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1 Introduction

Firms that operate within the same industries, and even plants that operate within the same

�rms, often exhibit large and persistent performance di¤erences. In recent years, researchers have

made signi�cant progress in exploring the implications of this fact for macroeconomics, industrial

organization, labor markets, and trade (for a survey of the empirical evidence and implications see

Syverson (2011)). An open question, however, is why performance di¤erences exist in the �rst

place. One view that has long been popular with managers and management scholars is that

performance di¤erences exist because di¤erent managers employ di¤erent managerial practices. In

line with this view, a variety of recent studies have provided evidence for correlations and, in some

cases, causal relationships between managerial practices and performance (see, for instance, Bloom

et al. (2007, 2013) and, for a survey, Gibbons and Henderson (2012)).

If managerial practices a¤ect performance, however, then why do di¤erent managers employ

di¤erent practices? And why do they continue to employ di¤erent practices even when it has be-

come apparent that some work better than others? After all, the managerial practices of successful

�rms, such as Toyota�s just-in-time production system and Lincoln Electric�s organizational design,

are often well-known and are not protected by patents.

The aim of this paper is to shed light on these questions. Our premise is that the problem of

choosing between di¤erent managerial practices is too complex to be solved analytically. Instead,

managers tackle this problem by trying out di¤erent managerial practices and observing how they

a¤ect performance. In other words, managers learn about managerial practices by trial-and-error.

We show that such a learning process generates persistent performance di¤erences. Moreover,

if there are complementarities between managerial practices, these performance di¤erences can

persist, even when managers can imitate each other.

Managerial Learning: To �x ideas, suppose that there is a single managerial practice that can

take any value on the real line. There are in�nitely many periods and in every period a manager

has decide which speci�c practice or �action�to take. A production function maps the actions into

the �rm�s performance. This function is increasing on average but also has many local peaks and

troughs. The production function therefore looks like a rugged landscape that is tilted upwards,

as illustrated in Figure 1.

Speci�cally, we follow Callander (2011) and model the production function as the realized path

of a Brownian motion in which the action replaces time as the independent variable. The path is

realized before the �rst period and then stays the same for all subsequent periods. The production
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function therefore does not change over time. We assume that the drift of the Brownian motion

is positive, which ensures that the production function is increasing on average. And we interpret

the variance of the Brownian motion as a measure of the complexity of the production process. In

particular, the more complex the production process is, the larger is the variance; and the larger is

the variance, the more rugged is the production function.

m(a)

action a

performance

The Production Function m(a)

In the �rst period, the manager knows the performance generated by a status quo action. And

he knows the basic characteristics of the production function, as captured by the drift and the

variance of the Brownian motion. Before the manager decides what action to take, he uses this

information to form beliefs about the performance generated by any action that is di¤erent from

the status quo.

The assumption that the production function is generated by a Brownian motion ensures that

these beliefs take a simple form. In particular, the manager�s beliefs are normally distributed with

a mean that is increasing in the action and a variance that is increasing in both, the complexity

of the production process and the distance between the action and the status quo. The manager

therefore knows that actions that are further to the right tend to generate better performance.

And he knows more about an action, the closer it is to the status quo, or the less complex the

production process is.

In this way the model captures the notion that managers know the general direction in which
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to search for better managerial practices. They may know, for instance, that they should reduce

inventory or tie pay more closely to performance. While managers know the general direction in

which to search for better managerial practices, however, they do not know the e¤ect of a speci�c

change on performance. Moreover, they are more uncertain about the e¤ect of a speci�c change,

the larger is the change, and the more complex is the managerial practice.

After the manager has formed his beliefs in the �rst period, he either takes the status quo

action, in which case he learns no new information. Or he engages in search by taking a di¤erent

action, in which case he learns the performance generated by that action. In the second, and

any subsequent, period, the manager then updates his beliefs based on any new information he

learned. And after he has updated his beliefs, he decides between taking one of the known actions

and engaging in further search. The manager can therefore learn about the production function

over time by trying out di¤erent actions. The question then is what actions the manager should

try out and when, if ever, he should stop and settle for one of the known actions.

We show that for a broad class of utility functions, and under the assumption that the manager

maximizes expected utility on a period-by-period basis, the optimal learning rule takes a simple

form. In particular, if status quo performance is below a threshold, the manager takes the status

quo action in the �rst period, and he continues to do so in all subsequent periods. If, however,

status quo performance is above the threshold, the manager starts to search in the �rst period by

taking an action that is strictly to the right of the status quo. In subsequent periods, he then

continues to search by taking actions that are further and further from the status quo until he

reaches a period in which performance falls below another threshold. Once that happens, the

manager reverts to the best known action and then continues to take that action in all subsequent

periods.

