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I. Introduction 

 A large literature documents the effects of neonatal health (commonly proxied by 

birth weight) on a wide range of adult outcomes such as wages, disability, adult chronic 

conditions, and human capital accumulation. A series of studies, conducted in a variety of 

countries, including Canada, Norway, and the United States, have made use of twin 

comparisons to show that the heavier twin in the pair is more likely to have better adult 

outcomes measured in various ways.1 

 While the existing literature makes clear that there appears to be a permanent 

effect of poor neonatal health on socio-economic and health outcomes, it provides no 

guidance regarding the potential pathways through which these effects come into being. 

For instance, we know very little to date about whether the effects of poor neonatal health 

on cognitive development varies at different ages (say, at kindergarten entry versus third 

grade versus eight grade), and no existing study identifies whether school quality could 

help to mitigate the effects of poor neonatal health on cognitive development. For that 

matter, we know virtually nothing about whether these effects vary heterogeneously 

across different demographic or socio-economic groups, so it is impossible given the 

extant literature to know whether early neonatal health and parental inputs are 

complements or substitutes. As such, while we have strong evidence from twin 

comparison studies that poor initial health conveys a disadvantage in adulthood, we have 

virtually no information about the potential roles for policy interventions in ameliorating 

this disadvantage during childhood. 

 The reason for these gaps in the literature involves data availability. The datasets 

that previous researchers have used to study the effects of poor neonatal health on adult 

outcomes (e.g., Scandinavian registry data, or data matching a mother’s birth certificate 

to her children’s birth certificates) do not include information on schooling and human 

capital measures during key developmental years. And even the small number of studies 

                                                      
1 Examples of influential previous research include Behrman and Rosenzweig (2004) on schooling and 
wages, Almond et al. (2005) on neonatal outcomes and hospital costs, and  Royer (2009) on next 
generation birth weight, neonatal outcomes and educational attainment, for the United States; Black et al. 
(2007) on neonatal outcomes, height, IQ, high school completion, employment, earnings and next 
generation birth weight, for Norway; Oreopoulos et al. (2008) on neonatal outcomes, health outcomes in 
adolescence, educational attainment and social assistance take up, for Canada; Rosenzweig and Zhang 
(2012) on educational attainment, wages and weight for height, for China; Torche and Echevarria (2011) on 
mathematics test scores; Bharadwaj et al. (2010) on mathematics test scores and attendance, for Chile. 
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that investigate the effects of birth conditions on test scores rather than adult outcomes 

(Bharadwaj et al., 2010; Rosenzweig and Zhang, 2009) are in developing contexts (e.g., 

Chile and China) that lack the diversity necessary to explore heterogeneous effects of 

poor neonatal health on cognitive development, or these effects in a western developed 

context. And while the Early Childhood Longitudinal Study – Birth Cohort (ECLS-B) of 

children born in the United States in 2001 oversamples twins, this data set is too recent to 

investigate outcomes in late elementary school or adolescence, too small to study 

heterogeneous effects of birth weight, and does not include cognitive outcomes that have 

high stakes for children. 

 Another gap in the adult-outcomes literature is that the subjects of that literature 

are rather old at present; they were necessarily born in the 1970s and earlier. Given the 

advances in modern neonatology, it is reasonable to believe that poor neonatal health in 

the 21st century may bear little resemblance to poor neonatal health fifty years ago.2 

There have been no studies linking neonatal health to either educational or later outcomes 

in a western development context using very recent birth cohorts.3 

 We make use of a major new data source that can fill these gaps in the literature. 

We match all births in Florida from 1992 through 2002 to subsequent schooling records 

for those remaining in the state to attend public school. Florida is an excellent place to 

study these questions because it is large (its population of around 17 million compares to 

Norway, Denmark, and Sweden combined) and heterogeneous (45 percent of mothers are 

racial or ethnic minorities, and 23.4 percent of mothers were born outside the United 

States.) In addition, Florida is well-known for having some of the strongest education 

data systems in the United States; Florida, North Carolina, and Texas established the 

most advanced statewide student longitudinal data systems in the United States during the 

first half of the 2000s, and Florida has been testing children annually from third through 

eighth grade for over a decade. For several cohorts, Florida also implemented a universal 
                                                      
2 As one example of the temporal differences in neonatology, whereas 50 years ago the threshold for infant 
viability was around 1500 grams, today the threshold for viability is as low as 500 grams or even lower. As 
such, it is independently valuable to study the effects of birth weight using a more contemporary set of 
births than those used in the existing literature. 
3 The potential benefits of using more current data become apparent when we compare the mean birth 
weight amongst twins in our study of children born after 1992 (2409 grams) to those from previous studies 
of twins born in the 1930s through the 1970s (which range from 2517 to 2598 grams, depending on the 
cohort and country.) Therefore, our population includes a set of twins who more closely resemble twins 
being born in western industrialized countries today. 
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kindergarten readiness assessment that allows us to explore the effects of birth weight on 

children’s cognitive outcomes as early as age five. In addition to superb education data 

quality, Florida offers another major advantage when attempting to match birth and 

school records: Because children born in Florida are immediately assigned a social 

security number, and because social security numbers are collected upon school 

registration, Florida presents the opportunity for particularly effective matches between 

birth and school records. This allows Florida’s health and education agencies the ability 

to nearly perfectly match births to school records. As we describe in the next section, our 

match rate is almost identical to what we would have expected based on American 

Community Survey data. 

 With these new data, we follow over 14,000 pairs of twins from birth through 

middle school to study the effects of birth weight on cognitive development. Ours is the 

first analysis of matched birth-school data in a developed context, and the first study to 

our knowledge conducted anywhere in the world that looks at heterogeneous effects 

across a variety of demographic and socio-economic dimensions. In addition, ours is the 

first study to explore the interaction between schooling factors and the relationship 

between birth weight and children’s cognitive development.  

We find that the effects of birth weight on cognitive development are roughly 

constant across a child’s schooling career, and appear to be the same across a wide range 

of demographic and socio-economic groups. In addition, this trajectory is very similar 

regardless of the nature of the school the children attend. These results suggest that the 

gaps observed in adulthood associated with poor neonatal health are largely fixed at least 

by third grade or even kindergarten, indicating that some biological factors may be very 

difficult to overcome. 

  

II. A new data source 
 

 A. Description of the data set and match diagnostics 

 We make use of matched data for all twins born in Florida between 1992 and 

2002 and educated in a Florida public school afterward. For the purposes of this study, 

Florida’s education and health agencies matched children along three dimensions: first 
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and last names, date of birth, and social security number. Rather than conducting 

probabilistic matching, the match was conducted such that a child would be considered 

matched so long as (1) there were no more than two instances of modest inconsistencies 

(e.g., a last name of “Johnson” in the birth record but “Johnsen” or “Johnosn” in the 

school record, or a social security number ending in “4363” in the birth record but ending 

in “4336” in the school record); and (2) there were no other children who could plausibly 

be matched using the same criteria. Common variables excluded from the match were 

used as checks of match quality. These checks confirm a very high and clean match rate: 

In the overall match on the entire (not just twin) population, the sex recorded on birth 

records disagreed with the sex recorded in school records in about one-one thousandth of 

one percent of cases, suggesting that these differences are almost surely due to typos in 

the birth or school records.  

 Between 1992 and 2002, 2,047,663 births were recorded by the Florida Bureau of 

Vital Statistics, including 22,625 pairs of twins. Of these children, 1,652,333 have been 

subsequently observed in Florida public school data maintained by the Florida 

Department of Education’s Education Data Warehouse, and 17,639 pairs of twins have 

both twins present in the Department of Education data. All told, 79.6 percent of all 

children born in Florida, and 79.5 percent of twins born in Florida, are matched to school 

records using the match protocols. 

 In order to judge the quality of the match, we compare the 79.6 percent rate to 

population statistics from the American Community Surveys and Census of Population 

from 2000 through 2009. Recall that a child can only be matched in the Florida data if he 

or she (1) is born in Florida; (2) remains in the state of Florida until school age; (3) 

attends a Florida public school; and (4) is successfully matched between birth and school 

records using the protocol described above. Reasons (1) through (3) are “natural” reasons 

why we might lose children from the match. Our calculations from the American 

Community Survey indicate that, amongst the kindergarten-aged children found in that 

survey who were born in Florida, 80.9 percent were remaining in Florida at the time of 

kindergarten and were attending public school. This figure is an overstatement of the true 

expected match rate because the American Community Survey includes only children 

who are still living in the United States at the time of kindergarten. Given that some 
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children born in Florida leave the country in their first five years because of emigration, 

because they were born to non-immigrant visitors to the country, or because they were 

born to undocumented immigrants who returned to their home countries, the true 

expected match is somewhat below 80.9 percent. While we are not aware of data 

regarding the fraction of U.S.-born children who leave the country before age five, it 

seems reasonable that the difference between 79.6 percent and 80.9 percent could be 

explained by these three reasons. We therefore conclude that the match rate is extremely 

high, and that nearly all potentially matchable children have been matched in our data. 

 

 B. Comparisons of the matched data set to the overall population 

 While we have demonstrated that we have matched virtually all potentially 

matchable children born in Florida to Florida school records, it is still the case that the set 

of Florida-born children attending Florida public schools differs fundamentally from the 

set of all Florida-born children. People who leave the state of Florida might differ from 

those who remain, and children attending public schools might differ fundamentally from 

those who attend private schools. It is therefore important to gauge how comparable the 

matched population is to the overall population of twins born in Florida. Though it is 

separate from how the matched data differ from the population, it is important to note that 

twins differ from singletons in important ways. We discuss issues of external validity in 

the conclusion. 

 Table 1 presents some evidence regarding the overall representativeness of our 

population of twins, along a number of dimensions: maternal race and ethnicity, maternal 

education, maternal age, maternal immigrant status, and parental marital status. There are 

four columns in the table: The first column reflects the total population of children born 

in Florida; the second column reflects the population of children matched to Florida 

public school records; the third column represents the set of children with a third grade 

test score; and the fourth column reflects the set of twins born in Florida who have a third 

grade test score. The comparison between the first two columns demonstrates the total 

population of twins born in Florida; and the third column reflects the total population of 

twins born in Florida matched to Florida public school records. The comparison between 

the first and second columns makes clear the costs associated with carrying out this type 
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of analysis in the United States, where children are lost for matching if they cross state 

lines between birth and school or if they attend private school. We observe that the set of 

matched children are more likely to be black (24.8 percent of matched children versus 

22.6 percent of all children) and less likely to have married mothers (62.2 percent versus 

64.8 percent of all children). The mothers of matched children are more likely to be less 

educated (17.5 percent college graduate versus 20.5 percent overall, and 22.5 percent 

high school dropout versus 20.9 percent overall) and are moderately younger (23.6 

percent aged 21 or below versus 22.0 percent overall, and 9.4 percent aged 36 or above 

versus 9.8 percent overall).  The comparison between the second and third columns of 

table 1 shows the difference in composition of the population of test-takers in elementary 

school versus those matched to school records more generally. As can be seen, 3rd-grade 

test-takers are still lower in terms of socio-economic status than are all children appearing 

in public school data. The fact that matched children are of somewhat lower socio-

economic status, and that those with 3rd-grade scores are somewhat lower again, is 

unsurprising, given the well-documented relationship between family income (or parental 

education) and private school attendance.4 However, our findings of estimated 

relationships between birth weight and test scores that are remarkably similar across very 

dissimilar groups reduces some of the potential concerns regarding external validity. 

 The comparison between the third and fourth columns of table 1 demonstrates the 

consequences of making use of twin comparisons, as is standard in the literature.  As can 

be seen, mothers of twins are quite different from mothers of singletons: Mothers of 

twins are substantially less likely to be Hispanic or foreign-born and substantially more 

likely to be married than are mothers of singletons. In addition, they are considerably 

better educated (23.0 percent college graduate versus 15.8 percent in the overall 

population of test-takers, and 15.5 percent high school dropout versus 23.4 percent of all 

test-takers) and considerably older (13.6 percent aged 36 or above versus 9.1 percent in 

the overall population of test-takers, and 14.4 percent aged 21 or below versus 24.2 

                                                      
4 These relationships are observed in the Census data: In the 2000 Census, for instance, 6 percent of 
families earning $0-$25,000 per year sent their children to private school, as compared with 7 percent for 
those earning $25,000-$50,000 per year, 13 percent for those earning $50,000-$75,000 per year, and 19 
percent for those earning over $75,000 per year. 
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percent in the overall population of test-takers.)5 Therefore, the decision to focus on twin 

comparisons to promote increased internal validity brings with it some cost in terms of 

external validity. 

