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Economists strive to develop models that can explain behavior across manifold domains. At
a minimum, we ask that a model’s explanatory power extend across contexts that are essentially
similar. Stated more formally, we require that a model satisfy a criterion of stability : a single para-
meterization of the model should be consistent with observed behavior in closely related contexts.

One can treat stability as a testable hypothesis. In the case of models of consumer choice,
we can combine the stability criterion with revealed preference arguments to test the hypothesis
that consumers’preferences– as represented by the model and revealed by their choices– are sta-
ble across similar decision contexts. Barseghyan et al. (2011) and Einav et al. (2012) take this
approach to examine the stability of risk preferences, investigating whether there exists a single
parameterization of the expected utility model that is consistent with data on insurance choices
across multiple lines of coverage. Both found that most consumers (more than two thirds) do not
exhibit stable risk preferences under the expected utility model. Yet Einav et al. (2012) also found
that consumers’choices are rank correlated across contexts, suggesting that their risk preferences
have a domain-general component but are not well represented by the expected utility model.

Motivated in part by this work, Barseghyan et al. (2012) [hereafter, BMOT] used data on
households’insurance choices to estimate a generalization of the expected utility model that allows
for "generic" probability distortions. The probability distortions in the BMOT model are generic
in the sense that they can arise from a number of sources, including systematic risk misperceptions,
rank-dependent probability weighting (Quiggin 1982), Kőszegi-Rabin loss aversion (Kőszegi and
Rabin 2006, 2007), and Gul disappointment aversion (Gul 1991); see BMOT for a discussion.
Based on their estimates, BMOT concluded that probability distortions– in the form of substantial
overweighting of claim probabilities– play an important role in explaining the data.

We take a different approach in this paper. Rather than treat stability as a testable hypothesis,
we exploit the stability criterion to conduct inference on the structure of households’ risk pref-
erences, as represented by the probability distortion model and revealed by deductible choices in
three lines of property insurance. We take a partial identification approach (Manski 2003), making
minimal additional assumptions and adding these assumptions sequentially in order to transpar-
ently show the role that each plays in sharpening the inference. Under this approach, we need make
no assumptions about the relationship between observed heterogeneity and risk preferences, nor
about the distribution of unobserved heterogeneity in risk preferences. The idea is simply to use
revealed preferences arguments to bound the model parameters and to exploit the stability criterion
and other minimal assumptions– all but one of which amount to shape restrictions on the utility
and probability distortions functions– to sharpen the inference. The more choices we observe per
household, the more precise the inference we can make about the household’s risk preferences.
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In addition to stability, we make four additional assumptions. The first is constant absolute risk
aversion, our only restriction on the shape of the utility function. The second assumption is plausi-
bility: we require that there exists a single coeffi cient of absolute risk aversion and three distorted
probabilities (one for each context) that can rationalize a household’s choices. Given CARA, plausi-
bility cannot be rejected for 87 percent of households. The last two assumptions– monotonicity and
linearity– are shape restrictions on the probability distortion function. Monotonicity requires that
the distortion function is increasing, and linearity requires that the function is linear. Monotonic-
ity cannot be rejected for 85 percent of "rationalizable" households (i.e., households that satisfy
plausibility), and monotonicity and linearity cannot be rejected for 81 percent of rationalizable
households. By contrast, only 40 percent of households are consistent with expected utility, which
entails two additional restrictions: unit slope and zero intercept. Naturally, as we add shape restric-
tions, the model can rationalize the choices of fewer households. However, the inference about the
probability distortion function becomes much sharper: with monotonicity and linearity the implied
bounds on the distortion function become 42 percent tighter.

In the next part of our analysis, we address two questions: (1) What single probability dis-
tortions function comes closest to rationalizing the choices of all households? and (2) What is
the fraction of households whose behavior can be rationalized by this single probability distorting
function? To answer these questions we propose and estimate a best linear point predictor that
minimizes the expected Euclidean distance to each household’s set of "stable" probability distor-
tion functions. We prove that under mild conditions (satisfied in our data) the parameters of the
predictor are point identified, and we establish consistency and asymptotic normality of our sample
analog estimator. We find that (1) our "minimum distance" probability distortion function is re-
markably similar to the "maximum likelihood" probability distortion function estimated in BMOT
and (2) all three choices of 18 percent of "linear" households can be fully rationalized by this single
probability distortion function.

