝑙𝑛 𝑅!,!! + 𝜇𝑙𝑛 𝑥! + 𝜀!                             (5) 

To estimate equation (5) we regress the log of patient survival days on a vector of risk factors 

Rp,k, the inputs applied to each patient xp, and a set of hospital-year fixed effects. These hospital-

year fixed effects are in turn our log-TFP estimates (aht ≡ ln(Aht)) which we then use as inputs to 

estimate our main analytical equations (1) through (3).   

3.3 Data and Measurement of Key Variables 

Our primary dataset consists of all Medicare Part A (i.e. inpatient hospital) claims for all 

heart attacks (AMI) in individuals age 65 and over in the United States from 1993 through 2007. 

We limit the sample to AMIs in patients who have not had an admission for an AMI in the prior 

year. We have information on mortality through 2008, so we can observe at least one year of 

post-AMI survival. In order to have enough data to estimate annual hospital productivity, we 

eliminate any hospital-year with fewer than 5 heart attack patients that year. This restriction 

eliminates less than 1 percent of patients, but about 10 percent of hospital-years and 6 percent of 

hospitals; naturally the dropped hospitals are disproportionately small. 

Table 1 presents some basic summary statistics for patients, hospitals, and markets in our 

sample; we will reference them as we discuss the various components of our estimation approach 

below. Our final sample consists of about 3.5 million heart attacks in 55,540 hospital-years and 

5,346 unique hospitals. The average hospital-year has about 65 patients, but the median hospital-

year has only 39 patients. We follow the literature in defining a hospital market (M) for an AMI 
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as a Hospital Referral Region (HRR) (see e.g. Chandra and Staiger 2007).5 Our sample includes 

304 HRRs, and on average they have about 12 hospitals in them. The Medicare claims data also 

include information on patient demographics (age, race and sex) and detailed information on co-

morbidities (i.e. admissions for other conditions) during the prior year. We use this information 

as a basis of our risk factors Rp,k. 

Our baseline output (survival) measure (𝑦!) is the number of days that the patient 

survives after receiving initial treatment, up through the first year. Survival includes the first day 

of treatment itself, so 𝑦! is bounded from below at 1 and above at 367 days. As shown in Table 

1, average survival through 1 year, censoring anyone who survives more than 1 year at 367 days 

of survival, is 268 days; about two-thirds of our sample survives past one year. We show below 

that our core results are robust to alternative time horizons for measuring output (i.e. 30 day or 5 

year survival windows).  

Our baseline input measure defines hospital factor inputs for a patient as the (dollar-

converted) sum of diagnostic-related group (or DRG) weights during the first 30 days following 

a heart attack. These DRG weights reflect the Centers for Medicare and Medicaid Services’ 

(CMS’s) assessment of the resources necessary to treat a patient as a function of the patient’s 

comorbidities and procedures received. This approach is standard in the literature and ensures 

that we measure real services rendered to patients, purged of reimbursement (price) variation 

across geographic areas or hospitals (see e.g. Skinner and Staiger 2009, Gottlieb et al 2010). 

Appendix B gives a detailed description of our baseline input measure and the sources of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
5 The Dartmouth Atlas of Healthcare divides the United States into HRRs which are determined at the zip code level 
through an algorithm that reflects both commuting patterns and the location of major referral hospitals. HRRs may 
cross state and county borders. A complete list of HRRs can be found at http://www.dartmouthatlas.org/. 
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variation that contribute to it.6  About 15 percent of the variation is explained by indicator 

variables for whether the patient received one of two surgical procedures, bypass or stent. 

Table 1 shows that on average about $16,000 worth of hospital inputs are used on one of 

our patients in the 30 days following a heart attack, with a standard deviation of about $12,000. 

As is typical in healthcare, inputs are right skewed; the median is about $12,000 and the 90th 

percentile is nearly $32,000. We show below that our core results are generally robust across a 

wide range of alternative input measures, as well as across alternative time horizons for 

measuring inputs.  

3.4  Estimation challenges 

Estimating productivity in any setting is conceptually straightforward but practically 

involves a number of measurement challenges (Syverson 2011). In addition to the measurement 

of output and inputs discussed above, we describe our approach to handling three other 

challenges to estimating the hospital production function: endogeneity of inputs, differences 

across hospitals in patient characteristics related to survival, and estimation error. 

Endogeneity of inputs  

A general econometric concern that pervades production function estimation is the 

potential endogeneity of inputs. In a typical setting, productivity is the residual in a firm-level 

regression of outputs on inputs; therefore, the coefficient on inputs (𝜇  in  our  setting) may be 

biased by a correlation between input choice and the residual (productivity).   In our setting, 

however, because we observe production at the unit (patient) level, we can include hospital-year 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
6 As described in Appendix B, we make an adjustment to the prior literature’s approach to account for the fact that 
some of CMS’s DRGs are defined partly based on subsequent survival status. We purge our measure of this 
outcome-based variation in input measurement by assigning the relevant patients the average weight across the 
DRGs which distinguish otherwise similar treatments based on survival. We also discuss some of the challenges in 
measuring inputs in other settings (such as the handling of intermediate inputs or different qualities across workers) 
that we avoid here, as well as shared challenges such as the appropriate weighting of different inputs. 
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fixed effects, estimating 𝜇 solely from within-hospital variation in observables. By identifying 

the coefficients on inputs only from variation within hospitals, we control for any tendency for 

hospitals with different productivity to use different amounts of inputs on average. Of course, 

any unobserved inputs that do not vary within the hospital (such as, for example, whether the 

hospital requires its staff to use checklists) will load onto our estimate of hospital productivity. 

This is not a problem per se; as in the productivity literature more broadly, we think of 

productivity as the component of output that cannot be explained by observed inputs.   

However, our estimates will be biased if, within-hospital-year, hospitals choose different 

observable input levels for patients who differ unobservably in their latent survival, or if their 

choice of unobservable inputs is correlated with observed inputs at the patient level. The sign of 

the bias of the estimate of 𝜇 is not obvious. Moreover, our focus is not on estimating µ. Our 

primary concern is what impact any bias in µ will have on our analysis of the relationship 

between estimated productivity and market share, which are the ultimate objects of interest for 

the analysis. We therefore evaluate below the robustness of our main results to imposing, rather 

than estimating, various values for the scale parameter µ. This method amounts to following the 

index number, or Solow residual, approach to measuring productivity in which factor elasticities 

are taken from auxiliary data such as factor cost shares. We are re-assured that our main results 

are quite insensitive to the choice of µ. We discuss below the economic interpretation of this 

insensitivity. 

Differences across hospitals in patient characteristics 

A related issue is the concern of patient selection of hospitals. Even if µ is known and 

imposed based on auxiliary information, if patients at different hospitals differ on average in 

their unobserved survival probabilities, this variation will cause us to mis-estimate hospital 
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productivity. As noted earlier, one of the reasons for the focus on heart attacks in the empirical 

literature is the belief that such patient sorting across hospitals may be less of an issue in an 

emergency setting. Yet the imperfect ability of patients to choose their hospitals cannot eliminate 

the concern entirely; indeed, were there no mechanisms by which patients (or their surrogates) 

actively selected hospitals for AMI treatment, it would be hard to understand any findings that 

suggested that competitive market pressures were operative in this setting. 

Therefore, to try to minimize the impact of any unobserved patient-health differences 

across hospitals, we follow the standard practice in the literature and include various risk 

adjusters (Rp,k) to control for patient factors that are related to health. In particular, our baseline 

specification controls for a full set of interactions between age (in five-year groupings), gender, 

and whether the patient is white, as well as various co-morbidities. Each co-morbidity is included 

as an indicator for whether the patient has been to the hospital for a specific condition in the year 

prior to the AMI admission. Table 1 shows that on average our patients are 78 years old (recall 

our sample is for the Medicare population), about half are female, and about 90 percent are 

white; it also presents the means for the 17 co-morbidities we include in our baseline 

specification.   We show below that our main results are quite insensitive to using fewer risk 

adjustors. 

Estimation error in TFP measures 

In our sample, the median hospital-year has less than 40 patients, and for 20 percent of 

our hospital-years we observe less than 15 patients.  The consequence of a relatively small 

number of patients in some hospital-years, together with the stochastic nature of our outcome 

(survival), means that our key object of interest and input into all of our productivity metrics – 

hospital log TFP aht – may be estimated with error. Such estimation error will cause attenuation 
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bias in our analysis of the relationship between market share and hospital productivity in 

equations (1) through (3). 7 

We therefore apply the standard shrinkage or “smoothing” techniques of the empirical 

Bayes literature (e.g. Morris, 1983) to adjust for estimation error in our estimates of hospital 

productivity.8 Appendix D provides a detailed description of this procedure. The intuition behind 

it is that when a hospital’s productivity is estimated to be far above (below) average, it is likely 

to be suffering from positive (negative) estimation error. Therefore, the expected level of 

productivity, given the estimated productivity, is a convex combination of the estimate and the 

mean of the underlying productivity process. The relative weight that the estimate gets in this 

convex combination varies inversely with the noise of the estimate (which is based on the 

standard error of the hospital-year fixed effect). In practice, as we show in Appendix D, our core 

finding that hospitals with higher estimated productivity get allocated more market share at a 

point in time and over time remains statistically significant without the empirical Bayes 

adjustment, although naturally the magnitude is attenuated. 

3.5 Estimates of the Hospital Production Function 

Table 2 presents our estimates of the “returns to scale” parameter (µ) from estimating 

equation (5). Column 1 presents our baseline estimates, which use our full set of risk-adjusters. 

We estimate a coefficient on log patient inputs (µ) of 0.446 (standard error =  0.005), which 

suggests that every 1 percent increase in inputs per patient is associated with a 0.45 percent 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
7 This small-sample problem is probably much less of an issue in more traditional settings for estimating 
productivity, since the number of units of output produced (the statistical analog of patients in our context) is much 
larger. Increasingly, however, the productivity literature is also trying to adjust for other sources of measurement 
error in output (e.g. Collard-Wexler, 2011, Dobbelaere and Mairesse, 2013). 
8 McClellan and Staiger (1999) introduced this approach into the healthcare literature when estimating quality 
differences across hospitals, and it has since been widely applied in the education literature for estimating and 
analyzing teacher or school value added measures (e.g. Kane and Staiger 2001, Jacob and Lefgren 2007). 
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increase in survival days. A comparison of columns 1 through 3 indicates that our estimate of µ 

increases from 0.45 to 0.59 as we reduce the set of risk adjusters to just age, race and sex 

(column 2) or to nothing (column 3), with the age-race-sex risk adjustment accounting for most 

of the change. Our estimates of µ are roughly in the middle of the (very wide) range of estimates 

that papers in this literature have produced.9  

 The key input into our productivity metrics is not our estimate of µ but rather our 

estimates of log TFP, aht. These objects are the hospital-year fixed effects from equation (5) and 

are the key right hand side variables in our estimating equations (1) through (3). As a validity 

check on whether these estimates are picking up differences in hospital productivity, we verify 

that our measures correlate positively with observable measures of hospital quality. This exercise 

is in the spirit of Bloom and Van Reenen (2007), who perform the reverse validation exercise: 

validating an observable measure of management quality by correlating it with estimates of firm 

level productivity. The quality measures that we use were first collected by the Center for 

Medicare and Medicaid Services (CMS) in 2003; they have been publicly reported by the 

agency’s “hospital compare” website (www.hospitalcompare.hhs.gov) since 2005. They are 

calculated by hospitals and submitted to CMS independently of the data that we use. 

These measures, which CMS refers to as scores, are presented as the fractions of patients 

appropriate for treatments who receive that treatment. We focus on the hospital’s score for beta 

blockers, which are inexpensive drugs that reduce the demands on the heart and are long-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
9 Skinner and Staiger (2009) note that various papers have used different right hand side specifications or sample 
periods to produce estimates of the “return to spending” in a within-hospital linear probability model of one year 
survival on one year inputs; their own estimates range from  -0.015 to 0.122 from regressions of one year survival 
on one year resources. In our data the comparable estimates are 0.072 to 0.100. Within-hospital estimates of the 
return to input use tend to produce a positive relationship between inputs and survival, in contrast to the cross-region 
comparisons that tend to find no or negative association between inputs and health-related outcomes. One 
parsimonious explanation for this difference would be if input use were a substitute for TFP.  
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established as having important benefits for AMI patients after discharge. We also look at a 

combined score that sums across the number of patients who are given each of eight treatments 

and divides by the sum of patients appropriate for each of these treatments.10  All of these 

measures have been studied in the literature and are considered indicative of good quality care 

(e.g. Higashi et al., 2007, Skinner and Staiger 2009, Jha et al. 2005, and cites therein). 

