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Abstract 

Scholars have long debated whether, and to what extent, law constrains judicial 

decisions. Because law cannot be objectively measured, many believe that judicial 

decisions cannot be empirically evaluated on grounds internal to the practice of 

law. This Article demonstrates that empirical analysis of judicial decisions can 

nevertheless provide objective, albeit limited, conclusions about subjective 

criteria for evaluating a system of adjudication. It begins by formalizing three 

criteria: inter-judge inconsistency, legal indeterminacy, and judicial error. It then 

clarifies what can be learned about these criteria from observational data on 

single-judge adjudication. The precise level of inconsistency cannot be identified, 

but it is possible to estimate a range of feasible values. Similarly, rates of 

indeterminacy and error cannot be estimated in isolation, but it is possible to 

estimate a curve that identifies feasible combinations of these rates. The 

methodologies developed in this Article are illustrated using data on immigration 

adjudication. 
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I. Introduction 

For much of the last century, scholars have debated whether, and to what extent, law 

constrains judicial decisions. Rule skeptics—including many legal realists, critical legal scholars, 

and political scientists—have argued that legal rules are seldom determinate and that judges have 

substantial discretion to decide cases according to extralegal criteria. Legal positivists such as 

Hart (1961), on the other hand, agree that legal rules are occasionally indeterminate, but assert 

that the law is clear and binding in most cases. A third position, taken by interpretivists such as 

Dworkin (1986) and many proponents of natural law, holds that law is always determinate, 

although it does not always constrain judicial decision making in practice. 

Many empirical studies have documented substantial disparities among adjudicators in 

criminal (e.g., Everson 1919; Gaudet, Harris, and St. John 1933; Waldfogel 1998; Anderson, 

Kling, and Stith 1999), social security (Mashaw et al. 1978), and immigration cases (Ramji-

Nogales, Schoenholz, and Schrag 2007). More recently, studies of circuit courts have also found 

differences in case outcomes depending on the composition of the panel (e.g., Revesz 1997; 

Cross and Tiller 1998; Sunstein et al. 2006;  Miles and Sunstein 2006, 2008). Such studies 

provide intuitive confirmation that judicial decisions are not fully constrained by law, but they do 

not attempt to quantify compliance with rule-of-law values. It is true that the existence of 

disparities among judges refutes the claim that judging is perfectly objective and predictable, but 

no one has even taken this claim seriously (Tamanaha 2009: 27–43). The meaningful empirical 

question is not whether a system of adjudication meets such an ideal, but rather the degree to 

which it falls short (Ibid.: 145–48).  

One reason why answers have been elusive is that inquiries about legal constraint have 

both conceptual and empirical components, yet there is little engagement between philosophical 

and quantitative analyses of law (Galligan 2010). The conceptual part of the inquiry addresses 

the question, “When does law obligate a judge to reach a particular outcome?” The answer to 

this question depends on which sources of law are considered authoritative and what obligations 

they establish. Theories of law that include moral principles as valid sources, for example, may 

determine unique outcomes more frequently than narrow conceptions of law that rely exclusively 

on legal texts. 

The empirical component addresses the question, “How often do judges deviate from 

their legal obligations?” Although this inquiry is essentially empirical, it is posed from an 
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internal point of view. For this reason, it might seem that objective answers are unattainable. As 

Barry Friedman observed, as long as “[t]here are deep philosophical debates within the legal 

academy itself about what law is, … it [will be] difficult to make claims about law’s influence 

that are readily subject to falsification” (2006: 265–66). 

In this Article, I demonstrate that it is in fact possible to make progress on the empirical 

inquiry without first resolving the conceptual inquiry. I do so by formalizing three measures—

inconsistency, indeterminacy, and error—and clarifying what can be revealed about them using 

empirical analysis of observational data. I use the term “inconsistency” to capture how often the 

outcome of a case will depend on the identity of the judge selected to decide it; formally, it 

represents the probability that two judges would differ in their disposition of a randomly selected 

case. “Indeterminacy” denotes the proportion of cases in which the law fails to require a unique 

result. “Error” represents the proportion of cases in which the judge’s decision conflicts with the 

result required by law.  

These measures can serve to quantify the gap between how judges actually decide cases 

and how they ought to decide cases. Because these measures coincide with widely accepted 

concepts in legal theory, they can provide credible justification for normative claims about legal 

rules and the design of adjudicatory institutions. The federal sentencing guidelines, for example, 

were motivated in large part by empirical studies of inter-judge sentencing disparity (Stith and 

Cabranes 1998: 104–12) and claims about inconsistency and indeterminacy in pre-guidelines 

sentencing (Frankel 1974: 1–12). The Social Security Administration similarly justified its 

vocational grid for disability determinations on the ground that it would reduce inconsistency 

among adjudicators (43 Fed. Reg. 55,349 [1978]). More recently, some scholars have argued that 

inconsistency between majority-Democratic and majority-Republican circuit court panels 

justifies greater judicial deference to administrative agencies (Miles and Sunstein 2006, 2008) or 

partisan balancing within panels (Cross and Tiller 1999).  

Because inconsistency is formulated purely in terms of observable judicial decisions, and 

not with respect to the contested requirements of law, it would appear to be objectively 

measureable. For this reason, most empirical studies of judicial decision making present results 

that can be interpreted in terms of inconsistency. Indeterminacy and error, on the other hand, are 

only cognizable from an internal point of view, and therefore might appear to be outside the 

province of empirical inquiry (Kysar 2007; Edwards and Livermore 2009). I show, however, that 
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although indeterminacy and error cannot be measured in isolation, it is possible to derive 

informative results by examining them jointly. Specifically, for any data set of adjudication 

outcomes in which cases are assigned randomly, it is possible to estimate a minimum rate of 

error as a function of the proportion of cases that are assumed to be indeterminate. These 

estimates can be used to construct an “indeterminacy-error curve” that demarcates a boundary 

between feasible and infeasible combinations of indeterminacy and error rates.  

The empirical methods employed in this Article draw upon recent advances in the 

estimation of partially identified econometric models (Manski 2003; Tamer 2010). These 

methods enable statistical inference with minimal assumptions; the tradeoff is that they yield 

weaker estimates than standard econometric approaches. Even with an infinite amount of data, 

the methodology developed here could not derive precise estimates of inconsistency, 

indeterminacy, and error, but could only generate upper and lower bounds on inconsistency and 

joint bounds on indeterminacy and error. However, the methodology clarifies what additional 

sources of data can sharpen the estimates and demonstrates the need for strong assumptions in 

order to justify legal or institutional reforms. 

The organization of this Article proceeds as follows. Section II provides the conceptual 

framework for operationalizing inconsistency for the purpose of empirical analysis. It then 

addresses the statistical identification of inconsistency, revealing what can be learned about the 

rate of inconsistency in an idealized setting. Drawing upon the framework used to analyze 

inconsistency, Section III shows how to construct joint bounds on indeterminacy and error rates. 

Section IV addresses statistical inference, developing methods for generating confidence 

intervals for the rate of inconsistency and confidence regions for indeterminacy and error rates 

using observational data. Section V provides an illustration of the framework developed in this 

Article using data on administrative asylum adjudication. Section VI concludes. An appendix 

provides most mathematical derivations as well as a table with descriptions of all variables used 

in the analysis. 

 

II. Inconsistency 

Many empirical studies find disparities among judges’ decision rates, and conclude that 

law fails to fully constrain judges’ decisions. Such claims are intuitive: if judges reach various 

outcomes at significantly different rates in randomly assigned cases, then their decisions cannot 



 

5 
 

be uniquely determined by law. Yet comparisons of judges’ decision rates also have important 

limitations. Although such statistics are useful for testing whether judges are perfectly consistent, 

they do not by themselves provide enough information to estimate the magnitude of 

inconsistency.  