We conclude our analysis by addressing three issues. First, we demonstrate a close connection
between stability of preferences and rank correlation of choices. In short, we find that households
who satisfy linearity (i.e., who satisfy stability and each of our additional assumptions through
and including linearity) drive up the rank correlations across choices. Second, we use stability
as a model selection criterion, comparing our model with the expected utility model and leading
alternatives such as the probability weighting models of Tversky and Kahneman (1992) and Prelec
(1998) and the loss aversion model of Kőszegi and Rabin (2006, 2007). According to the stability
criterion, our model outperforms the others, including when we further restrict our model to have
a linear utility function and a linear probability distortion function with unit slope. Finally, we
exclude the possibility that unobserved heterogeneity in claim probabilities is driving our results.
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KŐszegi, B. and M. Rabin (2006): “A Model of Reference-Dependent Preferences,”Quarterly
Journal of Economics, 121, 1133—1166.

– – – (2007): “Reference-Dependent Risk Attitudes,”American Economic Review, 97, 1047—1073.

Manski, C. F. (2003): Partial Identification of Probability Distributions, New York: Springer
Verlag.

Prelec, D. (1998): “The Probability Weighting Function,”Econometrica, 66, 497—527.

Quiggin, J. (1982): “A Theory of Anticipated Utility,”Journal of Economic Behavior and Orga-
nization, 3, 323—343.

Tversky, A. and D. Kahneman (1992): “Advances in Prospect Theory: Cumulative Represen-
tation of Uncertainty,”Journal of Risk and Uncertainty, 5, 297—323.

3



Inference under Stability of Risk Preferences1

L. Barseghyan F. Molinari J. Teitelbaum

Cornell and Georgetown

April 2013

1Supported by NSF Grant SES - 1031136.

BMT (Cornell & Georgetown) Inference under Stability of Risk Preferences April 2013 1 / 46



Introduction

We start with the assumption that households use the same model of
decision making under risk when faced with similar lotteries.

What type of inference about each households’underlying risk preferences
can one make relying solely on this stability assumption (and the model)?

We answer this question within a model that allows for "generic" probability
distortions as in Barseghyan, Molinari, O’Donoghue, and Teitelbaum
(forthcoming).

This model nests the standard expected utility model as a special case.

We propose an estimator that yields the probability distortion function which
is closest in the Euclidean sense to generating distorted probabilities
consistent with the households’choices across our sample.
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Motivation

Recent studies find that under the standard expected utility model
households do not exhibit stable risk preferences.

Barseghyan, Prince, and Teitelbaum (2011)

The stability of risk preferences is rejected for a sample of households choosing
auto and home deductibles.

Einav, Finkelstein, Pascu, and Cullen (2012)

The stability of risk preferences is rejected for a sample of households choosing
health, drug, dental, and disability insurances and 401(k) investments (about
30% appear stable);
Yet (rank) correlations across choices are positive.

Hence a conjecture: Preferences are stable, but the model is "wrong."
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Preview of Findings

About 13% of households make choices that cannot be "rationalized" under
any model considered.

85% of the rationalizable households make decisions consistent with an
increasing distortion function.

82% —consistent with an increasing quadratic distortion function.

81% —consistent with an increasing linear distortion function.

62% —consistent with an increasing linear unit slope distortion function.

A single linear distortion function (our estimator obtained by minimizing the
Euclidean distance to the distorted probabilities implied by the households
choices in our sample) can explain all choices of 18% of the households
whose choices can be rationalized by a linear distortion function.
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Overview of the Data

Full data set comprises yearly information on more than 400,000 households
who held auto or home policies between 1999 and 2006.

Data include for each household:

full policy information
full menu of premium-deductible combinations for each coverage
full claims history under each coverage
rich set of demographic information

We focus on three choices:

auto collision deductible
auto comprehensive deductible
home all perils deductible

Sample: We restrict attention to the initial deductible choices of households
who hold both auto and home policies and who first purchased their auto and
home policies from the company in the same year, in either 2005 or 2006.
This yields 4170 observations.
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Variable Mean Std Dev 1st Pctl 99th Pctl

Driver 1 age (years) 54.5 15.4 26 84

Driver 1 female 0.37

Driver 1 single 0.24

Driver 1 married 0.51

Driver 1 ƛƴǎǳǊŀƴŎŜ score                                   т66               м13               р30                ф87

Driver 2 indicator 0.42

Home value (thousands of dollars) 191 125 10 619

Note: Omitted category for driver 1 marital status is divorced or separated.

Table 1: Descriptive Statistics

    Sample  (4170 Ƙouseholds)



Deductible Collision Comp Home

$50 5.2

$100 1.0 4.1 0.9

$200 13.4 33.5

$250 11.2 10.6 29.7

$500 67.7 43.0 51.9

$1000 6.7 3.6 15.9

$2500 1.2

$5000 0.4

Note: Values are percent of households.