 

 C. Birth weight distributions 

  

  1. Distribution of birth weight discordance 

 The variation that we use to identify the effect of poor neonatal health on 

cognitive skills comes from the fact that nearly all twin pairs differ in the birth weights of 

the two newborns, and sometimes the difference is quite substantial. In Florida, the 

average discordance in birth weight is 284 grams (0.63 pounds), or 11.8 percent of the 

average twin’s birth weight of 2409 grams. Figure 1 presents the distribution of 

discordance for all twins, as well as all twins matched to test scores. As can be seen, the 

two distributions are virtually identical, so even though twins remaining in Florida and 

attending public schools have different maternal characteristics than do twins who leave 

Florida or attend private schools, the identifying variation does not differ at all. 51.3 

percent of twin pairs have birth weight discordance over 200 grams, and 16.8 percent 

have birth weight discordance over 500 grams. 45 percent of twin pairs have birth weight 

discordance greater than 10 percent of the larger twin’s birth weight, 26.6 percent have 

discordance greater than 15 percent of the larger twin’s birth weight, and 14.7 percent 

have discordance greater than 20 percent of the larger twin’s birth weight.6 

 

 

  2. Twins v. singletons 

 Figure 2 makes clear that twins have a dramatically different distribution of birth 

weight than do singletons. The mean twin birth weight during our time period is 2409 

grams, 27.9 percent smaller than the mean singleton birth weight of 3342 grams. One can 

                                                      
5 Twins are also more likely to be the consequence of in-vitro fertilization (IVF) or other forms of assisted 
reproductive technologies (ART). Later in this paper we investigate the differential effects of birth weight 
for twins likely conceived using IVF/ART versus those less likely to have been conceived using IVF/ART. 
6 There exists medical evidence that large birth weight discordances lead to increased chances of severe 
disability. For instance, Luu and Vohr (2009) find that the likelihood of cerebral palsy in a twin is four 
times greater when birth weight discordance is over 30 percent than when it is less than 30 percent. 
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easily observe that for both twins and singletons the birth weight distribution of children 

observed in the test score data is identical to the distribution of all children born in 

Florida. 53.3 percent of twins have birth weights below 2500 grams (considered clinically 

low birth weight), as compared with 5.9 percent of singletons, while 7.1 percent of twins 

have birth weights below 1500 grams (considered clinically very low birth weight), as 

compared with 0.9 percent of singletons. 

 Note that the average birth weight in our population is considerably smaller than 

those in other studies using children from developed western countries born a generation 

or two earlier: The mean birth weight in Behrman and Rosenzweig’s (2004) study of 

Minnesota twins born 1936-1955 was 2557 grams; for Royer’s (2009) California twins 

born 1960-1982, Black, Devereux, and Salvanes’s (2007) Norway twins born 1967-1981, 

and Oreopoulos et al.’s (2009) Manitoba twins born 1978-1985, the mean birth weights 

were 2533 grams, 2598 grams, and 2517 grams, respectively. The lower mean birth 

weight in our sample is almost surely the result of improvements in medical technology 

that allow lower birth weight babies to survive longer. This change in technology and 

shift in the distribution of birth weights highlights another benefit of studying children 

born in the 1990s and 2000s.7 

 

III. Empirical framework 

 Our empirical framework largely follows what has become standard in the 

literature. We estimate twin fixed effect models in which the regressor of interest is the 

natural logarithm of birth weight.8 Following Almond, Chay and Lee (ACL, 2005) and 

Black, Devereaux and Salvanes (BDS, 2007), let 

 

 'ln( )ijk ijk jk jk ijky bw x          (1) 

 

where i indexes individuals, j indexes mothers, k indexes births, ijky  denotes the outcome 

of child i, born to mother j in twin-pair k, x is a vector of mother and child-specific 

                                                      
7 Note also that the rate of the twinning in the developed world increased 76 percent between 1980 and the 
present (Ananth and Chauhan, 2012). 
8 We estimate other model specifications as well to explore the degree to which our results are robust to 
model specification. 
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determinants of the outcome,   denotes unobservable determinants of the outcome that 

are specific to the mother and birth, and   is an error term.9 

For the majority of specifications presented in the paper the outcome, denoted y, 

is a test score – the criterion-referenced Florida Comprehensive Assessment Test (FCAT) 

– which is standardized within grade and year to have mean zero and standard deviation 

one in the entire population of children in Florida.10 (Our measures of kindergarten 

readiness are dichotomous, so we estimate linear probability models in those cases.) For 

ease of presentation, we average standardized reading and mathematics FCAT scores for 

our dependent variable, but our results are presented separately for reading and 

mathematics, and the test-specific results are available on request. The regressor of 

interest, ln(bw), is the natural logarithm of birth weight in grams. In section 6 we present 

results from specifications other than the linear-in-log model, but the linear-in-log model 

appears to fit the data well. 

Ordinary Least Squares (OLS) estimation of (1) would produce biased estimates of   if 

jk  were correlated with ln( )ijkbw  – in other words, if there were unobservable 

determinants of cognitive ability that were correlated with birth weight. To address the 

potential bias due to correlation between jk  and ln( )ijkbw , we estimate a twin fixed 

effect model. 

Twins necessarily share the same jkx  and jk . A twin fixed effect model 

essentially differences out any mother- or birth-specific confounder and identifies   

based on between-twin variation in test scores and birth weight. Logically, birth weight 

can vary due either to variation in gestation length, or to variation in fetal growth rates. 

By focusing on twins, we necessarily hold gestation length constant. Our estimates are 

identified, therefore, by variation in fetal growth rates. 

One potential internal validity concern is that we can only make use of test score 

data for a twin pair if both members of the pair have test scores. If one twin is present in 

the test score data but not the other, and the reasons for differential inclusion in the data 
                                                      
9 In practice, because we estimate models with twin-pair fixed effects, the mother-specific determinants of 
the outcome are subsumed in the fixed effect. The individual-specific determinants are child gender and 
within-twin-pair birth order. 
10 We standardize FCAT scores for ease of interpretation. Our results are not substantively changed if 
instead we measure the FCAT in its unstandardized developmental scale score format.  
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are correlated with neonatal health, this could present a source of bias. There are three 

different reasons why we might observe differential inclusion in the test score data 

related to poor neonatal health. First, parents may send one child to public school but the 

other to private school; if parents systematically send their heavier or lighter twin to 

different schooling settings, this could affect the observed relationship between birth 

weight and test scores, conditional on being in the public school setting. Second, since 

Florida exempts students from the FCAT in case of severe disability,11 any relationship 

between birth weight and the likelihood of severe disability could affect our estimated 

relationship of interest. A third potential reason is similar to the second: If low birth 

weight children are more likely to miss the exam because of illness or absence, the effect 

on the estimates would be similar to the bias that results from differential disability.  

That said, the evidence suggests that these potential internal validity concerns are 

not major issues. When we estimate twin fixed effect regression models in which the 

dependent variable is whether the twin ever attended public school (79.5 percent of the 

Florida birth population) the coefficient on log birth weight is -0.012 (with a standard 

error of 0.008). If the dependent variable is an indicator for beginning in public school by 

first grade (77.0 percent of all births), the coefficient estimate is -0.006 (with a standard 

error of 0.008). If the dependent variable is whether we ever observe an FCAT score for 

the child (69.1 percent of all births), the coefficient estimate is -0.003 (standard error of 

0.009), and if the dependent variable is whether we observe an FCAT score in every 

possible year when we would have expected to see one if the student did not leave 

Florida public schools (65.5 percent of all births) the coefficient estimate is 0.006 

(standard error of 0.004). In sum, it appears that relatively heavy and relatively light 

twins are remaining in public school and taking the FCAT at highly similar rates. This 

diminishes the potential internal validity concerns associated with differential test-taking 

rates. 

 

  

                                                      
11 Florida’s Final Rule 6A-1.0943 gives the grounds for FCAT exemption, stating students can be exempted 
from the test in “extraordinary circumstances [that] are physical conditions that affect a student’s ability to 
communicate in modes deemed acceptable for statewide assessments.” 
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IV. Preliminary results – heavier versus lighter twins 

  

 A. Heavier v. lighter twins 

 Before presenting the main regression results, we begin with simple comparisons 

of the test scores of heavier and lighter twins based on birth weight. These results, which 

aggregate twin pairs with small birth weight discordance with those with large birth 

weight discordance, are shown in figures 3 through 5.12 Nonetheless, they clearly 

demonstrate the first main result of the paper. Figure 3 shows the average within twin 

pair difference in test score between the higher birth weight twin and the lower birth 

weight twin, while figures 4 and 5 show the same patterns for mathematics and reading, 

respectively. These figures show test score differences for the average of math and 

reading scores calculated separately at grades three through eight, along with the 95-

percent confidence interval around those differences.1314 Note that these figures do not 

reflect panels of students, so there are different groups of children in each grade. 

 Within twin pairs, on average the heavier born scores about five percent of a 

standard deviation higher than his lighter born twin. This difference in test scores is 

statistically distinguishable from zero, and is stable from third through eighth grades, 

covering ages from approximately 9 to 14. This comparison holds constant any 

confounding factor that varies at the family, mother or birth level. The results imply that 

fetal health, as proxied by birth weight, has effects on cognitive skills by age 9. 

Furthermore, this effect does not seem to either dissipate or widen through 

preadolescence.  

 

                                                      
12 We conduct this aggregation in order to fix ideas, but it is important to remember that birth weight 
discordance is known to be an independent predictor of major morbidities such as congenital anomalies, 
low APGAR scores, and periventricular leukomalacia (Vergani et al, 2004; Cheung, Bocking, and Dasilva, 
1995). 
13 Throughout the analysis, unless otherwise noted, test score results are for the average of math and 
reading scores for observations with non-missing scores for both tests. For observations with one test 
missing, the non-missing test is used. In the main regression specification, 99.5 percent of observations 
have both math and reading scores, 0.2 percent have only a math score and 0.3 percent have only a reading 
score. 
14 For all analyses separated by grade, we assign students to the grade they would have been in had they 
progressed one grade per year from the first time we observe them with an FCAT score in third grade We 
use this “imputed grade” rather than the student’s actual grade because grade retention may be affected by 
birth weight and because we are interested in following children longitudinally. All results are extremely 
similar if we focus on actual grade rather than this imputed grade. 
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 B. Testing for differential attrition 

As described above, we observe test scores only for students who are in Florida 

public schools, and a small fraction of public school students miss the exam because of 

absence or because they have a profound disability.15 Attrition from the testing data is 

only a concern for our estimates if students with missing test scores would have had 

particularly high or low scores relative to their twin, and since we are including twin-pair 

fixed effects in all of our models, attrition only causes bias if one twin leaves the testing 

data and the other remains. As mentioned above, it may be the case that parents might 

differentially send either heavier or lighter twins to private school, and it may also be the 

case that twins with poor neonatal health are more likely to be sickly and more prone to 

miss the FCAT, or more likely to be severely disabled and exempt from taking the 

FCAT.16 

In addition to the twin fixed effects estimates described above, we present three 

tests of whether non-random attrition from the sample biases our estimates. Each of these 

tests indicates that the estimates are not meaningfully biased by non-random attrition. 

First, in figure 6 we plot the difference in test scores between heavier and lighter birth 

weight twins, restricting the sample to a sample for which we observe both twins for each 

of the six grades. The pattern is essentially unchanged from what we saw for the full 

sample in figure 3. The stability of the difference in test scores between heavier and 

lighter birth weight twins does not appear to be affected by changing selection out of the 

sample as twins age.  

Second, we measure directly the amount of differential attrition from the sample 

between third and eighth grade. Starting with the sample of twins we first observe in third 

grade, figure 7 shows the difference in the fraction of heavier and lighter birth weight 

twins tested in each subsequent grade. The figure shows that lighter birth weight twins 

are slightly more likely to have missing tests in the sixth through eighth grades, possibly 

because they are pulled from public schools and possibly because they are still enrolled in 

                                                      
15 While over 30 percent of Florida twins receive some special education services, a large majority of 
students with disabilities in Florida take the FCAT. Only students with disabilities such as severe mental 
retardation or severe autism are exempt from the FCAT. 
16 There has been a secular trend toward more very low birth weight infants surviving and entering the 
educational system impaired. See Zwicker and Harris (2008) and Aarboudse-Moens et al (2009) for 
examples of evidence. 
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public school but missed the exam.17 However, the magnitude of the difference is not 

large enough to significantly affect the relative magnitude of the within twin pair test 

score differences, a conjecture also we test directly below.  

