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Recent theoretical work in the economics of climate change has
suggested that climate policy is highly sensitive to ‘fat-tailed’ risks
of catastrophic outcomes (Weitzman, 2009b). Such risks are sug-
gested to be an inevitable consequence of scientific uncertainty
about the effects of increased greenhouse gas concentrations on cli-
mate. Criticisms of this controversial result fall into three cate-
gories: The first suggests it may be irrelevant to cost benefit anal-
ysis of climate policy, the second challenges the fat-tails assump-
tion, and the third questions the behaviour of the utility function
assumed in the result. This paper analyses these critiques, and
suggests that those in the first two categories have formal validity,
but that they apply only to the restricted setup of the original re-
sult, which may be extended to address their concerns. They are
thus ultimately unconvincing. Critiques in the third category are
shown to be robust, however they open up new ethical and em-
pirical challenges for climate economics that have thus far been
neglected – how should we ‘value’ catastrophes as a society? I
demonstrate that applying results from social choice to this prob-
lem can lead to counterintuitive results, in which society values
catastrophes as infinitely bad, even though each individual’s utility
function is bounded. Finally, I suggest that the welfare functions
traditionally used in climate economics are ill-equipped to deal with
climate catastrophes in which population size changes. Drawing on
recent work in population ethics I propose an alternative welfare
framework with normatively desirable properties, which has the ef-
fect of dampening the contribution of catastrophes to welfare.
JEL: D61, D63, D81, Q54
Keywords: Climate Change, Catastrophes, Welfare, Uncertainty,
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Since the publication of the Stern Review on the Economics of Climate Change
(Stern, 2007), economists have been heatedly debating the appropriate welfare
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framework for evaluating climate change policy (Weitzman, 2007; Nordhaus, 2007;
Dasgupta, 2008; Sterner and Persson, 2008; Dietz and Stern, 2008; Heal, 2009).
Choices of key parameters in the standard discounted utilitarian model– the pure
rate of time preference (PRTP), and the elasticity of the marginal utility of con-
sumption – were identified as key determinants of the radical difference between
the policy prescriptions offered by Stern, and those of his most prominent North
American counterpart (Nordhaus, 2008). In the thick of this debate, Weitzman
introduced his ‘dismal theorem’ in an influential and much debated paper (Weitz-
man, 2009b). In informal terms, the dismal theorem states that the evaluation of
climate change policy is highly sensitive to catastrophic outcomes, even if they
occur with vanishingly small, but ‘fat-tailed’1, probability. The dismal theorem
suggests that such fat-tailed risks are an inescapable consequence of Bayesian
statistics, and our ‘structural’ uncertainty about the response of the climate sys-
tem to increases in greenhouse gas concentrations. It argues that such risks can
swamp all other effects on welfare, including those that arise from conventional
discounting, and make willingness to pay to avoid them formally infinite. Weitz-
man argues that this has radical implications for the way we evaluate policies
that aim to mitigate climate change, and suggests that existing analyses based on
integrated assessment models do not take sufficient account of such catastrophic
risks, and thus recommend mitigation policies that are not ambitious enough.

This paper provides a critical analysis of Weitzman’s dismal theorem, and the
by now sizeable literature that comments on its content and interpretation. While
the mathematical result Weitzman obtains (described in detail in section 2 below)
is beyond reproach, the assumptions upon which it is based are controversial, and
have been heavily criticized. In section 3, I divide these critiques into three
categories – criticisms of the relevance of the dismal theorem for cost-benefit
analysis, criticisms of fat-tailed probability distributions, and criticisms of the
behaviour of the utility function it assumes. Critiques of the dismal theorem
in the first two categories show that the framework Weitzman employed is not
robust to plausible changes in the assumptions of the modeling. However, in both
these cases, I demonstrate that the intellectual content of the dismal theorem
can be reinstated by appropriate extensions and modifications of Weitzman’s
results, and by assessing the plausibility of the assumptions made in the criticisms
themselves. Thus, I find that criticisms based on these two strains of inquiry are
ultimately unconvincing. Criticisms of the behaviour of the utility function are
however robust – the dismal theorem may be ‘resolved’ by accepting that the
traditional tool of constant relative risk aversion (CRRA) utility functions is not
up to the task of evaluating fat-tailed risks. I demonstrate that a generalization
of the CRRA-like utility functions assumed by the theorem – Harmonic Absolute
Risk Aversion utility functions – provides finite welfare measures even when risks
are fat-tailed, and moreover makes policy evaluation relatively insensitive to the

1We will refer to any probability distribution which decays polynomially in the tails (upper or lower,
as appropriate) as ‘fat-tailed’.
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tails of the consumption distribution for a plausible range of parameters. While
such utility functions provide a technical resolution to the dismal theorem, they
highlight the fact that the theorem’s message is not so much a technical point
about specific utility functions, but an ethical and empirical point about what
the appropriate utility function for analysis of catastrophic risks should be. The
key issue is: How should we ‘value’ catastrophic outcomes as a society?

If we attempt to address this question via Harsanyi-style aggregation over
the preferences of diverse individuals, some counterintuitive results are possible.
While individuals are unlikely to be willing to pay large sums to avoid very low
probability catastrophic risks, implying that CRRA utility functions are indeed
an inappropriate representation of their preferences, social willingness to pay need
not be similarly constrained. I demonstrate that even if every individual’s utility
function is bounded, aggregate social welfare may still be unbounded below at
positive consumption levels. This suggests that in some cases social evaluation
of catastrophic risks is highly sensitive to the preferences of the most risk-averse
members of society, even if they make up an exponentially vanishing fraction of
the population. Thus it is not a simple matter to reason from willingness to
pay to avoid catastrophes as elicited from a sample of the population to social
preferences over catastrophic risks.

In section 4 I suggest that the ethical issues the dismal theorem raises run
even deeper than the choice of an appropriate social utility function. Any welfare
analysis which admits catastrophic impacts on consumption must also of neces-
sity deal with population change. The role of population change is not made
explicit in the analyses of Weitzman and his critics – they implicitly assume an
average utilitarian population principle. Yet average utilitarianism has been heav-
ily criticized by philosophers and social choice theorists. I discuss an attractive
alternative to average utilitarianism – critical level utilitarianism – which pro-
vides a more defensible approach to population ethics, and dampens the effect of
catastrophic risks on welfare. Section 5 concludes by suggesting that the dismal
theorem shows that the welfare framework that has thus far been standard in in-
tegrated assessment modeling is an inadequate normative basis for climate policy
analyses which account for possible catastrophes. Nevertheless, alternatives with
desirable properties are available, and should be implemented in the next round
of economic analyses of mitigation policies. These however require us to face up
to ethical and empirical issues that have thus far been neglected.

I. Weitzman’s Dismal Theorem

Weitzman (2009b) phrases his analysis in terms of a two period model. Current
consumption is normalized to 1. Future consumption is given by the random
variable c. Consider the following welfare function:

(1) W = U(1) + βEU(c)
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where U is the social utility function (which we will assume is concave and twice
differentiable), E is the expectation operator, and β ∈ [0, 1] is a discount factor on
future utility. Suppose now that we are able to transfer an infinitesimal amount
δ of consumption into the future, with certainty. What amount ε of current
consumption should we be willing to sacrifice in order to make this transfer? In
other words, what is the relationship between the values of ε and δ that will leave
total welfare unchanged? Formally, this question is answered by setting

(2) U(1− ε) + βEU(c+ δ) = U(1) + βEU(c).

In the limit as ε, δ → 0, one finds

(3) ε =

(
β
EU ′(c)

U ′(1)

)
δ.

This expression tells us the marginal willingness to pay for a transfer of a certain
infinitesimal unit δ of consumption into the future. The stochastic discount factor
M is defined as

(4) M := β
EU ′(c)

U ′(1)
.

Weitzman proves the following theorem:

THEOREM 1: Suppose that

• The coefficient of relative risk aversion η(c) = −cU
′′(c)
U ′(c) is strictly greater

than zero as c→ 0.

• The consumption growth rate y := log c is distributed according to a probabil-
ity density function h(y|s) = 1

sf(y−µs ), where f is a normalizable function,
µ is a known location parameter, and s is an uncertain scale parameter.
Weitzman interprets s as a ‘generalized climate sensitivity’ parameter –
this will be discussed below.

• The prior on s is of the form p(s) ∝ s−k, where k > 0, and you are given a
finite number n of independent observations yn of the random variable y.

Then we can conclude that,

1) The posterior distribution for y, q(y|yn) ∝
∫∞

0 h(y|s)
∏
n h(yn|s)p(s)ds scales

like |y|−(n+k) as y → −∞.

2) The stochastic discount factor M →∞.