We find that our productivity measures positively covary with these observable quality 

measures. Table 3 reports the results from regressing a z-score of a hospital’s observable 

measures of quality of care for AMI patients on our estimate of the hospital’s log productivity. 

We report results both for the first year the data were available and for the hospital-years 2003-

2007.11 Reassuringly, the results indicate a positive and statistically significant correlation 

between these “external” measures of the quality of AMI care and our estimates of hospital 

productivity; on average, we find that a 10 percent increase in estimated productivity is 

associated with about a 0.12 to 0.19 standard deviation increase in the quality score. 

 

4. Main results: Static and dynamic resource allocation 

Table 4 presents our central results on the static and dynamic allocation of patients across 

hospitals.  In our discussion, we focus on column 1, which presents our baseline estimates based 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
10 The eight measures are 1) given aspirin at arrival, 2) given aspirin at discharge, 3) given ACE inhibitor for left 
ventricular systolic dysfunction (LVSD), 4) given smoking cessation advice/counseling, 5) given beta blockers at 
arrival, 6) given beta blockers at discharge, 7) given fibrinolytic medication within 30 minutes of arrival, and 8) 
given percutaneous coronary intervention (PCI) within 90 minutes of arrival. 
11 In both cases, the estimates of hospital-year log productivity come from our full sample estimates of equation (2). 
We separate the first year of data from later years because it is possible that once the scores were reported and easily 
accessible, hospitals had more of an incentive to improve them (despite no direct financial incentives to improve), 
and therefore their predictive power for other aspects of hospital quality may attenuate. Consistent with this concern, 
the distribution of scores is more compressed in later years than in the first reported year. 
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on the full set of risk adjusters (i.e. the same specification as shown in Table 2, column 1); the 

results are not sensitive to the choice of risk adjustors (columns 2 and 3).  

The first row shows our static allocation analysis based on estimation of equation (1), 

examining the correlation between a hospital-year’s log TFP, aht, and the number of heart attack 

patients it treats, log(𝑁!!).  Because we include market-year (HRR-year) fixed effects, this 

estimate is within market-year, relating a hospital’s market share of heart attack patients to its 

TFP level relative to other hospitals in its market. Our right-hand side measure of aht is the 

estimate of log TFP from estimation of the hospital production function in equation (5). We 

bootstrap the standard errors, clustering at the market level.  

The results show a statistically significant positive relationship between productivity and 

market share, suggesting that within markets, more market share (patients) tends to be allocated 

to more productive hospitals at a point in time. In particular, our baseline estimate suggests that a 

10 percent increase in a hospital’s productivity is associated with about a 25 percent increase in 

market share. 12 A visual presentation of the results is given in Figure 2(a). 

The second row shows our analysis of the TFP-exit relationship based on estimation of 

equation (2), which examines the within market-year relationship between a hospital’s log TFP 

aht  and an indicator variable for whether the hospital “exits” next year. The regression’s right-

hand side and standard errors are calculated as in the static allocation analysis. We define the 

dependent variable I[exith,t+1] equal to one if hospital h has less than 5 heart attack patients in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
12 Our sample is limited to hospital-years with at least 5 patients, raising potential concerns about selection on the 
dependent variable in the static analysis. (This is not a concern for the subsequent dynamic analysis). We explored 
the sensitivity of our static allocation results to an alternative, Tobit-style truncated regression and found that the 
static allocation results were slightly strengthened by this adjustment.  
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each year from year t+1 to t+5.13 We measure exit as the lack of more than 5 patients in each of 

five subsequent years to try to ensure that we’ve captured a “permanent” reduction in volume, as 

opposed to measurement error stemming from idiosyncratic fluctuations in the number of 

patients that a hospital receives. 

We find a statistically significant negative relationship between hospital productivity and 

subsequent exit. The baseline results suggest that a 10 percent increase in hospital productivity 

within a market-year is associated with a statistically significant decline in the probability of exit 

next year of about 0.3 percentage points (about an 8 percent decline relative to the baseline exit 

rate of 4.4 percent). 

The bottom row of Table 4 shows our analysis of the TFP-growth relationship based on 

estimation of equation (3), which examines the within market-year relationship between a 

hospital’s log TFP (aht) and its subsequent one-year growth.  The right-hand side and standard 

errors are calculated as in the prior analyses. For our left-hand-side measure of the hospital’s 

one-year growth rate Δh,t,t+1  we define 

∆!,!,!!!=
𝑁!,!!! − 𝑁!,!

1
2 𝑁!,!!! + 𝑁!,!

 

where 𝑁!,! is one again the number of heart attack patients treated by hospital h in year t. Our 

measure of the hospital’s one-year growth rate thus divides the change in the number of patients 

between this year and next year by the average number of patients across these two years.14 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
13 There are a non-trivial number of hospital mergers over our time period. If hospital A merges with hospital B and 
physically shuts down, hospital A is coded as having 0 patients in subsequent years. If however, hospital A and B 
both continue to exist physically and admit their own patients (e.g. Beth Israel and Deaconess), they continue to be 
coded as separate hospitals with each still assigned the AMI patients whom they admit. 
14 This monotonic transformation of the standard percentage growth rate metric bounds growth between -2 (exit) and 
+2 (growth from an initial level of 0). An attraction of this transformation is that it reduces the chance that the 
results are skewed by a few fast-growing but initially small hospitals that would have very large percentage growth 
�
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Once again, the estimates are statistically significantly different from zero. The baseline 

results suggest that a 10 percent increase in hospital productivity within a market-year is 

associated with over a 1 percent increase in the number of patients the hospital treats in the next 

year.15 Figure 2b gives a visual presentation of this relationship between hospital productivity 

and growth. 

 

5. Interpretation and Discussion 

5.1 Mechanisms 

The above findings indicate that more productive hospitals have statistically significantly 

higher market share at a point in time, and are more likely to increase that market share over 

time.  These findings contrast with the conventional wisdom – summarized in the introductory 

quotations – that there is little in the healthcare sector to encourage the growth of higher 

productivity providers or weed out lower productivity ones. And they place US healthcare, at 

least qualitatively, in the same part of the spectrum as US manufacturing, and distinct from many 

less competitive manufacturing settings where these relationships have been found to not exist or 

even to have the opposite sign. 

What mechanisms might act to allocate more patients to higher productivity hospitals in 

an emergency setting like heart attacks? A definitive answer is beyond the scope of this paper. 

However, we present some suggestive, initial evidence by examining whether the positive 

relationship between productivity and market share is primarily driven by a positive output-

market share relationship or a negative input-market share relationship.  Figures 4a and 4b show 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
rates. This growth rate transformation has been used in other contexts to avoid unnecessary skewness in the growth 
rate measure; see, for example, Davis, Haltiwanger, and Schuh (1996). 
15 Table 4 reports negative average annual growth; this is primarily due to the fact that our measure conditions on 
the hospital initially being in the market. �
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the within market-year correlation between, respectively, risk-adjusted survival and market share 

(conditional on risk adjusted inputs) and risk-adjusted inputs and market share (conditional on 

risk adjusted survival).16 The results suggest that the productivity-market share relationship is 

primarily driven by the relationship between risk-adjusted survival and market share. The 

correlation between risk-adjusted survival and market share (Figure 4a) is virtually the same as 

that between risk-adjusted productivity and market share in Figure 2a.  The correlation between 

risk-adjusted inputs and market share (Figure 4b) is less than half the size.  In other words, 

patients and their surrogates appear to seek out hospitals that achieve higher (risk-adjusted) 

survival (conditional on risk adjusted inputs) rather than ones that use fewer (risk-adjusted) 

inputs (conditional on risk-adjusted survival). In practice, we find that risk adjusted survival and 

risk adjusted productivity are extremely highly correlated; consistent with this, as can be seen 

from Figures 4a and 4b, the residual variation in risk-adjusted inputs (conditional on risk-

adjusted survival) is much smaller than the residual variation in risk-adjusted survival 

(conditional on risk adjusted inputs).  

It is not immediately obvious how patients know which hospitals offer longer survival. 

This ambiguity is not unique to our study. Indeed, a long-standing question in the field – dating 

back at least to Arrow (1963) – is how patients can acquire information on provider quality.  One 

possibility is some form of market-learning; hospitals acquire a reputation for good outcomes 

and this reputation spreads through physicians’ professional networks and patients’ social 

networks and influences patients, family members, physicians, and ambulance drivers to request 

treatment at  hospitals that are better at producing survival.  In a related setting, Johnson (2011) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
16 As with our productivity estimates, we use an Empirical Bayes correction to adjust our estimates of risk-adjusted 
survival and of risk-adjusted inputs for measurement error; our procedure accounts for the correlation in 
measurement error between these two objects.  
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finds that cardiac specialists who have higher risk-adjusted survival rates for their patients are 

less likely to stop practicing; she interprets this and related evidence as consistent with a model 

of market learning by the referring physician. 

Alternatively, the correlation between productivity and market share could reflect omitted 

factors that independently drive demand and correlate with productivity. For example, higher 

productivity hospitals might also have nicer lobbies, which in turn influence hospital demand, or 

better managers might improve both the production process and separately increase demand for 

the hospital.   

For many economic and policy questions, the mechanism by which market share is 

allocated to higher productivity firms is quite important. In our setting as well as in the prior 

work in manufacturing, more work is needed to establish to what extent the observed signs of 

competition are the direct result of competition or the result of other factors that are correlated 

with both productivity and demand.   

5.2 Magnitudes 

But the exact mechanism is less important for forecasting whether and to what extent the 

market is evolving in a manner that favors higher productivity firms.  Here, the quantitative 

importance of the productivity-market share relationships we estimate becomes important. In the 

remainder of this section, we provide a variety of ways to shed some light on these magnitudes. 

To begin, we investigate how a hospital’s productivity correlates with its within-market 

growth and exit over longer horizons than the one-year horizon examined in Table 4. 

Specifically, we re-estimate equations (2) and (3) replacing the dependent variables I[exith,t+1] 

and Δh,t,t+1 with I[exith,t+k] and Δh,t,t+k, respectively. 
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Table 5 shows the results. The first row shows results one year out (i.e. the results from 

Table 4, where k=1), and the subsequent rows show results up to 10 years out (k=10).  The 

relationship between productivity and growth or exit strengthens (in absolute value) over time. 

For example, a 10% increase in hospital productivity is associated with about 1 percent more 

patients next year, 4 percent more patients in 5 years, and almost 6 percent more patients in ten 

years.17 

Another way to provide a sense of magnitude is to report the results in terms of the 

market re-allocation associated with a standard deviation change of productivity. Table 6 reports 

our estimates of the standard deviation of productivity dispersion, as well as several other 

dispersion measures. Appendix D provides more details on how these statistics were computed.  

The results are quantitatively stable across alternative sets of risk adjustors.   

Our baseline estimate of the national standard deviation of hospital log productivity is 

0.17.  Thus a hospital that has one standard deviation higher log productivity has about 40 

percent higher market share at a point in time, and grows about 6 percent more over the next five 

years. On the other hand, variation in hospital productivity accounts for little of the variation in 

market share. We estimate a partial R2 on log productivity in the static allocation regression (1) 

of about 5 percent, and in the growth regression (3) of about 0.06 percent. 

Another way to provide a sense of the magnitudes of these relationships is by comparing 

them to those in other industries. We therefore produced estimates of the static and dynamic 

allocation analyses for the ready-mixed concrete sector, a physically homogenous product. 