 Third, we can put bounds on the magnitude of any bias resulting from differential 

attrition of high and low birth weight twins between third and eighth grade. Figure 8 

shows two sets of estimated differences by grade, one where we replaced missing test 

scores with the 5th percentile of test scores in that grade and another where we replaced 

missing test scores with the 95th percentile. As the figure shows, even assuming that 

students who no longer had an FCAT score after third grade had extremely low or 

extremely high test scores does not change the conclusion that the within twin pair 

difference in test scores is remarkably stable from third through eighth grade. Taken 

together, the results show that attrition patterns do not significantly affect the patterns of 

results between third and eighth grade.  

 

V. Main results 

 We now turn to our main regression results. As described above, the basic 

regression model is an ordinary least squares estimate that includes twin-pair fixed 

effects, a gender dummy, and a dummy for within-twin-pair birth order. The dependent 

variable is the standardized FCAT score, and the regressor of interest is the natural 

logarithm of birth weight in grams. We report some results based on separate regressions 

for each grade from three through eight, and other results that pool test scores across all 

six grades. In the pooled regressions, standard errors are clustered at the individual level 

to account for the fact that each individual has up to six observations, one for each grade 

in which he or she was tested. 

The non-parametric plots of the relationship between test scores and birth weight 

reported in figure 9 present evidence supportive of the log birth weight specification that 

we employ, as the figure is consistent with a concave relationship between birth weight 

                                                      
17 We start off with a sample of twin pairs with twins old enough for 3rd grade. We have 2.9, 2.1, 2.1, 2.1, 
1.9 and 1.7 percent of pairs in grades 3, 4, 5, 6, 7 and 8 respectively where twins are old enough to be in the 
grade but neither of them is tested. We have 2.4, 2.3, 2.3, 2.4, 2.3 and 2.2 percent of pairs in grades 3, 4, 5, 
6, 7 and 8 respectively where twins are old enough for the grade but we observe test scores for only one 
twin. We have already demonstrated above that in cases in which only one twin is missing a test score, it is 
not systematically the case that the twin with the missing score is the lighter twin.  
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and test scores. The figure shows two series, each derived from a test score regression 

that pools 3-8 grades and both math and reading scores. Each series plots the coefficients 

from a set of 36 dummy variables corresponding to 100g-wide birth weight bins. The 

bins range from a low of 501-600g to a high of 4,001-4,100g. In both regressions, the 

left-out group is below 501 grams. As was observed in similar sets of plots by ACL and 

BDS, the figure also shows clearly that the shape of the relationship between test scores 

and birth weight is very similar both unconditional and conditional on twin-pair fixed 

effects.  

 

 A. Pooled results for full sample  

 We present our main result in column 2 of table 2. The results show that within 

twin-pairs higher birth weight is indeed associated with higher test scores in grades three 

through eight. The estimated coefficient of 0.441 implies that a ten percent increase in 

birth weight is associated with a 0.045 standard deviation increase in test scores. The 

coefficient is precisely estimated, with a t-statistic of over 15. The fixed effects result is 

modestly larger than, but in the same general ballpark as, the equivalent OLS coefficient 

of 0.310 reported in the first column of table 2. The results are somewhat larger for 

mathematics than for reading, but the patterns are the same for both subject areas; 

therefore, for ease of presentation, we concentrate on the combined mathematics and 

reading results for the remainder of the paper. 

To put the magnitude into perspective, BDS estimate that the effect of log birth 

weight on log earnings is 0.12. Assuming the log wage return to cognitive skills is 0.2 as 

estimated by Neal and Johnson (1996), our estimates imply that increases in cognitive 

skills present in grades three through eight explain approximately three-quarters of the 

effect of birth weight on wages found by BDS. Our estimate of the effect of neonatal 

health on cognitive development is large in those terms, but it is worth comparing to 

other important correlates of student achievement. Figure 10 shows the test scores of 

heavier and lighter born twins stratified by mother’s education. The figure clearly shows 

that the difference in test scores resulting from differences in birth weight is small 

compared with differences in achievement associated with mother’s education. Each of 

the differences between heavier and lighter born twins shown in the figure is statistically 
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significant. However, it is clear that in terms of math and reading achievement, it is better 

to be the lighter born twin from a college educated mother than the heavier born twin 

from a high school dropout mother. Taken together, these findings suggest that while 

“nurture” can go a long way toward remediating a child’s initial disadvantage, there are 

still biological factors at play that make it difficult to fully remediate this disadvantage.18 

 

 B. Results by grade for full sample 

 A key question of interest is how the cognitive effects of in utero conditions and 

neonatal health develop. We have already shown that the effects of birth weight on 

cognitive achievement in grades three through eight are similar to those observed with 

respect to adult earnings. We next explore how the impact on test scores changes during 

these important years for human capital development. Does the effect of birth weight 

grow larger as children age, or is it present by age 9 and does it remain constant through 

the upper elementary and middle school grades? The structure of the data allows us to 

estimate the effect of birth weight on test scores separately by grade to address these 

questions. 

 The results are presented in columns 3-8 in table 2. The table shows the estimated 

effect of log birth weight from twin fixed effects models that are estimated separately for 

test scores from each grade, three through eight. As is the case throughout the paper, 

grade refers to grade an individual would have attended if he had progressed on a normal 

schedule after we first observe him or her take a third grade exam. (We call this the 

“imputed grade.”) We have estimated the models based on actual grade, by dropping all 

twin pairs that do not progress on a normal schedule, and by age rather than grade. The 

results using these alternative specifications are substantially the same as the ones we 

present. 

 The table shows that the effect of birth weight on cognitive achievement is in fact 

present by the third grade. The twin fixed effect estimate of the effect of log birth weight 

on test scores in third grade is 0.442. The grade-specific estimated effect remains fairly 

stable from third through eighth grade, ranging from 0.373 to 0.526. Note that while the 

                                                      
18 By this statement we do not mean to suggest that the results answer the age-old nature-nurture question. 
Rather, they are consistent with the growing literature on epigenetics that shows that environmental and 
biological factors interact (Miller et al., 2009 or Lam et al., 2012) 
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F-test that the grade-level estimated effects are identical is rejected at a moderate level of 

statistical significance (p=0.057), there is no evidence that this follows a substantial 

systematic pattern as children age. In a regression model in which we interact the log of 

birth weight linearly with grade in school, the coefficient estimate on the interaction term 

is one-two thousandth the magnitude of the coefficient on the log of birth weight. These 

results suggest that the effects of neonatal health do not substantially change, or develop, 

between ages 9 and 14. Rather, whatever effect health at birth has on cognitive 

development occurs largely by age 9, and remains fairly constant throughout the 

preadolescent and adolescent years. Furthermore, comparing the effect with the results 

BDS find for adult earnings suggests that the effect of birth weight appears not to change 

substantially between 14 years and prime working age. 

 

 C. Role of genetic differences between twins 

For some policy conclusions we might draw from the results, it could be 

important to isolate the impact of factors that change intrauterine growth while holding 

genetics constant. In studies where the zygosity of twins is known, it is possible to restrict 

attention to comparisons between monozygotic twins, effectively holding genes constant. 

19,20 A potential weakness of our data is that they do not include the zygosity of the twins. 

We do, however, know the gender of each child, and can use this information to obtain 

some purchase on whether the relationship between birth weight and test scores is driven 

by within-twin pair differences in genetics. 

Same-sex twin pairs are a mix of monozygotic and dizygotic pairs. Different-sex twin 

pairs are, however, all dizygotic. If genetic differences were driving a significant portion 

of the relationship between birth weight and test scores, and birth weight were positively 

correlated with positive determinants of later cognitive skills, we would expect to see a 

stronger correlation between birth weight and test scores among different-sex twin pairs. 

The first panel of table 3 shows estimates separately for same-sex and different-sex twins.  
                                                      
19 Zygosity refers to whether the twins are identical (monozygotic) or fraternal (dizygotic). Monozygotic 
twins form from a single egg, or zygote, and split into two embryos. Dizygotic twins form from two 
separate eggs, fertilized by different sperm. Monozygotic twins therefore share the same genes, whereas 
dizygotic twins generally have the same genetic similarity as two full siblings. 
20 Research on epigenetics implies that while they do hold constant genetics, comparisons among 
monozygotic twins do not hold constant all of the effects emanating from genetics. Epigenetics is the study 
of the way that environmental factors interact with genes to influence which genes are expressed. 



18 
 

Note that as we explore the heterogeneity in effects across different groups, we 

restrict our attention to models that include all test scores from grades three through 

eight, restricting the effect of birth weight to be the same at each grade. For the sake of 

clarity, in our main tables we report the results in which we pool test scores across all 

grades; in Appendix table A1 we report grade-by-grade results for all subgroups. The first 

column of table 3 reports the percent of the population in each subgroup. The second 

column reports the mean test score for the group. The third column reports the mean and 

standard deviation of the group’s birth weight. The fourth column reports the mean and 

standard error of the estimated effect of birth weight on pooled third through eighth grade 

test scores. The last column reports the p-value from an F-test of the null hypothesis that 

the estimated birth weight effects are the same across relevant groups. 

Turning to the results, the estimated effect of birth weight is virtually identical for 

same-sex twins (0.447) and different-sex twins (0.427), suggesting that the estimated 

relationship is within the same general range regardless of zygosity. This result is 

consistent with results reported in BDS, who find no significant differences in the effect 

of birth weight on adult earnings between same-sex and opposite-sex twins. BDS also 

find no significant difference in estimated effect of birth weight on earnings for 

monozygotic twins and dizygotic same-sex twins in their sample with available zygosity 

information. Taken together, the results suggest that genetic differences between twins 

are unlikely to be driving a large portion of the relationship between birth weight and 

later life outcomes. 

 

 D. Differences by child gender 

We next turn to an examination of how the effects of neonatal health vary across 

the population. We begin with a comparison by gender. This comparison allows us to 

examine the basic question whether the effects of birth weight on test scores are different 

for boys and girls (Rosenzweig and Zhang, 2009). With these results we begin to tell a 

story about consistency in the effects across the population that we will continue to 

explore in subsequent sections.  

The results broken down by gender are shown in the second and third panels of 

table 3; the second panel includes girls and boys from both same-sex and opposite-sex 
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twin pairs, while the third panel restricts the analysis to girl-girl and boy-boy pairs. Note 

that the mean test scores of boys and girls in the twins sample are 0.048 and 0.099, and 

boys are born 4.4 percent heavier (2473 versus 2369 grams). However, we cannot reject 

the hypothesis that the marginal effect of birth weight is the same for boys and girls. The 

estimate among female-female twin pairs is 0.444, and the estimate among male-male 

twin pairs is 0.449. These differences are not statistically distinguishable. The same 

patterns are seen when looking at all boys or all girls regardless of the gender 

composition of the twin pair. This is unsurprising: Recall that the estimated effects of 

birth weight are statistically indistinguishable between same (0.447) and opposite (0.427) 

sex pairs.  

 

 E. Results by maternal race, ethnicity and immigrant status 

Two special features of the Florida context allow us to investigate heterogeneity 

in the effects of birth weight in ways that have not been possible in other related work to 

this point. Florida has a remarkably heterogeneous population. Approximately one-

quarter of all births in Florida are to black mothers, 18 percent of births are to Hispanic 

mothers, and 18 percent to foreign-born mothers. The diversity of demographics in the 

state, combined with the size of the dataset make comparisons of birth weight effects 

across racial and ethnic groups possible.  

 It is inherently interesting to learn about whether the long-term effects of in utero 

conditions on cognitive development vary across demographic groups. Beyond this 

inherent interest, examining heterogeneity in the effects may shed light on the 

mechanisms by which neonatal health affects cognitive skills. There are significant 

differences in household income, wealth and education by race, ethnicity and immigrant 

status. If these factors, each of which is strongly correlated with student achievement at 

the population level, are substitutes with neonatal health in the production of cognitive 

skills then we should expect to see larger effects of birth weight on test scores for more 

disadvantaged groups. If income, wealth and parental education are complements with 

neonatal health, one would expect to see larger effects for more advantaged groups.  

 The fourth through sixth panels of table 3 shows estimates of the effect of birth 

weight on pooled third through eighth grade test scores separately by race (panel 4), 
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ethnicity (panel 5) and immigrant status (panel 6). Births to black mothers account for 

26.1 percent of the sample, while births to white mothers account for 72 percent. Twins 

with black mothers score 0.722 standard deviations lower than twins with white mothers, 

a gap that is of a similar magnitude with black-white test score gaps measured in the 

same time period for random samples of U.S. school children (Chay, Guryan, and 

Mazumder, 2009). The gap in average test scores between students with a Hispanic and 

non-Hispanic mother is smaller but still substantial, 0.459 standard deviations. There is 

virtually no difference in test scores between the children of immigrant and non-

immigrant mothers. 

