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Abstract

We present the first nationwide index of directly-measured land values by metropolitan area and

investigate their relationship with housing costs. Regulatory and geographic constraints, as well

as construction costs, are shown to increase the cost of housing relative to land. On average,

approximately 22 percent of housing costs are due to land, with an increasing fraction in higher-

value areas, implying an elasticity of substitution between land and other inputs of about 0.6.

Conditional on land and construction costs, housing productivity is relatively low in larger cities,

where productivity in tradables is high. Areas where regulations lower housing productivity have

noticeably higher quality-of-life.



1 Introduction

Housing consumption is the largest expenditure item among all goods, and its value depends fun-

damentally on the land upon which it is built. Land values are extremely heterogenous, reflecting

not only land’s scarcity, but the many possible advantages and amenities land may provide to

households and firms, and its opportunities for development. Although data on housing values

is widespread, accurate data on land values have been notoriously piecemeal. Here, we provide

the first inter-metropolitan index of directly-observed land values that covers a large number of

American metropolitan areas, using recent data from CoStar, a commercial real estate company.

Together with data on housing values, land values allow us to estimate the cost relationship

between housing and land and non-land costs using a dual approach (Fuss and McFadden 1978).

This supply-side approach to valuing housing strongly complements the demand-side approach

to studying differences in housing costs, which is based on how housing provides access to local

amenities and labor-market opportunities. It also provides a new measure of local productivity in

the housing sector, determined by the difference between the observed value of housing and the

value predicted by land and other input costs. This measure of housing productivity provides the

most important indicator of a city’s efficiency in producing goods that cannot be traded across

cities, and can be contrasted with measures of productivity in the tradeables sector. Using recent

measures by Gyourko, Saiz, and Summers (2008) and Saiz (2010), we investigate how local hous-

ing productivity is influenced by artificial and natural constraints to development due to regulation

and geography.

We find that, on average, approximately 22 percent of housing costs are due to land: this share

ranges from 0.10 to 0.35 in low to high-value areas, implying an elasticity of substitution between

land and other inputs in production on average of about 0.6 in our baseline specification. Consis-

tent estimation of these parameters requires controlling for regulatory and geographic constraints:

a standard deviation increase in either basic constraint measure increases housing costs by 9 to 14

percent. We also examine the role of disaggregated measures of regulation and find that approval

delays and state and local political and court involvement predict the lowest productivity levels.
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Overall, housing productivity differences across metros are large, with a standard deviation equal

to 29 percent of total costs, with 30 percent of the variance explained by regulatory measures.

Contrary to assumptions in the literature (e.g. Shapiro 2006 and Rappaport 2007) that productivity

in tradeables and non-tradeables are the same, we find the two are negatively related, with produc-

tivity in housing decreasing, rather than increasing, in city size. Yet, we find, tentatively, that lower

housing productivity due to land-use regulation is associated with a higher quality of life, albeit

slightly less than is needed to compensate local residents for higher housing costs.

Our transaction-based measure of land values differs from other measures of land values that

are based on the difference between an entire property’s value and the estimated value of the struc-

ture built on its land. Davis and Palumbo (2007) employ this ”residual” method rather successfully,

albeit “using several formulas, different sources of data, and a few assumptions about unobserved

quantities, none of which is likely to be exactly right.” Moreover, this method fails to capture how

geographic and regulatory constraints increase the cost of producing housing, as these costs are

attributed to the value of land. From our analysis, this may explain why Davis and Palumbo find

the average cost-share of land in housing to be as high as 50 percent.

Ihlanfeldt (2007) takes measures of assessed land values from tax rolls in 25 out of 67 Florida

counties, and finds that land-use regulations are associated with higher housing prices but lower

land values. Rose (1992) acquires data on land values and housing rents across 27 major cities in

Japan for over 35 years, although he does not examine the relationship between housing costs and

land values or regulations. Glaeser, Gyourko, and Saks (2005b) focus on multifamily buildings

in Manhattan to estimate the costs of housing production, as the marginal cost of building an

additional floor does not require land, obviating the need for land price data.1

The econometric approach used here differs in that we use a cost-function approach to housing,

which uses land as in input. This approach is similar to that of Epple, Gordon, and Seig (2010),

who use separately assessed land and structure values for houses in Alleghany County, PA, and

find land’s cost share to be 14 percent. While our cost-share estimate for Pittsburgh is similar at

1Older works that consider the relationship between land-use regulations, land values, and housing values include
Ohls et al. (1974), Courant (1976), and Katz and Rosen (1987).
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18.4 percent, we also estimate cost shares for most U.S. metro areas, using indices that account

for differences in construction costs and a much wider away of regulations.2 The variation across,

rather than within, cities allows to also identify the cost structure from variation in labor and

construction costs across cities, and produces a point estimate for the elasticity of substitution

somewhat below one, consistent with much of the older literature that uses within-city variation –

see McDonald (1981) for a survey of this literature – as opposed to larger estimates from Thorsnes

(1997).