The first part of the conclusion of the theorem is a result due to Schwarz (1999),
while the second part had been pointed out by Geweke (2001) in the special case
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of some fat tailed parametric distributions (e.g. t-distribution, inverted-gamma
distribution) for the posterior q(y|yn). Weitzman’s contribution was to combine
these two results, and give an interpretation of their consequences for climate
change economics. He suggests that the correct way to interpret this result is that
when there is what he terms ‘structural uncertainty’ (i.e. uncertainty about the
parameters of the distribution for future consumption), policy choice is heavily
dependent on the catastrophic tails of the distribution of future consumption,
which in general are ‘fat’, i.e. decay to zero only polynomially in consumption. In
fact, he suggests, the effect of these catastrophic fat tails swamps all other effects
on the discount factor, including that of the PRTP (given by − lnβ in this model)
which had hitherto been the chief source of contention amongst economists.

II. Criticisms of the Dismal Theorem

A. Marginal vs. total willingness to pay

Weitzman chose to frame his results in terms of the stochastic discount fac-
tor, which as demonstrated in equation (3), determines willingness to pay for
an infinitesimal certain transfer of consumption to the future. The fact that his
result is framed in terms of marginal, and not total, willingness to pay, has been
criticized by several authors, most notably Horowitz and Lange (2009) and Karp
(2009). They point out that the fact that marginal willingness to pay may be
infinite is of very limited relevance for cost-benefit analysis – all it implies is that
one would certainly want to transfer a non-infinitesimal amount of consumption
to the future. Nordhaus (2011) also emphasizes the absence of a policy variable
from Weitzman’s analysis, and suggests that the dismal theorem has no special
consequences for policy choice. I reprise and generalize these authors’ arguments
below.

Suppose that we wish to determine the optimal transfer a from current con-
sumption into future consumption. Then we need to pick a to maximize

(5) U(1− a) + βEU(c+ a).

The first order condition is

(6) U ′(1− a) = βEU ′(c+ a).

Now ask yourself whether this equation has a solution at a = 0, which corresponds
to the case of an infinitesimally small transfer. The answer is clearly no, if the
conditions of Weitzman’s theorem on U and the probability distribution for c are
satisfied. However, this in itself does not mean that there is no solution other
than the vacuous a = 1. In fact, when the conditions of Weitzman’s theorem are
satisfied, a solution a∗ ∈ (0, 1) to the first order condition (6) is guaranteed to
exist under very mild continuity conditions:
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PROPOSITION 1: Assume that U ′(0) = ∞, U ′(x) is finite for all x > 0, and
that U ′(x) is a continuous function. In addition, assume EU ′(c) =∞. Then the
first order condition (6) has a unique solution a∗ ∈ (0, 1).

PROOF:
Let F (a) := βEU ′(c + a) − U ′(1 − a). By assumption, F (0) = ∞, F (1) =
−∞. The continuity of U ′ implies that F (a) is continuous on [0, 1]. Therefore
the intermediate value theorem tells us that there exists a∗ ∈ (0, 1) such that
F (a∗) = 0. The fact that F (a) is decreasing (since U is concave) means that a∗

is unique.
For Horowitz and Lange (2009) and Karp (2009), this fact renders the dismal

theorem uninteresting. Karp (2009) in particular shows that the optimal transfer
a∗ is about as sensitive to the PRTP, as it is to the probability of catastrophe in
a simple binary lottery. Using this result, he suggests that even a moderate inter-
pretation of the dismal theorem which suggests that catastrophic risks can swamp
the effect of the PRTP, is flawed. I am however hesitant to dismiss the dismal
theorem on these grounds. To see why, notice that this argument is predicated
on the assumption that it is possible to transfer a finite amount of consumption
a into the future with certainty. This seems a very strong assumption, especially
so in the case of climate change, where catastrophic outcomes are at least con-
ceivable for a wide range of abatement policies, owing to the long residence time
of atmospheric CO2 (Solomon et al., 2009).

Consider a generalization of the decision problem in (5), in which this time it
is no longer certain that a sacrifice of an amount a of current consumption gives
rise to a certain payoff in the future. We will model the effect of a sacrifice of
size a on the distribution of future consumption through the distribution function
q(c; a). The decision problem is now to choose a to maximize

(7) U(1− a) + β

∫ ∞
0

U(c)q(c; a)dc.

The first order condition for this problem is:

(8) U ′(1− a) = β

∫ ∞
0

U(c)
∂q(c; a)

∂a
dc.

Define

(9) I(a) :=

∫ ∞
0

U(c)
∂q(c; a)

∂a
dc.

We identify three cases of interest:

1) I(a) is finite for all values of a

2) I(a) diverges for a ∈ [0, d], but is finite for a ∈ (d, 1], with d ∈ (0, 1).
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3) I(a) diverges for all a ∈ [0, 1].

In case 1, both marginal and total willingness to pay are finite, and an optimal
value of a exists. In the second case, marginal willingness to pay is infinite, but
total willingness to pay is finite and greater than or equal to d – this is analogous
to the case examined by Karp (2009). In this case the optimal value of a must
be greater than d. In the third case, both marginal and total willingness to pay
are infinite, and there is no a < 1 which satisfies the first order condition.

To make these three cases concrete, and tie them to some physical and eco-
nomic parameters, consider the following set of assumptions: Suppose that fu-
ture consumption depends on the increase in global average temperature above
preindustrial levels (T ) through a multiplicative damage function, i.e.:

(10) c ∝ 1

1 +D(T )

Assume, as is standard in the integrated assessment modeling literature (e.g.
Nordhaus, 2008; Hope, 2006; Weitzman, 2010) that D(T ) grows at most polyno-
mially in temperature T , with leading order exponent γ, so that for large T ,

(11) c ∼ T−γ .

Now pick a CRRA utility function,

(12) U(c) =
c1−η

1− η

and assume that the temperature change T is distributed like

(13) T ∼ T−g(a), for large T,

where g(a) is a nondecreasing function of a, and we require g(a) > 1 for all a in
order for the temperature distribution to be normalizable. In this model, a may
be interpreted as the level of abatement spending. More abatement is assumed
to flatten out the tail of the distribution of future temperatures2. With these
assumptions, the contribution to the integral I(a) from temperatures larger than

2It is of course possible that the tail becomes ‘thin’ at some finite value of a, in which case we may
say that g(a)→∞.
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T � 1 is:

I(a;T ) ∝
∫ ∞
T

(T−γ)1−η

1− η
∂

∂a

[
T−g(a)

]
dT

∝
∫ ∞
T

(T−γ)1−η
[
−(T−g(a) lnT )g′(a)

]
dT

∝
∫ ∞
T

T γ(η−1)−g(a) lnTdT.

Now for large T , we know that lnT grows more slowly than T θ for any θ > 0, so
we can conclude that for large T ,

(14) I(a;T ) ∝
∫ ∞
T

T γ(η−1)−g(a)dT.

We now make use of the following simple fact of integration:

(15)

∫ ∞
T

T−pdT converges if and only if p > 1.

Using this, the integral I(a) converges if and only if,

(16) g(a) > 1 + γ(η − 1).

Our three cases correspond to three types of behaviour for the function g(a):

1) I(a) converges for all a → g(a) > 1 + γ(η − 1) for all a ∈ [0, 1].

2) I(a) converges only for a ∈ [d, 1]→ g(a) > 1 + γ(η − 1) for a ∈ [d, 1].

3) I(a) diverges for all a ∈ [0, 1]→ g(a) < 1 + γ(η − 1) for all a ∈ [0, 1].

Notice how the critical value of g(a) at which the convergence properties of I(a)
changes depends on the parameter γ, which measures the steepness of the climate
damages function, and η which measures the curvature of the utility function.
Increases in either of these parameters decrease the range of values of a for which
the integral converges. In general, increases in either of these parameters increase
the importance of the tails of the distribution for T for welfare calculations.

To get a sense of the implications of (16), pick γ = 2, the value used in the
DICE integrated assessment model (Nordhaus, 2008). Next, consider the theo-
retical distribution for climate sensitivity3 derived in Roe and Baker (2007). This
distribution falls off as T−2 for large T . Let a2 be the value of abatement that

3Climate sensitivity is the amount of surface warming expected from a doubling of CO2 concentra-
tions, in equilibrium.
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stabilizes CO2 concentrations at twice their preindustrial level. Then, as we ap-
proach equilibrium, we have g(a2) ≈ 2. The inequality (16) therefore implies that
I(a2) converges only if η < 3/2. Thus, under these assumptions, we know for
certain that if η > 3/2, the optimal level of abatement spending must be larger
than a2, i.e. it is optimal to keep CO2 concentrations below twice their preindus-
trial level, given the assumptions of this calculation. Moreover, if g(a) = 2 for all
abatement levels4, η > 3/2 implies that welfare diverges for all values of a.

It seems to me that the correct value for γ, and in particular the behaviour
of the function g(a), are not very well tied down in the existing literature. I
would expect a γ > 2 – the damage function used by Nordhaus (2008) has been
argued to be implausibly flat (Ackerman, Stanton and Bueno, 2010), with 5◦C of
warming giving rise to only a 6.5% drop in economic output5. Weitzman (2010),
in contrast, estimates γ ≈ 6.7. This value of γ makes the dismal theorem even
more difficult to get rid of than in the example above, requiring η < 1.15 for
convergence. As for g(a), I do not think we can rule out the possibility of it being
bounded above by 1 + γ(η − 1), in which case the dismal theorem holds for all
values of a, and not just for marginal willingness to pay6.

