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1 Introduction

This paper explores pension schemes that provide (deferred) variable annu-

ities by sharing financial, inflation and biometric risks among the partici-

pants. These so-called defined-ambition schemes share risks on the basis of

complete contracts. In particular, if the value of aggregate liabilities deviates

from the value of total assets, the pension contract specifies how individual

pension rights are adjusted so that the aggregate value of individual pension

rights equals again total assets in the fund. Accordingly, mismatch risk is

born by the participants on the basis of ex-ante rules rather than by a corpo-

rate sponsor (in corporate schemes), future contributors (in defined-benefit

schemes in which contribution rates and capital buffers absorb shocks), tax

payers (in public schemes), or the shareholders of an insurance company (in

insured schemes). These schemes are similar to defined-contribution schemes

in the sense that outside risk sponsors are lacking. Participants can thus

trade risk with outsiders only through tradable financial instruments. Hence,

income streams during retirement are conditional on the investment perfor-

mance of the scheme, actual mortality rates of the participants and possibly

(wage) inflation.

Annuities are adjusted gradually after an unexpected shock that causes

a mismatch between assets and liabilities. Hence, retirees can take some

time to adjust their standard of living after a shock. This intertemporal

smoothing of shocks is consistent with habit formation. Gradual adjustment

to shocks leads to life-cycle investment in which risk exposure declines with

age also during the pay-out phase because retired agents have less time to

absorb shocks when they become older and their remaining expected life time

declines.

The defined-ambition schemes we consider differ from traditional defined-

contribution schemes in which individuals hold tradable financial assets. In

particular, the schemes provide longevity insurance by pooling and shar-

ing longevity risk. Furthermore, the aspired annuities can be indexed to

wages. Accordingly, participants can trade wage-linked and longevity-linked
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claims, which are not (yet) available on financial markets. In this respect,

the schemes resemble non-financial defined-contribution schemes in which

participants hold implicit assets that are not traded and valued on finan-

cial markets (see Holzmann, Palmer and Robalino (2011)). Moreover, risk

management during the accumulation phase is based on the objective of pro-

viding a life-long income stream during retirement. Accordingly, inflation

and interest-rate risks are actively managed. In addition, contribution levels

are set so as to reach a particular goal for retirement income. During the

pay-out phase, the pension contracts specify also how payouts respond to un-

expected shocks. By determining contributions and pay-outs, the contracts

thus specify not only investment but also (dis)saving and consumption de-

cisions. Accordingly, the stochastic pension rights can be communicated in

terms of a risk profile of an income stream in retirement.

The variable annuities we consider can be valued in a market-consistent

fashion. Market consistent valuation is relevant for determining the price for

buying and selling the annuities. Indeed, we show how pension contributions

can be derived endogenously from the stochastic pension promises (i.e. the

pension ambitions), which are in fact the liabilities of the defined-ambition

scheme. This is reminscent of defined-benefit schemes in which the pen-

sion contributions are determined by the costs of the aspired income stream

in retirement. The (deferred) stochastic annuities provided by the defined-

ambition schemes are priced on the basis of the nominal term structure of

the interest rates amended in two directions. First, a horizon-dependent risk

premium that rises with the time horizon is added. Second, break-even infla-

tion capturing the aspired indexation to inflation is substracted. The overall

discount curve to be used typically lies in between the expected return on

the actual investment portfolio of the fund as a whole, on the one hand, and

the real risk-free term structure, on the other hand.

The paper discusses how the investment policy of the fund as a whole can

be determined endogenously from the desired risk profiles of the (deferred)

variable annuities. The paper thus extends to defined-ambition schemes the
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principle of liability-driven investment familiar from defined-benefit schemes.

In effect, asset-liability management (ALM) is generalized to stochastic lia-

bilities. Indeed, the contract is complete in terms of not only the allocation

of mismatch risk across participants but also investment policy so that par-

ticipants obtain the exposures that have been communicated to them. We

show, however, that in the linear contracts we consider a change in invest-

ment policy of the fund does not affect the market value of individual pension

rights.

The defined-ambition schemes are based on proposed risk-sharing systems

in the Netherlands, and evolved from traditional defined-benefit schemes with

(nominally) guaranteed pension rights. Also in public-sector pension schemes

in the United States risk sharing is being considered as a way to reduce the

costs of these schemes (see e.g. Novy-Marx and Rauh (2012)). Our paper

contributes to the emerging literature on the implications of moving from

a defined-beneft design towards defined-ambition schemes. The scheme we

explore in this paper encompasses both the accumulation and the decummu-

lation phases but the defined-ambition scheme can be limited to the pay-out

phase or the accumulation phase only.

The structure of this paper is as follows. Section 2 lays out our sim-

ple benchmark modeling framework for explaining the basics of the defined-

ambition schemes. Section 3 introduces the specification of the risk profile

of the variable annuity. This is the stochastic liability that the pension

fund must match in its investment policy. We also investigate how pension

funds can calibrate and communicate the risk surrounding the future income

stream. Section 4 explores the market-consistent valuation of these stochastic

annuities. This allows us to demonstrate how pension contributions can be

derived endogenously from the stochastic pension ambitions and how one can

trade annuities with different risk profiles and indexation ambitions. Section

5 discusses the aggregate investment policy of the fund. Section 6 explores

a subclass of risk profiles in which adjustments in benefit levels are deter-

mined by a single state variable. Section 7 turns to some extensions, namely
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additional risk factors (such as interest rate, longevity, and wage risk) and

individual choice (in terms of contributions (savings), investment, and pay-

outs (dissavings)). Finally, the concluding section 8 discusses the role of

public supervision.

2 The benchmark model

We assume a simple financial market with a single risk factor, which we

interpret as the stock-market index at time t.1 The stock-market return

during period j is Rs
j , where we apply bold typesetting to indicate that this

is a stochastic variable. The distribution of these returns is lognormal with

standard deviation σ and expectation E[Rs
j ] = r+λ, where r is the nominal

risk-free return and λ the risk premium on the single risk factor. Returns are

assumed independent and identically distributed (i.i.d).

Perfect insurance of individual longevity risk is available. Aggregate

longevity risk is absent. Individuals start their working career at age as and

retire at age ar. In order to save on notation, we assume that all individuals

live up to age amax.

The numerical illustrations in this paper are based upon the following

default parameters. The risk-free nominal interest rate r is 3% per year.

Volatility σ is 20% on an annual basis and the annual risk premium λ is 4%.

Individuals start their working file at as = 20, retire at ar = 65 and live up

to age amax = 85.