Details on the data, estimation and results can be found in Appendix E. Like healthcare, concrete 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
17 Because our data on growth and exit ends in 2007, as k rises, a smaller sample of hospital-years is available for 
these analyses. We verified that the findings that these relationships strengthen over time also holds (with quite 
similar magnitudes) if we restrict our sample to productivity estimates for hospital-years prior to 1998 (not shown). 
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is consumed and produced locally, so that spatial differentiation (i.e. physical distance) can be an 

important barrier to competition. Otherwise, however, concrete lacks many of the features 

deemed to be important impediments to competition in healthcare; prices are not set 

administratively, consumers are likely well informed about their choices, and they bear the 

financial consequences of their decisions.  

Across all of our static and dynamic allocation measures, the results indicate a stronger 

(often an order of magnitude larger) relationship between producer productivity and market 

allocation for hospitals than for concrete plants.   Likewise, Figure 1 showed that national 

productivity dispersion appears larger for concrete than for hospitals; we estimate a standard 

deviation of 0.25 in concrete, compared to 0.17 for hospitals.18   

This comparative finding is not limited to concrete. Productivity dispersion in other U.S. 

manufacturing industries also tends to be similar to (indeed, somewhat smaller than) our 

estimates for healthcare. 19 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
18 We follow the tradition of the existing productivity literature and compute productivity dispersion metrics at a 
nationwide (within-year) level, even though the market for treating heart attacks is (like many of the manufacturing 
industries studied) plainly local. This standard practice arose in part because manufacturing industries, the focus of 
the previous literature, are often geographically broad.  But the literature has also typically reported nationwide 
numbers even for those industries that are more locally oriented, such as ready-mix concrete (Syverson 2004b), in 
part because geographic differentiation is itself one of the possible causes of productivity dispersion within an 
industry.  In practice, we find within-market year dispersion to be only slightly lower (standard deviation about 
0.16) than our national dispersion estimate. Put another way, we estimate that about 88 percent of the within-year 
variation in hospital productivity is within (rather than across) markets. For concrete, we estimate that about 70 
percent of the variation in productivity is within market. 
19� Compared to our estimate of a standard deviation of hospital productivity of 0.17, Foster, Haltiwanger and 
Syverson (2008) estimate an average within-industry standard deviation of productivity of 0.22 across a dozen 
manufacturing industries in the US selected for having physically homogeneous products (e.g. white pan bread, 
block ice, raw sugar cane, etc.), and Bartelsman, Haltiwanger and Scarpetta (2009) estimate an average within-
industry standard deviation of or the average estimate of 0.38 across a broader range of manufacturing industries. 
Across 450 different narrowly defined (4-digit SIC code) US manufacturing industries, Syverson (2004a) estimates 
an average within-industry interquartile range of logged plant productivity of 0.29, compared to our estimate in 
Table 6 of 0.23 for hospitals.  Although most of the work in productivity dispersion has focused on the 
manufacturing sector, the more limited work on productivity dispersion in service industries suggests that in general 
it is roughly similar to that found in manufacturing. For example, Fox and Smeets (2011) estimate productivity 
dispersion in four Danish service industries and four Danish manufacturing industries and find generally comparable 
estimates. Similarly, looking at 4-digit retail industries, Foster, Haltiwanger and Krizan (2006) estimate an average 
�
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We are not the first to perform such cross-industry comparisons in productivity 

dispersion. For example, looking across narrowly defined manufacturing industries, Syverson 

(2004a) finds that the extent of within-industry productivity dispersion is negatively correlated 

with proxies for the amount of substitutability or competition across firms within that industry. 

We caution, however, against drawing inferences about the extent of competition in such 

different settings as heart attack treatment and manufacturing from comparisons of productivity 

dispersion.  Basic measurement differences – such as differences in the output definition 

(survival vs. revenue), how inputs are measured, and estimation error – raise real comparability 

concerns, albeit without creating a clear direction of bias.20 Moreover, as noted earlier, the causal 

force behind reduced dispersion is unclear, and may well not be competitive pressure.  

Nonetheless, at a broad level, the comparison may serve as a useful benchmark against 

which to assess the quantitative relationships we have estimated for productivity and allocation 

in the US healthcare sector. They also seem inconsistent with the conventional wisdom that the 

variations in inputs across areas and hospitals without concomitant output gains are unique to 

healthcare and must therefore result from idiosyncratic features of the sector.   

 
6. Robustness 
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interquartile range for logged labor productivity which is comparable to Syverson (2004a)’s estimate of the 
interquartile range for logged labor productivity in manufacturing.   
�
20� To take but one example, the extent of measurement error in output – which would serve to attenuate estimates of 
the correlation between productivity and market share and to increase estimated dispersion – is likely different in 
healthcare than in manufacturing, although the sign of the difference is unclear. On the one hand, measurement error 
may be smaller in our setting since survival using death records is likely measured with less error than revenue in 
the Census of Manufactures and we observe a direct measure of output (survival) rather than a proxy for it in the 
form of revenue (P*Q) which has been shown to be problematic in some cases (Foster, Haltiwanger, and Syverson 
2008 and 2012). On the other hand, in manufacturing industries output is more-or-less a deterministic function of 
inputs, while output (survival) in our setting is stochastic, which should work to create more measurement error, 
especially given the relatively small number of patients in some hospital-years. As discussed, we use the Empirical 
Bayes “shrinkage” estimator to try to adjust for this stochastic element and relatively small sample size within 
hospitals. �
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We explored the robustness of our findings along a number of dimensions and were 

generally quite reassured by the results. We have already showed that our core results are robust 

to our choice of risk adjustment. Here we briefly describe some of our remaining robustness 

analyses concerning the measurement of inputs, the measurement of output, and the potential 

endogeneity of inputs. Although our focus is on the robustness of the static and dynamic 

allocation measures, for completeness we also show the robustness of the dispersion measures 

from Table 6. 

We face several key choices with the construction of our input measure. One is how 

coarsely or finely to measure inputs. There is a tradeoff between our relatively coarse baseline 

measure of inputs (with its associated measurement error stemming from input variation that we 

do not capture) and more granular measures which suffer from potential survivorship bias (a 

patient cannot receive many procedures if she does not survive very long); we experimented with 

considerably more granular input measures based on the individual procedures received and the 

length of hospital stay.  We also explored using these inputs directly in a multi-input production 

function rather than aggregating them to a single index as in our baseline approach.  Finally, our 

baseline measure follows standard practice and defines inputs based only on hospital inpatient 

treatments, thereby excluding physician inputs – which may occur both inside and outside the 

hospital – and other outpatient inputs. We tried an alternative input measure that incorporates 

non-hospital inputs. Again there is a trade-off; some non-hospital inputs may be closely linked 

(or indeed part of) the care received in the hospital, others may be quite distinct. These 
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alternative input measures are each described in more detail in Appendix B and the general 

robustness of the results is discussed in Appendix C (particularly Table A3). 21 

Another issue concerns the time horizon over which we measure inputs and outputs.  Our 

baseline measures use a 30 day window for inputs and a 1 year window for output (survival 

days). We explored the robustness of our results to shorter and longer time horizons – 7 days and 

1 year on the input side, and 30 days and 5 years on the output side. Again, there are tradeoffs in 

the length of time horizon.22 Appendix C (and particularly Table A4) shows the general 

robustness of our results to these alternative input and output horizon windows.  

Finally, as noted earlier, a pervasive concern in the productivity literature is the potential 

endogeneity of inputs to producer productivity. This can bias the estimates of the returns to scale 

parameter µ.  There is a wide range of estimates of this parameter in the literature (see e.g. Cutler 

et al. 1998, Fisher et al. 2003b, and Baicker and Chandra 2004) and uncertainty as to the “right” 

estimate. We are therefore reassured that our main static and dynamic allocation results are quite 

robust to imposing (rather than estimating) a range of “reasonable” values of µ and then 

calculating productivity under different imposed values; the dispersion estimates are also robust.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
21 Estimation in more traditional settings must also deal with input measurement problems, including issues we do 
not confront here stemming from differential qualities across types of workers and capital, trying to capture the flow 
of capital services using measures of capital stocks, and intermediate inputs typically measured by expenditures 
rather than quantities. Additionally, and more directly to the issue here, these inputs must also be aggregated to a 
single-dimensional input index by weighting the individual inputs appropriately; the theoretically correct weights are 
the elasticities of output with respect to the respective inputs. Estimating these elasticities involves its own set of 
measurement challenges. Our approach in the hospital sector avoids many of these additional issues. 
22 On the input side, a shorter time horizon will miss some of the resources the patient receives, while a longer 
horizon creates greater scope for survival bias as well as the issue that treatments are increasingly linked to 
providers other than the original hospital. On the output side, for our baseline measure we chose the relatively 
standard 1-year horizon since it seemed substantively more of interest than shorter-term (e.g. 30 day) survival.  
Analysis of a shorter horizon might capture aspects of hospital productivity that reflect only a slight postponement in 
death, and might not capture aspects that affect outcomes through long-term mechanisms such as the management of 
complications due to co-morbidities and the quality of the hospital’s follow-up care. On the other hand, with a 
longer output horizon there is greater scope for the impact of non-hospital factors – such as patient compliance in 
terms of diet, smoking and medication, and the impact of doctor quality regardless of whether the doctor was 
associated with the initial hospital – on our productivity estimates.  
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These results are shown in Table 7. We impose a µ of 0.1, 0.3, and 0.9. The lack of 

sensitivity of our static and dynamic allocation results to alternative values of µ is consistent with 

the results in Figures 4a and 4b that the correlation between market share and estimated 

productivity is driven primarily by the correlation between market share and risk-adjusted 

survival.23  

 

7. Conclusion 

 This paper has examined the relationship between productivity and market allocation in 

healthcare, specifically for hospital treatment of Medicare patients’ heart attacks. We have done 

so by drawing on the insights of several decades of theoretical and empirical work in 

productivity more broadly.  Qualitatively, we find that higher productivity hospitals have greater 

market share at a point in time, and grow more over time.  Quantitatively, a hospital with a one 

standard deviation higher log productivity has about 40 percent higher market share at a point in 

time, and grows about 6 percent more over the next five years. 

These relationships, which are driven primarily by the relationship between risk-adjusted 

survival and market share, mean that over time the healthcare market evolves in a manner 

favorable to higher productivity producers. This qualitative pattern is generally viewed by the 

broader productivity literature as an empirical sign of the workings of competition; it has been 

consistently found within manufacturing industries in the United States but not in less 

competitive settings such as post-Soviet Eastern block countries or Chile prior to trade reforms. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
23 Referring back to the basic estimating equation for hospital log productivity (equation (5)), the fact that the market 
share-productivity covariance is not sensitive to µ must mean that there is little variance in risk-adjusted inputs 
and/or a low covariance between risk-adjusted inputs and market share – otherwise, changes in the value of µ, which 
ties risk-adjusted input variation to our estimate of hospital’s productivity levels, would change the correlation 
between estimated productivity and market share.  
�
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Our more speculative quantitative comparisons between healthcare and manufacturing industries 

in the US suggest that, if anything, these re-allocation results are stronger, and dispersion similar 

or smaller, in healthcare. 

 Taken together, our qualitative and quantitative findings suggest that the healthcare sector 

may not be as idiosyncratic as the conventional wisdom has claimed. In this sense, our results are 

in the same spirit as Skinner and Staiger’s (2007) finding of a common “innovativeness factor” 

across healthcare and other sectors within a geographic area; they found that areas of the country 

that were early adopters of hybrid corn in the 1930s and 1940s were also early adopters of beta 

blockers for heart attacks at the beginning of the current century.   

Such findings suggest that, going forward, research on the determinants of productivity in 

the health care sector may benefit from more attention to the insights, both theoretical and 

empirical, from research on other industries about productivity and allocation. By the same 

token, insights from the health care sector may likewise be a useful laboratory for thinking about 

other industries. A recent series of papers by Bloom, Van Reenen and co-authors have begun to 

do just this, empirically investigating the role of such factors as management style and labor 

quality on hospital performance (usually survival rates; see Bloom et al., 2010, Propper and Van 

Reenen (2010), and Bloom et al., 2012).   