Persistent Performances Di¤erences: A key implication of the optimal learning rule is that

it generates persistent performance di¤erences. To see this, consider the e¤ect of an increase in

status quo performance. We already noted that such an increase makes it more likely that the

manager engages in search in the �rst period. Below we also show that if the manager does engage

in search in the �rst period, an increase in status quo performance increases his action and makes

it more likely that he will engage in further search in any subsequent period. An increase in

status quo performance therefore unambiguously favors search. And because an increase in status

quo performance favors search, it generates an even larger increase in expected performance in

all subsequent periods. Di¤erences in status quo performance therefore do not only persist, they

actually grow larger.
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This explanation for persistent performance di¤erences relies on di¤erences in status quo per-

formances. Once we allow for multiple, complementary managerial practices, however, persistent

performance di¤erences can arise even if �rms are identical. To see this, suppose that there is a

second action. For simplicity, the production function for this second action is identical to the

�rst. Each action is taken by a di¤erent manager who cares about the performance generated by

his action minus the squared di¤erence in the actions. The actions are therefore complementary.

In this setting, we can compare centralized learning�in which case the managers take their

actions jointly�to decentralized learning�in which case they take them independently of each other.

If learning is centralized, the optimal learning rule is the same as the one described above.

If learning is decentralized, however, there is a key di¤erence. In particular, in any period other

than the �rst one, the manager�s actions are now determined by two thresholds. If performance

is above the upper threshold, both managers engage search. And if performance is below the

lower threshold, both managers revert to the best known action. If performance is between the

two thresholds, however, there are multiple equilibria: either both managers engage in search or

neither does. For intermediate levels of performance, the managers can therefore get stuck in a

coordination failure. Moreover, the more complementary the actions, the more likely it is that

coordination failures arise. Indeed, if the actions become very complementary, the only way to

rule out coordination failures is for �rm performance to improve continuously over time, without a

single stumble or fall.

In summary, we show that persistent performances arise naturally if managers learn about

managerial practices through trial-and-error. In particular, they arise if learning is centralized and

�rms face di¤erent initial conditions or if learning is decentralized and managerial practices are

complementary.

Barriers to Managerial Imitation: So far we have abstracted from imitation. As we ob-

served above, however, the managerial practices of successful �rms are often well-known and not

protected by patents. The question then is why under-performing �rms don�t simply imitate the

top performing ones. The answer that we develop below is that imitation may simply be too risky.

To see why imitation may be risky, suppose that some managerial practices are industry-speci�c�

in the sense that their production functions are the same for all �rms in the industry�while others

are �rm-speci�c. The mapping from managerial actions into corporate culture, for example, may

be �rm speci�c. This would be the case, for instance, if an American car manufacturer such as

General Motors has to take di¤erent actions to create a collaborative culture than a Japanese one

such as Toyota.
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If managerial practices are independent of each other, one would expect under-performers to

imitate the top performers� industry-speci�c managerial practices. If, however, there are com-

plementarities between industry- and �rm-speci�c managerial practices, then imitating industry-

speci�c managerial practices requires changes to �rm-speci�c ones. Suppose, for instance, that the

success of Toyota�s just-in-time production system depends on its corporate culture and that, as we

argued above, the production function that maps actions into corporate culture is �rm-speci�c. To

imitate Toyota�s just-in-time production system, General Motors would then also need to change

its corporate culture. But if managers learn about the production function for corporate culture

by trial-and-error, then trying to change corporate culture is inherently risky.

Our �nal set of results characterizes conditions under which the risk associated with imitating

industry-speci�c managerial practices is prohibitive. In particular, we show that if the top per-

formers�industry-speci�c managerial practices are far from those employed by an under-performing

�rm, and the complementary, �rm-speci�c managerial practices are su¢ ciently complex, then the

under-performing �rm is better o¤ if it does not imitate the top performers.

We cast our model in the context of �rms and industries. The main ingredients of our model�

complexity, complementarities, and learning by trial-and-error�are also relevant in other settings.

The vast literature on the growth and development of nations, in particular, touches on many of the

issues that arise in our setting. We will discuss to this application of our model in the conclusion.

2 The Model

There is a single manager. At the beginning of every period t = 1; 2; :::, the manager takes an

action that determines his income. After the manager has consumed his income, time moves on to

the next period. Our aim is to characterize the manager�s optimal actions given the technology,

preferences, and information structure that we describe next.

Technology: At the beginning of period t = 1; 2; :::, the manager takes an action at 2 R that
determines his income level mt 2 R. The mapping from actions into income is given by the

production function m (at), where m : R! R. We follow Callander (2011) and model m as the

realized path of a Brownian motion with drift � > 0 and variance �2 > 0. For reasons that will

become apparent, we interpret the variance �2 as a measure of the complexity of the production

process. Moreover, we refer to a0 = 0 as the status quo action and denote status quo income

by m0 = m (a0). The realized path of the Brownian motion is determined by nature before the

start of the game and does not change over time. Figure 1 shows one possible realization of the
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Brownian motion.

Preferences: The manager�s utility is given by u (m), where m is his income. We assume that

this function is four times continuously di¤erentiable and satis�es

u0 (m) > 0 and u00 (m) < 0 for all m 2 R:

The �rst condition implies non-satiation and the second risk aversion.