Three recent papers also make use of the CoStar COMPS data to construct land-value indices.

Haughwout, Orr, and Bedoll (2008) construct a land price index for the period 1999-2006 for the

New York metro area. Using data in the San Francisco Bay Area, Kok, Monkkonen, and Quigley

(2010) relate land values to the topographical, demographic, and regulatory features of the site.

Nichols, Oliner, and Mulhall (2010) construct a panel of land price indices for 23 metro areas from

the mid-1990s through 2009 to examine how land values vary more across time than structures,

much as our analysis finds the same is true across space.

2 Model of Land Values and Housing Production

Our estimation is based on a cost-function approach to housing production, within a system-of-

cities model proposed by Roback (1980) and developed by Albouy (2009). The national economy

contains many cities indexed by j, which produce and trade a numeraire traded good, x, and

produce housing, y, which is not traded across cities and has a local price, pj Cities differ in their

productivity in the housing sector Aj
Y .

2Although hedonic methods can theoretically provide estimates of land values, these estimates can be highly unre-
liable. For instance, Glaeser and Ward (2009) estimate a value of $16,000 per acre of land in the Greater Boston area
using hedonic methods while presenting evidence that the market price of an acre of land is approximately $300,000
if new housing can be built on it, a discrepancy they attribute to zoning regulations.
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2.1 Two-Input Model of Housing Production

We begin with a two-factor model in which firms produce housing using land L and materials M

according to the production function

Yj = F Y (L,M ;AY
j ) (1)

where F Y
j is concave and exhibits constant returns to scale (CRS) in L and M . AY

j may be fixed or

determined endogenously by city-level characteristics. Land is paid a city-specific price rj , while

materials are paid price vj . In our empirical work, we operationalize M as the installed structure

component of housing, so vj is conceptualized as construction costs, possibly an aggregate of local

labor and tradeable goods. Unit cost in the housing sector is cY (rj, vj;A
Y
j ) ≡ minL,M{rjL+vjM :

FY (L,M ;AY
j ) = 1}.

Assuming the housing market in city j is perfectly competitive3, then in equilibrium housing

price equals the unit cost in cities with positive production:

cY (rj, vj;A
Y
j ) = pj (2)

This equation is log-linearized around the national average to express how housing prices should

vary with input prices and productivity.

p̂j = φLr̂j + (1− φL)v̂j − ÂY
j (3)

where ẑj represents, for any attribute z, city j’s log deviation from the national average, z̄, i.e.

ẑj = ln zj−ln z ∼= (zj−z)/z, φL is the average cost share of land in housing, andAj
Y is normalized

so that ĀY = −p̄/[∂cY (r̄, m̄, ĀY )/∂A], i.e. so that a one-point increase in ÂY
j corresponds to a

3Although this assumption may seem stringent, the empirical evidence is consistent with perfect competition in the
construction sector. Considering evidence from the 1997 Economic Census, Glaeser et al. (2005b) report that “...all the
available evidence suggests that the housing production industry is highly competitive.” Basu et al. (2006) calculate
returns to scale in the construction industry (average cost divided by marginal cost) as 1.00, which is indicative of
firms in the construction industry having no market power.
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one-point reduction in the in log costs. Rearranged, this equation measures unobserved local

home-productivity from how high land and material costs are relative to housing costs:

Âj
Y = φLr̂j + (1− φL)v̂j − p̂j (4)

In other words, cities are inferred to have low housing productivity if the price of housing is high

relative to local input costs.

If housing productivity is factor neutral, i.e., F Y (L,M ;AY
j ) = AY

j F
Y (L,M ; 1), then the

second-order log-linear approximation of (3) is

p̂j = φLr̂j + (1− φL)v̂j +
1

2
φL(1− φL)(1− σY )(r̂j − v̂j)2 − ÂY

j (5)

where σY is the elasticity of substitution between land and non-land inputs. This elasticity of

substitution is less than one if costs increase in the square of the factor-price difference, (r̂j − v̂j)2.