To illustrate, consider two judges, both of whom would decide in favor of plaintiffs 50% 

of the time in an identical set of cases. It is possible that both judges would side with plaintiffs in 

the same 50% of cases, in which case their decisions would be perfectly consistent. On the other 

hand, it is possible that the second judge would decide every case contrary to how the first judge 

would decide, so that their decisions would be perfectly inconsistent. Alternatively, both judges 

could be deciding cases by flipping coins. These scenarios have sharply different normative 

implications, but the mere lack of disparity between the judges’ decision rates does not allow us 

to distinguish among them. Even if the judges were perfectly consistent, they could be always 

correct, always incorrect, or anywhere in between. 

 Even if we knew the precise rate of inconsistency between judges, it would be a 

misleading indicator of legal constraint, since adjudication can be highly consistent even when 

law fails to constrain judicial decisions.1 Consider another hypothetical court with two judges, 

both of whom decide every case incorrectly, but in exactly the same way. In this hypothetical 

court, both judges would be perfectly consistent, but all of the decisions would be contrary to 

law. Now imagine that a third judge is appointed, and that this judge decides every case 

correctly. Inconsistency would increase, since the third judge would always differ from the first 

two, but the rate of error would also decrease.  

Although inconsistency provides evidence that law does not fully constrain judges, this 

example demonstrates that it cannot be used to comparing the degree of legal constraint in 

different courts or different time periods. Nevertheless, inconsistency may be of theoretical 

interest for two additional reasons. First, it provides a measure of the degree of predictability in 

adjudication (Coleman and Leiter 1993; Waldron 2007). Most theories of the rule of law require 

that individuals have notice regarding how the law will be applied and the opportunity to 

conform their behavior to its requirements. To the extent that the outcomes of potential disputes 

                                                            
1 For example, many legal realists (e.g., Moore and Hope 1929; Cohen 1935; Llewellyn 2011) and critical legal 
scholars (e.g., Kairys 1984; Singer 1984; Dalton 1985) argued that legal rules were largely indeterminate but that 
adjudication nevertheless followed predictable patterns. 
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would be invariant to the judges selected to adjudicate them, parties could predict how the law 

will be applied and plan accordingly. This will be true even if consistency stems from extralegal 

influences. Second, inconsistency provides evidence of comparative injustice, in the sense that 

like parties are not being treated alike (Waldron 2007). It would be unjust for a defendant facing 

a harsh judge to receive a longer prison term than an equally culpable defendant who was 

assigned to a lenient judge. There is substantial disagreement, however, regarding whether the 

comparative discrepancy is itself a form of injustice; some argue that such discrepancy is merely 

evidence that one of the sentences was not determined according to law in a non-comparative 

sense (Westen 1982).  

The importance of predictability and comparative justice will necessarily depend on 

context. In circumstances in which law enables unconnected individuals to coordinate their 

activities, predictability may be a central concern (Shapiro 2011: 132). As Justice Brandeis 

observed, it may be “more important that the applicable rule of law be settled than that it be 

settled right” (Burnet v. Coronado Oil & Gas Co., 285 U.S. 393, 406 [1932]). Comparative 

justice will be of greater concern if outcomes are not uniquely determined by law but legal or 

moral considerations prescribe equal treatment among certain parties. 

A. Empirical Framework 

Let  denote a set of legal questions, and let  denote a set of  judges (or administrative 

decision makers) who could potentially decide the questions in . In typical studies,  will 

consist of cases involving a common legal issue, but the validity of the analysis does not require 

any degree of similarity among the cases. Alternatively, the unit of observation might not be 

cases but rather particular issues within cases (such as whether a plaintiff has standing), abstract 

hypotheticals, or administrative determinations. The only restriction placed on , to avoid the 

possibility of selection bias, is that the criteria for inclusion of a case in  must be independent of 

the judge assigned to adjudicate that case.2 In this Article, I shall ignore any heterogeneity 

among the cases in	 ; future research will consider how to incorporate information about 

particular cases into the framework developed here.  

                                                            
2 This condition may not be satisfied, for example, in a study that only examines published opinions if the decision 
to publish is not independent of the judge deciding the case. Similarly, studies that examine cases that decide a 
particular legal issue might violate the condition if some judges are less likely to reach the merits on this issue. 
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To operationalize the concept of inconsistency, imagine that we could observe two 

judges’ decisions in a case under idealized conditions. The case would be litigated before both 

judges, with perfect replication, and the judges would issue their decisions in complete isolation. 

Let  and  denote the respective decisions of judges  and  in case  in this idealized 

comparison. In the causal model of Neyman (1935) and Rubin (1974), the cases are the units of 

observation, judges  and  can be viewed as “treatments,” and the decisions  and  are 

“potential outcomes.” For simplicity, assume that these decisions can be coded in a dichotomous 

manner, so that  takes on the values of zero and one.3 To maintain generality, we refer to a 

decision as “positive” when 1 and “negative” when 0. Depending on the 

context, a positive decision might mean that a plaintiff obtained some particular form of relief, or 

that the judge’s decision coincides with a liberal outcome. The results will be valid irrespective 

of the method for coding outcomes, but some coding choices may generate more informative 

results than others.  

If  —that is, if the outcome of case  would have depended on whether it 

was assigned to judge  or judge —then we say that these judges’ decisions in case  would be 

inconsistent. Define “pairwise inconsistency”  as the proportion of cases in  that would be 

decided inconsistently between judges  and  under these idealized conditions, and let “average 

inconsistency”  be the average rate of pairwise inconsistency among all pairs of judges in . 

This can be interpreted as the probability that a randomly selected case would be decided 

inconsistently between a pair of randomly selected judges under idealized conditions. Note that 

we are only estimating inconsistency among cases that are litigated; these will not be 

representative of the universe of potential disputes (Priest and Klein 1984). Whether, and how, 

estimates of inconsistency can be extrapolated is a subject for future research.  

B. Pairwise Inconsistency 

In courts where cases are randomly assigned to a single judge, it is never possible to 

simultaneously observe  and  for two judges , . This is due to what Holland (1986) 

                                                            
3 For simplicity, I shall also assume that each decision is non-stochastic, i.e., that the outcome would always be the 
same if a case were assigned to the same judge, and that judges do not “drift” ideologically during the period of 
study. If judicial decisions are stochastic, then the results in this article still hold with respect to expected 
inconsistency and error rates. 
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calls the “fundamental problem of causal inference.” For any case , we only observe the 

outcome for the judge who actually decided the case. The decisions that would have been 

rendered by the other judges are unobserved “potential outcomes.”  

The standard approach in the Neyman-Rubin model is to estimate an average treatment 

effect 	E , representing the average effect of reassigning a case from judge 

 to judge . As long as assignment of judges is random, it is possible to derive a valid estimate of 

the  with minimal assumptions.4 For this reason, many studies of judicial behavior have 

reported average treatment effects, such as the average effect of replacing a male judge with a 

female judge (Boyd, Epstein, and Martin 2010).  

The problem with this approach is that the  does not have any normative 

significance; it can be directly measured, but it is not a valid metric for evaluating systems of 

adjudication. In the example discussed at the beginning of this section, in which both judges 

favor plaintiffs 50% of the time, the  would be zero. Yet this result is compatible with highly 

desirable as well as highly undesirable scenarios. 

Although inconsistency cannot be expressed as an , it is possible to derive bounds on 

inconsistency by exploiting information about the judges’ rates of reaching positive decisions. 

Let  represent the proportion of cases in  in which judge  would reach a positive decision. In 

practice, we cannot know  exactly, since we only observe judge ’s decisions in a subset of the 

cases. However, if these cases are representative, then we can use statistical methods to estimate 

the distribution of . 

For the purpose of deriving bounds on inconsistency, suppose that we have exact 

knowledge of  and . These rates specify the marginal distributions of  and , but the 

inconsistency rate  is determined by the joint distribution of  and , which is not observed. 