 Despite the fact that there are substantial differences in average test scores 

between demographic groups, we estimate no statistically or economically significant 

differences in the effect of birth weight on test scores across these groups. Furthermore, 

there is no clear pattern in the point estimates. The estimated effect of birth weight on 

third through eighth grade test scores is somewhat smaller for twins with black mothers 

than for twins with white mothers (0.381 versus 0.466). However, the estimated effect is 

somewhat larger for twins with Hispanic mothers than for twins with non-Hispanic 

mothers (0.478 versus 0.434), though not statistically significantly so. And the estimated 

effects for twins with immigrant and non-immigrant mothers are quite close (0.449 

versus 0.440) and statistically indistinguishable from one another. Taken together, these 

results suggest that the effect of birth weight on cognitive development is remarkably 

consistent across demographic groups.  

 

 F. Results by family socio-economic status 

Based on these results, there does not appear to be a systematic relationship 

between the effect of birth weight and demographic characteristics that are related to 

parental income and human capital. The data also allow us to test for these relationships 

more directly. The seventh and eighth panels of table 3 show effects estimated separately 

by mother’s education (panel 7) measured at the time of the birth and a proxy of family 

income (panel 8) – the median income in the zip code of residence at birth. Sixteen 

percent of the population of twins with test scores are born to high school dropout 
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mothers, 61 percent of the sample are born to mothers with a high school degree and/or 

some college, and 23 percent of the sample are born to college graduate mothers.  

 There is a strong relationship between mother’s education and children’s test 

scores. On average in third through eighth grade, children with college graduate mothers 

score more than a full standard deviation higher than children with high school dropout 

mothers, and two-thirds of a standard deviation more than those with high school 

graduate mothers. High school and college graduate mothers also have slightly higher 

birth weight twins than high school dropout mothers.  

 Estimated birth weight effects also vary somewhat by mother’s education. The 

estimated effects of log birth weight on pooled third through eighth grade test scores are 

monotonically increasing across the three categories of mother’s education. For twins 

with high school dropout mothers the estimated coefficient on log birth weight is 0.359; 

for those with a high school graduate mother the estimated coefficient is 0.434; for those 

with a college graduate mother it is 0.529. None of these estimates is statistically 

distinguishable from any other, and an F-test fails to reject the hypothesis that the 

coefficient is the same for all three maternal education groups. It is thus important to be 

careful about the inferences we draw from these differences. That said, it is worth noting 

that one might have expected the effects of birth weight to be weaker for better-educated 

families than for worse-educated families, rather than the reverse, if family inputs were 

substitutes for neonatal health. Indeed, when we estimate a model with both log birth 

weight and the interaction between log birth weight and maternal years of schooling, we 

find an estimate of the interaction term of 0.028 with a standard error of 0.012. The fact 

that we observe strong relationships between birth weight and test scores across all 

maternal education groups strengthens the notion that while some biological disadvantage 

can be overcome, there remain some biological factors that are very difficult to overcome 

with nurture.  

 This conclusion is reinforced by a split by a proxy for family income – the median 

income (as of the 2000 Census) in the zip code of residence at the time of birth. As seen 

in panel 8 of table 3, there is a strong relationship between test scores and this measure of 

family resources: Those children whose families resided in the one-third richest zip codes 

at the time of birth score two thirds of a standard deviation higher on tests than did those 
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who resided in the one-third poorest zip codes at the time of birth.21 As in the case of 

maternal education, we do not observe a statistically significant difference across birth 

neighborhood affluence groups in the estimated effects of birth weight on children’s test 

scores, though the point estimate is modestly larger for the two more affluent groups than 

for the least affluent group.22 This provides one more piece of evidence that family 

resources might help to mitigate biological factors but they are very difficult to 

completely offset. 

 We can also explore differences by maternal marital status at the time of birth 

(panel 9) and maternal age at the time of the twins’ birth (panel 10), both reported in table 

3. Approximately two-thirds of the twins in our sample are born to married mothers. 

While birth weights of twins born to married mothers are only slightly higher than those 

born to unmarried mothers, there is a large difference in test scores; twins born to married 

mothers have average test scores that are nearly two-thirds of a standard deviation higher 

than those born to unmarried mothers. There is suggestive evidence that the effect of 

birth weight may be larger among married mothers than unmarried mothers. The point 

estimate on log birth weight is 0.485 for married mothers and 0.362 for unmarried 

mothers. This is the one head-to-head comparison that is statistically significant at 

conventional levels – the p-value of the difference is 0.064 – though the magnitude of the 

results are qualitatively quite similar, suggesting that the effects of poor neonatal health 

on cognitive outcomes are of approximately the same magnitude across a wide range of 

demographic and socio-economic dimensions. But to the extent to which the estimates 

are larger for children of married mothers than for children of unmarried mothers, this is 

the opposite of what one might have expected to find if biological differences were not as 

important in families with greater parental resources. While higher-socio-economic-status 

families clearly remediate early health disadvantage to a great degree (witness the fact 

that poor-health children in educated families perform much better than good-health 

children in less educated families) there seems to be a portion of this disadvantage that is 

persistent and much more difficult to remediate, and if anything, the evidence points 

                                                      
21 Note that the sizes of these groups differ by the time children are in school because, as noted above, more 
affluent families are more likely to send their children to private school. 
22 When we estimate a model with both log birth weight and log birth weight interacted with zip code 
median income (in $1000s), the coefficient estimate on the interaction term is -0.0004 with a standard error 
of 0.0003. 
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toward neonatal health and parental inputs being more likely to be complements than 

substitutes. This point, of course, is necessarily somewhat speculative. 

 We separate maternal age into four categories: less than or equal to 21, 22-29, 30-

35 and older than 35. Fifteen percent of twins in the sample were born to mothers who 

were 21 years or younger, 40 percent were born to mothers between 22 and 29 years old, 

32 percent were born to mothers who were 30-35, and 14 percent were born to mothers 

older than 35. There is a strong positive relationship between average third through 

eighth grade test scores and mother’s age at birth. Twins born to mothers older than 35 

have test scores that are almost three-quarters of a standard deviation higher than those 

born to mothers 21 years old and younger, though the nature of twinning indicates that 

some caution should be taken in interpreting this correlation. Selection into twinning 

differs with mother’s age because of physiological changes and differences in use of 

fertility treatments. Despite the strong relationship between mother’s age and average test 

scores, there is no relationship between mother’s age and the estimated effect of birth 

weight. Estimates of the effect of log birth weight on pooled third through eighth grade 

test scores range from 0.372 to 0.483 among the four mother’s age categories. The 

relationship between point estimates and mother’s age is non-monotonic across these 

categories and the p-value of the F-test of the hypothesis that they are all equal is 0.698. 

 

G. Summarizing heterogeneity in birth weight effects on cognitive 

development 

Our general conclusion after considering these ten different dimensions over 

which the effects of birth weight on test scores is that these effects are roughly the same 

for children from a wide range of different backgrounds – evidence that the effects of 

biological factors are present throughout the socio-economic distribution. We note, 

however, that if anything it appears that relatively high-socio-economic status families 

experience larger, rather than smaller, effects of birth weight, suggesting that neonatal 

health and family inputs may be complements rather than substitutes. Figure 11 places 

this possibility into visual focus: We plot all 18 subgroups’ point estimates against the 

mean test scores for that group – a range greater than a full individual-level standard 

deviation of the test score distribution.  
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The figure demonstrates two important features of the heterogeneity of birth 

weight effects across demographic groups. First, the estimated effects of birth weight are 

all within the same general range between 0.36 and 0.53, and the estimated effects are 

both statistically and economically significant for every demographic and socio-

economic group we analyzed. A log birth weight effect of 0.36 would indicate that effects 

on cognitive development could account for 60 percent of the long-term relationship 

between birth weight and test scores estimated by BDS. At the other end of our range, an 

estimate of 0.53 would indicate that effects on cognitive development could account for 

88 percent of the BDS estimate. 

The second pattern the figure demonstrates is that there does appear to be an 

upward-sloping relationship between estimated treatment effects and the subgroup’s 

mean test score. This positive relationship indicates that the effects of birth weight are 

somewhat larger for relatively advantaged groups of children than they are for relatively 

disadvantaged groups of children. The slope of the line plotted in figure 11 is 0.125, with 

a standard error of 0.019, and is highly statistically significant. While by no means 

definitive, this pattern indicates that biological factors may modestly disproportionately 

inhibit high socio-economic status families, and is suggestive that neonatal health and 

parental resources are complementary.23   

                                                      
23 Children in higher-scoring subgroups – such as those from high income, highly educated families with 
older mothers – are more likely to have been born with the assistance of in-vitro fertilization (IVF) or other 
assisted reproduction technologies (ART). It is therefore conceivable that the positive relationship plotted 
in figure 11 is due at least in part to differential patterns of IVF/ART.  This could be especially important in 
a population of twins, given that Bitler (2008) demonstrates that requiring health insurance plans to cover 
use of IVF/ART substantially increases the likelihood that a mother will have twins, and these new twins 
likely conceived with the assistance of IVF/ART have lower-quality birth outcomes. While we cannot 
measure IVF/ART use in our data, we conduct two checks to see whether or not differential IVF/ART 
prevalence is a plausible explanation for our findings. First, we conduct the identical analysis for twins 
born to mothers aged 30 and above, versus those under 30; this is the age breakdown that Bitler uses to 
proxy for IVF/ART likelihood. The estimated slope of the line for the 30-and-up group is 0.127 (standard 
error of 0.045) while the estimated slope of the line for the under-30 group is 0.114 (standard error of 
0.042); the p-value of the difference between these two slopes is 0.842. Next, we conduct the identical 
analysis for twins who were the first children born to the mother to those who were not the first children 
born to the mother, given that IVF/ART is more likely amongst families with previous fertility challenges. 
The estimated slope of the line for the first-children mothers is 0.067 (standard error of 0.038) and the 
estimated slope of the line for the subsequent-pregnancy mothers is 0.152 (standard error of 0.031). While 
the difference between these two slopes is modestly statistically significant – the p-value is 0.091 – the 
positive relationship between birth weight effects and SES is stronger for the group of twins less likely to 
be conceived via IVF/ART. Taken together, these results suggest that differential probabilities that children 
from high-scoring subgroups were conceived via IVF/ART are not responsible for the positive-sloped 
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VI. Effect variation across the birth weight distribution and with birth weight 

discordance 

Thus far, we have presented estimates of our baseline model, which specifies that 

the relationship between average test scores and birth weight is linear in the log of birth 

weight. Understanding how the marginal effect of birth weight varies across the birth 

weight distribution and with birth weight discordance may be helpful in narrowing down 

potential mechanisms for the relationship. There is great attention paid by public health 

officials and medical practitioners on the thresholds of 1500g and 2500g, the 

conventional delimiters of very low birth weight and low birth weight. Stronger marginal 

effects of proportional increases in birth weight for very low and low birth weight babies 

might suggest different physiological mechanisms than if the effect were only present in 

comparisons between moderate and high birth weight babies. 

We have already presented non-parametric evidence (figure 9) that the 

relationship between birth weight and student test scores appears to be concave, 

supporting the log birth weight specification that is common in the related literature. That 

said, there could still be some important nonlinearities in the relationship. In this 

subsection we relax the assumptions underlying our main specification in two additional 

ways, and in doing so explore how the marginal effect of poor neonatal health varies 

across the distribution of birth weight and with birth weight discordance. For one, we 

estimate models that allow the marginal effect of birth weight to vary across different 

bins of the birth weight distribution. This analysis includes models that are fairly non-

parametric in the specification of these marginal effects, and models that test explicitly 

whether the marginal effects are different for very low birth weight (<1500g), low birth 

weight (1500-2499g) and normal birth weight (>2500g) babies. We also include models 

that allow the effect of neonatal health to vary nonlinearly according to the discordance in 

birth weight between twins. In addition, we investigate whether alternative parametric 

functions of birth weight better capture the relationship of interest. For example, using 

                                                                                                                                                              
relationship between the scoring level of the subgroup and the subgroup-specific estimated effect of birth 
weight on test scores. 
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slightly more parametric models, we test whether the marginal effect of an additional 

gram of birth weight is constant, or if the marginal effect is constant in percentages.  

 In figure 12, we present estimates from a regression specification that address the 

former of these questions. The estimates come from a regression that is based on our 

standard twin fixed effect specification. The only difference is that log birth weight is 

interacted with a set of dummy variables corresponding to 20 bins, each of which 

corresponds to 5 percent of the lighter-born twin’s birth weight distribution. These 

interactions allow the marginal effect of log birth weight to vary freely across the bins. 