B. Where do fat tailed probability distributions come from?

The analysis above shows that we cannot plausibly rule out a divergence in
social welfare at all abatement levels when consumption risks are fat tailed, and
the utility function has the CRRA form. Yet where do such fat-tailed risks come
from? Two arguments have been proposed – an abstract Bayesian argument, and
an argument based on stylized models of the temperature response to increases
in greenhouse gas concentrations, which centers around the concept of climate
sensitivity.

The Bayesian argument. — The analysis in Weitzman (2009b) proceeds in the
Bayesian paradigm, in which beliefs about the uncertain value of future consump-
tion are based on a set of observations (he uses this as a loose proxy for scientific
data or discoveries), a likelihood function that determines how observations are
treated as evidence, and a prior distribution over the parameters of the likeli-
hood function. This Bayesian framework is used to represent what Weitzman

4If we believe the model of Roe and Baker (2007), this seems to be an inevitable conclusion, unless
radiative forcing is reduced to exactly zero at some abatement level, a virtual impossibility on any
reasonable time horizon due to the slow decay of atmospheric CO2. This is so since the quadratic tail
in the temperature distribution arises only from uncertainty in feedback processes, and the central limit
theorem – more on this later.

5For comparison, earth’s average temperature was approximately 5◦C less than today at the time of
the last glacial maximum, when two thirds of the planet was covered in ice. It is not unreasonable to
expect changes of similar magnitude for a warming of 5◦C.

6Nordhaus (2011) claims that ‘when we introduce policies, the analysis underlying the dismal the-
orem no longer applies directly’. The analysis in this section demonstrates that, under the standard
assumptions, Weitzman’s results are easily extended to policy choice as well, and that one needs only
moderate risk aversion for dismal theorem like results to apply.
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calls ‘structural uncertainty’ in our knowledge. What he means by this is that
the parameters of the distribution from which consumption values are drawn are
themselves uncertain. Thus, in arriving at posterior beliefs, we need to account
for the evidence our observations provide, given particular values of parameters
of the future consumption distribution, but then average over all possible values
of these parameters with an appropriate prior. For reasons to be discussed below,
Weitzman thinks the appropriate prior for the scale parameter of the consumption
distribution is itself fat tailed.

Formally, by Bayes’ theorem, the posterior q(y|yn) for the growth in consump-
tion y is related to the likelihood function h(y|s) and the prior p(s) for the scale
parameter via:

(17) q(y|yn) ∝
∫ ∞

0
h(y|s)

[∏
n

h(yn|s)

]
p(s)ds.

Schwarz (1999) showed that, when p(s) ∝ s−k (the Jeffreys prior), then q(y|yn)
is fat tailed, i.e. decays only polynomially, as y → −∞.

The crucial ingredient that leads to this result is the choice of prior, p(s). It
is the fact that this prior is itself fat-tailed that ultimately leads to a fat-tailed
posterior as well. So, where does this prior come from? The prior that Weitzman
deploys is an example of an ‘uninformative’ prior. That is, it is a prior that is
supposed to represent a complete absence of prior knowledge. The argument that
an uninformative prior for scale parameters in a distribution is best chosen to
be of the form p(s) ∝ s−k is due to Jeffreys (1946), and was elaborated on by
Jaynes (1965, 1968). The treatment in Jaynes (1965) is particularly compelling.
His argument is that, in a sense to be made precise below, the choice of prior over
s is completely determined by its being a scale parameter. He begins by assuming
that the observations yn are samples from a two parameter probability density
h(y;µ, s). If one is truly uninformed about the values of the parameters µ, s, he
argues, this set of information should be indistinguishable from a transformed
system, in which

µ′ = µ+ b(18)

s′ = αs(19)

y′ − µ′ = α(y − µ).(20)

This is so, since the simple act of transforming the system (i.e. blowing up or
shrinking some of its variables by a factor, and changing their points of origin)
should not reveal anything new to us. Thus, he requires our knowledge to be
invariant under the transformation group defined by (18–20). He shows that, in
order for invariance to hold, the probability density must take the form h(y;µ, s) =
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1
sf
(y−µ

s

)
for some function f , and the prior on s must be p(s) = 1/s7. In this

framework, the transformation law (19) for s defines it as a scale parameter, i.e.
it is a parameter that is only meaningful up to scale transformations. Similarly,
the transformation law (18) for µ defines it as a location parameter. It is the
specification of a transformation group for the system that pins down the prior,
and gives s its interpretation.

Supposing one accepts this Bayesian approach, and Jaynes’ argument that lack
of knowledge should be represented by system invariance with respect to a spec-
ified transformation group, the only escape from a fat tailed prior for s can be
either to argue that an uninformative prior is somehow inappropriate for the
application in question, or that we have focussed our attentions on the wrong
transformation group. The first option is the one preferred by Geweke (2001). I
am wary of it in the case of the dismal theorem. In this case, the scale parameter
s is argued by Weitzman to be a ‘generalized climate sensitivity’ parameter – I
will discuss this in depth in the next section. For the moment, I simply point out
that it is logically impossible to define an informative prior for climate sensitivity
that is independent of knowledge of climate observations. Any informative prior,
for example based on expert opinion (Frame et al., 2005), will of necessity be
informed by such knowledge. This should rightfully be represented in our choice
of likelihood function h(yn|s) (i.e. a choice of climate model and noise distribu-
tion over temperature observations), and not in the prior. If we truly wish the
prior to be independent of the observations (as it must be if we are to use the
observations to infer a posterior – we can’t use them twice), it must represent a
priori (in the Kantian sense), rather than a postiori knowledge. Hence the appeal
of abstract mathematical techniques for specifying an uninformative prior, which
are divorced from any detailed knowledge of the data.

I believe that the second option – that we may have chosen the wrong transfor-
mation group – carries more weight. In standard statistical applications the choice
of a transformation group may be pinned down by thinking about the symmetries
of the underlying system that generates our data yn. For example, if the data are
measurements of the locations of a set of events, then one might reasonably expect
our information about the system to remain the same if we make measurements
in meters or feet (scale transformations), and if we make them in Paris or London
(location transformations), if we are truly uninformed a priori. What is much
less clear is what the appropriate transformation group should be for the growth
in consumption, the variable in question in the dismal theorem. More specifically,
it is unclear why one would expect Weitzman’s ‘generalized climate sensitivity’
to act as a scale parameter for the distribution of consumption growth, or indeed
whether any such scale parameter exists. I can think of no good argument that

7Weitzman’s more general prior p(s) = s−k does not follow from this transformation group. Although
Weitzman’s prior is itself scale invariant, the full system (yn, µ, s) is no longer invariant under the
transformation group (18–20) for this choice. In fact, Jaynes (1965) specifically argues against this more
general prior. This point has little consequence for the dismal theorem however, as the improper prior
p(s) = 1/s is the most fat tailed of all the priors in the class Weitzman considers!
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pins down the transformation group for consumption growth, other than epistem-
ically arbitrary considerations of simplicity and familiarity. At a broader level,
the transformation group method is not universally accepted as a satisfactory
solution to the problem of choosing uninformative priors. A common alternative
is to use the principle of maximum entropy (Jaynes, 1968). Remarkably, this
principle recommends an exponential distribution as the prior for a continuous
positive parameter such as Weitzman’s generalized climate sensitivity. With such
a prior, the posterior (17) will be thin-tailed. Thus, even taking the Bayesian
paradigm as read, Weitzman’s framing of the problem is controversial, and relies
on implicit assumptions which are not justified.