This is illustrated in the following contingency table, in which the joint probabilities are denoted 

, , , . 
                                                            
4 In particular, it is necessary to assume that judges’ decisions (or potential decisions) will not be affected by which 
judges were assigned other cases. In the Neyman-Rubin framework, this assumption is known as the “stable unit 
treatment value assumption” (Rubin 1980). This could potentially be violated if judges’ decisions are influenced by 
the precedential authority of other judges’ decisions. For the remainder of the discussion, I make the simplifying 
assumption that there is no precedential influence among the cases in . This may be a reasonable assumption in 
many systems of administrative adjudication. In addition, when  encompasses a short time period, the impact of 
prior cases might dominate the precedential effect of cases within . If the cases span a longer time period, a model 
with time controls may be adequate to control for the effects of precedent. 
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TABLE 1 
CONTINGENCY TABLE FOR JUDGES’ DECISIONS 

  negative
( 0) 

 positive 
( 1) Total 

 negative ( 0)     1  

 positive ( 1)    

Total 1    

 

The  can be represented in terms of the joint probabilities as  

 or in terms of the marginal probabilities as ; it can be consistently estimated 

because it can be expressed as a function of the marginal probabilities. The rate of inconsistency 

between judges  and  is given by , the sum of the joint probabilities 

corresponding to disagreement between  and . Although these joint probabilities cannot be 

expressed as a function of marginal probabilities, Fréchet (1951) and Hoeffding (1940) provide 

bounds on the joint probabilities in terms of the marginals. The Fréchet-Hoeffding bounds for 

 and  are as follows: 

max	 , 0 min , 1  

max , 0 min , 1  
(1) 

 
Summing the two inequalities in (1) yields the following result. 

PROPOSITION 1: Let  and min , 2 . Then the rate of pairwise 

inconsistency  between any two judges  and  satisfies 

, (2) 

and both bounds are sharp. 

PROOF: See Appendix. 

To provide some intuition for the above result, consider the following comparison 

between Justices Thomas and Ginsburg. According to the Spaeth Supreme Court Database 

(2011), Justice Thomas voted in the liberal direction 29% of the time during the 2000–2009 
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Terms, while Justice Ginsburg voted in the liberal direction 62% of the time.5 Given only this 

information, and not information about their specific votes, what could be inferred about their 

rate of disagreement? The lower bound in Proposition 1 shows that they must disagree at least 

|62% 29%| 33% of the time. This lower bound would occur if all of Justice Thomas’s 

liberal votes coincided with liberal votes by Justice Ginsburg. Proposition 1 also shows that they 

can disagree in at most min 62% 29%, 2 62% 29% 91% of the cases. This would 

occur only if each justice’s liberal votes coincided with conservative votes by the other justice. 

Without any additional information, the data on the two justices’ voting rates can only 

show that their rate of disagreement lies somewhere between 33% and 91%. If this interval 

seems surprisingly wide, and if the conditions for achieving the upper bound sound implausible, 

it is only because the justices’ votes are in fact simultaneously observable, their voting patterns 

are widely known, and many readers have rough sense for what it means for a vote to be 

“liberal.” In this instance, because the justices’ votes are simultaneously observable, we can test 

our intuitions on the data. Table 2 provides a contingency table showing the joint outcomes for 

the two justices over the 2000–2009 Terms. 

TABLE 2 
CONTINGENCY TABLE FOR JUSTICES THOMAS AND GINSBURG: 

PROPORTION OF LIBERAL VOTES, 2000–2009 TERMS 

 Thomas 
Conservative

Thomas 
Liberal Total 

Ginsburg Conservative 34%  4%  38% 

Ginsburg Liberal 37% 25% 62% 

Total 71% 29%  

 

The true rate of disagreement between Justice Thomas and Justice Ginsburg is 41%, 

which can be found by adding the entries in off-diagonal cells. This rate of disagreement is eight 

percentage points higher than the lower bound, but still quite far from the upper bound. Although 

                                                            
5 The Spaeth Supreme Court Database determines which votes are liberal and conservative based on the issues 
presented in each case. Although this coding method usually conforms to readers’ expectations, various aspects of 
the coding procedure have been criticized by Shapiro (2009), Landes and Posner (2010), and Harvey and Woodruff 
(forthcoming). 
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this result may not seem surprising, intuition alone could not have revealed the precise rate of 

disagreement. In other applications, where outcomes are not simultaneously observable and 

judges are less well-known, intuition may be an even weaker guide.  

The conditions under which the bounds on inconsistency are achieved can be formulated 

precisely using the following definitions.  

DEFINITION: Given judges  and , we say that judges  and  are monotonic if either 

 for all  or  for all .  

DEFINITION: Given judges  and , we say that judges  and  are countermonotonic if either 

1  for all  or 1  for all .  

Two judges are monotonic if the decisions of one judge are always at least as positive as 

the decisions of the other judge; this corresponds to the concept of monotonicity used in the 

literature on treatment effects (e.g., Imbens and Angrist 1994; Manski 1997). Similarly, judges  

and  are countermononotic if judge  would be monotonic with a judge who always disagrees 

with judge . In the contingency table in Table 1, monotonicity corresponds to the scenario 

where either 0 or 0, while countermonotonicity corresponds to the situation where 

either 0 or 0.  

PROPOSITION 2: If judges  and  are monotonic, then the rate of pairwise inconsistency  

between  and  achieves the lower bound in Proposition 1 (i.e., ). If judges  and  are 

countermonotonic, then the rate of pairwise inconsistency  achieves the upper bound in 

Proposition 1 (i.e., ). Under either of these assumptions,  will be point-identified. 

PROOF: See Appendix. 

To illustrate how the bounds are achieved, consider two judges  and  with decision 

rates of 20% and 35%, respectively. Figure 1 illustrates a monotonic voting pattern in which the 

lower bound is achieved. The lines represent an unordered space of cases, where the shaded bars 

represent positive votes and the unshaded bars represent negative votes. In this illustration, judge 

 always reaches a positive decision whenever judge  does, so that  for all . 

Both judges reach a positive decision in 20% of the cases, and both reach a negative decision in 
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65% of the cases. Disagreement between judges  and  occurs only in the remaining 15% of 

cases in which judge  reaches a positive decision but judge  reaches a negative decision. 

FIGURE 1 
LOWER BOUND ON PAIRWISE INCONSISTENCY: MONOTONIC JUDGES 

 

 
The upper bound in Proposition 1 is achieved when the judges are countermonotonic, as 

illustrated in Figure 2. Here, there is no overlap between the positive votes of judge  and the 

positive votes of judge  (i.e., 0), and the two judges disagree in 45% of the cases. 

FIGURE 2 
UPPER BOUND ON PAIRWISE INCONSISTENCY: COUNTERMONOTONIC JUDGES 

 

 

To many readers, the alignment represented in Figure 2 may seem less plausible than the 

alignment represented in Figure 1. This intuition is not empirically testable, however, unless 

there exists detailed information about the cases or a representative sample of cases in which the 

judges decisions are simultaneously observable. Intuition about judicial behavior may help to 



 

13 
 

narrow the range of inconsistency, but it is at best an imperfect guide. Although it may be 

reasonable to assume some degree of positive association between the judges’ decisions, the 

judges will be monotonic only if all they can be mapped perfectly onto a left-right spectrum, a 

notion that is typically dismissed as “absurd” (Edwards and Livermore 2010: 1916). Once it is 

acknowledged that monotonicity is implausible, intuition cannot tell us exactly how close or far 

the level of inconsistency will be from the lower bound. 

Whether the actual level of inconsistency will be close to the lower bound will depend on 

how the set  of cases is defined. Intuition and experience suggest that the judges’ will be more 

closer to monotonicity when  is defined narrowly to include cases involving a single area of 

law, so that judicial preferences will be more likely to be unidimensional (Fischman and Law 

2009). On the other hand, the judges may be further from monotonicity when  is defined 

broadly to encompass cases involving many types of issues. 

Similarly, how close the level of inconsistency is to the lower bound will depend on how 

the outcomes are coded. To illustrate, suppose that  consists of discrimination cases and that 

these cases are coded positively if a judge provides some relief to an employee plaintiff. 