We have also estimated models that define the bins based on the heavier-born twin’s birth 

weight. These results are very similar and are presented in appendix figure A1. The 

results show no systematic relationship between the marginal effect of birth weight on 

test scores and the level of birth weight. The estimated effects are largely stable, aside 

from variation that appears to be due to sampling variation, across the distribution of 

birth weight. There appears to be somewhat more variation in the estimated effects at 

higher birth weights, but an F-test fails to reject the null hypothesis that the coefficient on 

log birth weight is the same across all 20 bins (p-value: 0.840). 

 We explore the second of these questions – whether the relationship between birth 

weight and test scores varies by birth weight discordance – in figure 13. We divide twins 

into 20 bins by birth weight discordance, excluding the twin pairs that are very close in 

weight (<150g difference). As can be seen in the figure, the estimated relationship 

between birth weight and test scores is qualitatively similar across a wide variety of birth 

weight discordance. 

 The non-parametric results presented in figure 9 suggest the marginal effect of log 

birth weight on test scores is fairly stable across the birth weight distribution. But the 

salience of 1500g and 2500g, both among medical professionals and in the social science 

literature on early life health, lead us to estimate specifications that test whether the 

marginal effect of birth weight on test scores varies above and below these thresholds. 

Therefore, in rows 2 and 3 of table 4 we present results from specifications that allow the 

effect of log birth weight to be different above and below 2500g. To do this, we estimate 

one effect for twin pairs where both twins were born heavier than 2500g, and another 

where both twins were born lighter than 2500g. In both cases, we estimate the baseline 
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specification in which the effect of log birth weight is assumed to be constant within the 

group.  

The estimated effect of a marginal increase in birth weight is quite similar for low 

birth weight (<2500g) and normal birth weight (≥2500g) children. The estimate for low 

birth weight twin pairs is 0.473, and for normal birth weight twin pairs it is 0.526. The 

two pooled coefficients are not statistically distinguishable (p-value: 0.535). The results 

reported in rows 4 and 5 of the table estimate different log birth weight effects for two 

additional groups: very low birth weight (<1500g) and low birth weight (1500-2499g). 

Consistent with the previous results, the estimated effects do not vary significantly across 

these groups. The estimated effects for very low birth weight, low birth weight and 

normal weight are, respectively, 0.572, 0.517 and 0.526. An F-test fails to reject that 

these three estimates are the same (p-value: 0.914).  

 We also seek to more formally test the assumption suggested by our non-

parametric estimates that the linear in log birth weight specification is reasonable. Rows 6 

and 7 of table 4 show results from models that replace the natural logarithm of birth 

weight in equation (1) with two alternative specifications. The sixth row reports the result 

from a regression that replaces the log of birth weight with birth weight in thousands of 

grams, but which is otherwise equivalent to the baseline specification. When we restrict it 

to have a constant linear effect, we estimate that a marginal increase of 1000g of birth 

weight is associated with 0.186 standard deviations higher third through eighth grade test 

scores. The estimated effect is strongly statistically significant. As was the case in the log 

birth weight specifications, estimates that allow the effect to vary by grade are largely 

stable between third and eighth grade. 

 To test whether the linear-in-grams model fit the data we also estimated a model 

that allowed the marginal effect of a gram to be different among heavier and lighter twin 

pairs. Specifically, we interacted birth weight in grams with the average of the twin pair’s 

birth weight, a specification reported in row 7 of table 4 (there are two coefficients 

reported in this row, the coefficient on birth weight and the coefficient on its interaction 

with the deviation from mean twin pair birth weight.)24 The results show that the 

                                                      
24 The twin pair average birth weight is demeaned by the sample average so that the birth weight coefficient 
represents the marginal effect of birth weight in a twin pair of average birth weight. The main effect of twin 
pair average birth weight is subsumed by the twin pair fixed effects. 
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marginal effect of a gram of birth weight is smaller in heavier twin pairs, as indicated by 

the negative and significant coefficient on the interaction term. This result is consistent 

with the linear-in-logs model, in which test scores are proportionally related to birth 

weight. Based on these results, we concluded that the linear-in-logs specification is a 

good approximation of the relationship between birth weight and cognitive skills.25 

 

VII. School quality and the effect of birth weight on test scores 

 The results presented thus far have demonstrated that there is a robust relationship 

between birth weight and third through eighth grade test scores, and that this relationship 

is remarkably stable as children age through preadolescence, across different 

demographic groups, and across different socio-economic groups. The stability of this 

relationship is all the more notable because the marginal effect of birth weight does not 

vary very much across groups that have very different average test scores. Children 

growing up in circumstances that lead to very different achievement levels nonetheless 

appear to be impacted by early health conditions in similar ways. This finding raises the 

question whether investments in children remediate the effect of early deficits in health.  

 Schools are an obvious place to look for investments in human capital. In this 

section we ask whether the effect of birth weight on test scores is different for students 

who attend high quality versus low quality schools. Students who attend higher quality 

schools have higher test scores. But does a lower birth weight twin perform better relative 

to his counterpart if he or she attends a high quality school instead of a low quality 

school? In other words, does school quality remediate the effect of neonatal health 

deficits? 

 To answer this question, we measure school quality in three different ways. First, 

we take advantage of the fact that since 1999 the state of Florida has given each of its 

public schools a letter grade ranging from A (best) to F (worst). Initially, this grading 

system was based mainly on average proficiency rates on the FCAT. Beginning in 2002, 

grades were based on a combination of average FCAT proficiency rates and average 

student-level FCAT test score gains from year to year. In addition, we stratify schools 

                                                      
25 In results we report in appendix table A2, we also estimated a model with a quadratic in birth weight, 
which yields a positive coefficient on the linear term and a negative coefficient on the quadratic term, also 
suggesting a concave relationship. 
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based on average proficiency levels and average student gains from year to year. While 

these are only three of a wide range of ways in which one could evaluate school quality, 

they are sufficiently different26 that similar findings across the three measures would 

provide strong evidence of the potential effects of school quality in ameliorating or 

exacerbating the relationships between birth weight and student cognitive development. 

In our analysis, therefore, we measure school quality using (1) the state awarded letter 

grade, (2) the school’s average FCAT proficiency level during our sample period, and (3) 

the school’s average year-to-year student FCAT gain score over our sample period.  

 The results of the school quality analyses are presented in table 5. The first panel 

of the table shows twin-pair fixed effects estimates separately for twins who attended 

schools that received an A, a B, and a C or below.27 As can be seen, almost half of the 

sample attended schools that received a grade of A, while 28.8 percent attended a school 

that received a B and 22.6 percent attended a school that received a C, D or F. For 

reasons due either to school quality or to selection, test scores are much higher in A-rated 

schools than in lower-rated schools, and we also observe that twins who attend higher-

rated schools tend to be born larger than those attending lower-rated schools. But while 

there are relationships between school grade, birth weights, and test scores, there is no 

monotonic relationship in the relationship between birth weight and test scores: The 

estimated effect of birth weight is largest among twins who attend schools receiving a 

grade of B (0.497). The smallest estimated effect is for twins attending A schools (0.407), 

and the estimate in the middle is for twins attending C/D/F schools (0.455). These 

coefficients are not statistically distinguishable from one another. 

 The second panel in the table presents results where school quality is measured 

based on the school’s average FCAT scores. About 60 percent of the sample attended 

schools with scores that are above the state median average score – unsurprising given 

that families of twins are disproportionately older, more educated, and live in 

                                                      
26 If we code the school grades on the scale from 0 (F) to 4 (A), we observe that state-awarded grades 
correlate with average school achievement at 0.68 and with growth in achievement at 0.20, while the 
average achievement correlates with achievement growth at 0.03. 
27 We combine C, D, and F-graded schools in this analysis because highly educated and older families, who 
are more likely to have twins, are more likely to live in “better” school zones than the general population, 
and because the state of Florida has awarded relatively few grades of D and F. In the overall population, 
5.8% and 0.9% students attend D and F schools respectively, while among twins these rates are 3.4% and 
0.6% respectively. 



30 
 

neighborhoods with higher median income. Though average test scores are certainly 

different in high- and low-average-test-score schools, the estimated effect of birth weight 

does not vary significantly. We estimate that the marginal effect of log birth weight for 

twins attending schools with above-average FCAT scores is 0.425. For twins attending 

schools with below-average FCAT scores, we estimate the effect to be 0.436. 

 Our estimates of the effect of log birth weight on test scores also does not vary 

between schools with above and below average FCAT gains. These estimates are shown 

in the third panel of table 5. We estimate that the marginal effect of log birth weight on 

test scores for twins attending a school that had below-average year-to-year gains in 

FCAT scores is 0.449. For twins attending a school that had above-average FCAT gains, 

we estimate the marginal effect of log birth weight to be 0.433. 

 In summary, the evidence appears to indicate that the effect of birth weight on test 

scores does not vary with measures of the quality of schools that a child attends. One 

view of this result could be that the effects of in utero health conditions create a ceiling to 

learning that cannot be remediated after the fact, at least by the time that children are of 

schooling age. Students spend a great deal of time in schools, and schooling is the 

primary formal way that human capital investment takes place during childhood. The 

amount (Card, 1999) and quality (Card & Krueger 1992, 1996, Krueger & Whitmore, 

2001, Chetty et al., 2011a, Chetty et al., 2011b) of schooling have been shown to have 

significant positive impacts on earnings and other outcomes. If attending a better school 

does not completely remediate the effects of early health deficits on cognitive 

development, maybe schools currently lack the resources to fully remediate them. 

 An alternative view of the results is that they say that school quality does not 

differentially affect remediation, but leaves open the possibility that remediation could 

happen. This view is supported by a few observations. The difference in birth weights (or 

cognitive capacities) between twins is probably far more noticeable to parents than to 

classroom teachers. To a parent the outward signs of a 15 percent difference in birth 

weight can seem large, but to a teacher they are small relative to the variation she 

observes in the classroom. Even twins with large discordance in birth weight and with the 

resulting differences in cognitive achievement probably appear to the teacher to be quite 

similar to each other. Recall that the difference in achievement between the average high 
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and low birth weight twin is far less than the difference in achievement between children 

born to college educated and high school dropout mothers. Given this discrepancy, it is 

likely that teachers treat twins very similarly. The lack of remediation may not indicate 

that it is impossible to remediate. Rather, it may indicate that it is not done, at least not 

systematically. We therefore turn to the question of whether remediation seems to be 

occurring in the years prior to third grade. 

 

VIII. Birth weight gaps at kindergarten entry 

 The question of whether remediation for early health deficits is possible leads us 

to investigate impacts at an earlier age, when children spend a larger share of time with 

their parents. Alongside schooling, parents are the other main source of investment in 

children’s human capital development. At ages 6-8, as children enter full time schooling, 

they spend on average 30 percent less time being actively cared for by their parents than 

they did when they were 3-5 and 43 percent less time than when they were 0-2 (Folbre et 

al., 2005). The shift in time spent with parents to time spent with other adults, such as 

teachers, and peers (Sacerdote, 2001) suggests it may be important to gauge whether the 

effect of neonatal health on cognitive development is different in these early ages than 

during school ages. One potential reason why school quality does not appear to affect the 

relationship between neonatal health and cognitive development may be that differences 

in factors correlated with poor neonatal health might be minimally perceptible to teachers 

and school administrators who interact with a wide range of children, but more noticeable 

to parents who make cross-child observations. And beyond learning about the roles of 

adult investment and remediation, there is an inherent value in documenting the 

developmental effects of early health on cognitive development. To provide further 

evidence on these matters, we extend the age at which we measure outcomes back to 

when children enter kindergarten, which typically happens at age 5 or 6. 

 In various years between 1998 and 2008, Florida performed universal 

kindergarten readiness screening and recorded this screening in its Education Data 

Warehouse. From 1998 through 2001 all kindergarten entrants were screened with the 

School Readiness Checklist (SRC), a list of 17 expectations for kindergarten readiness. 

Subsequently, kindergarten entrants were screened with the Dynamic Indicators of Basic 
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Early Literacy Skills (DIBELS), and beginning in 2006 the results of this screening were 

collected and recorded by the Florida Department of Education.28 DIBELS rates 

children’s letter sound recognition and letter naming skills and categorizes children as 

above average, low risk, moderate risk or high risk. In our data, 82.1 percent of children 

were deemed ready according to the earlier SRC screen, and a very similar 83.8 percent 

of children were deemed either above average or low risk according to the DIBELS. 

 These two kindergarten readiness screens are clearly different outcome measures 

than the FCAT. However, they are highly predictive of later test scores. The average third 

through eighth grade FCAT score for children deemed ready to start school ranges from 

0.147 to 0.280 depending on the cohort, while the average FCAT score for those not 

ready to start school ranges from -0.655 to -0.501, depending on the cohort.29 The 

correlation with subsequent outcomes is present within families as well: In twin fixed 

effects models, we estimate that average third through eighth grade FCAT score 

differences between twins who were ready versus not ready for kindergarten range from 

0.22 to 0.32 of a standard deviation, depending on the cohort. 