To further characterize the manager�s risk preferences, let

r (m) = �u
00 (m)

u0 (m)

denote the coe¢ cient of absolute risk aversion and let

p (m) = �u
000 (m)

u00 (m)

denote the coe¢ cient of absolute prudence. We assume that absolute prudence is decreasing, that

is, p0 (m) � 0 for all m 2 R. Prudence was introduced by Kimball (1990) who shows that a

risk averse agent engages in precautionary savings if and only if he is prudent, that is, p (m) > 0.

Moreover, he shows that precautionary savings are decreasing in income if and only if absolute

prudence is decreasing. Finally, he shows that on an unbounded domain, decreasing absolute

prudence implies decreasing absolute risk aversion. In our setting, the manager�s utility function

therefore also satis�es r0 (m) � 0 for all m 2 R, where r(m) denotes the coe¢ cient of absolute risk
aversion de�ned above.

Finally, we assume that the coe¢ cient of absolute risk aversion crosses 2�=�2, where � and �2

are the drift and the variance of the Brownian motion. We will see below that if r(m) did not

cross 2�=�2, the solution to the manager�s problem would either be trivial or would not exist. We

denote the largest income level for which r(m) = 2�=�2 by bm.
Information: In any period, the manager knows the income generated by the status quo action

and by any action he took in any previous period. We refer to these actions as �known actions�

and to all other actions as �unknown actions.� In addition to the known actions, the manager

knows that the production function was generated by a Brownian motion with drift � and variance

�2. The manager does not, however, know the realization of the Brownian motion. In any period

t, the manager�s information set is therefore given by It =
�
�; �2; (a0;m0) ; ::: (at�1;mt�1)

	
.
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Optimal Learning Rule: For simplicity we assume that the manager maximizes expected utility

on a period-by-period basis. An optimal learning rule is therefore given by (a�1; a
�
2; :::), where

a�t 2 argmaxat E [u (mt) jIt ] :

Our goal is to characterize the set of optimal learning rules.

3 Beliefs and Expected Utility

We start by examining the manager�s beliefs about the income generated by any unknown action.

For this purpose, consider any period t and let lt and rt denote the left-most and right-most known

actions. Consider now an unknown action at that is to the right of rt. For any such action, the

manager believes that income m (at) is drawn from a normal distribution with mean

E [m (at)] = m (rt) + �(at � rt) (1)

and variance

Var (m (at)) = (at � rt)�2, (2)

where � and �2 are the drift and the variance of the Brownian motion. The manager therefore

expects an action to generate higher income, the further it is to the right of rt. At the same time,

however, the further an action is to the right of rt, the more uncertain the manager is about the

income generated by that action. The beliefs for actions to the left of the left-most action lt are

analogous.

Notice that the manager�s beliefs about any action to the right of rt depend only on rt and that

his beliefs about any action to the left of lt depend only on lt. Similarly, the manager�s beliefs

about any action between lt and rt depend only on the known actions closest to that action. To see

this without having to introduce more notation, suppose that there are no known actions between

lt and rt. For any action at 2 [lt; rt], the manager then believes that income m(at) is normally
distributed with mean

E [m (at)] =
at � lt
rt � lt

m (rt) +
rt � at
rt � lt

m (lt) (3)

and variance

Var (m (at)) =
(at � lt) (rt � at)

rt � lt
�2: (4)

The manager�s expected income is therefore a convex combination of the income generated by lt

and rt. Moreover, the further the action is from the closest known action, the more uncertain the

manager is about the income generated by that action.
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The assumption that the production function is generated by a Brownian motion therefore

ensures that the manager�s beliefs take a simple form that satis�es several intuitive properties.

First, beliefs are normally distributed. Second, the manager knows more about an action, the

closer the action is to a known action, and the less complex is the production process. Third, the

manager engages in directed search, that is, he knows where he can expect better actions and he

focuses his search in that direction. And �nally, even if, over time, the manager learns the income

generated by a very large number of actions, he can never infer the entire production function. In

this sense, there is a limit to theoretical knowledge and thus a need to learn about the world by

trial-and-error.

Now that we have examined the manager�s beliefs, we can specify his expected utility. Suppose

that the manager believes that income is normally distributed with meanM and variance V and let

z denote a random variable that is drawn from a standard normal distribution. We can then state

our �rst lemma, which is proven in Hilfsatz 4.3 in Schneeweiss (1966) and Theorem 1 in Chipman

(1973).

LEMMA 1 (Schneeweiss 1966 and Chipman 1973). Suppose that ju (m)j � A exp(�Bm2) for some

A > 0 and B > 0. Then the expected utility function

W (M;V ) = E
h
u
�
M +

p
V z
�i

exists for all M 2 (�1;1) and V 2 (0; 1=(2B)). Moreover, the expected utility function satis�es

2
@W (M;V )

@V
=
@2W (M;V )

@M2
.