As a final remark on Weitzman’s chosen framework for representing a state
of ignorance, it is vital to recognize that the Bayesian approach, and the ex-
pected utility welfare framework it feeds into, is by no means the only game in
town in situations of informational paucity. It has been widely argued (Ellsberg,
1961; Gilboa, 2009; Gilboa, Postlewaite and Schmeidler, 2009) that the norma-
tive application of expected utility theory is only appropriate in situations of risk
(where probabilities are known), rather than uncertainty (where probabilities are
unknown), a distinction going back at least as far as Knight (1921). Strong
Bayesians contest this, saying that Savage’s subjective expected utility axioms
define rationality in the face of uncertainty. If one holds this position, one is
forced to describe beliefs with a subjective probability distribution, even when
there is no information upon which to base such a choice. Hence the need to go
through the mathematical gymnastics associated with choosing an uninformative
prior. If instead one is willing to accept that the domain of application of ex-
pected utility theory is limited, then one must search for an alternative evaluation
criterion that is appropriate in situations of ambiguity or ignorance. There are
several such criteria available (Savage, 1954; Arrow and Hurwicz, 1977; Gilboa
and Schmeidler, 1989; Klibanoff, Marinacci and Mukerji, 2005), which go vari-
ously under the names of ambiguity averse, or ignorant, decision rules. Weitzman
(2009b) argues that one does not need to account for ambiguity aversion in or-
der to represent aversion to unknown probabilities, since ‘structural uncertainty’
leads to fat-tailed risks via the Bayesian non-informative prior discussed above,
and hence, via the dismal theorem, to policies that exhibit a kind of precautionary
principle. As discussed above, this is a highly model-dependent interpretation, re-
lying on a very specific Bayesian setup of questionable relevance to the problem at
hand, and more importantly, as we will see below, heavily sensitive to the choice
of utility function. Moreover, it erroneously presupposes that ambiguity averse
decision rules must recommend highly precautionary mitigation policies. In Ap-
pendix A, I demonstrate that applying the representation of ambiguity averse
preferences obtained in Klibanoff, Marinacci and Mukerji (2005) to the setup of
the dismal theorem can in fact render the stochastic discount factor (4) finite, even
when consumption distributions are fat-tailed. I also derive a general condition
on the expected utilities which enter the stochastic discount factor calculation
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which must be satisfied for this to be possible. These results show that ambiguity
aversion can lead to policies that are less precautionary than fat-tailed expected
utility theory with a CRRA utility function, but that in general, the direction of
the effect depends on the empirical details. The more detailed analysis of climate
policy under ambiguity in Millner, Dietz and Heal (2010), finds that ambiguity
aversion has a substantial positive effect on the value of abatement policies when
the climate damages function is steep at high temperatures. It is obviously im-
portant to ascribe this effect to the correct preferences – aversion to fat-tailed,
but known, risks is fundamentally different to aversion to unknown probabilities.

The climate sensitivity argument. — I will now set the abstract Bayesian
approach aside, and ask what climate science tells us about the relevance of the
dismal theorem. As the inequality (16) demonstrates, if the probability distribu-
tion over future warming at any finite time in the future is fat tailed enough (no
matter how stringent our abatement policy), then a version of the dismal theorem
applies. This holds for any such fat-tailed distribution, whether it is justified on
abstract Bayesian grounds, or derived from scientific and impacts models8.

A commonly used summary statistic for the effect of increases in CO2 concen-
trations on temperature is the climate sensitivity. The climate sensitivity (S) is
defined as the increase in global mean surface temperatures that results from a
doubling of CO2 concentrations, in equilibrium. Weitzman (2009b) motivates his
argument for fat tails being relevant to climate policy by appealing to scientific
work on climate sensitivity estimation, which suggests that the distribution for S
may itself be fat tailed. In order to investigate this argument, I will work with a
conceptual model of climate sensitivity proposed by Roe and Baker (2007).

Much of the uncertainty about the long term effects of increases in CO2 con-
centrations derives from uncertainty about feedbacks in the climate system. An
easily visualized example of a feedback is the following: Imagine that CO2 con-
centrations are increased. This leads to a rise in temperatures due to the increase
in radiative forcing that results from more out-going long-wave radiation being
trapped by CO2 molecules. Now an increase in temperature may melt ice and
snow. Since ice is a highly reflective surface, whereas water is not, if some ice is
lost when temperatures rise, the amount of incoming radiation that is reflected
back into space decreases. This gives rise to even more warming than would have
occurred purely due to the radiative forcing effect of CO2 molecules. That is,
there is a positive feedback in the system – increases in temperature give rise to
changes in the physical characteristics of the planet, which increases the amount
of warming even further. There are many feedback processes in the climate sys-
tem, some positive, and some negative. The net effect of all these feedbacks is
widely believed to be positive.

Consider a very simple model of the climate sensitivity’s dependence on the

8In reality, these two approaches are of course not independent. See e.g. Frame et al. (2005).
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feedbacks in the climate system. Formally, define

(21) S =
∆T0

1− f
.

where ∆T0 is the ‘grey-body’ climate sensitivity, and f measures the strength of
feedbacks. The grey-body sensitivity is the amount of warming that would occur
if there were no feedbacks in the climate system, and is easily calculated based on
very simple energy balance considerations9. Values quoted in the literature for
∆T0 are in the range 1.1–1.3◦C (Hansen et al., 1984; Schwartz, 2010). Roe and
Baker (2007) observe that what we actually measure from the instrumental record
is the size of the feedbacks and not the climate sensitivity itself. Assuming that the
total feedback f is the sum of a large number of independent feedback processes,
the uncertainty in f is well approximated by a normal distribution. Using the
formula (21) to transform the probability density for f into a probability density
for S, they find that the distribution for S must be skew, and has a quadratic fat
tail, i.e. p(S) ∼ S−2 as S →∞.

Weitzman (2009b) uses arguments similar to these to argue that temperature
distributions are fat-tailed. There are however several criticisms of the manner
in which Weitzman applies these arguments to the economics of climate change,
based on our scientific understanding of how increases in CO2 concentrations
affect temperature distributions (Nordhaus, 2011; Costello et al., 2010; Newbold
and Daigneault, 2010; Roe and Bauman, 2010). I will explore only one version of
these criticisms, which I believe is illustrative of the wider concerns on this front.

The key point to absorb about the climate sensitivity, is that even if we accept
that its probability distribution is fat-tailed, the fact that it is an equilibrium
quantity means that it tells us only about the amount of warming in the infinite
future. Thus the focus on the climate sensitivity as a legitimator of the fat tails
argument is probably misguided, as any blow-up in the expected marginal utility
will be suppressed by an exponentially declining discount factor limt→∞ e

−ρt = 0.
The possibility remains however that temperatures may be fat tailed at finite
time. However, there are some reasons for believing that this is not the case. In
order to understand this, one must first appreciate a second crucial fact about the
influence of climate sensitivity on temperature trajectories. It has been argued
on very general grounds based on dimensional analysis (Hansen et al., 1985), and
confirmed in climate models of all stripes (Baker and Roe, 2009; Held et al., 2010),
that the atmosphere’s adjustment time is proportional to S2. The adjustment
time is a measure of the time it takes for the system to reach equilibrium.

In order to understand the consequences of this fact, consider the following
highly stylized reduced form model10 of the temperature trajectory as a function

9All one needs to know for this calculation is the Stefan-Boltzmann law, the solar constant, the
values for the effective emissivity and albedo of the earth, and the radiative forcing that results from
CO2 doubling – all very well established physics. See e.g. Hartmann (1994).

10I am grateful to Gerard Roe for suggesting this model to me. It can be derived from the following
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of climate sensitivity S and time t:

(23) T (t) = S

[
1− exp

(
−K
√
t

S

)]
,

where K is a constant. Note that this trajectory is the warming pathway that
would arise if the concentration of CO2 were instantaneously doubled from its
preindustrial value – it thus corresponds to a very specific emissions pathway.
This model incorporates three desirable properties – first, the adjustment time is
proportional to S2, second, ∂T∂S > 0, i.e. temperatures are increasing in sensitivity
for all time, and finally, limt→∞ T (t) = S.

Notice the following fact about this model:

(24) For any finite time t, lim
S→∞

T (t) = K
√
t.

Thus in this stylized model, the amount of warming possible at any finite time
t is bounded, even if the distribution for S itself is unbounded. In general, it
seems reasonable to believe that any reduced form model of the dependence of
temperature trajectories on the climate sensitivity that accounts for its effect on
adjustment times will have this property. The important message of this styl-
ized analysis is that there may be physical constraints which bound temperature
change at finite time. It has been argued (Costello et al., 2010; Newbold and
Daigneault, 2010) that bounded temperature distributions can dispense with the
dismal theorem. The model in (23) has the benefit of proposing an (admittedly
stylized) physical mechanism that bounds temperature distributions, rather than
assuming an ad hoc bound as Costello et al. (2010) and Newbold and Daigneault
(2010) do.

While I agree that it may be possible to rule out fat tailed temperature distri-
butions on physical grounds (at least for some well defined emissions pathways),
I do not agree that this rules out fat tailed consumption distributions, or indeed
consumption distributions that put non-zero weight on zero consumption (Dietz,
2010). I believe the objections expressed in Costello et al. (2010); Newbold and
Daigneault (2010); Roe and Bauman (2010) are an artifact of the unrealistic be-
haviour of their damage functions for large temperatures. Following the standard

differential equation for temperature change:

(22) c0
√
t
dT

dt
= R(t)−

T

λ
.