1Section 7.1 explores extensions to more risk factors involving expected and unexpected

(wage) inflation, systematic longevity, and interest rates.
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3 Risk profiles

3.1 Specification

Let Bi
a,t denote the pension entitlements of an individual i with birth-year a

at time t. The pension entitlement is defined in terms of a (deferred) variable

annuity that starts to be paid at the retirement age. An individual in the

pension fund receives an actual pension payment only if retired and alive. In

our simple model, an individual thus collects a pension benefit at time t if

the birth year of the individual lies between t− amax and t− ar. Hence, the

actual pension payment Pa,t to an individual i with birth-year a at time t is

given by:

P i
a,t = Bi

a,tI(t−amax)≤a≤(t−ar). (1)

The risk profile of the variable annuity is specified in terms of the following

relationship between the current pension entitlement Bi
a,t0

and the future

entitlement Bi
a,t0+h at horizon h (where we apply bold typesetting for Bi

a,t0+h

to indicate that the realization of this variable is not yet known at time t0):
2

Bi
a,t0+h = Bi

a,t0
×
[
1 + wq1(R

s
t0+h − r − λ)

]
×...×

[
1 + wqh(R

s
t0+1 − r − λ)

]
= Bi

a,t0

(
h∏

j=1

[
1 + wqj(R

s
t0+h−(j−1) − r − λ)

])
(2)

We impose qh → 1 for h → ∞, which we denote as q∞ = 1. Hence, the

parameter w can be interpreted as the exposure to the risk factor at very

long investment horizons.

Expression (2) in effect specifies the liabilities of the defined-ambition

scheme. The marginal risk exposures qj depend on neither the returnRs
t+h−(j−1)

2Agent i is entitled to this future benefit on the basis of current entitlements only. (2)

thus assumes that agent i does not accumulate more pension rights by paying contribution

rates in the future. This in fact is a so-called discontinuity perspective in which we

consider only future pension benefits on account of pension entitlements that have been

accumulated in the past.
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nor Bi
a,t. Moreover, these exposures do not depend on time t either. The risk

profiles are thus ’sustainable’ in the sense that young workers (who have to

wait longer for their annuity payment than older workers) do not feature a

more risky variable annuity at the same horizon than older workers do.

If qh = 1 for all h, all agents exhibit the same exposure to stock-market

risk Rs
t0+j irrespective of their investment horizon t0 + h ≥ t0 + j. However,

(2) allows for the possibility of risk differentiation based on the investment

horizon h by setting qh < q∞ = 1. In particular, compared to smaller hori-

zons, longer investment horizons exhibit a larger exposure to a given risk

Rs
t+h−(j−1) if qh rises with h. In that case, young agents, who feature a longer

investment horizon than old agents do, are exposed more to current stock-

market risk. We impose that the risk exposures qh are non-decreasing with

the horizon, i.e. qh ≥ qh−1 for all h > 1. Specification (2) allows risk exposure

to depend only on the investment horizon h and thus only indirectly on age.

As a direct consequence, life-cycle investment in which stock-market expo-

sure declines with age continues during the pay-out phase. Habit formation

can explain this type of horizon differentiation in risk exposure.3

Figure 1 illustrates an example of horizon differentiation qh as a function

of horizon h in the case where qh = h/N for h < N and qh = 1 with N = 10.

This is an example in which smaller investment horizons h < N = 10 exhibit

a smaller risk exposure than longer investment horizons h ≥ N = 10. In

particular, the risk exposure at a one-year horizon (h = 1) is only 1/10th

of the exposure at long horizons h ≥ N = 10, the exposure at a two-year

horizon (h = 2) is 2/10th of the exposure at long horizons, etc.

3If risk differentiation would be based on differential exposures to human-capital risk

rather than habit formation, marginal risk exposures would depend not only on horizon

j but also on age a (see Bodie, Merton and Samuelson (1992)). The restriction that

risk exposures depend only on the investment horizon (and not on age) implies that the

adjustment of pension entitlements
(Bi

a,t+1−Bi
a,t)

Bi
a,t

can be uniform for all age groups (see

(6)). This is common practice in Dutch occupation pension schemes. For an extension in

which risk exposures also depend on other factors, see section 7.2.
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Figure 1: Illustration of horizon differentiation of risk exposure qh in the case

where qh = h/N for h < N and qh = 1 for h ≥ N with N=10.

3.2 Smoothing: Impact of past shocks

The pension entitlement at time t0 + l given the information at the current

time t = t0+ k (l > k) is given by (see (2), where we define h = l− k so that

t0 + l = t+ h)

Bi
a,t+h = Bi

a,t0
×

k−1∏
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]
×

h∏
j=1

[
1 + wqj(R

s
t+h−(j−1) − r − λ)

]
, (3)

where the realized shocks in the past Rs
t−j for 0 ≤ j ≤ k are separated from

the future, uncertain shocks Rs
t+j for 1 ≤ j ≤ h.4 If the investment policy

fits the assumed risk profile, the expectation of the pension entitlement at

4Shocks occur at the beginning of a period so that current shocks Rs
t are known and

affect pension payments during the current period t.
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time t+ h given the information at time t is given by (see Appendix)

Et[B
i
a,t+h]−Bi

a,t

Bi
a,t

= F h
t , (4)

where

F h
t ≡

∏k−1
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]∏k−1
j=0

[
1 + wqj+1(Rs

t−j − r − λ)
] − 1 (5)

captures how future benefits are affected by shocks in the past. In the absence

of horizon differentiation, F h
t = 0 (substitute qj = 1 for all j in (5)) because

shocks are absorbed immediately in current pay-outs. The adjustment factors

(5) are thus the direct consequence of smoothing shocks over time so that

shocks are absorbed only gradually. Intuitively, the smoothing of shocks

results in funding imbalances that must be absorbed in the future. As a

direct consequence, future adjustments in pension entitlements
Et[Bi

a,t+h]−Bi
a,t

Bi
a,t

become predictable. F h
t summarizes the predictable changes in annuities at

the future horizon h as a result of past shocks that have not been absorbed

fully in current annuities yet.

At the begin of each period t+1, pension entitlements (and thus pensions

in payment) are adjusted according to (see Appendix)

Bi
a,t+1 −Bi

a,t

Bi
a,t

= F 0
t+1 = (1 + F 1

t )×
[
1 + wq1(R

s
t+1 − r − λ)

]
− 1 (6)

where Rs
t+1 is now known. The right-hand side depends neither on a nor

i. Hence, pension entitlements (and thus pension benefits) are adjusted uni-

formly across individuals.

3.3 Calibrating and communicating risk

If the investment policy fits the assumed risk profile, the volatility of the

pension payments at time t+h given the information at time t is an increasing
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function of the horizon h: (see Appendix)

stdt[Ba,t+h] ≈ wσ

√√√√ h∑
j=1

q2j . (7)

Expression (7) results in the following expression for payments at time

t + h, conditional on information available at time t, for individual i of age

a in the 2.5 % quantile P2.5%i,h
a,t: (see Appendix)

P2.5%i,h
a,t ≈ Bi

a,t(1 + F h
t )

1− 1.96wσ

√√√√ h∑
k=1

q2k

 , (8)

where the 2.5% quantile is defined as Prt[B
i
a,t+h < P2.5%i,h

a,t] ≡ 2.5%. The

terms (1+F h
t ) and

(
1− 1.96wσ

√∑h
k=1 qk

)
represent past and future shocks,

respectively.