 Turning to estimates of the effect of birth weight on kindergarten readiness, we 

first present results from models like the baseline specification reported above, but 

replacing FCAT scores with a dummy variable for being deemed ready for kindergarten. 

These estimates show whether the effect of birth weight on cognitive skills is present at 

age 5. We next analyze how the magnitude of these effects compare with the magnitudes 

we find for third through eighth grade test scores. 

 We begin by simply presenting the estimated effects of log birth weight on the 

different variants of the kindergarten readiness assessment. The first three rows of table 6 

present the coefficients on log birth weight in three different cases – the initial school 

readiness checklist cohorts, the DIBELS cohorts, and the two kindergarten readiness 

assessments pooled together. One observes that a 10 percent increase in birth weight is 

associated with a 0.67 percentage point increase in being deemed ready for kindergarten 
                                                      
28 For more details about the structure and interpretation of DIBELS, see for instance Hoffman et al. 
(2009). 
29 While the kindergarten readiness assessments, and especially the DIBELS, focuses more on pre-literacy 
skills than on numeracy skills, these kindergarten readiness assessments are predictive of both later reading 
and mathematics achievement. The gap between kindergarten-ready and kindergarten-unready children 
ranges between 0.609 and 0.823, depending on cohort, for reading FCAT scores and between 0.680 and 
0.868, depending on cohort, for mathematics FCAT scores. 
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according to the school readiness checklist, and a 10 percent increase in birth weight is 

associated with a 1.15 percentage point increase in kindergarten readiness according to 

the DIBELS. When we pool the two sets of cohorts, these figures average to a 0.86 

percentage point increase. All of these estimates are statistically distinct from zero at 

conventional levels.  

These results make it clear that the effect of neonatal health on cognitive 

development that we documented for ages 9-14 is present by age 5. How does the 

magnitude of the effects at kindergarten entry compare with the magnitude of the effects 

in grades three through eight? The kindergarten readiness outcome is a binary indicator 

and the grade three through eight FCAT scores are continuous standardized z-scores. To 

compare the two outcomes, we transformed the FCAT scores into a binary indicator. To 

match the kindergarten readiness screens, we created a dummy variable that equals one if 

the student’s FCAT score is above the 17th percentile (the threshold that corresponds to 

the fraction of kindergarteners deemed not ready in the pooled SRC and DIBELS 

samples). We then estimated the baseline log birth weight fixed effects model for the 

pooled third through eighth grade sample and then separately by grade. These threshold-

based estimates are presented in the fourth through sixth rows of table 6. In order to 

ensure that we are comparing kindergarten readiness to test scores for the same children, 

we limit our comparisons to children for whom we observe a balanced panel of 

kindergarten readiness assessments and FCAT scores between third and eighth grade.  

The three rows differ in terms of how late into school a child must be observed to 

be included in the analysis. The fourth row includes all children observed at both 

kindergarten and third through eighth grade, so includes only students who took the SRC 

and none who took the DIBELS, while the sixth row includes children observed at both 

kindergarten and third grade, so students who took the DIBELS and SRC are more 

evenly represented.30 As can be seen, the coefficient estimates on log birth weight in 

models where the kindergarten readiness assessment is the dependent variable (ranging 

from 0.057 to 0.093) are considerably smaller than the coefficient estimates in models in 

which the discretized FCAT score is the dependent variable (ranging from 0.159 to 0.181 

                                                      
30 None of the cohorts for whom we have DIBELS scores are yet old enough to have reached 8th grade. The 
oldest of the DIBELS cohorts was in 6th grade in 2011-12, the most recent year of our testing data. 
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if limited to third grade, and from 0.146 to 0.167 if all grades are pooled.) These 

differences are statistically significant at conventional levels, which could be interpreted 

as an increase in the effect of birth weight on test scores between kindergarten and third 

grade.  

There is reason to believe, however, that the effects of birth weight on outcomes 

remain roughly constant between kindergarten and third grade (and therefore, through at 

least eighth grade.) Recall that the SRC and DIBELS reflect somewhat different skills; 

while the SRC reflects numeracy, literacy, and behavioral skills, the DIBELS is explicitly 

a pre-literacy assessment. The fact that the estimated effects of birth weight on DIBELS 

are closer in magnitude to the estimated effects on FCAT scores than are the estimated 

effects of birth weight on SRC could mean that birth weight has a greater effect on 

cognitive readiness in kindergarten than it does on social and emotional readiness in 

kindergarten. Indeed, given that the estimated effects of birth weight on discretized 

reading and mathematics FCAT scores are the same whether we consider the set of 

students who took the SRC or the set of students who took the DIBELS (see rows 7 and 8 

in table 6),31 and given that the estimated birth weight effects on reading, math, and 

DIBELS scores are all reasonably in line with one another in the panel that considers 

them all simultaneously (see row 8 in table 6), the evidence suggests that the effects of 

birth weight on cognitive skills remain steady from kindergarten through schooling. 

Indeed, there exists some evidence that the cognitive differences associated with birth 

weight seen throughout schooling are also present at about the same magnitude in early 

childhood: In a study comparing a much smaller set of twins born in 2001 in the ECLS-

B, Hart (2008) finds estimated effects of birth weight on the Bayley Mental Scale that are 

remarkably similar in effect size to those presented in our paper. 

Taken together, our findings indicate that the effects of poor neonatal health on 

cognitive development appear to be largely fixed by the time children enter kindergarten, 

and that the pattern of results are consistent with the notion that parental inputs and 

                                                      
31 The coefficient estimates in the third column of table 6 are not always between the coefficient estimates 
in the fifth and sixth columns because we discretized reading, math, and average test scores separately for 
each column. If we use as our dependent variable in the third column the average of the discretized reading 
and discretized math scores, rather than the discretized average reading and math score, then the estimated 
effect of log birth weight is exactly midway between the estimated effects on reading and math. The 
discrepancy occurs because reading and math scores are not perfectly correlated. 



35 
 

neonatal health are complements rather than substitutes. We should also point out that 

there is evidence that parents actively make different decisions regarding their twins’ 

early childhood experiences, suggesting that parents recognize developmental differences 

in their children and seek to remediate these differences in early childhood. In our data, it 

is reasonably common for parents to send one twin to preschool but not the other (true in 

7.6 percent of twin pairs and 8.8 percent of twin pairs in which the birth weight 

discordance is greater than 20 percent). In 9.3 percent of twin pairs (10.5 percent of twin 

pairs with discordance greater than 20 percent) parents choose different preschool 

arrangements for their twins – either sending one twin to preschool but not the other, or 

sending both twins to preschool but only one to privately-financed preschool. And in just 

under one percent of cases (1.3 percent of twin pairs with discordance greater than 20 

percent) parents “redshirt” one twin but not the other – sending the twins to kindergarten 

at different times.32  

Coupled with the evidence on attempted parental remediation of disadvantage in 

the United States (Hsin, 2012) and the evidence on differential parental time use in early 

childhood versus early elementary grades (Folbre et al., 2005), the evidence is consistent 

with the notion that parental remediation patterns could help to lower the negative effects 

of poor neonatal health in early childhood. But the finding of a significant effect of birth 

weight on kindergarten readiness in twin-comparison models indicates that there is an 

apparent limit to the degree of remediation that is likely, and that a portion of the 

biological factors are apparently difficult to overcome. 

 

IX. Conclusion 

 Using a unique population-level data source from Florida, we present the first 

look at the effects of poor neonatal health on child cognitive development in a western 

developed context, provide the first study of the differential effects on different 

demographic and socio-economic groups, and offer the first exploration of the degree to 

which school quality might influence these effects. Our results are remarkably consistent: 

Twins with higher birth weights enter school with a cognitive advantage that appears to 

                                                      
32 In cases of differential redshirting, parents are slightly more likely to redshirt the lighter twin than they 
are to redshirt the heavier twin. 
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remain stable through the elementary and middle school years. The estimated effects of 

low birth weight are present for children of highly-educated and poorly-educated parents 

alike, for children of both young and old mothers, and for children of all races and 

ethnicities, parental immigration status, parental marital status, and the like. The 

estimated effects are just as pronounced for students attending highly-performing public 

schools (measured in a variety of ways) as they are for students attending poorly-

performing public schools. These results strongly point to the notion that the effects of 

poor neonatal health on adult outcomes are largely determined early – in early childhood 

and the first years of elementary school. 

 There exists circumstantial evidence to suggest that these biological impediments 

may be remediated, but neither schools nor parents are able to fully remediate these 

factors. It is the case that children with poor neonatal health who come from highly-

educated families perform much better than those with good neonatal health who come 

from poorly-educated families, indicating that “nurture” can at least partially overcome 

“nature.” While what exactly parents do to successfully remediate biological 

disadvantage and what schools and parents could potentially do in early childhood and 

the early elementary grades and beyond to continue to remediate these issues are open 

questions, this study provides numerous indications that poor neonatal health establishes 

a stable trajectory for children’s cognitive development. 
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FIGURES 
Figure 1. Discordance in birth weight between twins born in Florida between 1992 and 2002 

 
Note: Figure 1 plots kernel density distributions of within-twin-pair difference in birth weight for all twin births in Florida (solid pink 
line) between 1992 and 2002 and twin births who were born in Florida and were successfully matched to Florida public school records 
(dashed blue line). Distributions are censored at 2000 grams for the sake of clarity, which removes 6 and 3 twin pairs respectively. 

Figure 2. Difference in birth weight distributions between singletons and twins born in Florida between 
1992 and 2002 

 
Note: Figure 2 plots kernel density distributions of infant birth weight for all singletons (solid pink line) and twins (solid purple line) 
born in Florida between 1992 and 2002 as well as infant birth weight distribution of singletons (dashed blue line) and twins (dashed 
orange line) that were successfully matched to Florida public school records. 
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Figure 3. Average within-twin-pair difference in test scores between heavier and lighter twins 

 
Note: Figure 3 plots difference between the mean test score of heavier and lighter twin from each pair in each grade and the respective 
95% confidence interval of this difference. Mean test score is constructed as an average of scores in mathematics and reading for each 
individual in each grade where we observe both twins. If score in mathematics is not available then only reading is used and vice 
versa. In each grade we create an average of scores for heavier and lighter twins and then calculate the difference between the two. 

Figure 4. Average within-twin-pair difference in mathematics between heavier and lighter twins 

 
Note: Figure 4 plots difference between the test score in mathematics of heavier and lighter twin from each pair in each grade and the 
respective 95% confidence interval of this difference. In each grade we create an average of scores for heavier and lighter twins and 
then calculate the difference between the two. 
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Figure 5. Average within-twin-pair difference in reading between heavier and lighter twins 

 
Note: Figure 5 plots difference between the test score in reading of heavier and lighter twin from each pair in each grade and the 
respective 95% confidence interval of this difference. In each grade we create an average of scores for heavier and lighter twins and 
then calculate the difference between the two. 

Figure 6. Average within twin pair difference in test scores between the higher birth weight and the lower 
birth weight twin: Sample where both twins are observed in each of six grades

 
Note: Figure 6 plots the same difference as Figure 3 but for a 6-year panel of twin-pairs i.e., we restrict the sample only to individuals 
where we observe both twins mean test scores from grade 3 to grade 6. 
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Figure 7. Difference in fraction of lighter and heavier twins tested in either mathematics or reading

 
Note: Figure 7 plots difference and its 95% confidence interval of fraction of heavier and lighter twins attending each grade. We start 
with all twin pairs old for grade where at least one twin has been successfully matched to Florida public schools in 3rd grade. For each 
grade we then calculate the fraction of heavier and lighter individuals attending given grade and take the difference between the two. 

Figure 8. Differences across grades with 5th and 95th test score imputations for twins with missing scores 

 
Note: Figure 8 plots two sets of differences calculated in the same way as in figure 3 but where we substitute the missing individual 
scores within twin pairs with either the 5th (solid purple line) or 95th (solid orange line) percentile of test scores in that grade. 
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Figure 9. Non-parametric relationship between birth weight and test scores

 
Note: Figure 9 plots coefficients from OLS (purple solid line) and twin-FE (orange solid line) models where the dependent variable is 
the mean of pooled grades three through eight combined mathematics and reading test scores for each individual and the independent 
variables are indicators for 37 weight bins corresponding to each individual birth weight. No additional controls are included in the 
models. 