The actual cost share is not constant across cities, but is approximated by

φL
j = φL + φL(1− φL)(1− σY )(r̂j − v̂j)

and thus is increasing with r̂j when σY < 1.

On the other hand, if housing productivity is not factor neutral, then equation (5) will contain

an additional term to account for the relative productivity of land relative to materials, AY L
j /AYM

j :

−φL(1− φL)(1− σY )(r̂j − v̂j)(ÂY L
j − ÂYM

j ). (6)

If σY < 1, then cities where land is expensive relative to materials, i.e., r̂j > v̂j , see greater cost

reductions where AY L
j /AYM

j is higher.4

4Appendix A contains greater detail on the model with factor-specific productivity.

5



2.2 Empirical Model

As a starting point, we estimate housing prices using an unrestricted translog cost function (Chris-

tensen et al. 1973) in terms of land and non-land factor prices:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + Zjγ + εj (7)

Zj is a vector of city-level attributes that may affect housing prices. This specification is equiva-

lent to the second-order approximation of the cost function (see, e.g., Binswager 1974, Fuss and

McFadden 1978) under the restrictions imposed by CRS

β1 = 1− β2, β3 = β4 = −β5/2 (8a)

where φL = β1and, with factor-neutral productivity, σY = 1 − 2β3/ [β1(1− β1)], and where

housing productivity is determined by observable attributes in Zj and unobservable attributes in

the residual:

Âj
Y = Zj(−γ) + Âj

0Y , Â
j
0Y = −εj (9)

The functional form of the cost function resulting from the second-order approximation (i.e. the

translog cost function) is not a constant-elasticity form. Therefore, the elasticities of substitution

we estimate are evaluated at the sample mean parameter values (see Griliches and Ringstad 1971

p. 10 for a discussion). The assumption of Cobb-Douglas production technology imposes the

restriction σY = 1, which in equation (7) amounts to the three restrictions:

β3 = β4 = β5 = 0 (10)

Without additional data, non-neutral productivity differences are impossible to detect unless

we know what may cause AY L
j /AYM

j . In the context, it seems reasonable to interact productivity

shifters Zj with the difference in input prices (r̂j− ν̂j) in equation (7). The reduced-form model
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allowing for non-neutral productivity shifts, imposing the CRS restrictions may be written as:

p̂j − v̂j = β1(r̂j − v̂j) + β3
[
(r̂j)

2 + (v̂j)
2 − 2(r̂j v̂j)

]
+ γ1Z

j + γ2Z
j (r̂j − v̂j) + εj

where γ2Zj/2β3 = (ÂYM
j −ÂY L

j )−(ÂYM
0j −ÂY L

0j ), identifies observable differences in factor-biased

technical differences. If σY < 1, then, γ2 > 0 implies that the shifter Z lowers the productivity of

land relative to the non-land input.5

2.3 Full Determination of Land Values

Land values and local-wage levels are determined using a model of location demand based on

amenities to individuals, bundled in terms of quality of life, Qj , and to firms in the tradeable sector,

bundled as trade productivity, AX
j .We posit two types of mobile workers, k = X, Y , where type-Y

workers labor in the housing sector. Preferences are modeled by the utility function Uk(x, y;Qk
j ),

which is quasi-concave over x and y, increasing in Qk
j , and summarizes the value of city j’s

amenities to k-types. The expenditure function for an individual is ek(p, u;Q) ≡ minx,y{x + py :

Uk (x, y;Q) ≥ u}. Each individual supplies a single unit of labor and is paid wk
j,, which together

with with non-labor income, I , makes up total income mk
j , out of which federal taxes τ(mk

j )

are paid. Assume that individuals are fully mobile and that both types occupy each city. Then

equilibrium requires that individuals everywhere receive the same utility across all cities, so that

higher prices or lower quality-of-life must be compensated with greater after-tax income:

e(pj, ū;Qj) = mj − τ(mj) (11)

where ūk is the level of utility attained nationally by individuals k. Log-linearizing this condition

around the national average

Q̂k
j = sky p̂j − (1− τ k)swŵ

k
j (12)

5Note that now β1 = φL + β3

(
ÂYM

0j − ÂY L
0j

)
and εj = −

[
φLÂY L

j + (1− φL)ÂYM
j

]
+ 1

2φ
L(1 − φL)(1 −

σY )(ÂY L
j − ÂYM

j )2
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where Qk
j is normalized so that Q̄k = 1/[∂ek(p̄, ūk, Q̄k)/∂Q], sky is the average expenditure share

on housing, and τ k is the average marginal tax rate for type k, and sw is the share of income

from labor. Define the aggregate quality-of-life differential Q̂j ≡ µXQ̂X
j + µY Q̂Y

j , where µX is

the share of income earned by workers in the tradeable sector, and let sy ≡ µXsXy + µY sYy , and

(1− τ) swŵ ≡ µX(1− τX)sXw ŵ
X
j + µY (1− τY )sYwŵ

Y
j .