We can calibrate long-run risk w and horizon-differentiation qj from the

desired risk at each horizon. For example, we can set the desired deviation

from the expected pension benefit Et[B
i
a,t+h] in the 2.5 % quantile at each

horizon h as follows

P2.5%i,h
a,t

Et[Bi
a,t+h]

= −1.96σw

√√√√ h∑
k=1

q2k, (9)

and then endogenously determine the risk parameters w and qj.

Given individual pension entitlement Bi
a,t, pension funds should commu-

nicate to individuals both expected benefits (4) and the 2.5 % quantiles (8)

at particular horizons h. The outcomes depend on the stochastic model used.

Hence, the supervisory authorities may prescribe the models to be used in

order to prevent pension funds from providing too optimistic projections.

Figure 2 illustrates the 2.5 % and 97.5% quantiles as a function of horizon

h in the situation with horizon differentiation (with qh given by qh = h/N for

h < N and qh = 1 for h ≥ 10, with N=10, with N=10) and without horizon

differentiation (qh = 1 for all h ≥ 1).
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Figure 2: The 2.5 % quantile
P2.5%i,h

a,t

Et[Bi
a,t+h]

and the 97.5% quantile
P97.5%i,h

a,t

Et[Bi
a,t+h]

as

a function of horizon h in the presence of horizon differentiation (with qh

given by qh = h/N for h < N and qh = 1 for h ≥ 10, with N=10, as in

Figure 1) in the dashed lines and in absence of horizon differentiation (qh = 1

for all h ≥ 1) in the dash-dotted lines. The solid line represents the mean

Et[B
i
a,t+h].
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4 Market consistent valuation

Market-consistent valuation of the future stochastic annuity payments deter-

mines the resources that are currently needed to honor the pension promises.

In a complete market setting, the market consistent value is given by the

value of the replicating portfolio, i.e. an investment strategy that exactly

matches these promised cashflows.

4.1 Pricing a single cashflow

We employ risk-neutral pricing to derive the market-consistent value at time

t of a pension payment paid in period t + h. Under risk-neutral pricing,

the value of an uncertain cashflow is given by its discounted expectation

calculated under the risk-neutral probability measure (see e.g. Cochrane

(2001)). Thus, the market-consistent value of the pension payment at horizon

h of an individual i with birth date (t+h−amax) ≤ a ≤ (t+h−ar) amounts

to: (see Appendix)5

V i,h
a,t =

Bi
a,t

(
1 + F h

t

)∏h
j=1 (1− wλqj)

(1 + r)h
≈

Bi
a,t(1 + F h

t )

(1 + r + wλQh)
h
. (10)

where Qt represents the ”term structure of risk” Qh and is defined as

Qh ≡ 1

h

h∑
k=1

qk. (11)

Qh and qh relate to each other in a similar way as the interest rate and

the forward rate on horizon h. The non-decreasing nature of the ’marginal’

exposures qh (i.e. i.e. qh ≥ qh−1 for all h > 1) implies that also ’average’

5The derivation of (10) in the Appendix uses the no-arbitrage condition in financial

markets by imposing that the excess returns on the risky asset (i.e. the return on the risky

asset in excess of the risk-free rate) has zero market value. The economic intuition is that,

from an ex-ante perspective, the payoff from a one-dollar investment in the risky asset

exhibits the same market value as a one-dollar investment in the risk-free asset. Indeed,

the same dollar cannot have different market values under the no-arbitrage condition.
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exposures Qh are non-decreasing (i.e. Qh ≥ Qh−1 for h > 1) and that

’average’ exposures do not exceed ’marginal’ exposures (i.e. Qh ≤ qh for all

h ≥ 1).6

The linear nature of the pension contract with fixed marginal risk expo-

sures (2) facilitates market-consistent valuation. In particular, the valuation

of the cash flows does not depend on actual investment policy. This implies

that the market consistent value of the contract does not depend on subjec-

tive parameters of a stochastic model.7 Indeed, since the value is the same

for all investment policies, one can employ a risk-free investment strategy to

value the contract. One thus does not have to conduct stochastic simulations.

We can generalize (2) by assuming that

Bi
a,t0+h = Bi

a,t0
(1 + π)h

(
h∏

j=1

(1 + wqj(R
s
t0+h−(j−1) − r − λ))

)
, (12)

where π is the (constant) desired indexation of pension benefits. In that case

(10) becomes

V i,h
a,t ≈

Bi
a,t

(1 + r − π + wλQh)
h
(1 + F h

t ). (13)

This expression has two parts. The first part at the right-hand side summa-

rizes the future and the second part (1+F h
t ) represents past shocks that give

rise to predictable changes in annuities because of smoothed adjustment to

shocks. The solid line in 3 illustrates the discount curve r − π + wλQh as a

function of horizon h in the case where horizon differentiation qh is given by

qh = h/N for h < N and qh = 1 for h ≥ 10, with N=10, with N=10.

The special case of a nominal defined-benefit scheme is given by w = π =

0. In this case, we have

V i,h
a,t =

Bi
a,t

(1 + r)h
. (14)

6Note that (11) implies that Qh < qh if q1 < qh.
7The pension contract (2) depends on the difficult to estimate risk premium λ. Given

the selected parameter, however, the valuation of the contract does not depend on a

stochastic model and thus does not suffer from model risk.
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Figure 3: The real discount rate r − π (dashed line), the market-consistent

discount rate r − π +wλQh of the defined-ambition scheme (solid line), and

the market-consistent discount rate r of a nominal defined benefit scheme

(dash-dotted line). The discount rate of the defined-ambition scheme is based

on (11) with horizon differentiation qh given by qh = h/N for h < N and

qh = 1 for h ≥ 10, with N=10, with N=10, as in Figure 1. The figure is

based on π=2%.
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Figure 3 compares (13) and (14) by showing the three differences between the

discount rate of variable annuities and traditional defined-benefit schemes.

First of all, a horizon-dependent risk premium wλQh that rises with the time

horizon is added in (13) compared to (14). Second, aspired indexation π is

included in (13). Third, a term (1 + F h
t ) is added representing shocks in the

past that have not been absorbed yet in current annuities (if qj < 1).

With a regular variable annuity in which shocks are absorbed immediately

(i.e. qh = Qh = 1 for all h ≥ 1) and the expected annuity payments are

constant in nominal terms, (10) boils down to

V i,h
a,t =

Bi
a,t

(1 + r + wλ)h
.

The term representing shocks in the past is not present in this case because

shocks are not smoothed but rather absorbed immediately in current pension

rights Bi
a,t. Hence, predictable future changes in pension payouts as a result

of historical shocks that have not been absorbed in current annuities are

absent.