Of course, a given amount of re-allocation to higher productivity producers – or a given 

improvement in this re-allocation process – may be much more valuable in healthcare than in 

manufacturing, not to mention of greater consequence for public sector budgets. Moreover, in 

our healthcare setting as in the manufacturing setting more broadly, the estimated re-allocation 

relationships stop far short of indicating what economic or policy forces could be unleashed to 

create still greater reallocation to higher productivity producers. We see a great opportunity for 
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further work that tries to estimate the causal impact of competition – or other factors – on 

resource allocation in healthcare and in manufacturing settings. 
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(1) (2) (3) (4)
Mean SD Min Max

Hospital-Years (N=55,540)
   Patients 63.57 69.63 5 917
HRR-Years (N=4,560)
   Patients 774.2 735.2 63 5,700
   Hospitals 12.18 11.38 1 97

Table 1a - Hospital and market statistics

Note: The number of hospitals is 5,346.
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(1) (2)
Mean SD

Outputs
  Survival (days; censored at 365) 268.1 149.4
  Binary: Survival > 365 Days 0.660 0.474
Inputs
   Baseline (30 day) input measure ($) 15,996 12,172
Risk Adjusters
   Age 78.17 7.546
   Female 0.507 0.500
   White 0.906 0.291
   Hypertension 0.207 0.405
   Stroke 0.0232 0.150
   Cerebovascular Disease 0.0398 0.195
   Renal Failure 0.0521 0.222
   Dialysis 0.00670 0.0816
   COPD 0.0981 0.297
   Pneumonia 0.0592 0.236
   Diabetes 0.128 0.334
   Protein Cal Malnut 0.0118 0.108
   Dementia 0.0412 0.199
   Paralysis/FD 0.0256 0.158
   Periph Vasc Disease 0.0639 0.245
   Metastatic Cancer 0.0117 0.107
   Trauma 0.0392 0.194
   Substance Abuse 0.0225 0.148
   Major Psych Disorder 0.0138 0.117
   Chronic Liver Disease 0.00281 0.0529

Table 1b - Patient Summary Statistics

Note: The number of observations is 3,530,401.

Preliminary and incomplete. Do not cite or circulate without permission

43



(1) (2) (3)
Risk Adjustment: Baseline Age/Race/Sex None
Parameter
   μ 0.446 0.481 0.589

(0.00449) (0.00464) (0.00505)

Table 2 - Production Function Parameter Estimates

Notes: N = 3,530,401 patients and 55,540 hospital-years.  
Standard errors are bootstrapped with 50 replications and 
are clustered at the market level (5,346 hospitals). 
"Baseline" risk-adjustment includes a full set of 
interactions between age (in five year groupings), gender 
and whether the patient is white; it also includes indicators 
for  the various co-morbidities shown in Table 1; column 2 
excludes the co-morbidities and column 3 has no risk 
adjusters.
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(1) (2) (3) (4)
Dependent Variable:
Years in Regression: 2003 2003-2007 2003 2003-2007

   ρ 1.658 1.227 1.456 1.862
(0.282) (0.195) (0.236) (0.151)

Year Fixed Effects N Y N Y
Hospital-Years 1045 8016 2183 12861
Hospitals 1045 2104 2183 3164

Table 3 - Beta Blockers and Productivity

Notes: Dependent variables are z-scores. Right hand side variable is our 
estimate of hospital-year TFP from our baseline specification (Table 2, 
column 1), included for the years indicated in the column heading. 
Standard errors are bootstrapped with 500 replications and are 
clustered at the market level.

Beta-Blockers Score Composite Score
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(1) (2) (3) (A) (B)
Risk Adjustment: All Age/Race/Sex None DV Meana Observations
Static Allocation 2.418 2.496 2.618 3.641 55,540
 (0.0861) (0.0806) (0.0695)
Dynamic Allocation
   Exit Regression -0.0329 -0.0353 -0.0458 0.0438 40,379

(0.0118) (0.0113) (0.00985)
   Growth Regression 0.133 0.154 0.201 -0.126 52,777

(0.0221) (0.0213) (0.0185)

Table 4 - Main Results - Allocation Metrics

Notes:  "Static Allocation" reports the results from estimating the relationship between a 
hospital's log(patients) and log TFP within a market year given by equation (1).  "Exit 
regression" reports the results from estimating the within-market relationship between a 
hospital "exit" as defined in the text (over 5 years) and last year's log TFP as given by 
equation (2). "Growth regression" reports the results from estimating the within-market 
relationship between a hospital's one-year percent growth and it's base year log TFP as 
defined in equation (3).  Log TFP is estimated based on the corresponding specifications 
from Table 2.  Standard errors are bootstrapped with 50 replications and are clustered at 
the market level. 
a"DV mean" reports the mean of the dependent variable for the regressions, which is 
ln(Patients) for the static allocation regression, 5-year exit for the exit regression, and 1-
year growth for the growth regression.  See text for more detailed definitions of dependent 
variables.
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Years (k) Coeff Mean DV Obs Coeff Mean DV Obs
1 0.133 -0.126 52,777 -0.033 0.044 40,379
2 0.207 -0.224 49,954 -0.056 0.077 36,864
3 0.270 -0.314 46,961 -0.085 0.108 33,163
4 0.345 -0.392 43,742 -0.122 0.137 29,338
5 0.365 -0.462 40,379 -0.147 0.166 25,359
6 0.397 -0.530 36,864 -0.165 0.195 21,320
7 0.477 -0.598 33,163 -0.203 0.226 17,226
8 0.526 -0.666 29,338 -0.224 0.255 13,050
9 0.573 -0.735 25,359 -0.242 0.284 8,761
10 0.587 -0.807 21,320 -0.212 0.313 4,412

Table 5 - Dynamic Allocation Varying Time Horizons
Growth from t to t+k Exit in t+k

These results report the coefficient from a regression of growth or exit on 
log-productivity. Each row considers a different time horizon. Longer 
horizons have smaller samples because data on growth ends in 2007 and 
data on exit ends in 2003. Standard errors (not shown) are bootstrapped 
with 50 replications and are clustered at the market level. All coefficients 
are significant at the 1% level.
The standard deviation of log-productivity is 0.173. Mean DV refers to 
the mean of the dependent variable (growth or exit) in the sample.
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(1) (2) (3)
Risk Adjustment: All Age/Race/Sex None
   90-10 0.442 0.469 0.521

(0.0112) (0.0118) (0.0130)
   75-25 0.233 0.247 0.274

(0.00588) (0.00623) (0.00682)
   Standard Deviation 0.173 0.183 0.203

(0.00436) (0.00462) (0.00506)

Table 6 - Productivity Dispersion across hospitals. 

Notes: Log TFP is estimated based on the corresponding 
specification in Table 2. Dispersion measures in log TFP are 
constructed nationally each year, and then averaged across 
years. The top row reports difference in log productivity 
between the 90th percentile hospital and the 10th percentile 
hospital; the next row reports the difference in log 
productivities between the 75th percentile and the 25th 
percentile hospital; the bottom row reports the estimated 
standard deviation of the log productivity distribution. Standard 
errors are bootstrapped with 50 replications and are clustered 
at the market level.
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(1) (2) (3) (4)
Source of μ: Estimated
Value of μ: 0.446 0.1 0.3 0.9

Static Allocation 2.418 2.358 2.399 2.278
(0.0861) (0.0878) (0.0865) (0.0787)

Dynamic Allocation
   Exit Regression -0.0329 -0.0361 -0.0343 -0.0263

(0.0118) (0.0117) (0.0118) (0.0111)
   Growth Regression 0.133 0.144 0.138 0.107

(0.0221) (0.0215) (0.0218) (0.0214)

Dispersion
   90:10 0.442 0.449 0.445 0.457

(0.0112) (0.0113) (0.0112) (0.0107)
   75:25 0.233 0.237 0.234 0.241

(0.00588) (0.00593) (0.00590) (0.00565)
   Standard Deviation 0.173 0.175 0.173 0.178

(0.00436) (0.00440) (0.00437) (0.00419)

 

Table 7 - Sensitivity of Results to μ

Imposed

Notes: Column (1) shows results based on estimation of our baseline 
specification (Table 2, column 1). In the other columns μ is imposed rather 
than estimated. Standard errors are bootstrapped with 50 replications and are 
clustered at the market level.
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Appendix A: Analytical framework 
As mentioned in the text, models of reallocation mechanisms among heterogeneous-

productivity producers have found applications in a number of fields, including industrial 
organization, trade, and macro-economics.  While these models differ considerably in their 
specifics, they share an archetypal mechanism that connects the extent of competition in the 
market to the shape of the productivity distribution among market producers. We describe this 
central mechanism here. 

Producers (indexed by i) earn profits which depend positively on their idiosyncratic 
productivity levels Ai – more productive firms earn higher profits due to their lower costs – and 
negatively on the number (or mass, in models with a continuum of firms) of producers in the 
industry N.24 Hence πi = π(Ai,N), with ∂π/∂Ai > 0 and ∂π/∂N < 0. The monotonic relationship 
between productivity and profits implies that, for any given N, there is a critical cutoff 
productivity level A*(N) at which firm profits are zero.  Only producers with productivity levels 
at or above A*(N) will operate in equilibrium. 

The zero-profit cutoff productivity A*(N) is endogenously determined by a free entry 
condition, where ex-ante identical potential entrants consider whether to pay a sunk cost σ to 
take an idiosyncratic productivity draw from a known distribution, G(⋅) with upper bound 𝐴.  
The expected value of entry, which equals zero by the free entry condition, is: 

𝑉! = 𝜋 𝐴,𝑁 𝑔 𝐴 𝑑𝐴
!

!∗ !
− 𝜎 = 0 

The expected profits from entry depend upon the equilibrium number of entrants N in two ways.  
First, an increase in N shifts upward the zero-profit cutoff productivity level A*(N), reducing the 
probability that the entrant’s productivity draw is high enough to earn nonnegative profits and 
thus making successful entry less likely.  Second, a higher number of firms N also reduces the 
producer’s profits if it does enter.  Thus expected profits fall monotonically in N.  In equilibrium, 
the number of firms choosing to pay the entry cost yields a number of entrants N that, through 
these two effects, exactly equates the expected profit from taking a productivity draw to the sunk 
entry cost. 

The endogeneity of A*(N) means the industry productivity distribution observed in the 
data is determined in equilibrium.  Specifically, it is a truncation of G(⋅), the underlying 
productivity distribution from which potential entrants take productivity draws, where the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
24 Standard presentations of these models consider profit-maximizing firms. Although we keep this terminology to 
be more familiar relative to the existing literature, we note that in the context of hospitals, it might be more 
appropriate to consider firms as earning (and maximizing) “surplus” rather than “profits”. This more general 
terminology recognizes that many hospitals are legally structured as nonprofits and does not affect the qualitative 
comparative statics.  Nonprofit hospitals are often modeled in the literature as having an objective function that is a 
convex combination of profits and other objectives; therefore on the margin they should respond qualitatively the 
same way as for-profit hospitals to factors like competition.  Even if a hospital’s objective is not profit 
maximization, it is likely that for any given level of output(s) the hospital produces (in order to meet whatever 
outcomes are in its objective function), surplus will be larger if the hospital’s costs are lower.  Finally, in practice, a 
large empirical literature finds essentially no evidence of differential behavior across for-profit and non-profit 
hospitals, calling into question whether the non-profit label has any substantive meaning for behavioral responses 
(see Sloan 2000 for a recent review of this literature). 
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truncation point is A*(N).  Changes in market primitives that shift the equilibrium location of 
A*(N) therefore shift the observed productivity distribution as well. 

The primitive that we are interested in here is the extent of competition, as reflected in 
how easily consumers can (or how willing consumers are to) substitute to alternate producers.  
The specific mechanism through which primitives map into substitutability may vary, from 
changes in the differentiation of firms’ products, to shifts in openness to trade, to movements in 
the size of transport costs.  The particulars of the mechanism aren’t important here; what matters 
are the effects on the equilibrium. 