Although judges may disagree about the threshold for providing relief, it may seem plausible that 

the judges’ would be reasonably close to monotonic in typical cases. If  includes reverse 

discrimination cases, however, then those least likely to provide relief in typical cases might be 

most sympathetic to plaintiffs with reverse discrimination claims. If this is true, then coding 

decisions for plaintiffs in reverse discrimination cases as negative decisions would generate more 

informative bounds.  

C. Average Inconsistency 

The concept of pairwise inconsistency can be generalized from the two-judge example to 

the case of  judges by averaging the measures of pairwise inconsistency over all pairs of judges: 

2
1

. 

This can be interpreted as the proportion of cases in which two randomly selected judges would 

reach different outcomes. If every case in  were reassigned to a different judge,  represents 

the expected proportion of cases that would result in different outcomes. 
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The following result establishes bounds on average inconsistency in terms of the judges’ 

decision rates. 

PROPOSITION 3: Let ∑ , and let 

2
1

 and 
2 2 1 2

1
, 

where  denotes the largest integer less than or equal to . Then the average inconsistency rate 

 satisfies , and both bounds can be achieved. 

PROOF: See Appendix. 

Note that the lower bound on average inconsistency is simply the average of the pairwise 

lower bounds. This bound will be achieved when all pairs of judges are monotonic. The upper 

bound on average inconsistency is achieved when the positive decisions are spread out as evenly 

as possible among the cases, so that every case receives a proportion of positive decisions that is 

as close as possible to the average. The upper bound on average inconsistency, however, will 

generally not be the average of the upper bounds on pairwise inconsistency, because it may not 

be possible for all judges to be countermonotonic with each other.6 For example, suppose that 

one judge reaches positive decisions in half of the cases, and a second judge reaches positive 

decisions in the other half of the cases. These judges would be countermonotonic with each 

other, but it would be impossible for a third judge to be countermonotonic with both of them.  

To provide an example of the average inconsistency bounds, consider a hypothetical 

court with seven judges. Suppose that any case would be equally likely to be assigned to any of 

these judges, and that they would decide in the positive direction at rates of 10%, 20%, 25%, 

30%, 35%, 50%, and 60%, respectively. The lower bound on average inconsistency for these 

judges is 21%. The alignment that achieves this bound, which is depicted in Figure 3, has two 

features worth noting. First, every pair of judges is monotonic, so that pairwise inconsistency 

achieves the lower bound for every pair. Second, the judges would agree on a relative ordering of 

                                                            
6 The upper bound on inconsistency will be the average of the pairwise upper bounds only if ∑ 1 or  
∑ 1. This result follows from Theorem 3.7 in Joe (1997: 61–63). 
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the cases: all seven judges would reach a positive decision in the cases depicted at the left end of 

the spectrum, and none would do so in the cases depicted on the right.  

FIGURE 3 
LOWER BOUND ON AVERAGE INCONSISTENCY: MONOTONIC JUDGES 

 

The upper bound on average inconsistency for these judges is 50.5%. An alignment that 

achieves this upper bound in depicted in Figure 4. Note that some, but not all, pairs of judges are 

countermonotonic; given the hypothesized decision rates, it would be impossible for all pairs to 

be countermonotonic. The positive decisions are distributed as evenly as possible among the 

cases, so that all cases would result in positive decisions by either two or three judges. Thus, the 

judges would not agree on a common ordering of the cases, as they would when the lower bound 

is achieved. 
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FIGURE 4 
UPPER BOUND ON AVERAGE INCONSISTENCY: EVENLY DISTRIBUTED DECISIONS 

 

The alignment in Figure 4 may seem far-fetched; it is widely believed that judges do 

share a common understanding regarding what constitutes a strong or weak case. However, it is 

possible that judges would have a similar rank ordering among the universe of potential disputes 

but no common ordering within the set of litigated cases. In models of settlement such as Priest 

and Klein (1984), for example, the strongest and weakest cases will be settled, and probability of 

a plaintiff victory will be roughly equal among the remaining cases. If settlement typically 

occurs before the judge is announced, and if all remaining litigated cases have an equal 

probability of a positive decision, then the positive votes would be evenly distributed, as in 

Figure 4. Thus, the selection of disputes for litigation could result in a level of inconsistency that 

coincides with the upper bound, even if the judges have a similar rank ordering among litigated 

disputes. 

D. Improving the Bounds 

Subsections II.B and II.C demonstrated that inconsistency is only partially identified 

when judges’ decisions in the same cases are not simultaneously observable. In practice, such 

bounds will be of limited use in policymaking. If one goal of an institutional reform is to reduce 

inconsistency, it will be difficult to assess whether the reform is successful. Estimates of 

inconsistency pre- and post-intervention will be interval-identified, and these intervals will 

typically overlap. When this occurs, it will be impossible to determine whether the intervention 

increased or decreased inconsistency. Thus, evaluation of institutional changes will typically 

require additional data and additional assumptions. This subsection briefly discusses several 

strategies for improving the bounds, which will developed in more detail in future research. 
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The discussion in the previous sections ignored any heterogeneity among the cases. An 

alternative approach is to exploit data on case characteristics. Suppose that the case space  can 

be divided according to case attributes into  partitions. For example, if  consists of 

immigration cases, it could be partitioned by country of origin or legal claim. One could estimate 

inconsistency on each partition, and then take a weighted average of these estimates to derive an 

estimate of inconsistency on . Because the lower bound functions in Propositions 1 and 3 are 

globally convex and the upper bound functions are globally concave, Jensen’s Inequality ensures 

that this approach will always generate bounds that are at least as informative as estimating 

inconsistency on the entire case space. However, because the upper and lower bound functions 

are both piecewise linear, it is possible that exploiting case characteristics will have no effect on 

the bounds. 

Another possibility is to augment the preceding analysis with data that can shed light on 

the joint distribution of judges’ decisions. One approach would entail surveying the judges on 

how they would decide a sample of the cases in , as in Partridge and Eldridge (1974). Because 

the judges’ decisions would be simultaneously observable for the surveyed cases, it would be 

possible to estimate measures of association among the judges’ decisions, which could then 

provide estimates of the joint densities in Table 1.  

The common criticism of surveys is that they lack external validity (Diamond and Zeisel 

1975; Conley and O’Barr 1988; Sisk, Heise and Morriss 1998; Stith and Cabranes 1998: 109–10; 

Anderson, Kling, and Stith 1999). Simplified scenarios in written questionnaires may not present 

the same stimuli as actual cases: judges are not exposed to advocacy from both sides, they are 

not required to write opinions justifying their decisions, and they do not need to consider the 

impact of their judgments on actual parties. In some circumstances, judges may be loath to 

cooperate, especially if they are concerned that the research could support reforms that they 

oppose. A more credible approach would be to use sentencing councils, in which judges 

independently recommend sentences for actual offenders and discuss their recommendations 

with colleagues (Diamond and Zeisel 1975). 

Another possibility is to exploit data from appealed cases. Because appeals are typically 

decided by multimember courts, the appellate judges’ decisions will be simultaneously 

observable, and measures of association among appellate judges could conceivably be 

extrapolated to estimate the joint distributions among the judges in . Decisions in appealed cases 
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will have authenticity that survey responses lack, but this approach nevertheless raises concerns 

about external validity. The appealed cases may not be representative of the cases in  and 

appellate judges may behave differently from the judges in . Furthermore, judges on 

multimember courts typically deliberate and may be strongly influenced by consensus norms 

(Fischman 2011, forthcoming), so their decisions will not be independent. Whether and how 

estimates from appellate cases can be extrapolated to improve estimates of inconsistency will 

require further testing. 

 

III. Indeterminacy and Error 

Inconsistency measures how often judges would agree with each other, but not how often 

their decisions coincide with results required by law. This section demonstrates that judicial 

compliance with legal obligation can be measured in terms of indeterminacy and error. The 

indeterminacy rate refers to the proportion of cases in which the law does not compel a unique 

outcome. The error rate represents the proportion of cases in which the judge’s decision is 

incompatible with the requirements of law. 