The aggregate value of the annuities provided by the pension fund is given

by

Vt ≡
amax−as∑

h=1

V h
t , (15)

where amax − as is the maximum horizon of pension payments and

V h
t ≡

Bh
t

(
1 + F h

t

)
(1 + r − π + wλQh)

h
(16)

represents the market value of actual pension payments at time t+ h aggre-

gated over all individuals. Bh
t stands for the sum of all pension entitlements

that are in the pay-out phase at time t+ h (i.e. at future horizon h at time

t)

Bh
t ≡

t+h−ar∑
a=t+h−amax

Ba,t, (17)

where Ba,t =
∑
i

Bi
a,t denotes aggregate pension entitlements of individuals

with birth-year a at time t. Hence, (16) is the aggregate version of (13).

15



4.2 Liabilities and funding rates

With variable annuities that are adjusted gradually in response to shocks, one

can adopt also an alternative definition of ’liabilities’. With this alternative

definition of liabilities, the aggegate value of liabilities is no longer necessarily

equal to the value of assets so that the funding rate can deviate from unity.

The calculation of a funding rate unequal to one makes the pension system

reminiscent of defined-benefit systems. The alternative definition of liability

is based on the ambition to increase the current pension entitlements Bt

in line with aspired indexation π (in expectation and with the desired risk

profile). In particular, the value of a defined-ambition liability at horizon h

of an individual i with birth date (t + h − amax) ≤ a ≤ (t + h − ar) and

pension entitlement Bi
a,t amounts to (where the second equality follows from

(13))

Li,h
a,t =

Bi
a,t

(1 + r − π + wλQh)
h
=

V i,h
a,t

(1 + F h
t )

, (18)

These liabilities are the resources that are currently needed to consistently

increase the current pension entitlements Bi
a,t in line with aspired indexation

π (in expectation and with the desired risk profile (given by w and qh)).

This definition of liabilities thus abstracts from predictable changes in future

annuity payments that are the result of past shocks. (18) can be written in

aggregate form as (where Lh
t denotes the aggregate value of all liabilities at

horizon h)

Lh
t ≡ Bh

t

(1 + r − π + wλQh)
h
=

V h
t

(1 + F h
t )

. (19)

We can view (1 +F h
t ) as the horizon-specific ’funding rate’ because it repre-

sents the ratio between the actual value of annuity payments (’assets’) and

the value of the defined ambition (’liabilities’) at a particular horizon. i.e.

(1 + F h
t ) =

V h
t

Lh
t
.

The funding rate for the fund as whole can be computed as the weighted
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average of horizon-specific funding rates

1 + Ft ≡
Vt

Lt

=
amax−as∑

h=1

γh
t (1 + F h

t ), (20)

where the aggregate value of liabilities Lt is defined by

Lt =
amax−as∑

h=1

Lh
t =

amax−as∑
h=1

Bh
t

(1 + r − π + wλQh)
h
, (21)

and

γh
t ≡ Lh

t

Lt

.

The budget constraint of a defined-ambition schemes implies (combine

(23) and (20) to eliminate Vt)

At

Lt

− 1 = Ft =
amax−as∑

h=1

γh
t F

h
t .

4.3 Contributions

We can employ (13) to calculate the price V i
a,t of an (deferred) annuity Bi

a,t

for an individual i with birth-year a:

P i
a,t =

V i
a,t

Bi
a,t

(22)

The right-hand side of this expression represents the price this individual

should pay for each new unit of a pension entitlements Bi
a,t, where we assume

that newly acquired pension entitlements share in current funding gaps F h
t .

8

This calculation of the price of the pension entitlement is in line with the

8If agents want to acquire pension entitlements that

do not share in these funding gaps, they can purchase(
amax+a−t∑

h=max(1,ar+a−t)

1
(1+r−π+wλQh)

h

)
Bi

a,t/

(
amax+a−t∑

h=max(1,ar+a−t)

(1+Fh
t )

(1+r−π+wλQh)
h

)
rather than Bi

a,t pension entitlements and buy desired pension entitlements at retire-

ment.
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defined-benefit tradition in which the pension premium is determined by

the costs of the aspired income stream in retirement. The economically fair

price for buying a new annuity ensures that the purchase of new pension

entitlements does not impact the value of the existing pension entitlements

and that (23).

If annuities that are bought and sold are priced as in (22), the market-

value Vt matches the current value of pension fund assets At:

At = Vt. (23)

The pension contract thus exhibits a defined-contribition character in the

sense that shocks in assets are absorbed immediately in the market-value of

individual pension entitlements. Outside sponsors (such as companies, future

contributors, insurance companies, tax payers) are lacking. The promises are

backed by financial assets so that the system is always fully funded on a so-

called discontinuity basis.9 Indeed, the funding rate is unity if we measure

liabilities in terms of the market value of promised cash flows Vt.

An alternative approach would be that the price Pa,t of a newly bought

annuities of one euro would be set at the value of an annuity at a funding

rate of one

P i
a,t =

Li
a,t

Bi
a,t

(24)

even though the newly acquired pension entitlements share in current fund-

ing gaps F h
t . This approach (24) would imply intergenerational risk sharing

between existing participants and new contributors. In that case, financial

assets of the fund At would not always be equal to the aggregate value of

the pension entitlements of current participants Vt so that (23) does not nec-

essarily holds. Indeed, ex-post transfers between current participants and

new contributors10 would be reflected in buffers At − Vt ̸= 0,which are not

9This means that the participants receive their promised benefits even if the pension

fund is winded up. In that case, the financial assets of the fund can be transferred to an

insurer. Hence, the participants are not exposed to credit risk of the pension fund.
10Contributors may be able to demand for compensating wage differentials because of
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assigned to current participants. Pension promises are not necessarily fully

funded by financial assets in this case because pension funds may rely on

the inflow of new contributions to finance existing promises. In particular,

the purchase of new pension rights raise (decrease) the value of the rights of

current participants in case of underfunding, i.e. F h
t < 0 (overfunding, i.e.

F h
t > 0) because contributions (24) are larger (smaller) than the actuarially

neutral price (22). Contributors who accumulate new pension rights in effect

act as risk sponsors for those who have already accumulated pension entitle-

ments in the fund. This paper abstracts from risk trading between current

participants and future generations through the transfer of collective buffers.

It assumes that (23) holds so that pension promises are fully funded on a

discontinuity basis.

5 The investment strategy

This section shows how the current and future investment strategy of the

fund as a whole can be determined endogenously from the desired risk pro-

files of the individual variable annuities parameterized by the long-run risk

exposure w and horizon differentiation qj. In this way, we extend the prin-

ciple of liability-driven investment to stochastic liabilities. Indeed, with a

clearly specified risk profile, the pension contract is complete also in terms

of investment policy.