The restriction in the lemma ensures that expected utility is integrable, and for the remainder of

the paper we assume that it holds. Notice that since we are free to choose any positive parameters

A and B, this restriction is mild. The partial di¤erential equation in the lemma is known as the

�heat equation�and we will use it in a number of proofs below.

The next lemma establishes another property of the expected utility function that is proven in

Theorem 3 in Chipman (1973) and Theorem 2 in Lajeri and Nielsen (2000).

LEMMA 2 (Chipman 1973 and Lajeri and Nielsen 2000). The expected utility function W (M;V )

is concave.

The key property that ensures concavity of the expected utility function is decreasing absolute

prudence. In the next section we will see that in the relevant range both expected income and its

variance are linear in the manager�s action. Decreasing absolute prudence therefore ensures that

the manager�s problem is concave.
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4 Managerial Learning

We �rst focus on the optimal action in the �rst period and then turn to the second and all subsequent

periods.

4.1 The First Period

In the �rst period, the manager can either take the status quo action, in which case he is certain to

realize status quo income m0. Or he can take some action a1 6= a0, in which case he is uncertain
about what income he will realize. In the previous section, we saw that for any action a1 < a0,

expected income is strictly less than status quo income. The manager will therefore never take an

action strictly to the left of the status quo.

Suppose then that a1 � a0 and let �1 = a1 � a0 � 0 denote the size of the step the manager
takes in the �rst period. We then know from (1) and (2) that the manager�s expected income

is given by m0 + ��1 and its variance is given by �2�1. We can therefore write the manager�s

problem as

max
�1�0

W
�
m0 + ��1; �

2�1
�
,

where W (�) is the expected utility function de�ned in Lemma 1. As observed above, Lemma 2

ensures that this problem is concave.

Next, by di¤erentiatingW (�) with respect to�1, and making use of the heat equation in Lemma
1, we obtain

dW
�
m0 + ��1; �

2�1
�

d�1
= E

h
u0
�
m0 + ��1 + �

p
�1z

�i �2
2

�
2�

�2
�R (m0;�1)

�
; (5)

where

R (m0;�1) � �
E
�
u00
�
m0 + ��1 +

p
�1�z

��
E
�
u0
�
m0 + ��1 +

p
�1�z

�� .
Notice that R (m0; 0) is equal to the coe¢ cient of absolute risk aversion r (m0). At �1 = 0, the

slope of the expected utility function is therefore determined by the relative size of the coe¢ cient

of absolute risk aversion and the ratio
�
2�=�2

�
. In particular, we have

dW (m0; 0)

d�1

(
> 0 if m0 > bm
� 0 if m0 � bm; (6)

where bm denotes the largest income level m for which r(m) = 2�=�2. Intuitively, the manager

prefers an action just to the right of the status quo to the status quo itself if and only if he is

su¢ ciently wealthy, in which case his coe¢ cient of absolute risk aversion is su¢ ciently small.
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We can now establish our �rst proposition which characterizes the manager�s optimal action in

the �rst period.

PROPOSITION 1. The manager�s optimal �rst period action is unique and given by

a�1 =

(
a0 +�

� (m0) if m0 � bm
a0 if m0 < bm;

where �� (m0) is implicitly de�ned by

R (m0;�
� (m0)) =

2�

�2
(7)

and satis�es �(bm) = 0 and �0(m0) > 0 for all m0 � bm.
If m0 < bm, it is therefore optimal for the manager to take the status quo action. This result

follows immediately from the above observations that expected utility is concave and that for

m0 < bm, the slope of expected utility is negative at �1 = 0. If, instead, m0 > bm, there exists a
unique optimal action that is strictly larger than the status quo. Moreover, the step the manager

takes in the �rst period is larger, the larger is his status quo income.

In the proof of the proposition we show that existence and uniqueness of an optimal action

follows from the assumption that absolute risk aversion crosses
�
2�=�2

�
. If absolute risk aversion

did not cross
�
2�=�2

�
, an optimal action might not exist. In particular, suppose that r (m) < 2�=�2

for all m 2 R. It then follows that from (5) that W�1 (m0;�1) > 0 for all m0 2 R and for all
�1 2 R. In this case the manager therefore always bene�ts from taking a larger and larger action.

Notice also that if it were the case that r (m) � 2�=�2 for all m 2 R, then W�1 (m0; 0) � 0 for
all m0 2 R. Since W (m0;�1) is concave, it is then immediate that a�1 = a0 would be an optimal

action for all m0 2 R. Moreover, taking the status quo action would be uniquely optimal unless

the manager�s income level is given by an m0 for which r(m0) = p(m0) = 2�=�
2. The assumption

that absolute risk aversion crosses 2�=�2 therefore ensures the existence of a non-trivial solution to

the manager�s �rst period problem, as well as to the manager�s problems in all subsequent periods.