 
Figure 10. Average within twin pair difference in test scores between the higher birth weight and the lower 

birth weight twin by maternal education categories 

 
Note: Figure 10 plots means of combined mathematics and reading test scores for lighter and heavier twins from each pair stratified by 
maternal education. Purple lines correspond to averages for lighter while orange lines correspond to heavier twins. Solid lines present 
means for high school drop-out mothers, dashed lines present means for children of mothers with high school diploma or some college 
while dotted lines present means for college graduates. 
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Figure 11. Average test scores among groups and estimated birth weight effects 

 
Note: Figure 11 plots the pooled coefficients presented in rows 4 to 10 in table 3 against the mean tests scores for each of the groups 
presented in column (2) of this table. We also fit the linear prediction with 95% confidence interval around it. Labels correspond to 
each of the studied groups. 

 
Figure 12. Estimated effects of birth weight, by weight of smaller twin 

 
Note: Figure 12 plots coefficients and 95% confidence intervals from a twin FE regression where the dependent variable is the mean 
of pooled grades three to eight combined mathematics and reading test scores for each individual and the independent variables are 20 
interactions corresponding to the product of log birth weight with indicators for 20 bins reflecting lighter twin percentiled birth weight. 
The regression additionally controls for infant gender and birth order within-twin pair. Heteroskedasticity robust standard errors are 
used to calculate the 95% confidence interval. Numbers on the x-axis correspond to the mean birth weight discordance in each of the 
20 bins.  
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Figure 13. Estimated effects of birth weight, by birth weight discordance 

 
Note: Figure 13 plots coefficients and 95% confidence intervals from a twin FE regression where the dependent variable is the mean 
of pooled grades three to eight combined mathematics and reading test scores for each individual and the independent variables are 20 
interactions corresponding to the product of log birth weight with indicators for 20 bins reflecting discordance in birth weight between 
twins. The regression additionally controls for infant gender and birth order within-twin pair. Heteroskedasticity robust standard errors 
are used to calculate the 95% confidence interval. Numbers on the x-axis correspond to the mean birth weight in each bin of lighter 
twin birth weight. 
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TABLES 

Table 1. Representativeness of the Florida twin population 
 (1) (2) (3) (4) 

Maternal attribute 
Full population 

of births 

Population of 
kids matched to 
Florida school 

records 

Population of 
kids with a third-
grade test score 

Population of twins 
with a third grade test 

score 

Black 22.6 24.8 25.7 25.9 

Hispanic 23.0 23.3 23.8 18.0 

High school dropout 20.9 22.5 23.4 15.5 

High school graduate 58.6 60.0 60.8 61.5 

College graduate 20.5 17.5 15.8 23.0 

Age 21 or below 22.0 23.6 24.2 14.4 

Age between 22 and 29 42.2 42.2 42.2 40.2 

Age between 30 and 35 26.0 24.8 24.5 31.8 

Age 36 or above 9.8 9.4 9.1 13.6 

Foreign-born 23.5 22.9 23.1 18.0 

Married at time of birth 64.8 62.2 61.0 68.3 

Number of children 2,047,663 1,652,333 1,326,004 28,564 
Note: The first column presents fractions in total population of children born in Florida between 1992 and 2002. The 
second column presents fractions in total population of children born between 1992 and 2002 linked to Florida school 
records. The third column presents fractions in total population of children born between 1992 and 2002 for whom we 
observe a third grade test score. Fourth column presents fractions in total population of twin pairs born between 1992 
and 2002 for whom we observe third grade test scores.  
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Table 2. Estimated effects of birth weight on cognitive development 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 Pooled Imputed grade: Twin FE models 
 OLS Twin FE 3 4 5 6 7 8 

  
 Average of mathematics and reading: 

         
Ln(birth weight) 0.310*** 0.441*** 0.442*** 0.526*** 0.430*** 0.426*** 0.386*** 0.373*** 
 (0.019) (0.029) (0.043) (0.045) (0.047) (0.053) (0.056) (0.061) 
         
R2 0.180 0.751 0.825 0.813 0.825 0.831 0.826 0.834 
N 127,156 28,564 26,628 23,056 19,408 16,246 13,254 

  
 Mathematics: 

         
Ln(birth weight) 0.387*** 0.497*** 0.473*** 0.579*** 0.533*** 0.490*** 0.410*** 0.429*** 
 (0.020) (0.032) (0.051) (0.051) (0.052) (0.061) (0.067) (0.070) 
         
R2 0.159 0.708 0.806 0.793 0.809 0.807 0.801 0.811 
N 126,542 28,496 26,552 22,986 19,332 16,136 13,040 

  
 Reading: 

         
Ln(birth weight) 0.230*** 0.392*** 0.415*** 0.467*** 0.328*** 0.372*** 0.370*** 0.349*** 
 (0.019) (0.031) (0.048) (0.051) (0.055) (0.059) (0.062) (0.069) 
         
R2 0.158 0.697 0.795 0.787 0.793 0.805 0.798 0.806 
N 126,706 28,470 26,520 22,976 19,348 16,210 13,182 

Note: Columns (1) and (2) present pooled grade three through eight results for OLS and twin-FE models. Columns (3) 
to (8) present twin-FE estimates separately for each of the 6 grades. Each coefficient comes from a separate regression. 
Sample sizes reflect number of individual observations in each regression and only twin pairs where both twins are 
observed with test scores in each grade are included. The dependent variable is an average test scores in mathematics 
and reading. If the test score in mathematics is not available then reading is included and vice versa. The main variable 
of interest is natural logarithm of birth weight. The remaining independent variables in twin-FE models include infant 
gender wand within-twin pair birth order. OLS estimates further controls for infant birth month and year, indicators for 
maternal age (each for one year) and education (high school dropout, high school graduate, college graduate). Standard 
errors in pooled regressions (columns (1) and (2)) are clustered at individual level; heteroskedasticity robust standard 
errors are calculated in columns (3) to (8) where there is just one observation per individual.  
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Table 3. Effects of birth weight on cognitive development by child and mother characteristics 
  (1) (2) (3) (4) (5) 

Characteristic Sample % population Mean test score 
Mean (SD) 
birth weight 

Pooled twin 
FE estimate 

p-value of 
difference 

(1) 
Children gender 

composition 

Same sex 68.2 0.073 2405 0.447*** 

0.773 
   (568) (0.032) 

Opposite sex 31.8 0.076 2454 0.427*** 
   (557) (0.062) 

(2) 
Gender 

Boys 49.6 0.048 2473 0.449*** 

0.941 
   (571) (0.052) 

Girls 50.4 0.099 2369 0.444*** 
   (555) (0.040) 

(3) 
Same-sex composition 

Girl-Girl 35.2 0.100 2359 0.444*** 

0.940 
   (561) (0.039) 

Boy-Boy 33.7 0.044 2452 0.449*** 
   (572) (0.051) 

(4) 
Maternal race 
(N=14 357) 

White 72.0 0.256 2457 0.466*** 

0.223 
   (554) (0.034) 

Black 26.1 -0.466 2318 0.381*** 
   (585) (0.061) 

(5) 
Maternal ethnicity 

Non-Hispanic 82.0 0.098 2413 0.434*** 

0.518 
   (565) (0.033) 

Hispanic 18.0 -0.036 2454 0.478*** 
   (564) (0.059) 

(6) 
Maternal immigration 

history 

Non-immigrant 82.0 0.072 2413 0.440*** 

0.899 
   (564) (0.033) 

Immigrant 18.0 0.080 2451 0.449*** 
   (570) (0.058) 

(7) 
Maternal education 

< 12 15.8 -0.476 2338 0.359*** 

0.163 

   (570) (0.070) 

<12; 15> 61.4 0.003 2430 0.434*** 
   (563) (0.038) 

> 15 22.8 0.663 2451 0.529*** 
   (562) (0.059) 

(8) 
Zip code median income 

(N=11 868) 

Bottom 36.7 -0.216 2393 0.389*** 

0.657 

   (567) (0.057) 

Middle 33.1 0.122 2409 0.457*** 
   (568) (0.054) 

Top 30.2 0.437 2435 0.446*** 
   (561) (0.059) 

(9) 
Maternal marital status 

(N=14 583) 

Non-married 31.8 -0.360 2336 0.362*** 

0.064 
   (574) (0.057) 

Married 67.6 0.272 2458 0.485*** 
   (556) (0.033) 

(10) 
Maternal age at birth of 

children 

<= 21 14.7 -0.396 2269 0.372*** 

0.698 

   (574) (0.086) 

<22; 29> 40.2 -0.006 2419 0.443*** 
   (561) (0.044) 

<30; 35> 31.6 0.277 2465 0.483*** 
   (557) (0.052) 

>= 36 13.5 0.343 2479 0.413*** 
   (559) (0.078) 

Note: Descriptive statistics for each group in columns (1) to (2). Column (1) presents the fraction for each group within 
total population of twin pairs used in the analysis (born in Florida between 1992 and 2002 and successfully matched to 
Florida public schools). Columns (2) and (3) present mean combined mathematics and reading test scores and mean 
(SD) of birth weight for each studied group respectively. Column (4) presents pooled grades three through eight twin-
FE model estimates corresponding to model outlined in column (2) in table 2. Column (5) presents the joint 
significance test for the analyzed groups in fixed effects model from column (4). Sample size: 127,156. Standard errors 
are clustered at the individual level.   
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Table 4. Sensitivity of results to model specification 
 (1)  (2) (3) (4) (5) (6) (7) 

Sample 
Pooled 

 Imputed grade 
  3 4 5 6 7 8 

(1) 
ln(birth weight) 

0.441***  0.442*** 0.526*** 0.430*** 0.426*** 0.386*** 0.373*** 
(0.029)  (0.043) (0.045) (0.047) (0.053) (0.056) (0.061) 

(2) 
Both twins above 2500g 

0.526***  0.575*** 0.656*** 0.464*** 0.528*** 0.409*** 0.427*** 
(0.073)  (0.110) (0.115) (0.120) (0.126) (0.144) (0.152) 

(3) 
Both twins below 2500g 

0.473***  0.470*** 0.569*** 0.495*** 0.455*** 0.339*** 0.419*** 
(0.046)  (0.066) (0.069) (0.074) (0.087) (0.089) (0.098) 

(4) 
Both twins 1500g-2499g 

0.517***  0.390*** 0.537*** 0.572*** 0.591*** 0.499*** 0.579*** 
(0.062)  (0.092) (0.097) (0.105) (0.114) (0.120) (0.131) 

(5) 
Both twins <1500g 

0.572***  0.604*** 0.714*** 0.721*** 0.485** 0.360 0.295 
(0.114)  (0.176) (0.157) (0.195) (0.205) (0.226) (0.270) 

(6) 
Birth weight in 1000g 

0.186***  0.185*** 0.223*** 0.178*** 0.180*** 0.169*** 0.155*** 
(0.013)  (0.019) (0.019) (0.020) (0.023) (0.024) (0.026) 

(7) 
Birth weight 

0.198***  0.196*** 0.234*** 0.191*** 0.193*** 0.177*** 0.171*** 
(0.013)  (0.019) (0.020) (0.021) (0.023) (0.025) (0.027) 

Birth weight * (birth weight - 
mean twin pair birth weight) 

-0.105***  -0.117*** -0.105*** -0.114*** -0.105** -0.058 -0.112** 
(0.024)  (0.036) (0.037) (0.039) (0.045) (0.047) (0.051) 

Note: Column (1) present pooled grade three through eight results for the twin-FE model, with standard errors clustered at the individual 
level. Columns (2) to (7) present twin-FE estimates separately for each of the 6 grades. Each coefficient estimate comes from a separate 
regression (except for the last row where there are two coefficients from the same regression reported). Sample sizes and models are 
identical to these estimated in columns (2) and (3) to (8) in table 2 but the variable of interest is substituted. For the sake of clarity we 
carry over the main estimates from table 2 to the first row in this table. The second row presents the baseline model for the sample of 
twin pairs where both twins are above 2500g. The third row presents the baseline model for the sample of twin pairs where both twins 
are below 2500g. The fourth row presents the baseline model for the sample of twin pairs where both twins have birth weight between 
1500g and 2499g. The fifth row presents the baseline model for the sample of twin pairs where both twins have birth weight below 
1500g. The sixth row substitutes ln(birth weight) with birth weight measured in 1000g. The seventh row substitutes ln(birth weight) by 
birth weight in grams as the firs variable and the interaction between birth weight in grams and the difference of birth weight in grams 
and mean twin pair birth weight in grams as the second variable. 
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Table 5. Results by school quality measures 
  (1) (2) (3) (4) (5) 

School quality measure Sample % population 
Mean test 

score 

Mean (SD) 
birth 

weight 

Pooled twin 
FE estimate 

p-value of 
difference 

(1) 
Awarded grade 

A 48.6 0.277 2437 0.407*** 

0.204 

   (559) (0.033) 