Table 2: Summary of Deductible Choices

     Sample  (4170 households)



Coverage Mean Std Dev 1st Pctl 99th Pctl

Auto collision premium for $500 deductible 180 100 50 555

Auto comprehensive premium for $500 deductible 115 81 26 403

Home all perils premium for $500 deductible 679 519 216 2511

Cost of decreasing deductible from $500 to $250:

Auto collision 54 31 14 169

Auto comprehensive 30 22 6 107

Home all perils 56 43 11 220

Savings from increasing deductible from $500 to $1000:

Auto collision 41 23 11 127

Auto comprehensive 23 16 5 80

Home all perils 74 58 15 294

Note: Annual amounts in dollars.

Table 3: Summary of Premium Menus

     Sample (4170 households)



Claim Probabilities

We estimate each household’s claim probability µ for each coverage.

µ = probability that the household will experience at least one claim for such
coverage during the policy period

We begin by estimating how claim rates depend on observables.

We use the full data set: 1,347,461 household-year records for auto and
1,265,370 household-year records for home.

We assume household i’s claims under coverage j in year t follow a Poisson
distribution with arrival rate λijt .

For each coverage, we estimate a Poisson panel regression model with
random effects.

We use the regression results to generate predicted annual claim rates λ̂ij for
each household i and coverage j , conditional on the household’s (ex ante)
characteristics and (ex post) claims experience.

We use λ̂ij to calculate the predicted claim probability µ̂ij for each household

in our sample: µ̂ij = 1− exp(−λ̂ij ).
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Collision Comp Home

Mean 0.069 0.021 0.084

Standard deviation 0.024 0.011 0.044

1st percentile 0.026 0.004 0.024

5th percentile 0.035 0.007 0.034

25th percentile 0.052 0.013 0.053

Median 0.066 0.019 0.076

75th percentile 0.083 0.027 0.104

95th percentile 0.114 0.041 0.163

99th percentile 0.139 0.054 0.233

C

1

0

H

P

         Table 4: Predicted Claim Probabilities 

   Sample (4170 households)



The Model
Deductible Lotteries

We assume the choice of deductible involves a choice among lotteries of the
following form:

Ld ≡ (−pd , 1− µ;−pd − d , µ) .
Key underlying assumptions:

household treats its deductible choices as independent decisions
full insurance against covered losses in excess of the deductible
household experiences at most one claim during the policy period
choice of deductible does not influence µ (no moral hazard)
every claim exceeds the highest available deductible
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The Model
Probability Distortions

We incorporate probability distortions into the standard expected utility
model:

U(Ld ) = (1−Ω(µ)) · u(w − pd ) +Ω(µ) · u(w − pd − d),

where w is the household’s wealth.

Note if Ω(µ) = µ the model reduces to the standard model:

EU(Ld ) = (1− µ) · u(w − pd ) + µ · u(w − pd − d).
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The Model
Probability Distortions

As shown in Barseghyan, Molinari, O’Donoghue and Teitelbaum
(forthcoming), probability distortions arise if we incorporate rank-dependent
probability weighting, Kőszegi-Rabin loss aversion, or Gul’s disappointment
aversion into the standard model:

Rank-dependent probability weighting: Ω(µ) = π(µ)
Kőszegi-Rabin loss aversion: Ω(µ) = µ [1+Λ (1− µ)]

Gul’s disappointment aversion: Ω(µ) = (1+β)µ
1+βµ

Of course, probability distortions also can be interpreted as systematic risk
misperceptions.
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Bounds on Distorted Probabilities

Per our model:

U(Ld ) = (1−Ω(µ)) · u(w − pd ) +Ω(µ) · u(w − pd − d)

Hence, for a choice k revealed preference arguments yield:

LB ≤ Ω(µ) ≤ UB

LB = max
{
0,max
h>k

[
∆h,ku(w − pd )

∆h,k {u(w − pd )− u(w − pd − d)}

]}

UB = min
{
1,min
h<k

[
∆h,ku(w − pd )

∆h,k {u(w − pd )− u(w − pd − d)}

]}
where ∆h,k x ≡ xh − xk .
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Bounds on Distorted Probabilities

An example with linear u(·) :

U(Ld ) = −pd −Ω(µ)d

Menu consists of three deductible options:

{$250, $500, $1000}

and the choice is $500.

Then, LB (UB) is the distorted probability that makes the household
indifferent between $500 and $1000 (between $500 and $250):

p500 − p1000
1000− 500 ≤ Ω(µ) ≤ p250 − p500

500− 250
Note: The bounds on Ω(µ) are functions of prices and deductibles.