4.2 The Second and Subsequent Periods

We just saw that if m0 � bm, the manager takes the status quo action in the �rst period. In any

subsequent period, the manager then faces the same problem as in the �rst, and takes the status

quo action again. For the remainder of this paper, we therefore assume that

m0 > bm,
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in which case the manager engages in search in the �rst period by taking an action a�1 that is strictly

larger than the status quo a0.

Since the manager engages in search in the �rst period, there are two known actions in the

second period: the status quo action a0 and his �rst period action a�1. From (3) we know that

for any action between a0 and a�1, expected income is a convex combination of status quo income

m0 and �rst period income m�
1 � m (a�1). The manager therefore always prefers one of the two

known actions to any action between those two actions. Moreover, just as in the �rst period, the

manager always prefers the status quo to any action strictly to the left of the status quo. If an

optimal action a�2 exists, it therefore satis�es a
�
1 2 a0 [ [a�1;1).

To characterize the optimal second period action, we proceed in two steps. First, we assume

that the manager is constrained to take an action that is larger than his �rst period action, that

is, we assume a2 � a�1. Second, once we know the constrained optimal action, we examine under

what conditions the manager prefers that action to the status quo.

Suppose therefore that a2 � a�1 and let �2 = a2�a�1 � 0 denote the size of the step the manager
takes in the second period. The manager�s constrained problem is then given by

max
�2�0

W
�
m�
1 + ��2; �

2�2
�
;

where W (�) is the expected utility function de�ned in Lemma 1. Notice that this is the same

problem the manager faced in the �rst period, except that the income level associated with a step

of size zero is now given by m�
1 rather than m0. It then follows from Proposition 1 that the solution

to the manager�s constrained problem depends on whether m�
1 is smaller than bm. In particular, if

m�
1 � bm, the solution is given by a�1. And if m�

1 > bm, the solution is given by a�1+�� (m�
1), where

�� (m�
1) > 0 is implicitly de�ned in (7).

Next we examine when the manager prefers the constrained optimal action to the status quo.

For this purpose, consider the next lemma.

LEMMA 3. There exists a unique income level em (m0) 2 (bm; m0) such that

u (m0) =W
� em (m0) + ��

� (em (m0)) ; �
2�� (em (m0))

�
; (8)

where �� (em (m0)) > 0. The derivative of this income level satis�es

0 <
dem (m0)

dm0
< 1:

If �rst period income m�
1 is equal to em (m0), the manager is indi¤erent between the status

quo and the constrained optimal action. It then follows that the manager strictly prefers the
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constrained optimal action to the status quo if m�
1 > em (m0) and that he strictly prefers the status

quo to the constrained optimal action if m�
1 < em (m0). Notice that this implies that if m�

1 is

strictly between em (m0) and bm, the manager reverts to the status quo even though the marginal
return from engaging in further search is positive. The reason is that while in this case search is

better than m�
1, it is not better than the status quo m0 > m

�
1.

The problem that the manager faces in any period t > 2 is very similar to the one he faces

in period 2. The only di¤erence is that in any period t > 2, the manager does not necessarily

compare his expected utility from engaging in further search with his utility from the status quo,

as he does in the second period. Instead, the manager compares his expected utility from engaging

in further search with his utility from whatever known action generates the largest income level,

which may be the status quo action or some other known action.

To state the proposition that characterizes the manager�s optimal action in all periods t � 2,

let mt denote the largest known income level in period t, that is, let

mt = maxfm0;m
�
1;m

�
2; :::;m

�
t�1g.

Also, let at denote the action that generates mt, that is, let

at 2 fa0; a�1; a�2; :::; a�t�1g such that m (at) = mt.

And �nally, recall that rt denotes the largest known action in period t. We can then state our

next proposition.

PROPOSITION 2. The manager�s optimal action in period t � 2 is unique and given by

a�t =

(
rt +�

� (m (rt)) if m (rt) > em (mt)

a (mt) otherwise,

where �� (m (rt)) > 0 is de�ned in (7) and em (mt) is de�ned in (8).

In any period t � 2, the manager therefore engages in search if and only if the income level

m (rt) associated with the largest previously taken action rt is above a threshold em (mt), where the

threshold is increasing in the largest known income level mt.

4.3 Discussion

The two propositions we just derived characterize the optimal learning rule and show that it takes a

simple form. In particular, if status quo income is below a threshold, the manager takes the status

quo action in the �rst period, and he continues to do so in all subsequent periods. If, however,
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status quo income is above the threshold, the manager starts to search in the �rst period by taking

an action that is strictly larger than the status quo. In subsequent periods, he then continues to

search by taking larger and larger actions until he reaches a period in which income falls below

another threshold. Once that happens, the manager reverts to the best known action and then

continues to take that action in all subsequent periods.

Figuratively, the manager�s exploration of the rugged landscape depends on the height of his

starting point. If that point is too low, he just stays put. If his starting point is su¢ ciently high,

however, he starts exploring the rugged landscape by taking discrete steps towards the right. The

manager continues his rightward march until he falls o¤ a su¢ ciently large cli¤. At that point,

continuing his march is too risky for the manager, who instead returns to the highest peak he

discovered during his exploration.

