
DISCUSSION OF HIGH DISCOUNTS AND HIGH UNEMPLOYMENT BY BOB HALL

Mark Gertler NYU July 2013

MOTIVATION

Three observations:

- 1. Baseline DMP model cannot account for cyclicality of unemployment
- 2. Productivity shocks not important in past several recessions
- 3. Discount factor variation main source of stock price variation

This paper:

- ▶ Discount factor variation as source of unemployment fluctuations
- ➤ Key insight: with adjustment costs, input demands depend on discounted earnings streams

BASELINE DMP MODEL

▶ Job value

$$J_t = (1 - s)\mathbb{E}_t \left\{ \Lambda_{t,t+1} \left[(x_{t+1} - w_{t+1}) + J_{t+1} \right] \right\}$$

▶ FONC: recruitment cost = job value

$$cT_t = J_t$$

ightharpoonup Expected time to fill vacancy T_t :

$$T_t = \frac{V_t}{H_t}$$

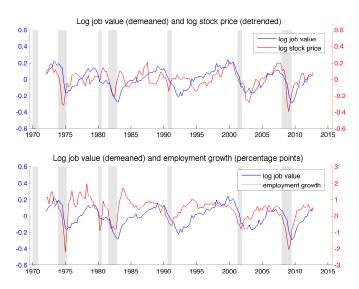
- ▶ $J \uparrow \implies V_t$ (recruitment effort) $\uparrow \implies H_t$ (hiring) \uparrow
- ▶ Parallel to Q investment theory (see also Merz/Yashiv and Kuehn et. al)

EMPLOYMENT VARIATION IN DMP

Variation in job value

$$J_t = \mathbb{E}_t \sum_{i=1}^{\infty} (1 - s)^i \Lambda_{t,t+i} (x_{t+i} - w_{t+i})$$

 $1 - s \equiv \text{job survival prob.}$


- Shimer (2005): with Nash bargaining too little variation in $x_t w_t$.
- ▶ Shimer/Hall (2005): sticky wages can generate sufficient variation, given variation in x_t .
- ▶ Hall (2013): absent volatility in x_t , volatility in $\Lambda_{t,t+i}$ a candidate

DISCOUNT FACTOR VARIATION AND JOB VALUE

- Co-movement between stock market and job value suggestive of mechanism!
- ▶ Job value identified off FONC:
 - Proportional adj. costs key:

$$cT_t = c\frac{V_t}{H_t} = J_t$$

- vacancy/hiring ratio $\frac{V_t}{H_t}$ varies positively with J_t
- employment growth varies positively with $\frac{V_t}{H_t}$
- ▶ Co-movement of stock market with J reflects co-movement with $\frac{V_t}{H_t}$ and emp. growth

DISCOUNT FACTOR VOLATILITY AND JOB VALUE: IDENTIFICATION

Steps:

- Recover stochastic discount factors using stock price and earnings data
- 2. Confirm that SDF volatility accounts for much of stock price volatility
- 3. Use stochastic process for earnings and discount factor to construct a "synthetic" measure of job value J^*
- 4. Verify that J^* can explain the variation in J (i.e job value measured off the FONC $\equiv c \frac{V}{H}$)

IDENTIFICATION (CON'T)

- 1. Detrend stock price P and earnings y data
- 2. Divide $P,\,y$ each into 3 equally likely states to construct 9 state transition matrix
- 3. Identify $\Lambda_{i,i'}$ off asset pricing relation

$$P_i = \sum_{i} \pi_{i,i'} \Lambda_{i,i'} (P_{i'} + y_{i'})$$

4. Use $\Lambda_{i,i'}$ to identify synthetic job value J^*

$$J_i^* = (1 - s) \sum_i \pi_{i,i'} \Lambda_{i.i'} (J_{i'} + y_{i'})$$

IDENTIFICATION (CON'T)

▶ Confirm that "asset value" measure explains variation of job value by regressing J_t on J_t^*

$$J_i = \alpha + \gamma J_i^* + \varepsilon_i$$

with $J_t = c \frac{V_t}{H_t}$

- ▶ 9 observations
- $\widehat{\alpha} = 661; \widehat{\gamma} = 1305$
- $R^2 = 0.63$
- ▶ Conclusion: J_i^* accounts for much of variation in $J_t \Longrightarrow$
 - ▶ Since discount factor explains most of variation in J_t^* , it explains much of the variation in J_t .