Higher substitutability has three effects that can be examined empirically. First, it makes 
it more difficult for higher-cost (lower-productivity) firms to earn positive profits, as demand is 
now more responsive to their cost and price differential relative to other firms in the industry.25   
In turn, the zero-profit cutoff productivity level A*(N) rises: the threshold for operation is greater 
than before.  This truncates the equilibrium productivity distribution, reducing observed 
productivity dispersion.26  Second, higher substitutability means that, among operating firms, 
market shares are more sensitive to productivity differences. Purchases are reallocated to more 
productive firms, raising the correlation between productivity and market share at a point in time 
(“static allocation”). Third, over time more productive firms are likely to grow in market share 
(“dynamic allocation”).27  
  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
25� In the case of hospitals, this demand response can be manifested either directly in patients’ choices in response to 
out-of-pocket costs, or indirectly through insurers’ decisions to include the hospital in its covered network. 
26 This dispersion implication requires some additional regularity assumptions on the underlying productivity 
distribution.  Most “standard” distributions exhibit declining second moments as they are truncated from below.  
The exponential distribution, however, is an example of one that does not.  Nevertheless, if we assume the 
productivity distribution is bounded at the top (i.e., there is some maximum productivity level), as we do here, then 
all distributions will eventually exhibit decreased dispersion as they are truncated from below. 
27 The model just described is static, so the effects of changes in competition on equilibrium should be thought of as 
comparing two different markets or the same market across different long-run steady states.  However, several of the 
models in the literature are explicitly dynamic and have similar predictions about the effect of competition on the 
productivity of entrants and growth of incumbents (e.g., Hopenhayn 1992, Asplund and Nocke 2006).  
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Appendix B: Measuring inputs 
Our baseline input measure (as well as many of the alternative measures discussed below) is 

derived from the formulas used to determine Medicare's Hospital (Part A) reimbursement. Some 
alternative measures also use information derived from the formulas used to determine Medicare's 
reimbursement of physicians and outpatient facilities (Part B). It is therefore useful to begin with a very 
brief overview of the key features of Medicare hospital reimbursement needed to understand the 
construction and composition of our baseline and alternative input measures. Considerably more detail 
can be found in CMS (2011). 

The amount Medicare reimburses a hospital is determined by the patient's Diagnosis Related 
Group (DRG), national factors, and hospital-specific factors. A patient's DRG is a function of his 
principal diagnosis, procedures performed, and secondary complications and comorbidities. Some DRGs 
also depend on whether the patient died in the hospital. 

Each DRG is assigned a (national) weight based on how much it costs to treat the nationwide 
average patient with that DRG; a national conversion factor is used to convert these DRG weights into 
dollar payments. The weights and the conversion factor are updated annually. The national rate is then 
adjusted for hospital-specific considerations. The major adjustments are due to geographic factors (e.g. 
the local wage rate) and characteristics of the hospital (such as whether it operates a resident training 
program or has a disproportionate share of patients on Medicare or SSI). 

For most stays the hospital will receive payments solely based on the patient’s DRG. However, in 
certain extraordinarily costly cases hospitals receive additional “outlier payments” covering 80 percent of 
costs beyond a threshold level. To compute costs, the hospital’s billed charges are deflated by a hospital-
specific cost-to-charge ratio. If a patient is transferred to another hospital, Medicare allocates payments 
for the patient across the initial and receiving hospital. For our purposes, we assign all inputs for the 
patient in the time horizon (30 days for our baseline measure) back to the initial hospital. 

 
A1. Baseline input measure: Part A “resources”  
  Our baseline input measure follows the approach of Gottlieb et al. (2010) and Skinner and Staiger 
(2009) to purge the “price” variation in the reimbursement formula from the “input” variation. 
Specifically, our starting point is the DRG weight (multiplied by a national conversion factor to convert it 
to a dollar metric) plus outlier payments (also in dollars). It does not reflect any variation in 
reimbursement prices across hospitals due to geographic factors or specific characteristics of the hospital. 

According to this measure, the inputs a patient receives equal the sum of his converted DRG 
weights and outlier payments at all hospital stays in the 30 days following his AMI. Variation across 
patients in the input measure therefore comes from 3 sources: variation in the patient's DRG(s); whether 
there are (and the extent of) outlier payments; and the number of hospital stays during the 30 day window. 
We discuss each in turn. 

 
Variation across Index Event DRGs 

To give a sense of the nature and variation across DRGs, Table A1 lists the top 20 DRGs for the 
index event (initial AMI hospital stay), their patient share and their weights in 2000.28 The top five DRGs 
account for over 90 percent of the index events, and the top 20 account for virtually 100 percent. 

Looking within the top five we see substantial differences in weight based on whether an invasive 
procedure is performed. There are two separate DRGs for invasive procedures (#107, “Coronary Bypass 
with Cardiac Catheterization” and #116, “Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant”) and they respectively have weights of 5.46 and 2.47. By contrast, the 
other three DRGs in the top five are medical DRGs (i.e. do not involve invasive procedures) and have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
28� For presentation purposes, we limit Table A1 to one year because DRG weights and classifications change slightly 
from year to year. �
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weights ranging from 1.11 to 1.51.  For the year 2000, two dummies for these two surgical DRGs (bypass 
and stent) explain 15 percent of the total variation in our 30 day input measure.  

Within the three most common medical DRGs, we see that there is variation for a medically 
treated AMI based on whether or not the patient died (#123), survived following a stay with major 
complications (#121) or survived following a stay without major complications (#122). This variation 
has, to our knowledge, not previously been noted by the large empirical literature on the relationship 
between inputs for heart attacks and subsequent survival which has used the variation in puts stemming 
from survival. However, this source of variation in the standard input measure seems suspect: it partly 
causes in-hospital death – not inputs, per se – to explain survival, an association that must exist trivially. 

Therefore, for these three DRGs that refer to the same diagnosis but differ on the basis of patient 
survival, we eliminate the variation in inputs across DRGs within this group at the hospital-year level. We 
assign each DRG the patient-weighted average of the different DRG weights. The averaging weights are 
equal to the share of patients in the DRG in that year. Almost three-quarters of hospital stays were 
grouped into DRGs that were affected by this fix.29  
     
Variation from Outlier payments 
  Approximately 8.2% of our patients trigger outlier payments due to unusually costly cases. These 
payments are triggered when a hospital’s cost of treating a patient exceeds a national threshold.  
Conditional on receiving an outlier payment, the average outlier payment as a share of DRG 
reimbursement without outlier payments is 53.9; the standard deviation of outlier payments is 13,154.8. 
(All statistics calculated for patients in the year 2000.) 
 
Variation due to number of hospital stays 
  Even ignoring outlier payments, the total variation coming from DRGs is in fact larger than that 
indicated in Table A1 because of the possibility of multiple (and potentially non AMI) hospital stays in 
the 30 days following the index event (AMI). Our baseline input measure is constructed for the 30 days 
following the initial AMI, meaning that it includes all hospital stays in these 30 days. On average, an AMI 
patient has 1.07 stays in this window. Conditional on having multiple stays, the average patient visits the 
hospital 2.07 times in the month following the AMI. 

If a hospital stay straddles the end of the time window (e.g. a patient stays in the hospital for 10 
days and is admitted on day 25 days following the heart attack), the inputs attributed to that hospital are 
reduced; in particular, we multiply our input measure by the share of days in the hospital that were inside 
the 30 day analysis window. We adjusted all DRGs (not just those associated with index events) to purge 
variation stemming from mortality in the manner described above. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
29 Note that this “fix” also purges the variation across the three most common medical DRGs in whether the patient 
had a major complication or not.  Although the case in question is the only one where different DRGs are assigned 
based on patient survival, there are other cases where separate DRGs are assigned based on the presence of 
complicating conditions (CCs). For example, the 6th-ranked DRG #110, “Major Cardiovascular Procedures with 
CC” (weight 4.16) and the 18th-ranked DRG #111, “Major Cardiovascular Procedures without CC” (weight 2.23) 
differ only on this basis. It is a priori unclear to us whether we want to purge variation due to the presence of CCs. 
On the one hand, conditional on a rich set of patient risk adjustors, the presence of a CC may be a useful measure of 
the intensity of resources required to treat the condition; on the other hand, with imperfect risk adjustors, it may also 
capture correlates of mortality (our outcome of interest). 
As noted, in practice our approach to purging mortality-based variation across DRGs also purges complications-
based variation in the most common DRGs. We experimented with an alternative measure that purged variation due 
to CCs in all DRGs. The procedure took DRGs that were identical but for the CC requirement and assigned them the 
same DRG weight within each hospital-year. This DRG weight was a weighted average of the component DRG 
weights; the averaging weights were the shares of patients in each DRG in the hospital-year. For example, in 2000, 
DRGS #110 and #111 were assigned the same weight in each hospital-year. This correction affected only a few 
percent more patients and made no noticeable difference to our findings (results available on request). 
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 Table A2 lists the top 20 DRGs across all stays in the 30 day window following the index event. 
The index events are included in this table. As expected, there is more variation across these DRGs. 
 
Empirical variation in baseline input measure 
 Figures A1-A3 show the variation in the input measures across patients for one year (2000). 
Figure A1 shows the variation in the DRG index events (using our “collapsed” DRG measure that purges 
mortality variation). Figure A2 shows the variation from the DRG index events plus outlier payments in 
the index event. Figure A3 shows the total 30 day variation, which adds in additional hospital stays (their 
DRGs and outlier payments) within the 30 days. As would be expected, the input distribution gets less 
“lumpy’’ at each step. 
 
 A2. Alternative input measures 

We confronted a number of choices in defining our baseline input measure. We therefore 
constructed several other alternative input measures. This section describes them.  
 
Alternative measures of hospital inputs 

A central tension in our choice of input measurement is how coarse or detailed we make our input 
measure. The tradeoff is between the survival bias that can occur with finer input measures—since the 
longer a patient survives, the more can be done to a patient—and the measurement error which occurs at 
coarser definitions of inputs. Our baseline measure, following standard practice, is aggregated to a 
relatively high level, and may therefore measure inputs with a non-trivial amount of error.  

We experimented with two alternative hospital-based input measures. One measures Part A 
spending rather than Part A inputs; it therefore includes variation in reimbursement rates stemming from 
hospital specific factors like geographic location or type of hospital. As shown in Appendix Figure A4 the 
distribution of Part A reimbursement is less “lumpy” than our baseline input measure; the correlation 
between the two is 0.90. 
 The other measure is designed to be more detailed than our baseline measure to reflect that fact 
that input use may vary substantially within the relatively coarse DRGs. We used data on the length of 
hospital stay and the procedures performed during the stay (up to six may be listed). Procedure codes are 
themselves available at different levels of granularity; there are 3 levels of CCS procedure codes ranging 
from the least granular level 1 to the most granular level 3; the much larger set of ICD-9 procedure codes 
is more granular still. The ICD-9 codes account for over 3878 possible procedures that may be performed 
on patients.  

To reduce the dimensionality of the set of procedures, we use the following algorithm. We start 
with the coarsest set of procedures (level 1 CCS codes, of which there are 16) and move iteratively to the 
finest set of procedure codes (ICD-9). At each step we aggregate codes that are rare and disaggregate 
codes that are very common. Thus, beginning with CCS level 1 codes, we include indicators for level 1 
procedures that were performed on less than 10% of patients; if the level 1 procedure was performed on 
10% or more of patients, we disaggregate it by looking at CCS level 2 components. 

In similar fashion, if the CCS level 2 procedures were performed on 1-10 percent of patients, we 
include an indicator for it. Within a level 1 code, all level 2 codes performed on less than 1 percent of 
patients are grouped together and included as one indicator.  If the level 2 procedure was performed on 10 
percent or more of patients, we disaggregate by looking at its level 3 components. 

We follow the same process for level 3 components; when we disaggregate these codes we look 
at the component ICD-9 codes. If the ICD-9 code was performed on at least 1 percent of patients we 
include an indicator for it. Within a level 3 code, all ICD-9 codes that were performed on less than 1 
percent of patients are grouped together and included as one indicator.  

This algorithm results in 60 procedure indicators: 18 for ICD-9 codes, 6 for level 3 CCS codes, 
22 for level 2 CCS codes and 14 for level 1 CCS codes. 
 
Incorporating non-hospital inputs 
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A limitation of our input measures thus far is that, following standard practice in the heart attack 
literature, they reflect only inpatient hospital inputs. Notably, they do not include physician inputs, which 
may occur in an inpatient or outpatient setting. They also do not include outpatient tests and procedures 
like MRIs. 

Many of these inputs are directly related to the treatment of the AMI. For example, the work of 
physicians who treat the patient surgically or medically in the hospital is obviously an input that may bear 
on the patient’s survival. Likewise, an MRI done in an outpatient facility that is closely affiliated with the 
hospital will inform treatment decisions and influence mortality. 