Here the factor c0
√
t represents the effective heat capacity of the oceans, which is known to grow with the

square root of time as heat fluxes at the earth’s surface diffuse into the deep oceans (Hansen et al., 1985).
R(t) is radiative forcing, which is equal to S/λ in the case of CO2 doubling, and λ is proportional to S.
Setting the initial condition T (0) = 0, the solution of this equation is (23). Weitzman (2009a) considers

a similar model, except that he neglects the
√
t factor, so the temperature trajectories he arrives at do

not have adjustment times with the correct quadratic dependence on S. See Baker and Roe (2009) for
a more realistic, yet still analytically tractable, model.
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assumptions in the integrated assessment literature (Nordhaus, 2008; Weitzman,
2010; Hope, 2006), their analyses assume multiplicative damage functions that
imply that consumption is non-zero for any finite temperature. This seems a
highly unrealistic choice – for example, it implies that consumption will still be
above zero when the average temperature reaches the boiling point of blood! If in-
stead one accepts that the damage multiplier hits zero at some finite temperature
TH , the dismal theorem is back in play. This is so because, as one can see from
(24), the maximum possible value of warming grows unboundedly as t→∞, even
for the relatively moderate case of a doubling of CO2 concentrations. Thus there
will eventually be a time at which there is a non-zero probability that T > TH ,
provided the distribution over S has support on [0,∞). Of course, for utility
functions with coefficient of relative risk aversion bounded above zero, this will
ensure that expected marginal utility diverges at this time, and so the dismal
theorem reappears. Dietz (2010) demonstrated that the PAGE integrated assess-
ment model (Hope, 2006) is able to produce scenarios in which consumption is
driven to zero at finite time for climate sensitivity values as low at 3◦C, adding
to the plausibility of this story.

Weitzman (2009a) seems to have taken the criticisms of his result based on
neglecting the dynamics of temperature trajectories on board. He goes to consid-
erable lengths to show that a combination of factors – additive damage functions
and uncertainty about the PRTP11 – can still give rise to the dismal theorem even
if temperature distributions remain bounded for all finite time, and the distribu-
tion over discount rates places an infinitesimally small weight on a zero discount
rate. This is an interesting mathematical result about the limiting behaviour
of certain functions, but it is perhaps overly sophisticated for the application at
hand. Provided we accept that there is some temperature TH at which consump-
tion hits zero, and there is positive weight on T > TH at finite time, a dismal
theorem like result it guaranteed. Weitzman’s work shows that this is not a nec-
essary condition for a divergence in the welfare function – one can send TH →∞
and have probability distributions that place zero weight on the worst events (and
the lowest discount rates) and still get a divergence. This is a valuable result, but
to obtain the essential economic insights of the dismal theorem, one needs far less
mathematical machinery than he employs: If there is any positive probability of
consumption hitting zero, no matter how small, then welfare diverges for utility
functions with coefficient of relative risk aversion bounded above one.

The upshot of this analysis – of both the Bayesian argument, and that based
on toy scientific models – is that if we interpret the dismal theorem in the narrow
sense in which it is presented in Weitzman (2009b), then its conclusions are not
robust. Changes to the Bayesian framework used to justify it can cause it to
disappear, as indeed can properly accounting for the physics of the climate system.

11Dasgupta (2001) is critical of the manner in which Weitzman uses uncertainty about the PRTP to
deduce declining discount rates (e.g. Weitzman, 2001). Heal (2009) also emphasizes that in general this
approach leads to dynamically inconsistent plans. Thus it is not clear that this is a legitimate approach
to normative welfare analysis.
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However, such a narrow interpretation does not do the dismal theorem justice.
Weitzman (2009b) is careful to describe his modeling work as an abstract parable,
suggesting we should focus on the broad-brush message, rather than the technical
content, of the theorem. I believe this is the correct way to interpret his result.
As we have seen, if we allow for consumption approaching zero at finite (but
very large) temperature, as must be the case, and are not able to make certain
transfers to the future (as seems very likely), then the criticisms of the dismal
theorem that have been discussed thus far fail to persuade.

C. The role of the utility function

The previous section highlighted the arguments for and against fat tailed prob-
ability distributions in the economic analysis of climate change. Much of the
debate about the applicability of Weitzman’s results has focussed on these issues.
In the current section, I will argue that a more pertinent line of inquiry may be to
interrogate the role that the utility function plays in the dismal theorem. Indeed,
taking the conventional expected utility welfare framework as read at this point,
this is the main content of Weitzman’s result – it shows that welfare calculations
are highly sensitive to the behaviour of the utility function at low consumption
levels, and that the wide-spread CRRA utility function is perhaps ill suited to
applications with fat-tailed risks.

The fact that the expected utility model of choice under uncertainty cannot
be trusted to provide meaningful results for certain utility functions has been
appreciated since Menger (1934) demonstrated that one requires utility functions
to be bounded in order to be able to rank arbitrary lotteries. In fact, Menger
(1934) showed that for any unbounded utility function, a variant of the St. Pe-
tersburg paradox exists. If we restrict attention to lotteries with finite expected
payoffs, then the constraints on the utility function may be weakened. Arrow
(1974) showed that if the utility function is concave, monotonically increasing,
and bounded below, then expected utility exists for all lotteries with finite expected
payoff. Note that this result does not require marginal utility to be finite at the
origin – Arrow (1974) shows explicitly that this condition is not needed. Thus
utility functions which are finite at the origin, but have infinite marginal utility
at the origin, are still able to rank all lotteries of interest. In the case of CRRA
utility functions (12), these conditions are fulfilled only when η < 1. In order
to extend this result to an existence result for expected marginal utility (and
thereby the stochastic discount factor), define V (c) = −U ′(c), and assume that
U ′′′ > 0, i.e. the decision maker is prudent (see e.g. Gollier, 2001, p. 237). Then
V (c) is increasing and concave, and provided V (0) = −U ′(0) is finite, expected
marginal utility will exist for all lotteries with finite expected payoff. In the case
of a CRRA utility function (for which U ′′′ > 0 is always satisfied), U ′(c) = c−η,
and thus V (0) is not finite for any value of η. With these results in mind, the Dis-
mal theorem is unsurprising – we are simply pushing a particular choice of utility
function beyond its region of usefulness. Arrow (2009) and Nordhaus (2009) come
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to much the same conclusion.

HARA utility functions. — There are alternative choices of utility function
that are almost as easy to handle analytically as the CRRA utility function, and
do not suffer from this difficulty. Weitzman (2009b) himself discusses a ‘value
of statistical life’ cut-off parameter D such that U(c) = 0 for all c < D, and
Pindyck (2011) performs a set of illustrative welfare calculations with a similar
model that places a cut-off on marginal utility, and demonstrates (unsurprisingly),
that depending on the position of the cut-off, fat-tailed distributions may in fact
be preferred to thin-tailed ones. Both of these approaches provide a technical
resolution to the dismal theorem, but suffer from some drawbacks, as they require
assuming that the utility function is not everywhere differentiable. As we shall
see below, this is by no means a necessary assumption.

Consider the smooth Harmonic Absolute Risk Aversion (HARA) utility func-
tion, which is widely used in the finance literature:

U(c) = ζ

(
ν +

c

η

)1−η
, where ζ

(
1− 1

η

)
> 0.(25)

⇒ −cU
′′(c)

U ′(c)
= c

(
ν +

c

η

)−1

.(26)

Clearly, this utility function has a coefficient of absolute risk aversion that is
decreasing in consumption, and a coefficient of relative risk aversion that is in-
creasing in consumption. In the limit ν → 0, the HARA utility function ap-
proaches a CRRA utility function (12). Notice however that for all ν > 0, the
coefficient of relative risk aversion for the HARA function is equal to zero when
c = 0. Moreover, it is easy to see that U (n)(0), the n-th derivative of U at the
origin, exists for all n. Thus both expected utility and expected marginal utility
exist for this utility function for arbitrary finite mean probability distributions
for consumption.

To illustrate how the stochastic discount factor M depends on the parameters of
the HARA utility function, suppose that y = log c is a Cauchy distributed random
variable12 – a prototypical example of a fat-tailed distribution, considered by
Weitzman (2009b) and Costello et al. (2010). In Figure 1, we plot the logarithm
of the stochastic discount factor (4) as a function of the parameter ν in (25).
Of course, limν→0M = ∞ – this is obviously not representable on the curve in
Figure 1. What the figure shows is that M varies by a factor of about 108 between
ν = 10−3 and ν = 1. Thus, under this choice of utility function, social evaluation
of fat-tailed consumption risks will be extremely sensitive to the choice of ν for
low values of ν. However for ν greater than about 1, evaluation of fat-tailed risks
is relatively insensitive to the value of ν – this suggests that the HARA utility

12The Cauchy distribution is the same as a Student’s t-distribution with 1 degree of freedom.
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Figure 1. Logarithm of the stochastic discount factor M , as a function of the parameter ν

of the HARA utility function (25). η = 4, ζ = 1, β = 1 in this figure, and consumption growth

is assumed to be Cauchy distributed.

function with ν > 1 might provide a good alternative to CRRA utility functions
when risks are fat-tailed. Note that the HARA utility function provides finite
answers even when there is a non-zero chance that consumption is identically
zero at finite time, e.g. if damage multipliers hit zero at finite temperature.

While the analysis above shows that welfare evaluations (i.e. the computation
of a welfare function, or the stochastic discount factor, for a given policy) may
still be very sensitive to the tails of a distribution when the utility function is
bounded (i.e. for a small value of ν in (25)), this does not mean that welfare
comparisons (i.e. policy choices) are also heavily dependent on the tails. In fact
the following result, due to Chichilnisky (2000), implies just the opposite:

THEOREM 2: Let x(t), y(t) be lotteries over a random variable t ∈ R with prob-
ability measure µ(t). Then if preferences over lotteries can be represented by
expected utility functionals with a bounded utility function,

x � y ⇐⇒ ∃ε > 0 : x′ � y′ where x = x′ and y = y′ a.e. on any Σ ⊂ R : µ(Σc) < ε.