Replication of the risk profiles of the pension entitlements of participants

requires a fraction wω̂t of the assets of the pension fund to be invested in

stocks at the current time t:

wω̂tAt = w
amax−as∑

h=1

qhV
h
t , (25)

elastic labor supply to the firm or sector concerned. they . In that case, risk sharing is

between shareholders of the firm and present participants.
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where the right-hand-side represents the desired exposures of each horizon

to current stock market risk. Substitution of (23) into (25) to eliminate At

yields

ω̂t =
amax−as∑

h=1

αh
t qh, (26)

where αh
t stands for the value share of horizon h in all pension entitlements:

αh
t ≡ V h

t

Vt

.

A popular way to compute pension liabilities is to employ the expected

returns from the actual investment portfolio as the discount rate

V e
t =

amax−as∑
h=1

Bh
t

(1 + r − π + ω̂twλ)
h
(1 + F h

t ), (27)

Linearization of

V e
t (x

1
t , ..., x

amax−as
t ) =

amax−as∑
h=1

Bh
t

(1 + r − π + ω̂twλ)
h
(1 + F h

t )

around xh
t = Qh (h = 1, .amax − as) yields

V e
t − Vt

Vt

≈ Dt(θt − ω̂t)wλ, (28)

where the durationDt is defined asDt ≡
∑amax−as

h=1 αh
t h, while θt ≡

∑amax−as
h=1 αh

t hQh

Dt

=
∑amax−as

h=1 βh
t Qh with βh

t =
αh
t h∑amax−as

k=1 αk
t k
.

For regular variable annuities, the traditional method of using expected

returns on the current returns yields the correct result (since in (28) θt = ω̂t =

1 if qh = Qh = 1 for all horizons h ≥ 1 (see (26) for ω̂t = 1 and θt = βh
t Qh

for θt = 1).With horizon differentiation, in contrast, the traditional method

of using current expected returns tends to understate actual liabilities since

θt < ω̂t.
11 Hence, the overall discount curve for valueing variable annuities is

11This is always the case if liabilities are concentrated around a certain horizon. Horizon

differentiation (i.e. qh > q1) implies qh > Qh and thus ω̂t > θt if βh
t ≈ αh

t . If liabilities

are dispersed over various horizons and βh
t > αh

t for long horizons h, we may theoretically

have ω̂t < θt because longer horizons with larger Qh and qh receive a larger weight in the

calculation of θt than in the calculation of ω̂t..
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typically in between the expected return on the actual investment portfolio

of the fund as a whole, on the one hand, and the risk-free term structure, on

the other hand. Intuitively, current expected returns exceed future returns

because with life-cycle investment risk is taken back when people age.

6 Exponential decay

6.1 Specification

Expression (5) implies that for each horizon, we need a separate state variable

to summarize shocks in the past. For a specific specification of horizon differ-

entiation, however, we can summarize the entire history in one state variable.

Consider the following ’exponential decay’ subclass in which a fixed fraction

1− ρ of the remaining gap with the long-run exposure (1− qh−1) is annually

absorbed in pension payments (i.e. qh − qh−1 = (1− ρ)(1− qh−1)
12):

qh = 1− ρh. (29)

The coefficient ρ in (29) governs horizon differentiation in risk exposure since

qh
q1

=
1− ρh

1− ρ
.

With ρ = 0, horizon differentiation is absent and qh
q1

= 1. In this case, shocks

are absorbed immediately so that Et[B
i
a,t+h] = Bi

a,t (see (4) with qj = 1

for j > 0). With ρ ↑ 1, in contrast, horizon differentiation is maximal and
qh
q1

⇒ h. Specification (29) thus implies that the risk profile is parameterized

by the long-term risk exposure w and horizon differentiation 0 ≤ ρ < 1.

Figure 4 illustrates horizon differentiation qt in (29) as a function of the

horizon h for three alternative choices of ρ. Figure 5 illustrates the implied

term-structure of risk Qh.

We can write the horizon-specific adjustment factors in terms of one spe-

cific fund-specific state variable, namely the aggregate funding rate 1 + Ft:

12This implies 1− qh = ρ(1− qh−1) and thus 1− qh = ρh since q0 = 0.
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Figure 4: Illustration of horizon differentiation of risk exposure qh in the

’exponential decay’ subclass defined in (29) for three alternative choices of ρ.
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Figure 5: Illustration of horizon differentiation of risk exposure qh and the

implied term-structure of risk Qh in the ’exponential decay’ subclass defined

in (29) for 1− ρ = 0.1.
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(see Appendix)

F h
t ≈ qh

ωt

Ft =
qh
ωt

(
At

Lt

− 1

)
, (30)

with

ωt ≡
amax−as∑

h=1

γh
t qh.

We can write (4) and (19) as (the first equality in (31) follows from the

generalization (12) and the second equality in (31) and (32) from substitution

of (30) to eliminate F h
t )

Et[B
i
a,t+h]−Bi

a,t

Bi
a,t

= π + F h
t = π +

qh
ωt

(
At

Lt

− 1

)
= π +

qh
ωt

Ft. (31)

V h
t − Lh

t

Lh
t

= F h
t =

qh
ωt

(
At

Lt

− 1

)
=

qh
ωt

Ft. (32)

The funding rate 1 + Ft = At

Lt
is computed by using the observed actual

assets At and calculating the liabilities from (21) and the actual pension

entitlements (see (17)). Expressions (31) and (32) show that a given funding

shortfall Ft = (At

Lt
− 1) leads to a larger adjustments of rights in a greyer

fund (with a smaller ωt). In this way, we guarantee that the aggregate value

of claims Vt ≡
∑amax−as

h=1 V h
t matches the assets At so that (23) holds.

(32) show how the assets At are distributed across the various horizons.

It in fact translates pension entitlements Bi
a,t of an individual with birth year

a into the value of the implicit assets held by that individual:

V i
a,t = Bi

a,t

amax+a−t∑
h=max(1,ar+a−t)

(1 + F h
t )

(1 + r − π + wλQh)
h

= Bi
a,t

amax+a−t∑
h=max(1,ar+a−t)

(1 + qh
ωt
Ft)

(1 + r − π + wλQh)
h
.

Defined ’benefits’ Bi
a,t (an individual’s entitlements to a variable annuity) are

translated into the value of an individual retirement account.
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At the beginning of each period t + 1, we have the following adjustment

in pension entitlements (see Appendix)

Bi
a,t+1 −Bi

a,t

Bi
a,t

= π +
q1
ωt

F̄t+1, (33)

where

F̄t+1 =
Āt+1

L̄t+1

− 1 = (1 + Ft)(1 + R̂s
t+1 − r − λ)− 1,

and Āt+1 are the aggregate assets in the fund after the return has materialized

at the beginning of period t + 1 but before pension payments are actually

made. Similarly, L̄t+1 are the aggregate liabilities at the beginning of period

t + 1, including the payments that must be made during that period. R̂s
t+1

presents the realized return on the aggregate portfolio. (33) ensures that

pension rights Bi
a,t are adjusted in the wake of the shock (R̂s

t+1 − r − λ)

so that the aggregate value of pension rights continues to equal total assets.

This expression shows that annuities are not increased in line with the aspired

indexation if assets Āt+1 fall short of liabilities L̄t+1.