There are two reasons why we follow most of the literature on heart attacks and do not include 
inputs by physicians or outpatient facilities in our baseline measure. First, while some of these inputs are 
closely linked to the care received in the hospital, many of the payments reflect care that is independent of 
the hospital. In particular, doctor visits and outpatient diagnostic tests at long time horizons from the 
initial AMI admission may be less dependent on initial treatment decisions. The second reason is 
practical: data on much of these other input measures are only available for 20 percent of the sample and 
only since mid-2000, reducing the set of hospital-years in which we can observe at least 5 AMI patients 
by 70.0%. 

Still, we sought to evaluate the sensitivity of our results to including physician and outpatient 
services. Medicare reimburses physicians based on their assessment of the “Relative Value Units” 
(RVUs) of the services the physician provided; the RVU of a service is intended to reflect the resources 
required to provide that service. The RVUs attributed to procedures are constant across geographic areas 
and practitioners, although Medicare makes further adjustments based on geography and provider type to 
derive reimbursement rates (see MedPAC [2010a] or Clemens and Gottlieb [2012] for more details). We 
construct our measure of physician inputs by summing all RVUs associated with the patient in the 30 
days following his initial hospital admission. We multiply the RVUs by a national conversion factor to 
convert them to a dollar metric; the national conversion factor eliminates variation due to Medicare’s 
geographic price adjustments. 

Calculating outpatient contributions to the production function is significantly more complicated 
than calculating physician or inpatient contributions. While physician services and inpatient stays are each 
reimbursed using a single payment system that is designed to reflect resource utilization, different 
outpatient services are covered by different types of systems (MedPAC [2010b] provides more details). 
Some outpatient services are covered prospectively – although the payment groups are so fine that 
treatment decisions may be reimbursed at the margin. Providers are paid for other services according to a 
fee schedule that is geographically adjusted. Some services are reimbursed according to local prices. 

For the portion of outpatient services covered prospectively, there is a series of classification 
groups (Ambulatory Payment Classification groups or APCs) which function analogously to DRGs. Each 
APC is given a weight that is based on its expected resource costs; we translate these weights into a dollar 
basis using a national conversion factor that is an analogous to the procedure we use to convert DRG 
weights. For services that are reimbursed on a fee schedule, we mimic the method used for physician 
inputs by applying the fee schedule prior to geographic adjustments. 

These adjustments eliminate much of the variation in outpatient prices that is region- or provider-
specific. Still, some payments, like those for certain prescription drugs and new technologies, do not have 
an associated national fee schedule and are included unadjusted.  
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Rank Number DRG Namea Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 
Discharged Alive 1.63 41.2% 41.2%

2 122 Circulatory Disorders with AMI, without Major 
Complications, Discharged Alive 1.11 20.9% 62.1%

3 116 Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant 2.47 13.0% 75.1%

4 123 Circulatory Disorders with AMI, Expired 1.51 10.9% 86.0%
5 107 Coronary Bypass with Cardiac Catheterization 5.46 5.4% 91.4%
6 110 Major Cardiovascular Procedures with CC 4.16 2.0% 93.4%
7 112 Percutaneous Cardiovascular Procedures 1.92 1.6% 95.0%

8 115 Permanent Cardiac Pacemaker Implant with AMI, Heart 
Failure or Shock, or AICD Lead or Generator Procedure 3.47 1.0% 96.0%

9 104 Cardiac Valve and Other Major Cardiothoracic Procedure 
with Cardiac Catheterization 7.24 0.8% 96.8%

10 483 Tracheostomy except for Face, Mouth, and Neck Diagnoses 16.12 0.5% 97.3%
11 106 Coronary Bypass with PTCA 7.33 0.4% 97.7%
12 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 0.4% 98.1%
13 144 Other Circulatory System Diagnoses with CC 1.15 0.3% 98.4%
14 478 Other Vascular Procedures with CC 2.35 0.3% 98.7%
15 468 Extensive OR Procedure Unrelated to Principal Diagnosis 3.64 0.3% 99.0%
16 120 Other Circulatory System OR Procedures 2.01 0.2% 99.2%
17 108 Other Cardiothoracic Procedures 5.77 0.2% 99.4%
18 111 Major Cardiovascular Procedures without CC 2.23 0.1% 99.5%

19 477 Non-Extensive OR Procedure Unrelated to Principal 
Diagnosis 1.77 0.1% 99.6%

20 145 Other Circulatory System Diagnoses without CC 0.65 0.1% 99.7%

Table A1 - List of Top DRGs for Index Events (Initial Hospital Stays for the AMI Episode) in 2000

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that 
DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and 
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all 
conditions has a weight of 1.
aAbbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal 
Coronary Angioplasty. 
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Rank Number DRG Namea Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 
Discharged Alive 1.63 15.1% 15.1%

2 127 Heart Failure and Shock 1.01 8.4% 23.5%

3 116 Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant 2.47 8.0% 31.5%

4 122 Circulatory Disorders with AMI, without Major 
Complications, Discharged Alive 1.11 7.3% 38.8%

5 123 Circulatory Disorders with AMI, Expired 1.51 3.8% 42.6%
6 132 Atherosclerosis with CC 0.67 2.8% 45.4%
7 107 Coronary Bypass with Cardiac Catheterization 5.46 2.7% 48.1%
8 462 Rehabilitation 1.36 2.7% 50.8%
9 89 Simple Pneumonia and Pleurisy, Age > 17, with CC 1.09 2.5% 53.3%
10 14 Specific Cerebrovascular Disorders Except TIA 1.19 1.9% 55.2%
11 88 Chronic Obstructive Pulmonary Disease 0.94 1.8% 57.0%
12 144 Other Circulatory System Diagnoses with CC 1.15 1.5% 58.5%
13 174 Gastrointestinal Hemorrhage with CC 1.00 1.2% 59.7%
14 112 Percutaneous Cardiovascular Procedures 1.92 1.2% 60.9%

15 124 Circulatory Disorders Except AMI, with Cardiac Cath and 
Complex Diagnosis 1.40 1.2% 62.1%

16 138 Cardiac Arrhythmia and Conduction Disorders with CC 0.82 1.2% 63.3%
17 143 Chest Pain 0.53 1.2% 64.5%

18 296 Nutritional and Miscelaneous Metabolic Disorders, Age > 
17, with CC 0.86 1.2% 65.7%

19 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 1.1% 66.8%

20 182 Esophagitis, Gastroenteritis, and Miscelaneous Digestive 
Disorders, Age > 17, with CC 0.78 1.1% 67.9%

Table A2 - List of Top DRGs for All Claims

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that 
DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and 
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all 
conditions has a weight of 1.
aAbbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal 
Coronary Angioplasty, TIA - Transient Ischemic Attack. 

Preliminary and incomplete. Do not cite or circulate without permission

59



�

�

Appendix C: Robustness of results 

Alternative input measures 
 Appendix Table A3 explores the robustness of our results to alternative input measures; more 
detail on their construction is provided in Appendix B. Column 1 replicates our baseline results. As noted 
in Section 6, there is a tradeoff between our relatively coarse baseline measure of inputs (with its 
associated measurement error) and more granular measures which suffer from potential survivorship bias 
(you cannot have a lot of procedures done if you do not survive very long). Columns 2 and 3 explore the 
sensitivity of our estimates to more granular measures which use as inputs a series of approximately 60 
indicators for whether various procedures were performed as well as a continuous variable measuring the 
log of the number of days in the hospital during our 30 day window (see Appendix B for more detail). 
 We incorporate this more granular input measure in two different ways. In column 2 we explore a 
multi-input production function; specifically, we replace our single index measure with a series of 
indicators for whether various procedures were performed as well as a continuous variable for log number 
of hospital days. In column 3 we return to a single-input production function but one that is based on this 
more granular input measure; we create the single input by regressing log hospital charges on these same 
procedure indicators and log length of stay variables from column 2, as well as hospital-year fixed 
effects.30 We use the coefficients from this regression – ignoring the hospital-year effects – to produce an 
estimate of predicted large charges for each patient in our data. The correlation between this predicted log 
charges measure and our baseline log input measure is 0.77 (with actual log charges it would be 0.75). As 
would be expected from survivorship bias, the returns to scale coefficient μ in column 3 is substantially 
higher than that in our baseline column 1.   

Yet another alternative approach to inputs is to measure Medicare reimbursement to the hospital 
for a patient, rather than hospital inputs. Like our baseline approach, this approach is also often used in 
the literature (e.g. Cutler et al., 1998, Skinner and Staiger 2009). Medicare reimbursement depends not 
just on the patient’s DRGs (our baseline resource measure) but also characteristics of the hospital (such as 
whether it is a teaching hospital or whether it treats a disproportionate share of low income patients) and 
its location (MedPAC 2011a). Part A Medicare spending per AMI patient is the standard measure used in 
the economics literature in studying the relationship between heart attack treatment and outcomes (e.g. 
Cutler et al. 1998, Skinner and Staiger 2009). The results in column 4 use this Medicare reimbursement 
measure; the returns to scale parameter μ is therefore interpreted here as the return to federal 
expenditures (in the form of post-AMI survival) rather than real inputs. The correlation between our 
baseline resources measure and the reimbursement measure is 0.90. The main results are all quite robust 
to this alternative measure. 

A final input measure incorporates physician inputs and outpatient hospital inputs for the 
subsample of hospital years beginning in 2001 (see Appendix B for more details; our sample starts in 
2001 because it is the first full year with data). Column 5 shows our baseline results limited to the sample 
where we can observe these other input measures; this cuts our sample of hospital-years substantially (by 
about 70 percent).  Column 6 shows the results for this same “overlap” sample with our expanded input 
measure. For the overlap sample, the correlation between our baseline input measure and the expanded 
measure is 0.9831. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
30 Hospital “charges” are accounting charges for rooms and procedures and do not reflect transacted prices. They 
have been used in the literature as convenient, price-weighted summary of treatment, albeit at somewhat artificial 
prices (Card et al., 2009, Finkelstein et al., 2012). The hospital-year fixed effects in the log charges regression 
eliminate variation across hospital-years in the charge to cost ratio (i.e. differential hospital markups of list prices 
above costs). 
31 This high correlation reflects the fact that outpatient resources are, on average, about one-fifth the size of the 
inpatient resources devoted to one of our patients; in addition there is a high (about two-thirds) correlation between 
outpatient and inpatient resources devoted to a patient. 
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Looking across the columns, the basic qualitative findings concerning the role for competition in 
allocating more market demand to more productive firms both at a point in time and over time are quite 
robust to alternative input measures. In particular, the static allocation analysis and the growth analysis 
remain statistically significant in virtually all alternative specifications. The statistical significance of the 
exit-based regression results is more sensitive to the choice of input measure. Perhaps not surprisingly, 
the magnitudes of the static and dynamic allocation analyses vary somewhat across the specifications. 
The dispersion estimates are remarkably robust to alternative input measures. 
 