There have been extensive debates about the extent of legal indeterminacy, as well as its 

normative implications (e.g., Coleman and Leiter 1993; Kress 1989; Leiter 1995; Singer 1984; 

Solum 1987). The primary normative concern is that judicial decisions are viewed as less 

legitimate if they are merely the product of judges’ discretion and not determined uniquely by 

legal rules. Most of these discussions focus on metaphysical indeterminacy (whether legal 

questions have correct answers), although some, such as Kress (1990), consider epistemic 

indeterminacy (whether the answers to legal questions are knowable). Both conceptions of 

indeterminacy are compatible with the framework developed in this section. 

A. Empirical Framework 

The approach used to derive bounds on the rate of inconsistency can be modified to 

derive bounds on the rates of indeterminacy and error. Although these rates cannot be measured 

in isolation—at least without making strong assumptions about what results the law requires—it 

is possible to derive joint bounds on these rates. As in the previous section, we assume that we 

have perfect knowledge of each judge’s decision rate  among all cases in . 
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Under any theory of law, we can define a fraction  of cases in  for which a negative 

outcome is the only legally justifiable result, a fraction  of cases for which a positive outcome 

is the only justifiable result, and a fraction  of cases in which the law is indeterminate. The 

exclusivity of these three categories requires that 1. For any judge , consider the 

following contingency table: 

TABLE 3 
CONTINGENCY TABLE FOR JUDGE ’S DECISIONS WITH RESPECT TO CORRECT OUTCOME 

 Law 
Requires 
Negative
Outcome

Law 
Requires 
Positive
Outcome

Law is 
Indeterminate Total 

 negative ( 0)       1  

 positive ( 1)     

Total     

 

As in the previous section, we cannot observe the joint probabilities , , , . 

The challenge in analyzing indeterminacy and error is that we also cannot observe the marginal 

probabilities , , and , since the correctness of outcomes cannot be objectively measured. Let 

 represent the proportion of the cases in  that would be decided erroneously by judge . Then 

, since these probabilities correspond to the situations in which judge ’s decision 

conflicts with the result required by law.  

The Fréchet-Hoeffding bounds for  and  are as follows: 

max	 1,0 min ,  

max	 , 0 min 1 ,  
 

 
Adding these inequalities and substituting 1  yields 

, , , (3) 

 



 

20 
 

where , max	 , 0 max	 , 0  and , min	 , 1

min	 1 , . 

The expected error rate ∑  is the weighted sum of the individual judges’ error 

rates, where  is the proportion of cases decided by judge . Inequality (3) provides a lower 

bound on  in terms of  and : 

, . 

We can now construct a lower bound on the expected error rate in terms of the 

indeterminacy rate. 

PROPOSITION 4: Let  denote the lower bound on the expected error rate, given a rate of 

indeterminacy . Then 

min , , (4) 

and this lower bound can be achieved for some combination of judicial votes and correct legal 

outcomes. The function  will be nonincreasing in . 

PROOF: See Appendix. 

For any given values of , ⋯ ,  and any hypothesized rate of indeterminacy , this 

bound can be calculated by evaluating the above expression for all values of  in the range 

0 1 . The fact that  is nonincreasing means that there is an explicit tradeoff 

between legal indeterminacy and judicial error when interpreting disparity. 

The intuition for Proposition 4 is illustrated in Figure 5. Assume that we know the true 

rate of indeterminacy  and the proportion of cases  in which the only correct outcome is the 

positive decision. Under these assumptions, a judge who is never in error must have a decision 

rate satisfying . Now suppose that we have three judges , , and  as depicted in 

Figure 3 with . Under these assumptions, judge  would be wrong in 

at least a proportion  of the cases in , corresponding to the second term of , . 

Similarly, judge  would be wrong in at least a proportion  of the cases, 

corresponding to the first term of , . Because judge ’s rate is within the permissible 



 

21 
 

range, it is conceivable that judge  is never wrong. In practice, of course, we cannot know  and 

. But by keeping  fixed and allowing  to vary within the possible range of values, we can 

derive the lower bound for the expected error rate in terms of the indeterminacy rate. 

FIGURE 5 
LOWER BOUND ON ERROR FOR INDIVIDUAL JUDGES 

 

Two particular consequences of Proposition 4 are worth noting. First, consider the 

Dworkinian thesis that every case has a correct answer. Under this conception, 0, so 

equation (4) reduces to 

0 min ,  

 

where  would correspond to the decision rate of a Herculean judge. The above expression is 

minimized when , the weighted median of the ’s (Wooldridge 2002: 348). Thus, if 

0, 

0  (5) 

	

If the decision rate of a Herculean judge deviates from the decision rate of the median judge, 

then the expected error rate will exceed the lower bound. 
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Second, consider a skeptical view of law, in which law consists merely of “prophecies of 

what the courts will do in fact” (Holmes 1897: 994) or “specific past decisions, and guesses as to 

actual specific future decisions” (Frank 1930: 47). Since such a view of law cannot 

accommodate the concept of legal error (Bix 2009), it must hold that 0. This means that 

there must exist a value of  for which the summation on the right-hand side of equation (4) is 

always zero. This requires  for every , which implies that , the 

difference between the maximum and minimum decision rates. Thus, if judges are cannot err, 

then at least  of the cases must be indeterminate. This quantity can also be 

interpreted as a measure of unpredictability, representing the proportion of cases in which at least 

some judges will disagree as to the outcome. 

It is also possible to construct an upper bound on error, which is given by Proposition 5.  

PROPOSITION 5: Let 1 . Then the expected rate of error as to result satisfies 

, and both bounds can be achieved.  

PROOF: See Appendix. 

Note that the error rate discussed here refers only to errors as to result, where the case 

outcomes can be coded dichotomously. If there are multiple results corresponding to positive and 

negative decisions—for example, if a court provides relief to a plaintiff, but has a choice 

regarding remedies—then there could be an error as to the remedy even if the decision 

corresponds to the correct dichotomous outcome. Thus, the rate of error as to remedy will always 

be at least as large as the rate of error as to result. Similarly, although an erroneous result 

necessarily implies incorrect justification, the converse does not hold; an incorrect justification 

can still lead to a correct result. Thus, the lower bound on the rate of error estimated here will 

also be a lower bound on the rate of error as to remedy or justification. However, the upper 

bound given in Proposition 5 will not be an upper bound on the rate of error as to remedy or 

justification. It is conceivable that every decision could be incorrectly justified, even if some 

fortuitously reached the correct result. The bounds on error as to remedy or justification are 

summarized in the following corollary.  

COROLLARY 1: The expected rates of error as to remedy or as to justification must satisfy 

1, and any rate within this range is possible. 
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This upper bound is highly conservative, and can only be achieved when the correct 

answer in each determinate case is contrary to the outcome that a majority of judges would have 

reached. This will be implausible in most applications but could occur when the law is out of 

date or when a legal system is dysfunctional or unjust. For the remainder of the discussion, I 

ignore the upper bound on error, since it only applies as to result and is unlikely to be binding in 

typical applications. 

By evaluating the lower bound  on the expected error rate for all values of  between 

0 and 1, we can construct an “indeterminacy-error curve.” This curve visually depicts how inter-

judge disparity can be decomposed into indeterminacy and error. Combinations of indeterminacy 

and error rates that lie above this curve would be feasible, while those combinations below the 

curve would not.7 

To illustrate, consider the hypothetical court discussed in the previous section, in which 

the judges have decision rates of 10%, 20%, 25%, 30%, 35%, 50%, and 60%, respectively. 

Figure 6 depicts an indeterminacy-error curve for this hypothetical court. The region below the 

curve represents combinations of indeterminacy and error rates that are infeasible given the 

judges’ voting rates, while the region above the curve represents feasible combinations. 

If we were to assume that every case has a unique correct outcome, what could we say 

about the error rate? Clearly, given the disparate decision rates, the judges cannot all be correct 

in every case. The rate of error will be minimized when the legally correct rate of positive 

decisions coincides with the decision rate of the median judge. If this occurs—if exactly 30% of 

the cases require positive decisions—then the error rate will be minimized at 12.9%, the point at 

which the curve intersects the vertical axis. The error rate, of course, could be much higher: the 

lower bound coincides with the true error rate only if all judges are monotonic with respect to 

each other and the median judge is always correct. 