6.2 Changes in risk profile

An important question is how value is redistributed if discounting (i.e. the

desired risk profile w) or the indexation ambition π is changed We write the

value of the liabilities at horizon h from (16) with risk profile (29) (where we

have used (30) to eliminate F h
t )

V h
t ≡ Bh

t

(1 + qh
ωt
(At

Lt
− 1))

(1 + r − π +Qhwλ)
h
. (34)

The appendix shows that the value of pension payments at horizon h are

changed as follows as a result of changes in the risk profile (w̄ − w) and in-

dexation ambition (π̄−π) (with constant pension entitlements Bi
a,t) (here V̄

h
t

and V h
t stand for the values of pension payments at horizon h at, respectively,

the new risk profile w̄ and indexation ambition π̄ and the old risk profile w

24



and indexation ambition π)

V̄ h
t − V h

t

V h
t

≈ φ(h)((π̄ − π)− (w̄ − w)λ). (35)

Here φ(h) decreases in h and
∑amax−as

h=1 αh
t φ(h) = 0.13 More risk (i.e. w̄ −

w > 0) at given pension entitlements Bi
a,t thus redistributes value from long

horizons (i.e. younger participants) to short horizons (i.e. older participants).

Intuitively, a higher discount rate raises the funding rate, thereby increasing

the scope to pay out today.

Two alternative ways exist to offset redistribution of value when discount-

ing is changed. These two methods also ensure that the funding rate is not

affected. The first method is to reset Bi
a,t so that V i

a,t is unchanged:

Bi,w̄
a,t = Bi,w

a,t

amax+a−t∑
h=max(1,ar+a−t)

(1+Fh
t )

(1+r−π+wλQh)
h

amax+a−t∑
h=max(1,ar+a−t)

(1+Fh
t )

(1+r−π+w̄λQh)
h

≈ Bi,w
a,t (1 + (w̄ − w)λDa

t θ
a
t ),

where Bi,w̄
a,t are the pension entilements with long-term risk w̄. The term Da

t

represents the duration of the annuity for someone of age a

Da
t ≡

amax+a−t∑
h=max(1,ar+a−t)

αk
t k,

and

θat ≡

amax+a−t∑
h=max(1,ar+a−t)

αh
t hQh

amax+a−t∑
h=max(1,ar+a−t)

αk
t k

.

A higher discount rate thus must be compensated by higher pension entitle-

ments to keep the market value and thus the funding rate unaffected.

13The only exceptions are if all pay outs are at the same horizon (i.e. α1
t = 1) or if ρ ↑ 1

so that shocks are smoothed over a very long time.
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The second method is to compute the relative changes in V h
t for each

horizon and to add these changes
∆V h

t

V h
t

to predictable changes at the horizons

concerned. The additional annual relative change in pension entitlements
Et+1[Bi

a,t+h+1]−Et+1[Bi
a,t+h]

Bi
a,t

can approximated by qh+1(w̄ − w)λ.

Both methods involve exchanging two annuities at a fair price. The first

method seems more attractive for younger members who are not yet in the

pay-out phase because this method guarantees a flat consumption profile

(in expectation) if the risk profile changes. The second method avoids dis-

crete changes in current pension entitlements Bi
a,t and thus current pay-outs.

This may be desirable for those in the pay-out phase if these agents feature

habit formation. Whereas the first method reallocates market value across

time, the second method leaves the intertemporal allocation of market value

constant.

Compared to a more risky investment profile (and a corresponding higher

discount rate), a higher indexation ambition π̄ − π > 0 exerts the opposite

impact on the redistribution of value across horizons at given pension enti-

tlements. If the ambition is to increase annuities over time at a higher rate,

more money need to be reserved and less resources can be paid out today.

To prevent these distributional effects, we have to exchange annuities again

at fair prices. This can be done by reducing either pension entitlements (i.e.

Bi,π̄
a,t < Bi,π

a,t ) or the predictable increases in payments on the old entitlements

Bi,π
a,t .

Interestingly enough, (35) shows that a changing a defined-benefit struc-

ture (with nominally guaranteed benefits, i.e. w = π = 0) to a defined-

ambition structure with an indexation ambition does not lead to redistribu-

tion between time horizons at constant pension entitlements Bi
a,t if the long-

term risk premium w̄λ is equal to the indexation ambition π̄. This change

however leads to a decline in the funding rate in the presence of smoothing

(i.e. qi < 1).14

14This assumes that the price for buying and selling annuities is based on (22). If

the fund instead prices newly bought annuities on the basis of (24), the change in the
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7 Extensions

7.1 Additional risk factors

Additional tradable risk factors can be easily included. The pension fund

should then form an efficient portfolio that maximizes the Sharpe ratio. In

fact, one can reinterpret the single risky asset then as the efficient portfolio.

Interest-rate risk and (expected and unexpected) inflation risk can be

included as well. In the valuation equations (13) and (16), the interest rate

term r is replaced by the term structure and break-even inflation takes the

place of the indexation term π. Interest-rate risks and expected inflation

risks give rise to hedging demands as these risks affect also the value of

the liabilities (see expression (13)). Indeed, participants can be viewed as

holding a combination of a hedge portfolio that hedges the aspired income

stream in retirement and a speculative portfolio aimed at capturing the risk

premium. The sensitivity of the liabilities to nominal interest rates depends

on the correlation between nominal interest rates on the one hand and break-

even inflation and the expected returns on risky assets on the other hand.

This will determine the degree to which the fund engages in hedging nominal

interest-rate risk.

Apart from the sharing of idiosyncratic longevity risk, individual annu-

ities can be matched with tradable assets if all systematic risks are traded

on financial markets. However, the risk-sharing contract may include also

some non-traded risk factors, such as systematic longevity risk and wage risk

(e.g. if π is linked to wage increases). In that case, one can speak of a non-

financial or notional defined contribution scheme in which individuals hold

claims on notional assets that are not (yet) traded in financial markets. This

complicates valuation since these NDC schemes can not be valued objectively

pension scheme involves distributional effects even though w̄λ = π̄. The same holds true

for a system that backloads benefits because it prices newly bought annuities equally

irrespective of age. This system currently holds for compulsory sectoral pension funds in

the Netherlands.
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on the basis of prices in financial markets. This gives rise to a trade-off be-

tween complementing financial markets versus objective valuation. On the

one hand, NDC schemes allow participants to trade risk factors among them-

selves that are not yet traded, thereby complementing financial markets and

creating value. On the other hand, the prices of these risk factors traded

within the mutual insurance vehicle are difficult to determine objectively,

which may give rise to additional political risk.

7.2 Individual choice

We can allow individuals set their own risk exposures wi
h−j+1 in (2)

Bi
a,t0+h = Bi

a,t0

(
h∏

j=1

{
1− wqh−j+1λ+ wi

h−j+1(R
s
t0+j − r)

})
,

without effecting the market value of the annuity. The expected income

stream provided by this annuity is not constant if wi
h−j+1 ̸= wqh−j+1.