Notice that even though the manager eventually settles for an action that guarantees him some

level of income, he is not satis�cing. In particular, the manager does not stop searching for better

actions once he found one that is �good enough.� Instead, he stops searching for better actions

after having taken a su¢ ciently bad one. The manager then reverts to the best known action

because further search is too risky. Notice also that when the manager does settle for an action,

that action is a local peak given the manager�s information. Since the manager�s information is

coarse, however, his action will not, in general, be an actual local peak.

A key implication of the model is that it generates persistent performance di¤erences. We

discuss this implication in the next section.

5 Persistent Performance Di¤erences

In this section we �rst show that persistent performance di¤erences arise if �rms have di¤erent

status quo income levels. We then show that if there are multiple, complementary managerial

practices and learning is decentralized, persistent performance di¤erences can arise even if �rms

are identical.

5.1 Di¤erences in Status Quo Income Levels

To understand the e¤ect of an increase in status quo income, recall that the optimal �rst period

action is increasing in status quo income. An increase in status quo income therefore generates

higher expected income in the �rst period, both because the starting point from which the manager

searches is higher, and because his �rst step is larger. A larger step, however, also generates more

uncertain income. And higher status quo income raises the threshold below which the manager
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�nds it optimal to revert to the status quo in the second period. It is therefore not immediately

obvious whether an increase in status quo income makes it more likely that the manager will

engage in further search in the second period. Speci�cally, it follows from Proposition 2 that the

probability with which the manager engages in further search in the second period is given by

prob (m�
1 > em (m0)) = F

 
m0 + ��

� (m0)� em (m0)p
�� (m0)�

!
,

where F (�) is the cumulative density function of the standard normal distribution. Notice that an
increase in m0 increases both the numerator�the di¤erence between expected �rst period income

m0+��
� (m0) and the threshold level of income em (m0) above which the manager engages in further

search�and the denominator�the standard deviation of �rst period income
p
�� (m0)�. The next

lemma shows that the e¤ect on the numerator dominates the e¤ect on the denominator. And it

shows that this is true for all subsequent periods.

LEMMA 4. The probability that the manager engages in further search in period t � 2 is strictly
increasing in status quo income, that is,

dprob (m�
t > em (mt))

dm0
> 0:

An increase in status quo income therefore favors search unambiguously: it makes it more likely

that the manager engages in search in the �rst period, it increases the size of the �rst period action

if the manager does engage in search, and it makes it more likely that the manager will engage in

further search in any subsequent period. As a result, an increase in status quo income generates an

even larger increase in expected income in any subsequent period, as shown in the next proposition.

PROPOSITION 3. An increase in status quo income generates a disproportionate increase in

expected income in any period t � 1, that is,

dE [m�
t (m0)]

dm0
> 1:

To interpret the lemma, suppose there are two �rms that di¤er in their status quo income.

The two �rms use the same production function. Their managers, however, cannot observe each

other and thus learn about the production function independently. The lemma implies that the

di¤erence in expected income in any period t � 1 is strictly larger than the di¤erence in status quo
income. Di¤erences in status quo income therefore do not only persist, they actually grow larger.
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5.2 Complementarities and Decentralized Learning

The explanation for persistent performance di¤erences that we just discussed relies on di¤erences

in status quo income. In this section we show that if there are multiple, complementary managerial

practices, persistent performance di¤erences can arise even if �rms are identical.

For this purpose, suppose there are two managers, A and B. In any period t = 1; 2; ::: the

managers make decisions aAt 2 R and aBt 2 R and then realize their incomes mA
t and m

B
t . In

particular, their incomes are given by

mA
t = m

�
aAt
�
� 1
2
�
�
aAt � aBt

�2
and

mB
t = m

�
aBt
�
� 1
2
�
�
aAt � aBt

�2
;

where � � 0 is a parameter that measures the importance of coordination between the managers�
decisions. The function m (�) is once again the realized path of a Brownian motion with drift � and
variance �2 and for which m0 = m (0). Notice that this function is the same for both managers.

The managers are therefore learning about the same production function.

The managers know that the production function is generated by a Brownian motion with drift

� and variance �2 and that m (0) = 0. Moreover, in any period t, the managers know the actions

that they took in previous periods and the income that these actions generated. Managers A and

B therefore have the same information set

It =
�
�; �2; (0;m0) ;

�
aA1 ;m

A
1

�
;
�
aB1 ;m

B
1

�
; :::;

�
aAt�1;m

A
t�1
�
;
�
aBt�1;m

B
t�1
�	
.

And they have the same utility function u (�) that satis�es the same properties described above.
We distinguish between centralized learning�in which case the managers coordinate their actions�

and decentralized learning�in which case the managers take their actions independently and simul-

taneously. If learning is centralized, the optimal learning rule is the same as the one we derived

above. If learning is decentralized, however, there is a key di¤erence, which we derive below. Since

the formal analysis of this version of the model is similar to the single-action version we described

above, we relegate the formal analysis to the appendix.