In the words of Chichilnisky (2000), “expected utility is insensitive to small prob-
ability events”, provided of course that the utility function is bounded. Thus,
even if the ν parameter of the HARA utility function is arbitrarily close to zero,
implying that welfare measures are very large negative for fat-tailed risks, the
ranking of alternative policies is independent of these very low probability out-
comes. Thus boundedness of the utility function, even at a very large negative
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value (i.e. ν � 1), dispatches with the dismal theorem entirely for the purposes
of policy choice.

For Weitzman, the approach to resolving the dismal theorem via bounding the
utility function is unsatisfactory. In his words, “It is easy to put arbitrary bounds
on utility functions...that arbitrarily cut off or otherwise severely dampen...low
values of C. Introducing...these changes formally closes the model in the sense of
replacing the symbol +∞ with an arbitrarily large but finite number.” As Figure
1 shows, this is not the case if one allows for utility functions with coefficient of
relative risk aversion that tends to zero for low c. In this case one can choose
perfectly reasonable looking parameter values that guarantee that the stochastic
discount factor is not only not ‘arbitrarily large’, but of order 1 for fat-tailed risks.
Moreover, policy choice is independent of low probability events in this case. This
modeling choice is only ‘arbitrary’, if one is wedded to the CRRA utility function
as the normative baseline of welfare calculations. The widespread focus on the
CRRA utility function is perhaps an instance of the ‘tools-to-theories’ heuristic
(Gigerenzer, 1991), in which an analytical tool – the CRRA utility function – is
elevated to the status of a theory, in this case of normative welfare analysis. In-
deed, Weitzman sometimes writes as if expected utility with a CRRA-like utility
function is synonymous with expected utility theory itself. This is of course not
the case. If we believe the axioms of expected utility theory, as elucidated by von
Neumann and Morgenstern (1944), and especially Savage (1954), we should eval-
uate uncertain prospects with expected utility functionals. However these axioms
are silent as to which utility function, or indeed which probability distribution,
is appropriate for a given application. It is up to us to furnish expected utility
theory with a utility function that is true to our tastes, and a probability distri-
bution that is true to our beliefs. Thus, if we feel that the CRRA utility function
does not represent our preferences in the case of catastrophic climate change, we
should not hesitate to replace it with another utility function that does. Nordhaus
(2009) performs some illustrative calculations that suggest that our willingness
to pay to avoid catastrophes is not very large (he considers the case of payments
to avoid killer astroids), suggesting that the CRRA utility function may be too
cautious to reflect individual preferences.

Aggregation of heterogeneous preferences. — Although HARA utility func-
tions may provide a more acceptable representation of individual preferences, it
is social preferences that should enter welfare calculations. Indeed it is unclear
in the analysis presented thus far exactly where the utility function comes from,
and what it represents. Does it include prioritarian ethical judgements about wel-
fare inequality, or measure only the empirical risk preferences of a representative
agent (Kaplow and Weisbach, 2011), and more generally, how does it relate to
the preferences of the individuals that make up society? Clearly, in addressing
this question, we should draw on the resources provided by social choice theory.

It is important to stress that even though individuals’ utility functions may
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all be bounded at c = 0, this does not imply that society’s welfare is similarly
constrained. The analysis of HARA utility functions presented above assumed a
homogenous population, each of whom has the same attitude to risk, or equiv-
alently, that a single representative agent may be identified whose risk prefer-
ences are given by the HARA utility functions examined above. This assumption
masks some of the complexity of welfare analysis under catastrophes. Assuming
an anonymous social ordering, and that the Harsanyi (1955, 1978) social aggre-
gation axioms hold, we should aggregate over the expected utility obtained by
all individuals in order to arrive at social welfare under the catastrophic risk.
Treating this aggregation exercise as a fait accompli can be misleading. In fact,
one can show that even if every individual’s utility function is bounded for all c,
aggregate social welfare may still diverge (or be very sensitive to the tails of the
distribution over c). This suggests that it is not a straightforward matter to sim-
ply presuppose a HARA social utility function because our individual willingness
to pay to avoid catastrophe, or that of a sample of the population, is small.

A simple example will suffice to make this point. Suppose that each agent in
a heterogenous population consumes the same amount in all states of the world,
but each has a different utility function13. Suppose that agents’ utility functions
are:

(27) U(c;φ) = −(v + c)−φ.

where v, φ > 0. Clearly, U ′ > 0, U ′′ < 0, and U (n)(0) is bounded for all agents.
Assume an anonymous social ordering, that each agent has the same value of v,
and that the density of individuals with preferences φ is given by w(φ). Then
a social planner who evaluates consumption risks would need to compute the
following aggregated expected utility integral14:

V =

∫ [∫
U(c, φ)p(c)dc

]
w(φ)dφ(28)

=

∫ [∫
U(c, φ)w(φ)dφ

]
p(c)dc(29)

where p(c) is the consumption risk (we normalize the total population size to
1). Suppose now that w(φ) is a gamma distribution, with parameters (θ, k), and

13Note that Harsanyi’s axioms do not require these utility functions to be interpersonally comparable.
14Fubini’s theorem guarantees that if the integral converges, we can change the order of integration.

A simple reductio ad absurdum argument makes the result that follows water-tight.
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consider the inner integral in (29). This evaluates to∫
U(c, φ)w(φ)dφ = − 1

θkΓ(k)

∫ ∞
0

(v + c)−φφk−1e−φ/θdφ(30)

∝ −
∫ ∞

0
φk−1 exp

(
−φ
[
ln(v + c) +

1

θ

])
dφ(31)

Now in order for this integral to be finite, we require c > c∗, where

(32) c∗ := e−
1
θ − v

Thus if 1/θ < ln(1/v), the social welfare function diverges at c∗ > 0, provided p(c)
puts positive weight on c < c∗, even though each individual’s utility function is

bounded for all c. Since 1/θ = mean(φ)
var(φ) for the gamma distribution, the divergence

occurs if v < 1, and the mean of w(φ) is smaller than ln(1/v) times its variance.

Note that this result is in stark contrast to the well known Arrow-Lind theorem
on public risk bearing (Arrow and Lind, 1970) – the reason being that in this case
the risks to individuals are correlated (the relevant case for applications to climate
change), whereas the Arrow-Lind theorem assumes uncorrelated, and therefore
diversifiable risks. The result has a similar flavour to the dismal theorem, in
that it relies on the extremes of the distribution of φ to generate a divergence in
expected social utility15. It is thus subject to some of the same criticisms – e.g.
perhaps it is unreasonable to assume that the distribution of φ has full support
on [0,∞), or that v < 1, or indeed that the Harsanyi aggregation theorem is a
reasonable basis for social choice16 (Weymark, 1991). Excepting these objections,
its conceptual message is clear – social evaluation of correlated risks can be highly
sensitive to those individuals who are highly risk averse, even if they make up an
infinitesimal fraction of the population. This adds a complication to the already
difficult issue of social aggregation when catastrophic risks are involved. It is not
a simple matter to reason (as Nordhaus (2009, 2011) does) that since spending
on, for example, asteroid defense systems, is small, social willingness to pay is
similarly constrained. Such spending decisions are made by small samples of
the population, which have a very low chance of including the most risk-averse
members of society.

15In fact, some might say that this is a stronger result than the dismal theorem. It shows that social
welfare may diverge at a positive value of c, even for exponentially decaying distributions over φ. No fat
tails in sight here.

16Note however that a similar result would obtain if instead of adopting Harsanyi’s aggregation the-
orem, we took a Rawlsian approach to distributive justice, and maximized the utility of the least well
off individual in society. Under catastrophic risks, this would be the individual with φ → ∞, for whom
U(c;φ) → −∞ for c < 1 − v, U(c;φ) → 0 for c > 1 − v. Thus social welfare would still diverge if p(c)
puts any weight on c < 1− v.
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III. The elephant in the room: Population change

The HARA utility functions discussed in the previous section provide a technical
resolution to the dismal theorem, but they do not resolve the ethical problems
it raises. Correctly interpreted, the dismal theorem says that social evaluation
of fat-tailed risks depends sensitively on how we choose to treat catastrophic
outcomes. If we believe such outcomes to be infinitely bad for society, then they
can dominate all other ethical choices in a conventional welfare analysis based on
expected utility theory. If they are not infinitely bad, we still face the difficult
task of deciding how to ‘value’ a catastrophe that wipes out the whole human
race (and other species as well). For example, if one adopts the HARA utility
function, one still needs to justify a particular choice of ν. As the previous section
demonstrated, this is a by no means trivial exercise in social choice.