Alternative time frames for measuring inputs and outpus 
 Appendix Table A4 considers how our metrics are affected by alternative time windows for 
measuring survival and inputs. Our baseline specification looks at survival over 1 year and at inputs over 
30 days. A shorter time horizon for inputs will miss some of the resources provided to the patient. There 
is also a practical limitation to very short horizons; we observe resources at the level of a hospital stay, 
not a hospital day or hour; 96% of hospital stays are at most 30 days long, but a measure like 7 day 
utilization would require arbitrary spreading of resources across the 7 days for the 33% of patients who 
spend more than 7 days in the hospital. Longer time horizons have their own limitations: issues of 
survival bias (the longer you live the more that can be done) and as time passes since the first incident, the 
treatments that are undertaken are increasingly linked to providers outside the original hospital. Columns 
2 and 3 show, respectively, that the results are robust to a longer (one year) survival horizon, and a shorter 
(7 day) survival horizon rather than our baseline 30 day time frame. 
 In terms of the time horizon for outcomes, we choose a 1-year survival window because it is of 
more interest than short-term survival which may reflect only a few day postponement in mortality. As a 
practical matter, censoring is also less prevalent at 1 year than at shorter horizons. Finally, another 
advantage of our 1-year window is that it will pick up aspects of hospital productivity that affect 
outcomes through longer term mechanisms such as the management of complications due to co-
morbidities like congestive heart failure or diabetes. Longer time windows will also better capture the 
quality of continuing care like the prescribing of statins and the follow up to make sure the patient is 
taking these medications. Such inputs are less likely to affect survival at much shorter horizons but can be 
quite important over longer intervals  On the flip side, the longer measurement horizon introduces greater 
scope for patient autonomy (e..g in terms of changes in behavior such as diet and smoking, compliance 
with recommended medications and follow-up visits etc) and for the impact of doctors (regardless of 
which hospital you went to) or admissions to other hospitals to affect survival and therefore may attenuate 
differences across hospitals in measured productivity. Our results are robust to moving away from our 
baseline 1 year survival to 30 day survival (column 4) or to 5 year survival (column 6) which requires that 
we limit the sample to heart attacks through 2003 so that we observe 5 subsequent years; column 5 shows 
our baseline 1 year survival measure on this same sample.  
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(1) (2) (3) (4) (5) (6)
Input Measure: Baseline Procedures Fitted Chg Spending Baseline Base+Part B
Sample: Full Full Full Full
Parameter
   μ 0.446 0.714 0.395 0.369 0.399

(0.00449) (0.00521) (0.00412) (0.00640) (0.00677)
Static Allocation 2.418 1.497 0.972 1.749 2.347 2.252

(0.0861) (0.0884) (0.0991) (0.0896) (0.224) (0.223)

Dynamic Allocation
   Exit Regression -0.0329 -0.0199 -0.00661 -0.0245 -0.0331 -0.0348

(0.0118) (0.0117) (0.0124) (0.0116) (0.0546) (0.0576)
   Growth Regression 0.133 0.0611 -0.00515 0.0762 0.222 0.213

(0.0221) (0.0241) (0.0262) (0.0225) (0.0705) (0.0739)
Dispersion
   90:10 0.442 0.431 0.428 0.453 0.351 0.341

(0.0112) (0.00864) (0.00918) (0.0101) (0.0216) (0.0219)
   75:25 0.233 0.227 0.225 0.239 0.185 0.179

(0.00588) (0.00455) (0.00483) (0.00534) (0.0114) (0.0115)
   Standard Deviation 0.173 0.168 0.167 0.177 0.137 0.133

(0.00436) (0.00337) (0.00358) (0.00395) (0.00843) (0.00856)

Patients / 1000 3,530 3,530 3,530 3,525 271.3 271.3
Hospital-Years 55,540 55,540 55,540 55,529 15,039 15,039
Hospitals 5,346 5,346 5,346 5,346 3,092 3,092

 

Table A3 - Comparison of Input Measures

With outpatient data

Notes: Column (1) is baseline specification.  All other columns use alternative input measures (described 
in more detail in Appendix A and B). Column 5 and 6 are limited to the sub-sample of approximately 30 
percent of hospital-years for which we observe outpatient data for at least five AMI patients in that 
hospital-year; in column 6 our baseline input measure (which uses only Part A inputs) is expanded to 
include Part B inputs; see text for more details.  Productivity metrics reflect empirical bayes adjustment.  
Standard errors are bootstrapped with 50 replications and are clustered at the market level.
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(1) (2) (3) (4) (5) (6)
Survival Horizon: 1 Year 1 Year 1 Year 30 Days 1 Year 5 Years
Input Window: 30 Days 1 Year 7 Days 30 Days 30 Days 30 Days
Sample Thru: 2007 2007 2007 2007 2003 2003
Parameter
   μ 0.446 0.790 0.172 0.292 0.451 0.585

(0.00449) (0.00427) (0.0103) (0.00206) (0.00503) (0.00754)

Static Allocation 2.418 2.694 2.421 3.992 2.347 2.047
(0.0861) (0.0870) (0.0907) (0.136) (0.0941) (0.0811)

Dynamic Allocation
   Exit Regression -0.0329 -0.0317 -0.0372 -0.0660 -0.0221 -0.0201

(0.0118) (0.0123) (0.0117) (0.0212) (0.0129) (0.00996)
   Growth Regression 0.133 0.138 0.147 0.213 0.101 0.101

(0.0221) (0.0236) (0.0213) (0.0397) (0.0232) (0.0181)
Dispersion
   90:10 0.442 0.422 0.450 0.224 0.446 0.583

(0.0112) (0.00998) (0.0113) (0.00650) (0.0121) (0.0144)
   75:25 0.233 0.222 0.237 0.118 0.235 0.307

(0.00588) (0.00525) (0.00596) (0.00342) (0.00636) (0.00755)
   Standard Deviation 0.173 0.164 0.175 0.0874 0.174 0.227

(0.00436) (0.00389) (0.00442) (0.00254) (0.00472) (0.00560)

Patients / 1000 3,530 3,530 3,530 3,530 2,702 2,702
Hospitals 5,346 5,346 5,346 5,346 5,180 5,180

 

Table A4 - Comparison of Results with Varying Survival and Input Horizons

Notes: Column (1) is baseline specification. In other columns the time horizon in which we measure 
survival and/or inputs is modified as indicated in the column headings. Productivity metrics reflect 
empirical bayes adjustment.  Standard errors are bootstrapped with 50 replications and are clustered at 
the market level.
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Appendix D: Empirical-Bayes Adjustment

Introduction

In this appendix we describe the Empirical Bayes (EB) procedure we use to adjust our estimates

of hospital productivity for measurement error. This procedure is based on Morris (1983). For

another example see Jacob and Lefgren (2007).

Definitionally, we call the productivity level of hospital h at time t Aht and call its log-productivity

aht = ln (Aht). We will refer to these objects as the “true” log-productivities and their distribution

as the “underlying” distribution of log-productivity. We do not observe these values, but instead

estimate them. Call âht the estimated log-productivity. Thus we can write

âht = aht + ηht

where ηht is an error term. The goal of the EB procedure is to adjust our estimated log productivity

âht so that the presence of the error term does not introduce bias into our regressions, which use

our estimate of log productivity (âht) as a key right hand side variable . The procedure adjusts the

estimates by shrinking them toward the mean of the true, underlying productivity distribution.

Although true log-productivity is not observable, we show in this appendix that its distribution is

estimable. We also show how this shrinkage estimator fixes the attenuation bias that measurement

error would otherwise introduce into our regressions.

Background on Empirical Bayes Procedure

Statistical Background

We start with an overview of the EB procedure assuming that all parameters of the distributions

are known, and refer to the EB-adjusted estimated log productivity as aEB
ht . We then describe the

feasible EB-adjusted estimate, which we denote a
EB(f)
ht .

Suppose that the estimated log-productivities are independently normally distributed around the

true log-productivities with known variance π2
ht:

âht|aht, π2
ht ∼ N

(
aht, π

2
ht

)
independently

One can think of π2
ht as the variance of the measurement error of the estimate.

We also assume that the true log-productivities aht are independently normal with underlying mean

θht (known and allowed to differ for each hospital-year) and underlying variance σ2
a (known and

common across hospitals within a year). In other words, each hospital’s log-productivity is a ran-

dom variable.
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Then we have the prior distribution of the log-productivity aht:

aht|θht, σ2
a ∼ N

(
θht, σ

2
a

)
independently

We call it the prior because it is the distribution we envision before we condition on the estimated

log-productivity. θht may be most simply a mean µ, but could also be a linear function of some

covariates xhtβ.

If we condition on the estimated log-productivity âht, then we get the posterior distribution of aht:

aht|âht, θht, σ2
a, π

2
ht ∼ N

(
aEB
ht , π2

ht (1−Bht)
)

(1)

where aEB
ht denotes the Empirical-Bayes adjusted log productivity and

aEB
ht = (1−Bht) âht +Bhtθht

Bht = π2
ht/

(
π2
ht + σ2

a

)
The value aEB

ht -- the EB-adjusted estimate of aht -- is the expected value of aht conditional on the
estimated value âht and the parameters θht, σ

2
a, and π

2
ht.

In other words, the EB-adjustment amounts to attenuating the estimate âht toward the mean θht.
As the variance of the measurement error π2

ht rises, the EB correction increasingly disregards the

value of the estimate and closes in on the mean.

Feasible Version of Procedure

The procedure just described assumes all parameters are known. This section describes how we

implement the process when parameters must be estimated.

The log-productivity estimate âht is equal to the estimated coefficient on a hospital-year fixed effect

from equation (5). The regression that produces the estimated coefficient also yields an estimated

standard error. Recall that this standard error is an estimate of the standard deviation of the asymp-

totic distribution of âht. In other words, it is an estimate of πht. We estimate π2
ht by squaring the

estimated standard error of the hospital-year fixed effect. We call this estimate π̂2
ht.

Still, we lack estimates of θht and σ
2
a. Morris (1983, section 5) describes how to estimate them, and

we reproduce this method here. Note that it includes a degree of freedom correction to account for

the estimation of these terms. This correction will usually be trivial in our applications.

Suppose that

θht = xhtβ

We will focus on estimating β. This example can be generalized to the case where θht = µ by

letting xht = 1.
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Fix estimates:

Wht :=
1

π̂2
ht + σ̂2

a

β̂ := (X ′WX)
−1

X ′WA

σ̂2
a = max

0,

∑
ht Wht

{(
Nht

Nht−Nx

)(
âht − xhtβ̂

)2

− π̂2
ht

}
∑

htWht


X is the stacked xht, W is a diagonal matrix of the Wht, and A is the stacked âht. Nht is the

number of hospital-years, or equivalently the number of âht. Nx is the number of regressors, i.e.

the dimensionality of xht.

Looking closely, β̂ is a WLS regression of the âht on xht. σ̂
2
a is the weighted average of the squared

deviations of âht from xhtβ̂ less the weighted average of π̂2
ht. The weights are Wht, giving more

weight to observations with less measurement error. The max operator is used because in finite

samples σ̂2
a could be negative without it.

β̂ and σ̂2
a are simultaneously determined in these equations, so we must perform an iterative pro-

cedure to estimate them. We start with a guess for σ̂2
a: the unweighted variance of the âht less the

unweighted average of π̂2
ht. Then we iterate the following procedure to convergence:

1. Using the guess or estimate of σ2
a, fix the vector Wht

2. Compute β̂ and then a new estimate σ̂2
a

3. If σ̂2
a hasn’t converged, return to step 1

Then with these estimates we can make a (feasible) best estimate of the posterior mean a
EB(f)
ht :

a
EB(f)
ht =

(
1− B̂ht

)
âht + B̂htxhtβ̂

B̂ht =

(
Nht −Nx − 2

Nht −Nx

)(
π̂2
ht

π̂2
ht + σ̂2

a

)
Wecan alsomake an estimate of the variance of log-productivity unconditional on covariates, which

we call ς̂2a . We take the formula for σ̂2
a and replace the conditional mean xhtβ with the weighted

(unconditional) mean Ā:

ς̂2a = max

0,

∑
htWht

{(
Nht

Nht−1

) (
âht − Ā

)
− π̂2

ht

}
∑

htWht


Ā =

∑
ht Whtâht∑
htWht
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Actual Empirical Bayes Adjustment

We start with the squared standard errors π̂2
ht of the estimated log-productivities from equation (5).

Next, we assume θht = τM , whereM is the market (HRR) of hospital h. Therefore the underlying
mean of the productivities is market-specific.

To match earlier notation, suppose that τHRR(h) = zhtτ . Therefore when estimating the underlying

distribution of log-productivity, we make zht a vector of 304 market indicators and τ a vector of 304
market fixed effects. The underlying log-productivities are distributed normally with underlying

market level mean τM and common variance σ2
a independent of any other hospital-level covariates.

We perform the EB procedure separately on each year’s estimated log-productivities. Thus the

productivity process is estimated to have a market-year-specific underlying mean τ̂M,t and a year-

specific variance σ̂2
a,t (conditional on the market-year effects). Running the procedure also pro-

duces EB-adjusted log-productivities a
EB(f)
ht and a year-specific variance ς̂2a,t (unconditional on the

market-year effects) .

Our procedure, which allows the EB adjustment to have a market-year specific mean, ensures that

when the EB-adjusted log-productivities are used in our main regressions (equations (1) through

(3)) which have market-year fixed effects, all regressors are orthogonal to the measurement error

term. Generally, allowing the mean of log-productivity to depend on all other covariates in the

regression maintains this orthogonality condition.