5.3 The First Period

The managers never �nd it optimal to take actions to the left of the status quo, just as in the

single-action model. Suppose therefore that aA1 � aA0 and a
B
t � aB0 and let �

A
1 = aA1 � aA0 and
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�B1 = aB1 � aB0 denote the size of each manager�s �rst period step. We can then write manager

A�s expected utilities as

WA

�
m0 + ��

A
1 �

1

2
�
�
�A1 ��B1

�2
; �2�A1

�
= E

�
u

�
m0 + ��

A
1 �

1

2
�
�
�A1 ��B1

�2
+ �

q
�A1 z

��
;

where z is again a random variable drawn from the standard normal distribution. The de�nition

of manager B�s expected utility is analogous. The managers��rst period problem is then given by

max
�A1 �0

WA

�
m0 + ��

A
1 �

1

2
�
�
�A1 ��B1

�2
; �2�A1

�
and

max
�B1 �0

WB

�
m0 + ��

B
1 �

1

2
�
�
�A1 ��B1

�2
; �2�B1

�
:

The solution to this problem gives the managers�optimal �rst period actions, which we characterize

in the next proposition.

PROPOSITION 4. The managers�optimal �rst period actions are unique and given by

aA�1 = aB�1 = a�1

where a�1 is the optimal action in the single-action model de�ned in Proposition 1.

The optimal �rst period actions are therefore the same as in the single-action model. Notice

that this implies that there cannot be any coordination failures in the �rst period, even if the

actions are very complementary, that is, even if � is very large.

To understand why coordination failures cannot arise in the �rst period, suppose that � is very

large and that �A1 = �B1 = 0. Notice that if �A1 = �B1 , the e¤ect of a marginal increase in the

size of a manager�s action on expected utility is second order. As long as m0 > bm, manager A
has an incentive to unilaterally increase the size of his action by a small amount. But once A has

increased his action, manager B bene�ts from increasing her action by the same amount. And

once B has increased her action by the same amount, A bene�ts by unilaterally increasing her

action by a further small amount. This process continues until each manager�s action is equal to

the optimal action in the single-action model, at which point neither manager has an incentive to

unilaterally change his or her action.

5.4 The Second and Subsequent Periods

Consider �rst the second period. As in the single-action model, it is never optimal to take an

action that is either strictly to the left of the status quo or strictly between the status quo and
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the optimal �rst period action a�1. And as in the �rst period of the two-action model, the two

managers will always take the same action. In contrast to either setting, however, the managers

may now get stuck in a coordination failure.

To understand why coordination failures can arise in the second period, suppose that m�
1 is just

marginally larger than the threshold income level em (m0). We saw above that if m�
1 > em (m0),

then in the single-action model the optimal second period action is given by a�1 + �
� (m�

1) > a�1,

where �� (m�
1) is de�ned in (7). Suppose now that in the second period manager A takes action

a�1 +�
� (m�

1). Since the managers bene�t from coordination, it is then optimal for manager B to

take the same action. It is therefore an equilibrium for each manager to take action a�1+�
� (m�

1).

Suppose now, however, that manager A takes the status quo action a0. If � is large enough, it is

then optimal for manager B to take the same action. It is therefore also an equilibrium for each

manager to take the status quo action, in which case the managers are stuck in a coordination

failure.

To understand the conditions under which coordination failures can arise in the second period,

suppose that m�
1 > em (m0) and let �k� (m�

1; 0) denote the solution to

max
�A2 �0

WA

�
m0 + ��

A
2 �

1

2
�
�
�A2
�2
; �2�A2

�
and

max
�B2 �0

WB

�
m0 + ��

B
2 �

1

2
�
�
�B2
�2
; �2�B2

�
In the appendix we show that there then exists a unique income level em (m0; �) such that

u(m0) =W
K

�em (m0; �) + ��
k� (em (m0; �))�

1

2
�
�
�k� (em (m0; �))

�2
; �2�k� (em (m0; �))

�
(9)

for k = A;B. In words, there exists a unique income level such that if one manager takes the

status quo action, the other is indi¤erent between also taking the status quo action and engaging in

search. Notice that em (m0; 0) = em (m0). Moreover, we show in the appendix that while em (m0; �)

is strictly increasing in �, it is always strictly smaller than m0. For any � > 0 there therefore exists

a region (em (m0; �) ;m0) such that if m�
1 is within that region, there are two equilibria. In one of

those equilibria, both managers take the status quo action. And in the other, both managers take

action a�1 +�
� (m�

1), which is the optimal second period action in the single-action model.

As in the single-action model, the problem faced by the managers in periods t � 2 is very

similar to the �rst period problem. To characterize the optimal actions in periods t � 2, notice

�rst that it is never optimal for managers A and B to take di¤erent actions. We can therefore

once again use mt to denote the largest income level known in period t. Similarly, we can once
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again let a (mt) denote the action associated with mt. And �nally, we once again let rt denote the

right-most known action in period t. We then have the following proposition.