In this section, I want to suggest that the ethical problems that the dismal
theorem raises run deeper than simply deciding on the behaviour of the social
utility function for low values of consumption. There is an implicit assumption in
Weitzman’s welfare framework (and that employed by his critics), as represented
by equation (1), which is by no means innocuous. This assumption relates to how
the welfare function (1) accounts for population change.

Many applications of welfare economics need not concern themselves with pop-
ulation change, as they are concerned with marginal projects which are unlikely
to affect which ‘potential persons’ come into being. However if there is any situ-
ation in which concerns about population change are likely to be relevant, then
it has to be catastrophic climate change. Indeed, almost by definition, a climate
catastrophe would entail a drastic, perhaps total, collapse in the earth’s popula-
tion. The idea that we can consider states of the world in which consumption is
drawn down to zero without accounting for a change in population is manifestly
absurd.

The only way in which it is possible to interpret Weitzman’s welfare function
(1) as accounting for population change, is if we interpret it as adopting an
average utilitarian approach to population ethics. That is, an uncertain prospect
is evaluated by computing the average utility of all people who happen to be alive
in that prospect, and welfare is just the expectation of these average utilities.
Then the function U(c) that appears in (1) is just the average utility of a set
of identical agents when their consumption is c. But is average utilitarianism a
defensible approach to welfare evaluations when population varies?

A. Population principles and the dismal theorem

Since the publication of Derek Parfit’s ‘Reasons and Persons’ (Parfit, 1984),
formal approaches to population issues in social choice theory have been gaining
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momentum17. Two recently published books (Broome, 2004; Blackorby, Bossert
and Donaldson, 2005) provide good overviews of the welfarist18 approach to the
problem. Blackorby, Bossert and Donaldson (2005) in particular set out a list of
axioms that one might reasonably want variable population social welfare func-
tions, or population principles, to satisfy, and provide representation results for
various subsets of these axioms. They also prove several impossibility theorems
which show that some combinations of these axioms cannot provide consistent and
complete social orderings. Dasgupta (2001) provides an alternative perspective
on population ethics.

A key new concept that is introduced when considering welfare functions that
account for population change is the critical level. Suppose that social welfare at
a point in time may be represented by a function P (Ū , N), where Ū is average
utility and N is population size. This is the case for all population principles
of interest19 (Blackorby, Bossert and Donaldson, 2005). Now imagine adding
a single individual to a population, holding the utility of all other members of
the population constant. The critical level is defined as the utility level of the
additional individual which leaves total welfare unchanged, i.e. his existence is
socially neutral if his utility is at the critical level. Formally, the critical level of
a population principle P (Ū , N), evaluated at a given level of average utility and
population size, is defined as the utility level C(Ū , N) which satisfies:

(33) P (Ū , N) = P

(
NŪ + C(Ū , N)

N + 1
, N + 1

)
As an example, consider average utilitarianism, for which P (Ū , N) = Ū . In this
case C(Ū , N) = Ū , i.e. the critical level is equal to the average utility of those
who live, and is independent of population size. From this we see that average
utilitarianism entails a large amount of dependence between the value of addi-
tional population, and the welfare of those who live. This conflicts with two key
independence axioms: utility independence, and existence independence. Utility
independence requires rankings of alternatives to be independent of the utility of
individuals whose utilities are the same in both alternatives. Existence indepen-
dence is a stronger requirement, which insists that rankings are also independent
of the existence of individuals with the same utility in both alternatives. To see
that average utilitarianism violates both these axioms, consider two different util-

17Of course, population issues have always been central to economics (Malthus, 1798; Sidgwick, 1907),
and had been treated formally before Parfit (e.g. Dasgupta, 1969). However Parfit’s book provided the
impetus for an axiomatic approach to the problem that is rooted in social choice theory.

18I use the term ‘welfarist’ to refer to the consequentialist welfare function type approach to social
evaluation, which both these books largely follow. Strictly speaking, neither book is restricted to a purely
welfarist approach, as both consider cases in which non-welfare information, e.g. birth date, affects social
choice. For a deontological approach to population issues, see Kamm (1993, 1996).

19We do not consider generalized utilitarian rules. Such rules depend on the nonlinear average Ūg =

g−1
(

1
N

∑N
i=1 g(Ui)

)
, where the curvature of g measures aversion to welfare inequality.
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ity profiles: U1 = (a, b), U2 = (a, c, d). Clearly U1 � U2 iff a+b
2 > a+c+d

3 under
average utilitarianism. This ranking depends on the value of a, and therefore vio-
lates utility independence. Moreover, if a did not exist, U1 � U2 iff b > c+d

2 . It is
easy to see that both these inequalities cannot hold for all values of (a, b, c, d), and
so existence independence is also violated. Finally, the fact that the critical level
for average utilitarianism depends on Ū implies that it violates a further desirable
axiom – the negative expansion principle. Suppose, without loss of generality, that
we define U = 0 as the value of utility at which an individual’s life is just worth
living20. Then the negative expansion principle says that if we add an individual
with U < 0 to the population, keeping everyone else’s condition unchanged, then
social welfare should decrease. Since the critical level for average utilitarianism
is just average utility, which may be negative, it is possible to add an individual
with negative utility to the population and increase social welfare, thus violating
the negative expansion principle. In general, Broome (2004, chapter 13) argues
that population principles with critical levels that depend on average utility are
undesirable.

The most commonly deployed alternative to average utilitarianism is classical
utilitarianism, whose population principle is P (Ū , N) = NŪ . This is the welfare
function employed by the much used DICE integrated assessment model (Nord-
haus, 2008). The critical level for classical utilitarianism is zero, and it satisfies ex-
istence, and therefore utility, independence. However it exhibits Parfit’s repugnant
conclusion. For every value of N , Ū > 0 and 0 < ε < Ū , the repugnant conclusion
implies that it is possible to find an M > 0 such that P (Ū , N) < P (Ū−ε,N+M).
In words, the repugnant conclusion says that a sufficiently large increase in pop-
ulation size can substitute for any decrease in average utility (provided average
utility stays positive). It is clear simply by looking at the product representa-
tion of the classical utilitarian welfare function, that the repugnant conclusion is
implied. Population principles that do not avoid the repugnant conclusion thus
place a high value on population.

Neither of these two commonly used population principles seems to provide
a satisfactory approach to population ethics. A simple alternative, critical level
utilitarianism (CLU), avoids the pitfalls of both these principles, and is advocated
by Broome (2004). Blackorby, Bossert and Donaldson (2005, pp. 147-151) give an
exhaustive discussion of CLU’s desirable properties, relative to other population
principles. CLU’s population principle is:

(34) PCL(Ū , N) = N(Ū − α)

where α > 0 is a constant, the critical level. CLU satisfies utility and existence in-
dependence, avoidance of the repugnant conclusion, and the negative expansion
principle. It does not, however, satisfy a further requirement known as prior-

20This requires us to assume that utilities are ratio-scale measurable, rather than cardinally measur-
able, a standard assumption in population ethics.
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ity for lives worth living. Population principles which satisfy this requirement
have the property that all alternatives in which every individual’s utility is pos-
itive are ranked higher than all alternatives in which every individual’s utility is
negative. That CLU violates priority for lives worth living seems an acceptable
compromise, and more desirable than dispensing with either utility or existence
independence, avoidance of the repugnant conclusion, or the negative expansion
principle. Indeed, priority for lives worth living seems the least inevitable of the
axioms discussed thus far. It implies a kind of reverse repugnant conclusion, in
that it insists that a population consisting of an arbitrary number of individuals
with utility −ε is ranked as worse than an alternative consisting of a single in-
dividual with utility ε, for any ε > 0. Thus, it does not accept that population
may be an end in itself, for example because there is some existence value to
the human species, and it may thus be worth maintaining some small popula-
tion with reproductive capacity, even if its constituents live extremely unpleasant
lives. Thus principles that satisfy priority for lives worth living, such as average
utilitarianism, place a low value on population.