Alternatively, we can provide an annuity with the same risk profile but a

constant expected income stream:

B̂i
a,t0+h = B̂i

a,t0

h∏
j=1

(
1 + wi

h−j+1(R
s
t0+j − r − λ)

)
.

To ensure that the market values of the two income streams are the same

we have to impose

Bi
a,t0

amax+a−t∑
h=max(1,ar+a−t)

{
h∏

j=1

(1− wqh−j+1λ)

}
= B̂i

a,t0

amax+a−t∑
h=max(1,ar+a−t)

{
h∏

j=1

(1− wi
h−j+1λ)

}
,

so that the relative price of the chosen annuity in terms of the orginal annuity

is
amax+a−t∑

h=max(1,ar+a−t)

{∏h
j=1(1− wi

h−j+1λ)
}

amax+a−t∑
h=max(1,ar+a−t)

{∏h
j=1(1− wqh−j+1λ)

} .
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Individuals who enter retirement may not like the predictable changes in

annuities as a consequence of shocks in the past. Hence, they can be given

the option to exchange their pension entitlement for an entitlement tht in

expectations remains constant:

Bi,t
a,t −Bi

a,t

Bi
a,t

=
amax−ar∑

h=1

αa,tF
h
t = Ft

amax−ar∑
h=1

αa,hqh

ωt

,

where Bi,t
a,t are the new pension entitlements and αa,t represents the weights

of the various horizons for generation t− ar.

If an individual does not invest according to the investment profile qjw

but according to wi
j+1, we find

Et[B
i
a,t+h] = Bi

a,t(1 + F h,i
t )

h∏
j=1

{
1 + (wi

h−j+1 − qh−j+1w)λ)
}
,

where

F h,i
t ≡

∏k−1
j=0 [1− wqh+j+1λ+ wi

h+j+1(R
s
t−j − r)]∏k−1

j=0 [1− wqj+1λ+ wi
j+1(R

s
t−j − r)]

− 1,

If wi
h−j+1 = w̄qh−j+1q, we find

Et[B
i
a,t+h]−Bi

a,t

Bi
a,t

≈ F h,i
t +Qhh(w̄ − w)λ.

The first term at the last right-hand side captures the impact of past shocks

whereas the second term represents the effects of a future investment policy

that differs from the ’norm’ profile w.

The 2.5 % quantile is given by

P2.5%i,h
a,t −Bi

a,t

Bi
a,t

≈ F h
t +Qhh {w̄(λ− 1.96σ)− wλ} .
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8 Conclusion

This paper has explored risk-sharing schemes that provide variable annuities.

The starting point for the pension contract is a desired risk profile of the in-

come stream in retirement. This risk profile then endogenously determines

investment policy, adjustments of benefits to shocks, pricing of the variable

annuities and the contribution levels. In line with habit formation, unex-

pected shocks are transmitted only gradually into pension payments. This

smoothing of shocks leads to predictable changes in pension payments. The

effects of past shocks on future adjustments in annuities can be captured

in one state variable (the funding rate or, alternatively, the current adjust-

ment in pensions in payment) if shocks are smoothed out in an exponentially

declining manner.

The governance of the pension scheme can arranged in alternative ways.

The plans for defined-ambition schemes in the Netherlands have evolved from

collective schemes in which fiduciaries decide on the risk profile and the

associated investment policies and risk-sharing contracts while employers and

unions determine contribution levels in collective bargaining. More elements

of individual choice (regarding for example risk profiles, pay-out policies,

contribution levels, provider or risk pool) could potentially be introduced.

Public supervision plays three important roles. First, it should monitor

that the investment policy of the fund is consistent with the promised risk

profile. Second, it should ensure that the annuities are priced fairly, especially

if participation in the funds is compulsory. To illustrate, if funds change

the way they discount benefits, the authorities should check whether the

exchange of annuities occurs at fair prices. The third contribution of the

supervisory authorities involves the communication of the risk profile. They

should induce the funds to communicate the expected income streams and

the risks involved (e.g. based on a ’bad wheather’ scenario) on the basis of

standardized stochastic models.
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Appendix

Derivation of (4) and (6)

Define the pension entitlements at time t in terms of the pension entitlements

at time t0 and the realized unexpected shocks between t0 = t−k and t0+k = t

(see (2))

Bi
a,t ≡ Bi

a,t0

k−1∏
j=0

[
1 + wqj+1(R

s
t−j − r − λ)

]
. (A1)

Substitute (A1) into (3) to eliminate Bi
a,t0

:

Bi
a,t+h

Bi
a,t

=

∏k−1
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]∏k−1
j=0

[
1 + wqj+1(Rs

t−j − r − λ)
]

×
h∏

j=1

[
1 + wqj(R

s
t+h−(j−1) − r − λ)

]
. (A2)

Take the expectation of (A2) and substitute Et[R
s
t+j − r − λ] = 0 for j =

1, .., h to obtain (use that returns are i.i.d. so that no cross-terms between

future shocks appear in the right-hand-side of the equation when taking
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expectations)

Et[B
i
a,t+h]

Bi
a,t

=

∏k−1
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]∏k−1
j=0

[
1 + wqj+1(Rs

t−j − r − λ)
] . (A3)

Rearrange terms to arrive at equation (4) in the text.

Equation (6) follows from (A2) with h = 1 where Rs
t+1 is now known:

Bi
a,t+1

Bi
a,t

=

∏k−1
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]∏k−1
j=0

[
1 + wqj+1(Rs

t−j − r − λ)
]

×
[
1 + wq1(R

s
t+1 − r − λ)

]
,

so that

F 0
t+1 ≡

Bi
a,t+1

Bi
a,t

− 1 =

∏k−1
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]∏k−1
j=0

(
1 + wqj+1(Rs

t−j − r − λ)
)

×
[
1 + wq1(R

s
t+1 − r − λ)

]
− 1

= (1 + F 1
t )×

[
1 + wq1(R

s
t+1 − r − λ)

]
− 1,

which leads to equation (6) in the text.