They do not depend on claim probabilities.
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Choice of the Utility Function

For our purposes, CRRA and CARA are effectively equivalent.

For realistic levels of wealth and ρ (coef. of relative risk aversion) there exists
an r (coef. of absolute risk aversion) such that utility differences implied by
the lotteries in consideration are virtually identical under CRRA and CARA.

Another alternative is the class of utility functions with a Negligible Third
Derivative (Cohen and Einav 2007). NTD generates results very similar to
CRRA/CARA.

In what follows, we assume CARA.
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Bounds on Distorted Probabilities and Stability

Under the standard expected utility multiple contexts imply multiple intervals
for the same object - the risk aversion parameter (BPT 2011; EFPC 2012)

Stability implies that these intervals should intersect - refining inference for r .

A fundamental difference here:
For a given r , multiple contexts imply multiple intervals for different objects,
Ω(µij ), j ∈ {Coll ,Comp,Home}, because µij’s (generically) are not the
same across contexts.

Hence, stability of risk preferences in our model has no identifying power
without shape restrictions on the probability distortion function Ω(·).

Without shape restrictions each interval simply gives the admissible values for
the function Ω(·) at a given µ.
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First Step - Plausibility

Plausibility ≡ non-empty interval:

LB ≤ UB

Of course, LB and UB depend on the degree of risk aversion.

Hence plausibility amounts to asking whether there exists

a single coef. of absolute risk aversion r and
three distorted probabilities (one for each context)

that can rationalize a household’s choices.
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Plausibility: Who Fails and Why

Essentially all households that fail plausibility (about 13%) have chosen an
auto collision deductible of $200, which is a dominated choice for them:

Pricing Rule for Collision
deductible $100 $200 $250 $500 $1000

base price multiplier 1.15 1.00 0.85 0.65 0.50

With linear u(·), for any base price p̄:

LB =
p200 − p250
250− 200 = p̄ · 0.15

50
and

UB =
p100 − p200
200− 100 = p̄ · 0.15

100

With concave u(·) these patterns may change for only a tiny fraction of
households...

Going forward we drop households that have chosen $200 in auto collision.
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Shape Restrictions on Probability Distortion Function

Monotonicity:
If µ ≤ µ̃ then Ω(µ) ≤ Ω(µ̃).

Monotone + Quadratic Shape:

Ω(µ) = a+ bµ+ cµ2.

Monotone + Linear Shape:

Ω(µ) = a+ bµ.

Monotone + Linear Shape, Unit Slope:

Ω(µ) = a+ µ.

Monotone + Linear Shape, Unit Slope, Zero Intercept = EUT:

Ω(µ) = µ.
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Monotonicity: What is the Extent of the Failure?

One way to measure it is as follows.

Suppose HHs use Ω̃(µ) rather than Ω(µ) when making decisions:

Ω̃(µ) = Ω(µ) + εΩ.

What is the distribution of the smallest (in absolute value) εΩ such that
every household’s Ω(µ) satisfies monotonicity?

unconditional conditional on |εΩ| > 0

average |εΩ| average |εΩ| median |εΩ| std. dev. of |εΩ|
0.008 0.110 0.055 0.135

For comparison, the average mid-points of the Ω(µ) intervals at µ = 0.02,
0.07, and 0.10 are 0.12, 0.19, and 0.23, respectively.
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Choosing Coef. of Risk Aversion

For most households there is more than one r for which a given property is
satisfied, so the question is how to choose r .

Note, however, that the larger is r , the harder it is for the model to satisfy
any given property.

Moreover, high r’s in our context might seem implausible.

Solution: For each household choose the smallest r under which a given
desired property (e.g., linearity) is satisfied.

average median std. dev.
1.25 · 10−4 0 4.75 · 10−4
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Shape Restrictions and Inference

As we add shape restrictions:

The model can rationalize the choices of a smaller fraction of households.

However, inference about the probability distortion function becomes sharper:

The implied intervals for Ω(µ) become tighter.

With monotonicity+linearity the intervals shrink by 42%.
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Stability in Sample under Linearity

What would be the preferences that are "stable" across the sample?

Denote Ψstablei ≡ {(a, b)}i the collection of all intercepts (a’s) and slopes
(b’s) that are consistent with household i’s preferences being stable.

Suppose Ψ̄stable = ∩i=1:NΨstablei is not empty. Then any point in Ψ̄ would
give preferences that are stable across households in our sample.