TAKEAWAY

- ▶ Highly plausible theory and suggestive empirical work
- ▶ Main issue: only nine observations
 - ▶ Difficult to evaluate model fit
 - Some anomolous estimates e.g. average annual discount rate of twenty plus percent
 - ► Simple historical accounting difficult with coarse states

Complementary exercise: Loglinear decomposition of J

- ▶ Suppose worker surplus proportionate to profits, i.e., $x w = \gamma y$
- ► FONC:

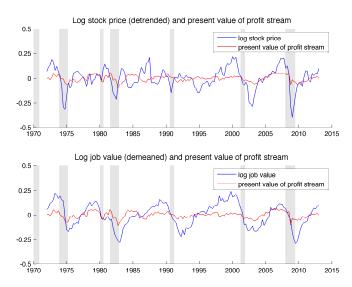
$$c\frac{V_t}{H_t} = J_t$$

$$= \mathbb{E}_t \sum_{i=1} (1-s)^i \Lambda_{t,t+i} (\gamma y_{t+i})$$

- ▶ Loglinearize to decompose variation in J_t between profit and discount factor variation
 - Analagous to loglinear decomposition of stock prices (e.g. Campbell)

LOGLINEAR DECOMPOSITION OF J

▶ Loglinear equation for J_t :


$$\widehat{J}_t = \mathbb{E}_t \sum_{\tau=0}^{\infty} \lambda^{\tau} \widehat{\Lambda}_{t+\tau,t+\tau+1} + (1-\lambda) \mathbb{E}_t \sum_{\tau=0}^{\infty} \lambda^{\tau} \widehat{y}_{t+\tau+1}$$

where $\lambda = (1 - s)\Lambda$

▶ Identifying discount factor stream

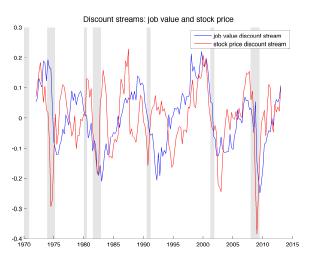
$$\mathbb{E}_t \sum_{\tau=0}^{\infty} \lambda^{\tau} \hat{\Lambda}_{t+\tau,t+\tau+1} = \hat{J}_t - (1-\lambda) \mathbb{E}_t \sum_{\tau=0}^{\infty} \lambda^{\tau} \hat{y}_{t+\tau+1}$$

- use forecasting model for \hat{y}_t to compute PV of profits

DISCOUNT FACTOR STREAMS: STOCK PRICES \hat{P}_t VS. JOB VALUE \hat{J}_t

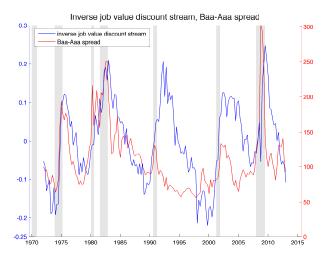
 \triangleright variation in \widehat{P}_t due to discount factor:

$$\mathbb{E}_t \sum_{\tau=0}^{\infty} \Lambda^{\tau} \hat{\Lambda}_{t+\tau,t+\tau+1}$$


 $\Lambda \equiv$ steady state SDF

 \blacktriangleright variation in \hat{J}_t due to discount factor:

$$\mathbb{E}_t \sum_{\tau=0}^{\infty} \lambda^{\tau} \hat{\Lambda}_{t+\tau,t+\tau+1}$$


$$\lambda \equiv (1 - s)\Lambda \approx 0.9 \cdot \Lambda$$

▶ Two streams should be closely correlated

Sources of discount factor variation

- Evidence of countercycical movement in excess equity returns and credit spreads
 - ▶ Consequences for cyclical spending decisions
- ▶ Finance economists have been hard at work on these facts
 - ▶ See Cochrane (2011) for a survey
 - ► Taxonomy: without vs. with frictions
 - ▶ Macroeconomists need to join the hunt (in greater numbers)
- Suggestion in this paper: financial crises source of major discount rate increases
 - ▶ Implies co-movement between discount rates and credit spreads

SOME FINAL REMARKS

- ➤ This paper: cyclical movement in discount rates is likely an important source of employment (as well as investment) fluctuations.
 - ► Theory compelling
 - ▶ Empirical work creative and suggestive
- ▶ More work needed on:
 - ▶ Identification of discount factor variation
 - ▶ Theory of discount factor variation
- Look forward to hearing Bob's next edition at future EFG meeting!