Derivation of (7) and (8)

We specify the following linearization of (3):

Bi
a,t+h = Bi

a,t0
×

k−1∏
j=0

[
1 + wqh+j+1(R

s
t−j − r − λ)

]
×

h∏
j=1

[
1 + wqj(R

s
t+h−(j−1) − r − λ)

]
≈ Bi

a,t0
×(

1 + w
k−1∑
j=0

qh+j+1(Rt−j − r − λ) + w
h∑

j=1

qj(Rt+h−(j−1) − r − λ)

)
,(A4)

When we interpret the terms Rt+h−(j−1) − r − λ as log returns, then these

are i.i.d. normally distributed with mean zero and standard deviation qjσ,

which leads to the approximations in (7) and (8).
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Derivation of (10)

Equation (10) is derived as follows (the first line is the risk neutral pricing

formula; the second line follows from substitution of (3) to eliminate Bi
a,t+h;

the third line follows from the no-arbitrage condition EQ
t [R

s
t+j] = r for j ≥ 1

and the i.i.d. shocks; the fourth line uses (A1) to eliminate Bi
a,t0

and employs

also (5); the approximation on the last line utilizes (11))

V i,h
a,t = EQ

t

[
Bi

a,t+h

(1 + r)h

]

=
Bi

a,t0

(∏k−1
j=0

(
1 + wqh+j+1(R

s
t−j − r − λ)

))
(1 + r)h

×EQ
t

[
h∏

j=1

(
1 + wqj(R

s
t+h−j+1 − r − λ)

)]

=
Bi

a,t0

(∏k−1
j=0

(
1 + wqh+j+1(R

s
t−j − r − λ)

))∏h
j=1 (1− wλqj)

(1 + r)h

=
Bi

a,t(1 + F h
t )
∏h

j=1 (1− wλqj)

(1 + r)h

≈
Bi

a,t(1 + F h
t )

(1 + r + wλQh)
h
.

Derivation of (30)

We specify the following linearization of (5):

F h
t ≈

(
w
∑k−1

j=0 {(qh+j+1 − qj+1)(Rt−j − r − λ)}
1 + w

∑k−1
j=0 qj+1(Rt−j − r − λ)

)
(A5)

With (29), we can write (A5) as

F h
t = qhF̂t, (A6)
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where

F̂t ≡ w

( ∑k−1
j=0 {ρj+1(Rt−j − r − λ)}

1 + w
∑k−1

j=0 {qj+1(Rt−j − r − λ)}

)

=
w
∑k−1

j=0 {ρj+1(Rt−j − r − λ)}
1 + w

∑k−1
j=0 {(1− ρj+1)(Rt−j − r − λ)}

. (A7)

Relative adjustments in pension entitlements
Et[Bi

a,t+h]−Bi
a,t

Bi
a,t

are governed by

a single state variable summarizing historical shocks (substitute (A6) in (4)

(with generalization (A5)) to eliminate F h
t )

Et[B
i
a,t+h]−Bi

a,t

Bi
a,t

− π = qhF̂t. (A8)

At the beginning of period t+1 when the return Rt+1has just been realized,

we have the following adjustment in pension entitlements

Et+1[B
i
a,t+h]−Bi

a,t

Bi
a,t

− π = qhF̌t+1, (A9)

where

F̌t+1 ≡
w
∑k

j=0 {ρj(Rt+1−j − r − λ)}
1 + w

∑k−1
j=0 {(1− ρj+1)(Rt−j − r − λ)}

.

F̌t+1 differs from F̂t in that it includes also the information that became

available at the beginning of the period, namely the realization of Rt+1.

At the beginning if each period t + 1, we have the following adjust-

ment in pension entitlements and thus pensions in payment (use (A9) since

Et+1[B
i
a,t+1] = Bi

a,t+1)

Bi
a,t+1 −Bi

a,t

Bi
a,t

− π = q1F̌t+1 = (1− ρ)F̌t+1, (A10)

With a single state variable governing the adjustment, we can write the

predictable changes in future benefits in terms of the present adjustment of

pensions in payment only (combine (A9) and (A10) to eliminate F̌t+1)

Et+1[B
i
a,t+h]−Bi

a,t

Bi
a,t

− π =
qh
q1

(
Bi

a,t+1 −Bi
a,t

Bi
a,t

− π

)
, (A11)
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so that the predictable change of pension entitlements in period t+ h+ 1 is

(the first equality follows from (A11) and the second from (29))

Et+1[B
i
a,t+h+1]− Et+1[B

i
a,t+h]

Bi
a,t

− π

=
(qh+1 − qh)

q1

((
Bi

a,t+1 −Bi
a,t

Bi
a,t

)
− π

)
(A12)

= (1− qh)

((
Bi

a,t+1 −Bi
a,t

Bi
a,t

)
− π

)
.

With the exponential decay formulation of horizon differentiation (29),

we find (substitute (A6) in (20)) the following relationship between aggregate

realized risk F̂t and fund-specific exposure Ft

Ft = ωtF̂t, (A13)

where

ωt ≡
amax−as∑

h=1

γh
t qh.

Equation (A13) represents the relationship between the economy-wide state

variable F̂t, which summarizes realized economy-wide risk in the past, and

the fund-specific funding rate, which depends on the fund-specific age com-

position determining the exposure of the fund to this aggregate risk. The

older the participants in the fund, the less the fund is exposed to past macro-

economic shocks if horizon differentiation implies smoothing of shocks. With

horizon differentiation, qi rises with i so that larger weights γh
t of the shorter

horizons (with the smaller risk exposures qi’s) reduces the exposure ωt of the

fund to macro shocks F̂t.

Equation (30) is obtained by writing the horizon-specific adjustment fac-

tors in terms of one specific fund-specific state variable, namely the aggregate

funding rate 1 + Ft (by substituting (A13) into (A6) to eliminate F̂t)

F h
t =

qh
ωt

Ft =
qh
ωt

(
At

Lt

− 1

)
, (A14)
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where the second equality follows from substituting (20) to eliminate Ft and

subsequently using (23) to eliminate Vt from the resulting expression).

Derivation of (35)

We linearize (34) around π,wλ :

V̄ h
t = Bh

t

(1 + qh
ωt
(At

Lt
− 1))

(1 + r − π +Qhwλ)
h
×(

1 +

{
qh
ω̄t

Dt − h

}
(π̄ − π)−

{
qh
ω̄t

Dtθt −Qhh

}
(w̄ − w)λ

)
. (A15)

where the duration Dt is defined as

Dt ≡
amax−as∑

h=1

αh
t h, (A16)

and

θt ≡
∑amax−as

h=1 αh
t hQh∑amax−as

k=1 αk
t k

=
amax−as∑

h=1

βh
t Qh, (A17)

and

βh
t =

αh
t h∑amax−as

k=1 αk
t k

≡ αh
t h

Dt

.

(29) implies that

Qi ≡
1

i

i∑
j=1

qj = 1− ρ

1− ρ

(1− ρi)

i
= 1− ρ

1− ρ

qi
i
. (A18)

If we substitute jQj = j − ρ
1−ρ

qj (from (A18)) into (A17) to eliminate jQj,

we find (where we have used (26) and (A16))

θt = 1− ρ

1− ρ

ω̂t

Dt

. (A19)

Substitution of (A18) for i = h and of (A19) into (A15) to eliminate hQh

and θt, respectively, yields

V̄ h
t ≈ Bh

t

(1 + qh
ωt
(At

Lt
− 1))

(1 + r − π +Qhwλ)
h
(1 + φ(h)(π − wλ)) , (A20)
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where

φ(h) ≡ qh
ω̂t

Dt − h.

Rewriting (A20) (use (34) to eliminate Bh
t ), we derive (35) in the text.
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