PROPOSITION 5. The managers�optimal actions in period t � 2 are given by

aA�t = aB�t = a�t =

(
rt +�

� (m (rt)) if m (rt) > em (mt; 0)

a (mt) if m (rt) � em (mt; �)

where �� (m (rt)) > 0 and em (mt; �) are de�ned in (7) and (9) and where em (mt; �) is strictly

increasing in � and satis�es em (mt; �) < mt for any � � 0.

In any period t, multiple equilibria therefore arise if the income level associated with the right-

most action rt is strictly between em (mt; 0) and em (mt; �). We already noted that the critical

income level em (mt; �) is strictly increasing in �. In the appendix we further show that as � !1,em (mt; �)! mt. This implies that as coordination becomes very important, coordination failures

become pervasive. In particular, the only way to avoid coordination failures for sure is for each

period�s income level to be larger than the previous period�s income level.

6 Barriers to Imitation

So far we have abstracted from imitation. As we observed in the Introduction, however, the man-

agerial practices of successful �rms are often observable and are protected by patents. This raises

the question of why under-performers do not imitate the managerial practices of top performers.

To address this question, suppose now that there is a single manager who has to take actions

aAt and a
B
t in every period t. These actions are so complementary that the manager always needs

to set them equal to each other, that is, aAt = a
B
t = at. The manager�s income is then given by

mt = m
A (at) +m

B (at) ;

where mA
�
aAt
�
and mB

�
aBt
�
are the production functions for the two actions. Each production

function is an independently realized path of a Brownian motion with drift � and variance �2. The

status quo actions are given by aA0 = a
B
0 = a0 = 0 and each status quo action generates status quo

income mA (0) = mB (0) = m0=2, where we divide by two for notational convenience. The rest of

the model is as in the single-action model.

In the �rst period, the manager�s expected utility is then given by

W
�
m0 + 2�1�; 2�1�

2
�
= E

h
u
�
m0 + 2��1 + �

p
2�1z

�i
;
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where �1 = a1�a0 denotes the size of the manager�s �rst period step. Notice that this expression
is equivalent to the manager�s �rst period expected utility in the single-action model if the drift

were given by 2� and the variance were given by 2�2. We can therefore use Proposition 1 to

determine the manager�s optimal decisions in the �rst period.

To focus on imitation, suppose that in the absence of any other information, the manager �nds

it optimal not to engage in search in the �rst period, that is, suppose that m0 < bm, where bm is

de�ned in Section 4.1.

Suppose now that the manager learns about a competitor that uses the same production function

for action A. The production function for this action is therefore industry-speci�c. In contrast,

the production function for action B is �rm-speci�c, in the sense that for each �rm the production

function is an independent realization of the Brownian motion with the same drift, variance, and

status quo action described above. The manager knows that the actions of the competitor are

given by bA = bB = d > 0, where d measures the distance in the action space. Moreover, the

manager knows that mA (d) = D +m0=2, D > 0 measures the distance in performance.

We are interested in the conditions under which the manager prefers the status quo to imitation,

that is, the conditions under which he prefers action a1 = 0 to a1 = d. To determine these

conditions, notice that the expected utility from imitation is given by

W
�
m0 +D + �d; �

2d
�
.

The manager therefore prefers the status quo to imitation if and only if

u (m0) �W
�
m0 +D + �d; �

2d
�
:

We can now use the results from the single-action model to characterizeW
�
m0 +D + �d; �

2d
�
.

In particular, it follows from (6) that

dW (m0 +D; 0)

dd
> 0

if and only if m0 + D > bm. Moreover, it follows from Lemma 2 that W
�
m0 +D + �d; �

2d
�
is

concave in d. And �nally, it follows from Proposition 1 that if m0 +D > bm there exists a unique

d > 0 at which W
�
m0 +D + �d; �

2d
�
is maximized. Together these properties imply that there

exists a critical distance bd > 0 such that the manager prefers the status quo to imitation if and only
if d � bd. The manager therefore prefers the status quo to imitation if the competitor�s managerial
practices are too far its own, in which case imitation is simply too risky. The following proposition

summarizes this result and shows how the critical distance varies with the economic environment.
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PROPOSITION 6. The manager prefers the status quo to imitation if and only if

d � bd;
where bd > 0 is increasing in D and decreasing in �2.

The manager therefore prefers the status quo to imitation if the competitor is too far away in

terms of its actions, not in terms of its performance. Indeed, the further ahead the competitor

is in terms of performance, that is, the larger D is, the more likely it is that the manager prefers

imitation to the status quo. Notice also that the barrier to imitation is the complexity of the �rm

speci�c managerial practice. The less complex this managerial practice is, that is, the smaller �2

is, the more likely it is that the manager prefers imitation to the status quo. And if �2 = 0, the

manager will always �nd it optimal to imitate that other �rm.
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