Under an assumption of judicial infallibility, the indeterminacy rate must be at least 50%, 

as shown by the intersection of the curve with the horizontal axis. This bound is determined by 

the extreme judges—the ones with 10% and 60% decision rates. Since these judges would reach 

different outcomes 50% of the time, we must acknowledge at least this rate of indeterminacy if 

neither of these judges is ever wrong. 
                                                            
7 If we are interested in errors as to result, then it would also be necessary to verify that the error rate does not 
exceed the upper bound . 
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FIGURE 6 
INDETERMINACY-ERROR CURVE FOR HYPOTHETICAL COURT IN WHICH 

JUDGES HAVE DECISION RATES OF 10%, 20%, 25%, 30%, 35%, 50%, 60% 

 

 
Since the lower bound  is achievable for every value of , this curve will capture all 

the information that observational data on judges’ decision rates can reveal about rates of 

indeterminacy and error, in the absence of further assumptions. The methodology developed here 

can identify which combinations of indeterminacy and error rates are compatible with the data, 

but cannot say whether any such combination is more plausible than any other. That the 

methodology does not rely on contestable assumptions about law is therefore both a strength and 

a weakness. Because it can present empirical conclusions regarding indeterminacy and error in a 

manner that is uncontroversial, it can establish a “domain of consensus” (Manski 2003: 3) among 

scholars with sharply divergent views about the nature of law. However, these empirical 

conclusions must necessarily be weak, since no empirical study can resolve philosophical 
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debates about legal indeterminacy or normative debates about the content of law. Once a domain 

of consensus is established, observers can supplement the empirical results with subjective 

assumptions. Proceeding in this manner helps to clarify which claims are based on empirical 

analysis and which are subjective. 

B. Improving the Bounds 

As with inconsistency, the joint bounds on indeterminacy and error will typically not be 

precise enough on their own to justify policy interventions. The estimates can conceivably be 

improved by using additional data, as in Section II.D. But with indeterminacy and error, it will 

invariably be necessary to impose additional untestable assumptions about law.  

For example, an observer who subscribes to the “right answer thesis” could impose the 

additional assumption that 0, yielding the lower bound on error in equation (5). One who 

believes that legal indeterminacy is a marginal phenomenon could impose an upper bound on the 

indeterminacy rate. It is also possible to impose bounds on  and , the proportion of cases for 

which the law requires negative and positive outcome, respectively. Justification for such bounds 

would necessarily rely on a qualitative analysis of the cases in .   

It may be possible to generate a more useful upper bound on error by incorporating an 

assumption that if most or all judges would decide a case in the same way, then that decision 

must be the legally correct one (Mashaw et al. 1978; Greenawalt 1990). Bix (2009) provides a 

justification for this claim from a positivist perspective: if law is a matter of social fact, then 

consensus among judges regarding the disposition of cases would constitute the meaning of the 

law. Thus, if the judges in  are representative of the interpretive community, it would be 

impossible for all or nearly all of the judges to be in error.  

 

IV. Inference with Observational Data 

[NOTE TO NBER PARTICIPANTS: It has come to my attention that there are problems 

with the way I am using the bootstrap, but I haven’t had time to correct it. I suspect the results 

will not change much. In any event, the sampling variation appears to be quite small relative to 

the identification uncertainty.] 

The discussion in the previous two sections proceeded under a simplifying assumption: 

that the decision rates  of the judges could be known with certainty. Abstracting away all 
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problems of statistical inference, these sections showed what could be identified about the 

quantities of interest. In practice, of course, the decision rates will not be known precisely; they 

can only be estimated from observational data. This section discusses how to construct 

confidence intervals for inconsistency and how to derive an indeterminacy-error curve that 

accounts for statistical uncertainty about judges’ decision rates. 

There will typically be a variety of ways of deriving estimates of the ’s from 

observational data. If the assignment of cases to judges is fully random, in the sense that each 

case in  is equally likely to be assigned to each judge in , then we may simply use the sample 

decision rate (the proportion of positive decisions) to derive an estimate ̂  for each judge . 

Otherwise, we can use regression models that include variables that explain the likelihood of 

assignment, such as time periods and districts, to derive an estimate ̂  for each judge. If 

assignment is random conditional on these covariates, then it is not necessary to include case 

characteristics in a regression, although they could potentially increase the efficiency of the 

estimates. We can then use the estimates ̂  to construct consistent estimates of , ,  and 

. 

Asymptotically valid confidence intervals can be derived using the bootstrap, as in 

Horowitz and Manski (2000).8 Let  denote a column vector of the ’s. Construct a series of  

simulated data sets, drawn from the original data set with replacement, and let ∗ denote the 

estimate of  from the th bootstrap sample. For each ∗, we can construct bootstrap estimates of 

                                                            
8 The confidence intervals are constructed to cover the entire identified region with specified probability, not merely 
the true parameter. In the case of inconsistency, the confidence intervals will be conservative with regard to the true 
parameter. There may not exist “true” parameters for indeterminacy and error in an objective sense. Imbens and 
Manski (2004) provide a method for constructing tighter confidence intervals that cover the true parameter with the 
specified probability, but their method requires that the estimators for the bounds be asymptotically normal, which 
will not necessarily be satisfied. 

The upper and lower bounds on inconsistency will be asymptotically normal only if all of the ’s are distinct and 
1 for all , . If these conditions hold, then the upper and lower bounds on each  will be asymptotically 

normal; see part (i) of Appendix E in Heckman, Smith, and Clements (1997). The bounds on error  and  
will fail to be asymptotically normal for some values of ; this will occur whenever any of the maximization 
constraints inside the summation in equation (6) are binding. This is most easily seen in the case where                 

, so that 0 and the distribution of  converges to the distribution of             
max ̂ ̂ , 0 . The first term inside the maximization will be asymptotically normal but 
the asymptotic distribution of   will be truncated normal. 
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the bounds ∗, 
∗
, ∗ , and 

∗
. By repeated bootstrap sampling, we can estimate the 

distribution of these bounds conditional on the data. 

For any parameter of interest, we can generate an interval determined by its upper and 

lower bound for each bootstrap sample. To construct a 1  confidence interval, we then find 

the smallest interval that fits a proportion 1  of these intervals. For example, to generate a 

99% confidence interval for , we generate a series of bootstrap intervals ∗,
∗

, and find the 

smallest interval that encompasses 99% of these intervals. 

Although this methodology provides consistent estimators of the true bounds, there may 

be substantial finite-sample bias in some applications. This will be especially relevant for the 

estimates of the lower bounds on inconsistency and error, both of which will typically overstate 

the true bounds.9 This can be seen most easily by considering the case in which all judges’ true 

decision rates are exactly equal. The lower bounds on inconsistency and error must be zero, but 

estimates derived from finite samples will almost always be positive. 

The bias will be largest when many judges have similar decision rates and the number of 

observations is small. To correct for the bias, I adjust all estimates by the bootstrap estimate of 

bias provided by Efron and Tibshirani (1993: 125).10 This adjustment will provide valid 

confidence intervals in most applications, however, the adjustment may still be inadequate in 

small samples when judges’ decision rates are exactly equal or nearly so. More sophisticated 

adjustments may be necessary in such circumstances.  

 

V. Illustration: Immigration Adjudication 

To illustrate how the methodology developed here can be applied to observational data, I 

derive estimates of inconsistency and construct an indeterminacy-error curve using data 

involving asylum adjudication in administrative immigration courts. These courts provide a 

natural application because they hear a large volume of cases—more than 300,000 per year—and 

                                                            
9 If ̂  is an unbiased estimate of 	 , then the bias on the inconsistency lower bound is positive because  is a convex 
function of . Thus, by Jensen’s inequality, E ̂ . The lower bound on error is not a globally convex 
function of  but has many local convexities, so bias will typically be positive in practice. 
10 For example, the estimate of bias for the inconsistency lower bound would take the form ∑ ∗ . 
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a prominent study by Ramji-Nogales, Schoenholz, and Schrag (2007) documented large inter-

judge disparities in the resolution of these claims. 