But the set Ψ̄ is empty:

1 There are "unstable" households.

2 For households who are "stable," there is substantial variation in their Ψstablei
sets.
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Stability in Sample under Linearity

Hence, we need to pose a more modest question: What are the preferences
that are most common in the sub-sample of households that have stable
preferences?

Or alternatively, what are the preferences that are as close as possible to
being homogeneous?

We propose and estimate a best linear point predictor:

ΩLP (m) = α+ β ·m,

that minimizes the expected Euclidean distance to the random intervals
Ωi (m)’s, where Ωi (m)’s are constructed based on Ψstablei .

In other words, we seek an (α, β) that generates preferences as close as
possible to being homogeneous, where "close" is defined in terms of
Euclidean distance.

We call it the minimum distance Ω.
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Stability in Sample under Linearity

We prove that under mild conditions (satisfied in our data) the pair (α, β) is
point identified.

We establish consistency and asymptotic normality of our sample analog
estimator.

The asymptotic distribution of the estimator is consistently approximated by
non-parametric bootstrap.
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Stability in Sample under Linearity

We find:

α̂ = .087 (s.e. .0017)

β̂ = .706 (s.e. .026)

More general version allows for α and β to be functions of observables.

That is, conditional on observables, we seek an intercept and a slope that
generate preferences as close as possible to being homogeneous, where
"close" is defined in terms of Euclidean distance.

We do this by imposing that for household i :

log αi = Xiαx
log βi = Xi βx
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Explanatory Power of the Minimum Distance Estimator

The function Ω(µ) = 0.087+ .706µ (at the minimum r) is consistent with:

all three choices of 18% of "linear" households;
at least two choices of roughly a third of "linear" households;
at least one choice of roughly 60% of "linear" households.

We measure how "close" this function comes to being consistent with choices
of the remaining households.

Define close (within some "tolerance") as follows: the (maximum across the
three coverages) distance between ΩLP and the household’s Ω(µ) intervals is
≤ tolerance.
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Stability (Linearity) and Rank Correlations

Households who satisfy linearity drive up rank correlations across choices:

Coverage Total Stable Unstable

Collision and Comprehensive 0.48∗∗∗ 0.56∗∗∗ 0.36∗∗∗

Collision and Home 0.29∗∗∗ 0.41∗∗∗ -0.05

Comprehensive and Home 0.28∗∗∗ 0.36∗∗∗ -0.06
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Stability: Alternative Models

How does our model compare to others through the prism of stability criterion?

Our Model
Quad.+
varying r

Linear.+
varying r

Quad.
r = 0

Linear
r = 0

Unit Slope
r = 0

82% 81% 74% 71% 48%

Alternatives
Other P-Distortions EUT Kőszegi
Prelec KT-power CARA NTD Rabin
44% 40% 40% 33% 25%

BMT (Cornell & Georgetown) Inference under Stability of Risk Preferences April 2013 43 / 46



Unobserved Heterogeneity in Claim Probabilities

The failure of some households to satisfy a given property may be the result
of not accounting for unobserved heterogeneity in risk.

However, the intervals for Ω per se do not depend on µij’s, only their relative
order does.

For unobs. heterogeneity to matter it should "switch" the relative order of
claim probabilities — the unobserved heterogeneity in claim prob. should be
negatively correlated across contexts. This is not the case in the data
(Barseghyan, Molinari, Morris, and Teitelbaum 2012).
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Unobserved Heterogeneity in Claim Probabilities

To assess the potential effect of unobserved heterogeneity, we compute the
expected fraction of households that satisfy a given property:

For each coverage and each household we randomly draw an unobserved
heterogeneity term, εij , from the distribution we estimated in the claim rate
regressions and use λ̃ = λ̂ · exp(εij ) as the claim rate.

Using these claim rates we compute the fraction of households that satisfy a
given property.

We repeat the above 200 times.

Distribution based on simulated λ’s
At λ̂ 5% 10% 25% 50% 75% 90% 95%

Linearity 80.5 80.4 80.6 80.8 80.9 81.1 81.3 81.5
EUT 40.4 31.8 32.1 32.4 32.9 33.3 33.7 33.8
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Conclusion

Choices of majority of households conform to decision making with distorted
probabilities.

Their choices across three different contexts can be rationalized by a single
distortion function (and a realistically low curvature of the utility function).

We show how restrictions on the shape of the distortion function sharpen the
inference.

We construct an estimator that yields the distortion function which comes
closest in the Euclidean sense to generating distorted probabilities consistent
with the households’choices across our sample. In doing so we rely only on a
revealed preference argument (and the model of decision making under risk).
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