Reported productivity metrics

Standard Deviation

To estimate the standard deviation of productivity using the EB adjusted values, we rely on the

estimates of the yearly underlying unconditional variance of log-productivity ς̂2a,t that the procedure
computes.1 The root of these estimates is taken, forming ς̂a,t. The yearly values are then averaged

together.

The EB adjustment produces ς̂2a,t by taking the weighted empirical variance of the âht and subtract-
ing the weighted average squared standard error π̂2

ht. Hospital-years with larger standard errors

receive lower weights. In effect, this process takes the variance of the noisy productivity estimates

and subtracts off the variance due to measurement error.

90:10 and 75:25

We define the 90:10 ratio as F−1 (0.9) − F−1 (0.1) and the 75:25 ratio as F−1 (.75) − F−1 (.25)
where F−1 is the inverse CDF of the log-productivity distribution. In other words, the 90:10 is the

1While it might seem natural to instead estimate the standard deviation of the EB-adjusted values, this would

cause us to erroneously under-estimate dispersion. Underlying log-productivity is composed of a best prediction (the

EB-adjusted log-productivity) and the prediction error. These two components are orthogonal. The variance of true

log-productivity is thus strictly greater than the variance of EB-adjusted log-productivity (see Jacob and Lefgren 2007).
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90th percentile value of the distribution minus the 10th percentile value, and likewise for the 75:25.

Since we are working with log-productivity, exponentiating these ratios would produce the 90:10

ratio of the productivity levels distribution (that is, an actual ratio: p90 / p10).

As with the standard deviation, it is not possible to estimate these ratios using the distribution of

the a
EB(f)
ht . The EB correction does not produce a variable with the same asymptotic distribution as

the underlying process. The procedure is only intended to estimate the parameters of an underlying

normal distribution and correct for measurement error in regressions.

To estimate these ratios we consider the underlying normal distribution that the EB procedure un-

covers, then compute the 90:10 and 75:25 of that distribution. Note that if q ∼ N (τ, κ2) then fixing
Φ as the standard normal CDF, the 90:10 and 75:25 ratios of q depend only on κ2:

F−1 (0.9)− F−1 (0.1) = κ
[
Φ−1 (0.9)− Φ−1 (0.1)

]
F−1 (0.75)− F−1 (0.25) = κ

[
Φ−1 (0.75)− Φ−1 (0.25)

]
So we need only plug in the EB estimate of the standard deviation ς̂a,t.

Allocation Metrics (Patient, Growth, and Exit Regressions)

Jacob and Lefgren (2007) show that a regression with un-adjusted estimated log productivities

on the right hand side will not be consistent, but that with the adjustment the coefficients will be

consistently estimated. To see this result, suppose that there is a relationship between growth ght,
market-year fixed effects γM,t, and log-productivity aht:

ght = γM,t + δaht + εht

where E [εht|zht, aht] = 0. Following earlier notation, zht is a vector of indicators for the market-

years. The left-hand side variable could alternatively be the number of patients or an indicator for

hospital exit.

Since we do not observe true log-productivity, we use the estimate âht = aht + ηht instead of aht,
where ηht is measurement error. Then substituting into the equation:

ght = γM,t + δâht + (εht − δηht)

This shows that if we try to estimate δ by regressing ght onmarket-year effects and âht, the error term
is εht − δηht. In this case we will get a biased and inconsistent estimate of δ due to the correlation

between âht and ηht in the error term. Instead, we must use the EB-adjusted log-productivity aEB
ht .

Equation 1 states that:

E
[
aht|âht, θht, σ2

a, π
2
ht

]
= aEB

ht

Recall that we assume the underlying mean equals a market-year fixed effect, i.e. θht = zhtτ =
τM,t. We also replace σ2

a with σ2
a,t because the EB adjustment procedure is run one year at a time.

The expectation becomes:

Preliminary and incomplete. Do not cite or circulate without permission

68



E
[
aht|âht, zht, σ2

a,t, π
2
ht

]
= aEB

ht

And therefore if we represent the prediction error of the EB procedure as vht:

aht = aEB
ht + vht

Then by construction:

E
[
vht|aEB

ht , zht, σ
2
a,t, π

2
ht

]
= 0

(Note that we swapped aEB
ht for âht because given the parameters, knowing one determines the

other)

Notice that the prediction error is orthogonal to aEB
ht and any regressor included in zht. Since the

zht are a set of market-year indicators, the prediction error is also orthogonal to market-year effects.

Therefore if we regress ght on market-year effects and aEB
ht :

ght = γM,t + δaEB
ht + (εht − δvht)

We see that there is no correlation between any of the regressors and the error term. The consistency

of δ follows as a result.

Comparison of estimates

We run all of our regression analyses with the EB-adjusted log-productivities a
EB(f)
h,t and calculate

our dispersion metrics using the EB-adjusted dispersion estimates as described above. Table A5

explores the impact of the EB-correction on our main results. The first column reproduces the

EB-adjusted main results from Tables 2, 4, and 6. The second column shows the results without

the EB correction.

To produce the uncorrected allocation metrics, we use the estimates âht rather than a
EB(f)
h,t in our

regressions. Due to measurement error in the estimates, the allocation metrics computed without

the EB correction will be attenuated. To create the uncorrected dispersion metrics, we produce

statistics that are comparable to the corrected versions, but calculate them with uncorrected esti-

mates of log-productivity. For example, to calculate the standard deviation, the empirical weighted

standard deviation of the estimated log-productivities -- SD (âht) -- is taken year-by-year, then

averaged (we use the same weights that were used to calculate ς̂2h,t so that the statistics are compa-

rable.) Likewise, the 90:10 and 75:25 ratios are calculated by fitting a normal distribution to the

estimated, uncorrected log-productivities and reporting the ratios implied by it (the ratios are cal-

culated year-by-year, then averaged). Due to measurement error, the dispersion metrics computed

without the EB correction will overstate the true dispersion.

The results show that the EB correction has a substantial effect on our baseline estimates of the

expected sign. Comparing our baseline (EB-adjusted) estimates in column 1 with the un-adjusted

version in column 2, we see that the allocation results are substantially larger and the dispersion
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estimates are substantially lower with the correction. For example, we find that measurement er-

ror explains nearly half of the dispersion of the log-productivity estimates; without correcting for

measurement error, these estimates have an average yearly standard deviation SD (âht) of 0.293,
while the EB procedure estimates that the underlying log-productivity process has an average yearly

standard deviation ς̂a,t of 0.173.

A quantiatively large impact of the EB correction (i.e. a large amount of measurement error) is not

surprising in light of results from other applications. For example, looking at estimates of teacher

fixed effects in value added regressions, Jacob and Lefgren (2007) estimate a ratio of the unadjusted

standard deviation to the EB-adjusted estimate of the standard deviation of about 1.3 to 1.6. We

find ratios of about 1.7.

Preliminary and incomplete. Do not cite or circulate without permission

70



(1) (2)
EB Adjustment: Yes No
Parameter
   μ 0.446 0.446

(0.00449) (0.00449)

Static Allocation 2.418 0.440
(0.0861) (0.0170)

Dynamic Allocation
   Exit Regression -0.0329 -0.0138

(0.0118) (0.00428)
   Growth Regression 0.133 0.0373

(0.0221) (0.00781)
Dispersion
   90:10 0.442 0.751

(0.0112) (0.0125)
   75:25 0.233 0.395

(0.00588) (0.00657)
   Standard Deviation 0.173 0.293

(0.00436) (0.00487)

 

Table A5 - Sensitivity of Results to EB Adjustment

Notes: Column (1) is baseline specification.  Columns 
2 shows results without the Empirical-Bayes 
adjustment. Standard errors are parametrically 
bootstrapped with 50 replications and are clustered at 
the market level. 
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Appendix E: Static and dynamic allocation in concrete and healthcare 
We use data on concrete from the Census of Manufactures, which we have for every five 

years from 1972 – 1997.  We observe approximately 2,500 ready-mixed concrete plants per data 
year; by way of comparison, we have approximately 3,700 hospitals per year. We use these data 
to estimate plants’ physical total factor productivity levels.  A plant’s physical total factor 
productivity is the number of cubic yards of concrete it produces per unit input, where inputs are 
a weighted composite of labor, capital, and intermediates. The weights are the inputs’ cost 
shares. These weights are theoretically correct, equalling the elasticities of output with respect to 
each input. Our market definition is the Bureau of Economic Analysis’ Component Economic 
Areas, which are approximately 350 mutually exclusive and exhaustive groupings of 
economically interrelated U.S. counties. (See, e.g., Syverson 2004b for more details on 
productivity and market measurement in ready-mixed concrete.) To reduce the influence of 
outliers, we trim the top and bottom 1% of the industry’s productivity distribution in each Census 
of Manufactures.  
 Table A6 reports the results. Across all of our static and dynamic allocation measures, the 
results indicate a stronger relationship between market allocation and producer productivity for 
hospitals than for concrete plants. The first row reports the results for static allocation. We 
estimate a slight variant of equation (1); as before, the specification regresses output on 
productivity (both measures are in logarithms) and market-year fixed effects. However, we now 
use lagged productivity on the right-hand side to facilitate comparisons between hospitals and 
concrete plants.32 Strikingly, the correlation between output and lagged productivity is an order 
of magnitude larger in healthcare than in concrete.  

The second row reports our exit analysis, based on equation (4) but modified to account 
for the fact that in concrete we only have data every five years; therefore, for purposes of 
comparability, we look at exit five years later for both hospitals and for concrete. However, 
comparability is limited by the fact that “exit” is defined quite differently in the two data sets.33   

The final row reports our growth analysis. To make the analysis comparable across the 
two industries, for both we run the following regression: 

!!,!!!"!!!,!!!
!
! !!,!!!"!!!,!!!

= 𝛽! + 𝛽!𝑎!,! + 𝛾!" + 𝜀!!       (A3) 

Here, “size” (N) is defined as the number of patients in hospitals or the amount of physical 
output for concrete plants.34  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �
32� Due to how productivity is measured for concrete plants, regressing output on contemporaneous productivity 
would yield spuriously expanded coefficients: for concrete, output is effectively the numerator of the productivity 
measure. To fix the bias, we use the productivity measure from 5 years earlier on the right-hand side, rather than 
contemporaneous productivity, The lag is 5 years because data for concrete plants is only available at that frequency. 
33 In the concrete data, exit is directly observed; in the hospital data we infer “exit” based on the hospital having less 
than 5 patients for five consecutive years. Therefore, for concrete we regress an indicator for whether the firm has 
exited at year t+5 on log productivity in year t (and market-year fixed effects). For hospitals, we regress an indicator 
for whether the hospital has less than five patients in every year from year t+5 to year t+9 on log productivity in 
year t (and market-year fixed effects). 
34 In order to make the growth analysis comparable for hospitals and for concrete, this regression differs from our 
baseline growth regression (equation 3) in two ways. First, because the concrete data is only available every five 
years, it looks at growth between 5 year periods rather than 1 year periods. Second, we lag the log productivity 
estimate on the right hand side back another time period. As in the static allocation metric, we do this because in 
manufacturing, our measure of size is output, which also enters the numerator of the productivity estimate; if there is 
�
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Risk Adjustment: Estimate DV Mean Sample (Approx) Estimate DV Mean Sample
Static Allocation 0.299 5,500 plant-years 2.166 3.585 33,155 hospital-years

(0.076) (0.097)
Dynamic Allocation
   Exit Regression -0.066 0.20 12,400 plant-years -0.147 0.17 25,359 hospital-years

(0.018) (0.032)
   Growth Regression 0.080 -0.075 2,600 plant-years 0.480 -0.62 18,569 hospital-years

(0.069) (0.081)

Table A6 - Allocation Metrics: Concrete vs Hospitals
Concrete Hospitals

Notes: Estimates for concrete are based on data from the quinquennial Census of Manufactures from 1972-
1992. Estimates for hospitals are based on Medicare AMI patients from 1993-2007 and use our baseline 
specification (see Table 2, column 1). See text for further details on metrics and data.
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mean reversion in output and we had ah,t+5  on the right hand side instead, this would create a negative bias on the β1 
coefficient. 
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