How would the dismal theorem be affected if we were to employ a CLU function
to evaluate climate policy? Let p(c,N) be the joint distribution over (c,N), then
the CLU analogue of (1) is

WCL = Ū(1)− α+ β

∫
N
(
Ū(c)− α

)
p(c,N)dc dN(35)

= Ū(1)− α+ β

∫
N
(
Ū(c)− α

)
p(N |c)p(c)dc dN(36)

= Ū(1)− α+ β

∫
N̄(c)

(
Ū(c)− α

)
p(c) dc(37)

where N̄(c) =
∫
Np(N |c)dN is the mean of the distribution for N conditional

on c, and p(c) is the marginal distribution for c. Biological necessity requires
that as c → 0, N̄ must approach zero. Thus catastrophic events are given less
weight in welfare assessments with CLU welfare functions than they are by average
utilitarianism, since they correspond to low values of N̄ . This does not however
mean that catastrophic risks cannot dominate welfare. If Ū is unbounded below,
fat-tailed consumption risks may still theoretically lead to a divergence in WCL.
However, this seems a much bigger stretch for the current model than it does
for the original welfare function (1), as it requires the product N̄(c)Ū(c) to be
sufficiently steeply curved for low c. If Ū(c) ∼ c1−η and N̄(c) ∼ cθ as c → 0, a
sufficient condition for WCL to be finite is that θ > η − 1. If population declines
exponentially as c → 0, as seems very likely based on conventional population
models, this inequality is always satisfied. Nevertheless, we cannot unequivocally
rule out a dismal-theorem like divergence. The only sure way to guarantee that
welfare converges for all possible risks is to require that the utility function Ū be
bounded.
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While the CLU welfare function provides a more acceptable framework for
the analysis of policies which may affect the size of future populations, it also
requires new inputs, i.e. values for the critical level α and the function N̄(c).
N̄(c) is a purely empirical input, and may be estimated (at least in principle),
by examining the dependence of fertility and mortality rates on nutrition levels
(Fogel, 1997). α however is an ethical judgement about how good an individual’s
life must be for her existence to be socially desirable. Its value should not be
too large (for obvious reasons), nor too small, as small values of α approximate
the repugnant conclusion. Much like the PRTP, its value should be determined
through public reason and debate. Choices for such ethical parameters “should
reflect conscious political decisions with respect to what are, after all, political
questions.” (Dasgupta, Sen and Marglin, 1972, p. 120).

IV. Conclusions

Weitzman’s dismal theorem, and his subsequent work on the climate damages
function (Weitzman, 2010), has done much to show that existing analyses of
climate mitigation policy based on integrated assessment models are heavily de-
pendent on poorly substantiated model assumptions, and may be insufficiently
sensitive to low-probability, high-impact, outcomes. These points are all well
made, however this paper has argued that perhaps the true message of the dismal
theorem is to call into question the appropriateness of standard welfare frame-
works for the analysis of climate change policy. Such concerns have been raised
before (Heal, 2009) – the dismal theorem throws them into the spotlight. Climate
change is a mega-problem – it requires us to evaluate and compare market and
non-market impacts, come to terms with deep uncertainty, make inter-temporal
trade-offs far into the next century, divide mitigation responsibilities equitably,
and contemplate potential catastrophes. It is unsurprising that the old work-
horse of a constant relative risk aversion expected utility functional is not up to
the task of providing normatively acceptable assessments of climate policy. The
dismal theorem makes this plain. While efforts to improve the empirical adequacy
of integrated assessment models are underway, it is vital that a parallel program
interrogates the ethical and formal foundations of such models. Accounting for
uncertainty or ambiguity, social aggregation problems, population change, and
catastrophes are certain to be necessary components of a more satisfactory ap-
proach. Any given treatment of these issues is likely to be controversial, yet not
making them explicit is more problematic, as implicit, unjustified assumptions
then determine policy prescriptions.
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Ambiguity aversion and the dismal theorem

Formally, the scale parameter s in the expression (17) for posterior beliefs is
an uncertain model parameter which specifies a distribution for consumption at
each of its values. How would Weitzman’s calculation of the stochastic discount
factor change if we account for the fact that the decision maker may be averse to
the ambiguity over consumption distributions implied by uncertainty in s?
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We work in the framework of Klibanoff, Marinacci and Mukerji (2005). The
analogue of (1) which accounts for ambiguity aversion is:

(A1) W ′ = U(1) + βΦ−1
(
EsΦ(Ec|sU(c))

)
where Φ encodes ambiguity averse preferences, and thus satisfies Φ′ > 0,Φ′′ < 0.
Using the fact that d

dxf
−1(x) = [f ′(f−1(x))]−1, we can go through the standard

manipulations to show that the appropriate discount factor for this model is:

(A2) M ′ = β
Es
[
Φ′(Ec|sU(c))Ec|sU

′(c)/U ′(1)
]

Φ′
(
Φ−1(EsΦ(Ec|sU(c)))

) .

Notice that when Φ is linear (i.e. ambiguity neutrality) this expression reduces
to (4). We specialize to a simple extension of the example Weitzman presents
in his paper. We assume, with him, that the distribution of y = log c given s is

h(y|s) ∼ N (µ, s2), and choose U(c) = c1−η

1−η . We will assume that η < 1 in what

follows, so that utilities are always positive. This allows us to take Φ(u) = u1−ξ

1−ξ ,
which implies constant relative ambiguity aversion.

Now some preliminary calculations:

Ec|sU
′(c) = Ey|se

−ηy = e−ηµ+ 1
2
η2s2

Ec|sU(c) =
1

1− η
Ey|se

(1−η)y =
1

1− η
e(1−η)µ+ 1

2
(1−η)2s2(A3)

Using the fact that Φ′(u) = u−ξ, Φ−1(x) = [(1− ξ)x]
1

1−ξ , the above formulas, and
quite a bit of algebraic manipulation, we find that:

(A4) M ′ = βe−ηµ
Es exp

(
− s2

2 [ξ(1− η)2 − η2]
)

[
Es exp

(
− s2

2 (ξ − 1)(1− η)2
)]− ξ

1−ξ
.

Now in order to compute these expectations, we need to know the probability
distribution for s. We use the same distribution as Weitzman (2009b), which is
just the Bayesian update of the scale-invariant prior based on the data yn:

p(s|yn) ∝
n∏
j=1

h(yj |s)p0(s)

∝ 1

sk+n
exp

(
− 1

2s2
z

)
(A5)
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where we define z :=
∑n

j=1(yj − µ)2, which is clearly positive.

So, in order to compute M ′, and see if it diverges, we need to examine integrals
of the form:

(A6) I =

∫ ∞
0

s−(k+n) exp

(
−1

2

[ z
s2

+ Γs2
])

ds

where Γ is a constant that represents the coefficient of −1
2s

2 in the exponent of
either the numerator or the denominator of (A4). The integral I converges (and is
positive) whenever both z and Γ are greater than zero. Since z > 0 is automatic,
we need Γ > 0 for both the numerator and denominator of (A4). Thus we require

(A7) ξ > max

{(
η

1− η

)2

, 1

}
.

When this condition is satisfied, M ′ is finite.

Some comments about this result. Notice that it is obviously not satisfied for
ξ = 0, the case Weitzman examines. It is easy to see by inspection that (A4) does
indeed diverge in this case. Also, it is interesting that the condition is of this form
– it suggests that if the social planner is averse enough to ambiguity, relative to
his degree of risk aversion, the dismal theorem does not apply. To get a feel for
the numbers involved here, assume that ξ = 10, a roughly plausible estimate (Ju
and Miao, 2009; Gollier and Gierlinger, 2008). This implies that we must have

η <
√

10
1+
√

10
≈ 0.76 in order to ensure convergence. This is an implausibly low

value of η, so although this result is theoretically interesting, it is unlikely to have
much practical significance.

Now consider the case η > 1. The appropriate constant relative ambiguity
aversion function when utilities are negative (i.e. when η > 1) is:

(A8) Φ(u) = −(−u)1+ξ

1 + ξ
.

If we take this choice, and go through the same calculations as above, we can
show that:

(A9) M ′ = βe−ηµ
Es exp

(
s2

2 [ξ(1− η)2 + η2]
)

[
Es exp

(
s2

2 (1 + ξ)(1− η)2
)] ξ

1+ξ

.

Thus Γ is negative for both the numerator and the denominator in this case,
and they both diverge. We might hope to get some kind of interesting limiting
behaviour when considering the ratio of these two divergent quantities, however
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this can be ruled out. Notice that the coefficient of 1
2s

2 in the numerator is larger
than that in the denominator when η2 > (1− η)2, which is always satisfied when
η > 1. Also, ξ/(1 + ξ), the exponent of the denominator, is less than one. So,
in general the numerator goes to infinity faster than the denominator, implying
that M ′ →∞.

Why is it that ambiguity aversion can render the stochastic discount factor
finite when η < 1, but not when η > 1? Consider just the numerator of (A2),
which may be written as

(A10) Es
(
Φ′(Ec|sU(c))

)
Es
(
Ec|sU

′(c)
)

+ covs
{

Φ′(Ec|sU(c)),Ec|sU
′(c)
}

The first term in (A10) diverges to +∞, since the factor Es
(
Ec|sU

′(c)
)

is just
the term that appears in the ambiguity neutral stochastic discount factor (4).
Therefore the only hope we can have of rendering the expression (A10) finite
is if the second covariance term is negative, and also diverges. Now since Φ′ is
decreasing, the covariance term is negative if and only if

(A11) covs
{
Ec|sU(c),Ec|sU

′(c)
}
> 0.

Note that this condition is necessary for ambiguity to have an effect on the dismal
theorem for any utility function and probability distributions. Whether it is
satisfied is in general an empirical question, which depends on the shape of the
utility function, as well as the dependence of the distribution of consumption on
s. For the functional forms in our model above, an examination of (A3) makes it
is clear that:

(A12) covs
{
Ec|sU(c),Ec|sU

′(c)
}{ > 0 For η < 1.

< 0 For η > 1.

Thus we can only hope for ambiguity aversion to resolve the divergence in the
stochastic discount factor when η < 1 in the case examined above.


