HIGH DISCOUNTS AND HIGH UNEMPLOYMENT

Robert E. Hall Hoover Institution and Department of Economics Stanford University

Economic Fluctuations and Growth Meeting

National Bureau of Economic Research

13 July 2013

1

Stock market: Price falls more than earnings, meaning discounts rise

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation

DMP model: Present value of margin between productivity and wage (job value, J) is the driving force of labor-market tightness and unemployment

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation

DMP model: Present value of margin between productivity and wage (job value, J) is the driving force of labor-market tightness and unemployment

The rise in discounts is easily enough to explain observed large variations in unemployment, even with Nash wage bargaining

3

EXISTING RESEARCH ON DISCOUNTS AND UNEMPLOYMENT VOLATILITY

- ▶ Discount volatility in the stock market: Campbell-Shiller (1988), Cochrane (2011)
- ► CAPM expected returns as discounts in the PV of the employer's share of surplus: Yashiv (2000)
- ▶ Labor market amplification of productivity shocks as a source of discount vol: Kuehn, Petrosky-Nadeau, and Zhang (2013)
- ▶ Joint movements of job value and stock market assuming corps own only plant, equipment, and employment relationships: Merz and Yashiv (2007)

1

KEY NEW IDEAS

The DMP model makes the job value directly observable, because it is proportional to the expected duration of a vacancy, a number available from JOLTS

KEY NEW IDEAS

The DMP model makes the job value directly observable, because it is proportional to the expected duration of a vacancy, a number available from JOLTS

Capture the high cyclical volatility of discounts

5

$$\kappa + c \, \frac{V}{H}$$

$$\kappa + c \, \frac{V}{H}$$

$$\kappa + cT = \bar{J}$$

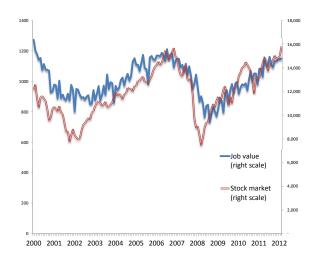
$$\kappa + c \frac{V}{H}$$

$$\kappa + cT = \bar{J}$$

$$cT = J$$

$$\kappa + c \frac{V}{H}$$

$$\kappa + cT = \bar{J}$$


$$cT = J$$

$$J = \mathbb{V}(x - w)$$
.

AGGREGATE JOB VALUE, 2001 THROUGH 2013

JOB VALUE FROM JOLTS AND WILSHIRE STOCK-MARKET INDEX

STOCK-MARKET PRICING MODEL

$$1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i}$$

STOCK-MARKET PRICING MODEL

$$1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i}$$

32 unknown $m_{i,i'}s$; 9 pricing conditions

STOCK-MARKET PRICING MODEL

$$1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i}$$

32 unknown $m_{i,i'}s$; 9 pricing conditions

Bayesian regression with very slightly informative prior centered on 1

a

DEFINITIONS OF CATEGORIES OF THE STOCK PRICE AND CORPORATE PROFITS

	Deflated detrended Wilshire stock-market index	Deflated detrended corporate profits, billions of 2005 dollars
L	1450	92
M	2411	130
Н	3619	153

STOCHASTIC DISCOUNT FACTOR INFERRED FROM THE STOCK MARKET

			Destination								
			1	2	3	4	5	6	7	8	9
		P	L	L	L	M	M	M	Н	Н	Н
Origin	P	у	L	M	Н	L	M	Н	L	M	Н
1	L	L	0.87	0.98		0.95					
2	L	M	0.98	0.91	0.99		0.99				
3	L	Н		0.99	0.94						
4	M	L	0.99			0.94	0.99		0.99		
5	M	M		0.99		0.98	0.92	0.97			0.99
6	M	Н					0.97	0.79		0.90	0.93
7	Н	L				1.01			1.03	1.01	
8	Н	M					1.00		1.01	1.04	1.00
9	Н	Н						1.00		0.99	0.95

PRESENT VALUE

$$V_i = \mathbb{E}_{i'|i} \ m_{i,i'} y_{i'}$$

DISCOUNT FACTORS AND RATES

$$V_i = D_i \bar{y}_i$$

DISCOUNT FACTORS AND RATES

$$V_i = D_i \bar{y}_i$$
$$d_i = \frac{1}{D_i} - 1.$$

DISCOUNT FACTORS AND RATES

State	P category	y category	Quarterly discount factor	Annual discount rate, percent
1	L	L	0.89	47
2	L	M	0.93	28
3	L	H	0.95	21
4	M	L	0.96	18
5	M	M	0.94	24
6	M	Н	0.85	72
7	Н	L	1.02	-9
8	Н	M	1.03	-11
9	Н	Н	0.95	19
Mean			0.95	24

$$\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'})$$

$$\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'})$$
$$J_i = \alpha + \gamma \hat{J}_i + \epsilon_i$$

$$\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'})$$

$$J_i = \alpha + \gamma \hat{J}_i + \epsilon_i$$

$$\alpha = \$661 (\$87)$$

$$\hat{J}_{i} = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'})$$

$$J_{i} = \alpha + \gamma \hat{J}_{i} + \epsilon_{i}$$

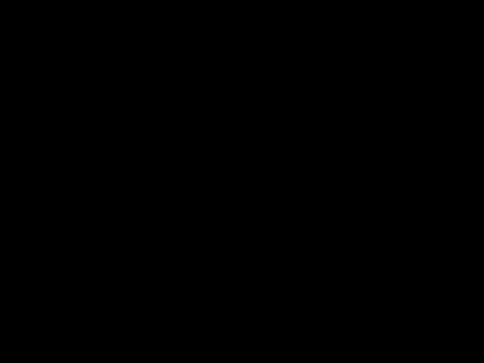
$$\alpha = \$661 (\$87)$$

$$\gamma = 1.305 (0.375)$$

ACTUAL AND FITTED JOB VALUES

State	P category	y category	Actual job value	Fitted job value
1	L	L	876	881
2	L	M	906	913
3	L	Н	907	953
4	M	L	885	929
5	M	M	946	938
6	M	Н	1004	938
7	Н	L	1011	1023
8	Н	M	1023	1053
9	Н	Н	1069	1001

RESEARCH IN PROGRESS


What fraction of the observed cyclical volatility of unemployment do variations in J account for?

Research in Progress

What fraction of the observed cyclical volatility of unemployment do variations in J account for?

Requires understanding of the decline in matching efficiency that started in 2009

.