Any alien who is physically present in the United States may petition for asylum. In order 

to meet the statutory requirements for asylum, petitioners must demonstrate that they are “unable 

or unwilling to return to” their home countries due to “persecution or a well-founded fear of 

persecution on account of race, religion, nationality, membership in a particular social group, or 

political opinion” (8 U.S.C. §§ 1101(a)(42)(A)). A grant of asylum permits petitioners to remain 

in the United States, seek employment, bring certain family members to the United States, and 

potentially seek permanent residence. 

Data on adjudication outcomes from 1996–2004 were obtained from the Executive Office 

of Immigration Review through a Freedom of Information Act request, and are made available 

by the organization asylumlaw.org.11 With a few exceptions,12 cases are randomly assigned to 

judges (Ramji-Nogales et al. 2007), however, this applies only within a particular court and time 

period.13 Although the validity of the methodology does not require that the cases be similar to 

each other, I restrict the data in this illustration to a set of homogeneous cases in order to best 

ensure that each judge hears a comparable mix of cases. First, I examine only cases adjudicated 

in 2003, the most recent full year for which data are available. Second, I restrict analysis to the 

New York Immigration Court, which has the highest case volume among the 53 immigration 

courts. Third, I focus only on petitioners of Chinese origin, who comprise 52% of the claims 

filed in New York in 2003.14 Finally, I excluded defensive asylum claims, which are raised 

during the course of deportation proceedings. Most of these claims involved detained aliens, for 

which the assignment of judges may be non-random. The remaining affirmative asylum claims 

comprise 48% of all claims. These cases are referred to immigration court when an affirmative 

application for asylum is denied and the applicant does not have lawful immigration status. 

                                                            
11 The data are available at http://www.asylumlaw.org/legal_tools/index.cfm?fuseaction=showJudges2004. 
12 One exception is that one judge within each court may be designated to hear claims involving unaccompanied 
juveniles (Ramji-Nogales et al. 2007). 
13 This limitation could be addressed in future research by including court and time controls. 
14 A chi-square test that cases involving claimants of different origins are randomly distributed among judges 
weakly rejects ( 0.06). This may be due to the fact that the judges were not uniformly active throughout 2003, 
and that subtle trends in application rates by country of origin could interact with the judges varying activity rates 
throughout the year. Although deviations from randomness appear to be minor, the assumption that judges’ 
caseloads are comparable is more justified if analysis is restricted to a single country of origin. 
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There are 2593 cases remaining once the data is restricted to cases involving affirmative 

claims involving Chinese asylum-seekers in the New York Immigration Court in 2003. The 

adjudication outcomes were coded in the data in six ways. I classify the outcomes “grant” and 

“conditional grant” as positive decisions and the outcomes “denied,” “abandoned,” “withdrawn,” 

and “other” as negative decisions.15 Figure 7 provides rates of positive decisions (“grant” or 

“conditional grant”) for each of the immigrations judges who decided at least 50 cases in the 

data. The inter-judge disparities are striking: one judge reaches a positive outcome in 89% of the 

cases, while another does so in only 2% of the cases. The decision rates, moreover, are spread 

uniformly throughout this range; the disparities are not merely the result of a few outlier judges. 

These disparities may be caused by a variety of factors. One such factor may be judges’ differing 

interpretations of the statutory term “well-founded fear of persecution.” Another may be that 

some judges have a greater tendency to find alien’s accounts of persecution credible, while 

others are far more skeptical. Because these asylum cases involve fact-finding as well as legal 

interpretation, the concepts of indeterminacy and error in this context must be understood to 

encompass factual as well as legal determinations. 

                                                            
15 “Conditional grant” can be awarded to aliens raising claims involving coercive population control measures. 
These grants were conditional due to a quota that limited the number of such claims that could be granted in a given 
year. A claim is “abandoned” if the applicant fails to appear for a scheduled hearing, whereas “withdrawal” requires 
an affirmative step by the claimant. The “other” category includes changes of venue as well as other forms of relief 
besides asylum, such as cancellation of removal or voluntary departure. Many studies drop cases with outcomes 
classified as “abandoned,” “withdrawn,” or “other,” however these outcomes are not independent of the judges 
assigned to decide the claims ( 0.001). Claims are more likely to be abandoned or withdrawn when a petitioner 
is assigned to a judge who is less likely to grant asylum. Thus, dropping these cases would introduce selection bias. 
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FIGURE 7 
RATES OF “POSITIVE DECISIONS” (GRANT OR CONDITIONAL GRANT) FOR NEW YORK 

IMMIGRATION JUDGES IN AFFIRMATIVE CASES INVOLVING CHINESE ALIENS, 2003 

 
Note: The number of cases decided by each judge is indicated in parentheses. Only judges with at least 50 cases are 
displayed. 

Clearly, the disposition of some of these claims would have depended on the judges to 

which the claims were assigned. If we imagine a counterfactual in which each of these claims 

would be assigned randomly to a different judge, how many of them would turn out differently?  

To answer this question, we need estimates of average inconsistency, which are provided in 

Table 4.  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Nelson (98)

Hom (78)
Elstein (111)

Burr (100)
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Defonzo (80)
Mcmanus (103)

Bain (109)
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TABLE 4 
BOUNDS FOR AVERAGE INCONSISTENCY: AFFIRMATIVE ASYLUM CASES INVOLVING  

CHINESE ALIENS, NEW YORK IMMIGRATION COURT, 2003 
 

 Lower 
Bound 

Upper 
Bound 

Point Estimates 28.8% 51.7% 

99% Confidence Interval 26.6% 51.7% 

 

For the purpose of illustration, I report bounds derived from point estimates as well as a 

99% confidence interval. The former are derived under the simplifying assumption that the 

judges’ sample decision rates are their true decision rates. The confidence intervals reported on 

the right side are computed according to the procedure outlined in Section IV. Due to the large 

amount of data, the two sets of bounds are similar, but as a general matter, confidence intervals 

will be wider than bounds derived from point estimates. The results reveal an average 

inconsistency measure between 26.6% and 51.7%. Thus, a randomly selected pair of judges 

would disagree about the disposition of a randomly selected case at least one-quarter of the time, 

and perhaps as often as one-half of the time. 

The inconsistency results suggest that some proportion of the cases must either be 

indeterminate or wrongly decided. This can be seen more clearly in the indeterminacy-error 

curve, which is provided in Figure 8. As with inconsistency, I report a curve derived from the 

sample decision rates (the solid line) as well as a 99% confidence curve (the dashed line), 

derived from simulations using the methodology in Section IV. Due to the large amount of data, 

the difference is slight, but the confidence curve will always be more conservative. 
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FIGURE 8 
INDETERMINACY-ERROR CURVE: AFFIRMATIVE ASYLUM CASES INVOLVING CHINESE ALIENS, 

NEW YORK  IMMIGRATION COURT, 2003

 
Note: Solid line is based on sample decision rates. Dashed line is a 99% confidence curve. 

 

The curve illustrates how the disparities among the judges’ decision rates can be 

decomposed into combinations of indeterminacy and error. If we assume that each case has only 

one legally correct result, then we should expect that at least 20% of the cases will be wrongly 

decided. If we assume, on the other hand, that 20% of the cases are indeterminate, then we 

should expect that at least 10% of decisions are incorrect. The expected error rate will always be 

positive unless at least 84% of the cases are indeterminate. This implies that all judges in the 

sample would agree on the same disposition in no more that 16% of the cases.  