B 28.8 -0.095 2409 0.497*** 
   (570) (0.055) 

C & D & F 22.6 -0.400 2375 0.455*** 
   (578) (0.062) 

(2) 
Average proficiency 

Below median 39.7 -0.340 2381 0.436*** 

0.831 
   (580) (0.048) 

Above median 60.3 0.297 2442 0.425*** 
   (555) (0.033) 

(3) 
Growth in proficiency 

Below median 49.8 0.044 2420 0.449*** 

0.649 
   (565) (0.036) 

Above median 50.2 0.098 2421 0.433*** 
   (564) (0.035) 

Note: Descriptive statistics for each group are reported in columns (1) to (2). Column (1) presents the fraction for each 
group within total population of twin pairs used in the analysis (born in Florida between 1992 and 2002 and 
successfully matched to Florida public schools). Columns (2) and (3) present mean combined mathematics and reading 
test scores and mean (SD) of birth weight for each studied group respectively. Column (4) presents pooled grades three 
through eight twin-FE model estimates corresponding to model outlined in column (2) in table 2. Column (5) presents 
the joint significance test for the analyzed groups in fixed effects model from column (4). In the case of awarded grades 
since not all schools are awarded grades every year our sample consist of 124,380 individual observations used in 
models in column (4). In the case of average proficiency and growth in proficiency we use 126,502 individual 
observations in models in column (4). The discrepancy between the samples in table 3 and table 5 is due to the fact that 
we do not have data on school quality for the universe of schools in every year in Florida (in particular average 
proficiency and growth cannot be calculated for a newly established school). 
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Table 6. Effects of birth weight on kindergarten readiness  
and comparison with FCAT scores 

 (1) (2) (3) (4) (5) (6) 
Panel N Kindergarten 

readiness 
measure 

(dichotomous)

3rd grade 
FCAT 

(discretized)

Pooled panel 
FCAT 

(discretized) 

3rd grade 
FCAT 
reading 

(discretized) 

3rd grade 
FCAT  
math 

(discretized)
School readiness 
checklist only 
(98-01 KG cohorts) 

8,938 0.067* 
(0.035) 

    

       
DIBELS only  
(06-08 KG cohorts) 

6,696 0.115*** 
(0.043) 

    

       
Pooled SRC and 
DIBELS (KGR) 

15,634 0.086*** 
(0.027) 

    

       
KGR & 3rd-8th 
grade panel 

6,512 0.057 
(0.040) 

0.181*** 
(0.045) 

0.146*** 
(0.024) 

0.182*** 
(0.046) 

0.149*** 
(0.045) 

       

KGR & 3rd-5th 
grade panel 

9,198 0.060* 
(0.033) 

0.178*** 
(0.038) 

0.167*** 
(0.022) 

0.179*** 
(0.038) 

0.166*** 
(0.037) 

       

KGR & 3rd grade 
panel 

13,718 0.093*** 
(0.029) 

0.159*** 
(0.031) 

0.159*** 
(0.031) 

0.161*** 
(0.031) 

0.138*** 
(0.031) 

       
SRC & 3rd grade 
panel 

7,824 0.060 
(0.037) 

0.163*** 
(0.040) 

0.163*** 
(0.040) 

0.098** 
(0.041) 

0.103** 
(0.045) 

       
DIBELS & 3rd 
grade panel 

5,894 0.139*** 
(0.046) 

0.118** 
(0.050) 

0.118** 
(0.050) 

0.101** 
(0.049) 

0.103** 
(0.051) 

       
       
Note: The first three rows present the estimated effects of ln(birth weight) on three kindergarten readiness measures. 
All models additionally control for infant gender, within-twin pair birth order and twin fixed effects. In each case the 
sample includes all twin pairs where both twins were assessed. The next three rows limit the sample to those with both 
a kindergarten readiness measure and, in turn, test scores observed between grades 3-8, grades 3-5, and grade 3. KGR 
refers to SRC and/or DIBELS. The discretized FCAT scores are created by assigning a value of 1 to the top 83 percent 
of the FCAT score distribution and 0 otherwise, in order to make the results directly comparable to those where the 
dependent variables are dichotomous kindergarten readiness indicators. The final two rows limit the sample to those 
with the SRC and 3rd grade score, and then the DIBELS and 3rd grade score, respectively. Standard errors are 
heteroskedasticity robust in cases in which there is one observation per individual and clustered to the student level in 
the cases in which there are multiple observations per individual. Sample sizes vary slightly from regression to 
regression depending on whether reading, math, or both scores are the dependent variable. 
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APPENDIX 
FIGURES 

Figure A1. Estimated effects of birth weight, by weight of bigger twin

 
Note: Figure A1 plots coefficients and 95% confidence intervals from a twin FE regression where the dependent variable is the mean 
of pooled grades three to eight combined mathematics and reading test scores for each individual and the independent variables are 20 
interactions corresponding to the product of log birth weight with indicators for 20 bins reflecting heavier twin percentiled birth 
weight. The regression additionally controls for infant gender and birth order within-twin pair. Heteroskedasticity robust standard 
errors are used to calculate the 95% confidence interval. Numbers on the x-axis correspond to the mean birth weight in each bin of 
heavier twin birth weight. 
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TABLES 
Table A1. Birth weight difference and test scores across imputed grades and groups: coefficients on log birth 

weight 
  (1) (2) (3) (4) (5) (6) (7) 

Sample 
Pooled 

Imputed grade 
  3 4 5 6 7 8 

Total sample 0.441*** 0.442*** 0.526*** 0.430*** 0.426*** 0.386*** 0.373*** 
(0.029) (0.043) (0.045) (0.047) (0.053) (0.056) (0.061) 

(1) 
Children gender 

composition 

Same sex 0.447*** 0.460*** 0.527*** 0.406*** 0.464*** 0.394*** 0.363*** 
 (0.032) (0.049) (0.053) (0.053) (0.059) (0.062) (0.066) 

Opposite sex 0.427*** 0.398*** 0.524*** 0.486*** 0.335*** 0.365*** 0.395*** 
 (0.062) (0.086) (0.088) (0.097) (0.112) (0.122) (0.135) 

(2) 
Gender 

Boys 0.449*** 0.471*** 0.567*** 0.379*** 0.475*** 0.410*** 0.298** 

 (0.052) (0.089) (0.096) (0.097) (0.114) (0.115) (0.121) 

Girls 0.444*** 0.449*** 0.488*** 0.434*** 0.453*** 0.378*** 0.428*** 
 (0.040) (0.081) (0.084) (0.081) (0.085) (0.094) (0.101) 

(3) 
Same-sex 

composition 

Girl-Girl 0.444*** 0.449*** 0.488*** 0.434*** 0.453*** 0.378*** 0.428*** 
 (0.039) (0.067) (0.070) (0.068) (0.071) (0.078) (0.085) 

Boy-Boy 0.449*** 0.471*** 0.567*** 0.379*** 0.475*** 0.410*** 0.298*** 
 (0.051) (0.073) (0.079) (0.080) (0.094) (0.096) (0.101) 

(4) 
Maternal race 
(N=14 357) 

White 0.466*** 0.504*** 0.546*** 0.440*** 0.419*** 0.417*** 0.389*** 

 (0.034) (0.051) (0.054) (0.054) (0.060) (0.065) (0.068) 

Black 0.381*** 0.291*** 0.476*** 0.412*** 0.447*** 0.300** 0.341** 
 (0.061) (0.087) (0.090) (0.098) (0.118) (0.118) (0.137) 

(5) 
Maternal ethnicity 

Non-Hispanic 0.434*** 0.442*** 0.518*** 0.440*** 0.395*** 0.376*** 0.358*** 

 (0.033) (0.049) (0.052) (0.053) (0.060) (0.064) (0.070) 

Hispanic 0.478*** 0.442*** 0.567*** 0.390*** 0.576*** 0.432*** 0.439*** 
 (0.059) (0.094) (0.092) (0.103) (0.110) (0.115) (0.125) 

(6) 
Maternal 

immigration 
history 

Non-immigrant 0.440*** 0.469*** 0.518*** 0.439*** 0.408*** 0.367*** 0.348*** 

 (0.033) (0.049) (0.052) (0.053) (0.061) (0.065) (0.070) 

Immigrant 0.449*** 0.323*** 0.563*** 0.394*** 0.510*** 0.470*** 0.478*** 
 (0.058) (0.090) (0.090) (0.095) (0.105) (0.111) (0.122) 

(7) 
Maternal 
education 

< 12 0.359*** 0.249** 0.484*** 0.431*** 0.257** 0.369** 0.342** 
 (0.070) (0.110) (0.125) (0.121) (0.128) (0.145) (0.152) 

<12; 15> 0.434*** 0.466*** 0.493*** 0.410*** 0.443*** 0.365*** 0.365*** 
 (0.038) (0.055) (0.055) (0.060) (0.070) (0.070) (0.078) 

> 15 0.529*** 0.517*** 0.656*** 0.493*** 0.503*** 0.477*** 0.433*** 
 (0.059) (0.089) (0.098) (0.096) (0.099) (0.123) (0.129) 

(8) 
Zip code median 

income 
(N=11 868) 

Bottom 0.389*** 0.428*** 0.445*** 0.310*** 0.328*** 0.399*** 0.396*** 
 (0.057) (0.083) (0.085) (0.091) (0.110) (0.110) (0.133) 

Middle 0.457*** 0.409*** 0.534*** 0.491*** 0.504*** 0.387*** 0.338*** 
 (0.054) (0.081) (0.089) (0.086) (0.101) (0.116) (0.126) 

Top 0.446*** 0.507*** 0.550*** 0.383*** 0.376*** 0.320*** 0.413*** 
 (0.059) (0.085) (0.088) (0.098) (0.108) (0.121) (0.144) 

(9) 
Maternal marital 

status 
(N=14 583) 

Non-married 0.362*** 0.336*** 0.402*** 0.413*** 0.376*** 0.363*** 0.218* 

 (0.057) (0.083) (0.085) (0.090) (0.112) (0.113) (0.115) 

Married 0.485*** 0.497*** 0.588*** 0.446*** 0.454*** 0.400*** 0.458*** 
 (0.033) (0.050) (0.053) (0.055) (0.058) (0.064) (0.072) 

(10) 
Maternal age at 
birth of children 

<= 21 0.372*** 0.371*** 0.411*** 0.495*** 0.237 0.399** 0.233 
 (0.086) (0.116) (0.130) (0.136) (0.172) (0.168) (0.177) 

<22; 29> 0.443*** 0.417*** 0.509*** 0.374*** 0.534*** 0.417*** 0.385*** 
 (0.044) (0.067) (0.066) (0.071) (0.081) (0.085) (0.093) 

<30; 35> 0.483*** 0.466*** 0.585*** 0.496*** 0.465*** 0.388*** 0.426*** 
 (0.052) (0.080) (0.081) (0.085) (0.090) (0.101) (0.113) 

>= 36 0.413*** 0.529*** 0.570*** 0.393*** 0.182 0.270* 0.354** 
 (0.078) (0.114) (0.135) (0.124) (0.134) (0.155) (0.155) 

Note: Column (1) present pooled grade three through eight results for twin-FE model. Columns (3) to (8) present twin-FE estimates separately for each of the 6 grades. Models are 
the same as used in columns (2) and (3) to (8) in table 2. Sample size is 127 156 individual observations in pooled regressions in column (1) except for race, marital status and 
mean zip code income. In the case of race this discrepancy is caused by existence of other races with minor representation in Florida, In the case of income and marital status we 
do not have complete data for all mothers and residential locations. In all these cases the modified sample sizes are given. Each coefficient comes from a separate regression.
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Table A2. Sensitivity to model specification: Birth weight as a second order polynomial 
 (1) (2) (3) (4) (5) (6) (7) 

Sample 
Pooled 

Imputed grade 
 3 4 5 6 7 8 

Birth weight 0.450*** 0.477*** 0.487*** 0.466*** 0.446*** 0.317*** 0.441***
(0.063) (0.094) (0.098) (0.100) (0.118) (0.122) (0.133) 

Birth weight2 -0.053*** -0.058*** -0.053*** -0.057*** -0.053** -0.029 -0.056**
(0.012) (0.018) (0.019) (0.019) (0.023) (0.023) (0.025) 

Note: Column (1) present pooled grade three through eight results for twin-FE model. Columns (2) to (7) present twin-FE estimates 
separately for each of the 6 grades. Both coefficients comes from the same regression. Sample sizes and models are identical to these 
estimated in columns (2) and (3) to (8) in table 2 but the variable of interest (ln(birth weight)) is substituted by birth weight in grams 
and its square. 

 