Empirical studies of immigration adjudication have focused on inconsistency rather than 

indeterminacy or error, in large part because of the difficulty in relating the latter concepts to 
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empirical findings. Yet normative claims about how immigration adjudication ought to be 

reformed are necessarily informed by concerns about all three concepts. For example, Ramji-

Nogales et al. (2007) and Legomsky (2007) acknowledge that bureaucratic controls on 

adjudicators would increase consistency, but oppose them because they might increase error 

rates and threaten process values such as adjudicator independence. Ramji-Nogales et al. 

advocate better screening of immigration judges, more training and resources, and closer 

appellate scrutiny of asylum determinations, all of which would likely decrease the error rate 

among determinate cases. But to the extent that cases are indeterminate and decisions are purely 

a product of judicial discretion, it is less obvious why that discretion should be exercised by an 

appellate court or an adjudicator with better legal training. Legomsky argues that such proposals 

would only result in “marginal improvements” (445), in part because he takes the position that 

many of the cases are indeterminate (425). 

Of course, assessing the proportion of cases that are indeterminate and setting tolerable 

rates of inconsistency and error will necessarily be subjective (Mashaw 1983: 149–51). Such 

determinations cannot be made in the abstract; they must rely on knowledge of the law, 

experience with the types of cases under examination, and recognition of the capacities of 

adjudicators. Nevertheless, it may be easier to reach agreement on these determinations—or at 

least to clarify grounds for disagreement—than it would be to specify a standard for correctness. 

 

VI. Conclusion 

In recent years, the empirical scholarship on judicial behavior has generated numerous 

claims that case dispositions depend, to some degree at least, on the identities of the adjudicators. 

Some studies have compared individual judges; others have found significant differences along 

party, gender, or racial lines or by composition of circuit court panels. These studies typically 

estimate and compare judges’ decision rates, but require readers to assess whether the reported 

disparities are substantively meaningful and what the normative implications might be. 

I have argued that such comparisons of judicial decision rates alone are not sufficient to 

answer many important questions about law and judicial behavior. In contexts in which legal 

predictability and comparative justice are important normative values, studies of judicial decision 

making should report bounds on the rate of inconsistency. On the other hand, empirical claims 

about the extent to which judicial decisions are justified by legal rules should be characterized in 
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terms of indeterminacy and error. The relationship between judicial voting rates and the feasible 

rates of inconsistency, indeterminacy, and error is sufficiently complex that readers of empirical 

studies cannot be expected to reach intuitive conclusions from summary statistics.  

It may seem unfortunate that these rates cannot be precisely estimated and that bounds 

may be quite wide in practice. Further developments may enable stronger inferences by 

exploiting additional sources of data or by incorporating defensible assumptions about law and 

judicial behavior. Nevertheless, it is important to recognize the limits of empirical analysis. 

Much can be gained by distinguishing claims based on credible empirical inference from those 

based on untestable behavioral or jurisprudential assumptions. 

 

Appendix 

PROOF OF PROPOSITION 1: It was demonstrated in the text that equation (2) is always satisfied. 
It remains to be shown that both bounds can be achieved. For any rate of inconsistency         

∈ , , let 1 , , ,	  

and . Then it can be verified that , all of the joint 

probabilities are bounded between 0 and 1, and the joint probabilities sum to the correct marginal 
probabilities.  

PROOF OF PROPOSITION 2: When , it follows from above that either 0 or 

0. When , it follows from above that either 0 or 0.  

PROOF OF PROPOSITION 3: Represent  by the unit interval and let 	|	 1 , so that 

Pr ∈ . The lower bound on average inconsistency can be derived by averaging the 

lower bound in equation (2) over all pairs of judges. The lower bound can be achieved by setting 

0, . 

Deriving the upper bound is more complicated, since the average of the pairwise upper 
bounds is not necessarily achievable. Let ∑  and let Pr ∑  denote the 

proportion of cases with exactly  positive votes. Then 	  and 

∑ ∑ ∑ ∑ .  

Now ∑ ∑ ∑ ∑ ∑ ∑ , so 

2
1

. (A1) 
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Thus, maximizing  is equivalent to minimizing ∑ . Constraints on the  terms are 
obtained by observing that ∑ 1 and ∑ . This leads to the constrained 
optimization problem16 

min
,⋯,

	such	that	 , 1,	and	 0	for	all	 . 

The Lagrangian takes the form 

	 1 λ , 

 
and the first-order conditions on the  terms are 

. (A2) 
 
This means that 0 for at most two distinct values of , since the expression on the 

left side of (A2) has at most two distinct roots. It follows from the complementary slackness 
conditions that 0 for at most two distinct values of .  

Suppose , 0 with . Then 1 and  implies that  

and  and . Substituting the above expressions for ,  into the minimand 

yields the expression . This expression is strictly increasing in  and decreasing in , 
so the constraints  must be binding. For non-integer , it follows that 1 and 

. When  is an integer, a similar approach shows that 1 and 0 for . In 
either case, the minimand reduces to 2 1 1 . Substituting this into the 
right-hand side of (A1) yields the upper bound in Proposition 3. 

It only remains to be shown that there exist , ⋯ ,  that achieve the minimizing values 
of , ⋯ , . Define 	 , so that the range of  is the unit interval. Let 

∑ ,∑  and let , so that . Then any ∈ 0,  will be 

included in exactly 1 of the ’s, and any ∈ , 1  will be included in exactly  

of the ’s. Thus 1 , , and 0 for all other , as required. 

PROOF OF PROPOSITION 4: It was demonstrated in the text that the bound always holds. To show 

that it can be achieved, let 0, . Let ,  denote the sets of cases in which the law 

                                                            
16 Note that there are additional upper bounds on the  terms, which are difficult to characterize. To provide one 
example, it must always hold that . I proceed by ignoring these constraints in the optimization and then 
demonstrating that the minimum can be achieved.  
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requires a negative and positive decision, respectively, and let  denote the set of cases in which 
the law is indeterminate. If 0, ∗ , ∗, ∗ , and ∗ , 1 , where ∗ is the 
value of  that minimizes the expression in equation (4), then the lower bound will be achieved. 
Thus, over the subset of determinate cases, all judges must be monotonic with respect to each 
other and with a hypothetical judge who is always correct. 

To show that  is nonincreasing, suppose that ∗ minimizes the expression in (4) for 

some . Then for , 

′ max ∗ , 0 max ∗ , 0 . 

PROOF OF PROPOSITION 5: Following the same procedure used to derive the lower bound on 

error yields ∑ , , and max ∑ , . 

Note that 

, 1 ,

max	 , 0 max	 , 0 min	 ,

min	 1 , 1

max	 , 0 min	 , 0 1

max	 , 0 min	 , 0 1 1 . 

It follows that ∑ , ∑ 1 , 1 . Thus, if ∗ minimizes 

∑ , , then 1 ∗ will maximize ∑ , , and ∑ ∗,

∑ 1 ∗, 1 . Hence 1 . 
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Appendix Table: Description of Variables 

 Set of cases or legal questions to be analyzed 

 Set of judges who could decide the cases in  

 Number of judges 

 Decision judge  would reach in case  (equals zero or one) 

 Proportion of cases in  in which judges  and  would reach 
different outcomes (“pairwise inconsistency”) 

 Average rate of pairwise inconsistency among all pairs of judges in  
(“average inconsistency”) 

 Judge ’s hypothetical rate of positive decisions among the cases in  

, , ,  Joint probabilities of outcomes for a pair of judges 

,  Lower and upper bounds on pairwise inconsistency 

,  Lower and upper bounds on average inconsistency 

 Sum of the judges’ decision rates  

 Proportion of cases in  in which a negative outcome is the only 
correct answer 

 Proportion of cases in  in which a positive outcome is the only 
correct answer 

 Proportion of cases in  in which the outcome is indeterminate 

 Proportion of cases in  decided by judge  

 Judge ’s error rate of among the cases in  

,  Lower and upper bounds on judge ’s error rate 	 

 Expected proportion of cases in  that were wrongly decided 

,  Lower and upper bounds on the error rate (as a function of the 
indeterminacy rate) 

̂  Estimate of judge ’s true decision rate , derived from decisions 
observed in the data 

, , ,  Estimates of the various lower and upper bounds, derived from the 
estimated decision rates ̂  

∗,
∗
, ∗ ,

∗
 Estimates of the various lower and upper bounds, derived from the th 

bootstrap sample 
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