The productivity of firms in the tradeable sector is modeled as in the housing sector except that

output has a uniform price across cities and is produced through the CRS and CD function, Xj =

FX(L,NX , K;AX
j ), whereNX is labor andK is mobile capital, which also has the uniform price,

i, everywhere. A derivation similar to the one for (3) yields the measure of tradeable productivity:

ÂX
j = θLr̂j + θN ŵX

j (13)

where θLand θN are the average cost-shares of land and labor in the tradeable sector. Note that

land is paid the same price in both sectors. To complete the model, let non-land inputs be produced

through the CRS and CD function Mj = FM(NY , K), which implies v̂j = $N ŵj , where $N is

the cost-share of labor. Defining φN = $L(1− φL), we have

ÂY
j = φLr̂j + φN ŵY

j − p̂j (14)

Combining the productivity in both sectors, define the total productivity differential as

Âj ≡ sxÂ
X
j + syÂ

Y
j (15)

where sx is the average expenditure share on tradeables.

Combining equations (12), (13), (14), and (15) in the case where σY = 1, we get that the land-

value differential, times the the average income share of land, sR = sxθL + syφL, equals the total

productivity differential plus the quality-of-life differential, minus a tax differential to the federal
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government that depends on wages:

sRr̂j = sxÂ
X
j + syÂ

Y
j + Q̂j − τswŵj (16)

In other words, land fully capitalizes the value of local amenities, minus differential federal tax

payments.

Proper identification of the model requires that these determinants of land values are uncor-

related with unobserved determinants of AY in the residual. To some extent, this is inevitable if

the vector of housing productivity characteristics Zj is incomplete and Âj
Y 0 6= 0. We could try to

account for the simultaneous determination of r̂j by Âj
Y 0, but this would still require making as-

sumptions about the covariance structure between Âj
X ,Âj

Y , and Q̂j . A more plausible strategy may

be to find instrumental variables that influence ÂX
j or Q̂j but are unrelated to ÂY

j , however, even

those may be very difficult to find. In Appendix E we consider using average winter temperatures

as an instrument and find results statistically consistent with the ordinary least squares estimates

below.

3 Data

We calculate our land price index from the CoStar COMPS database of commercial real estate

sales. The CoStar Group provides commercial real estate information and claims to have the

industry’s largest research organization, with researchers making over 10,000 calls a day to com-

mercial real estate professionals. The COMPS database includes transaction details for all types

of commercial real estate, including what the term “land.” In this study, we take as our initial data

set every commercial land sale in the COMPS database provided by CoStar University, which is

provided for free to any academic researcher, through the end of 2010.6 We restrict our data set to

transactions that occurred between 2005 and 2010 in a metropolitan area, and exclude all transac-

tions CoStar has marked as non-arms length. We also exclude transactions that appear to feature

6We downloaded data from March through June 2011.
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a structure, as evidenced by the inclusion of a field in the transaction record for “Bldg Type”,

“Year Built”, “Age”, or the phrase “Business Value Included” in the field “Sale Conditions”. After

dropping observations without complete information for lot size, sales price, county, and date, we

are left with 73,166 observations.7 Next, we drop observations we could not geocode successfully

and those geocoded at the region level of accuracy or worse, using the Stata module “geocode”

described in Ozimek and Miles (2011)8. We are left with 68,757 observed land sales.

Summary statistics for our sample of land sales are shown in Table A2. We observe land sales in

324 Metropolitan Statistical Areas and Primary Metropolitan Statistical Areas.9 The median price

per acre in our sample was $272,838, while the mean was $1,536,374; the median lot size was

3.5 acres while the mean was 26.4. CoStar provides a field describing the “proposed use” of each

property; properties can have multiple proposed uses or none at all. We use 12 of the most common

categories of “proposed use” which are neither mutually exclusive nor collectively exhaustive, as

well as an indicator for no proposed use, in our analysis of land values. Approximately 15.9% of

the properties sold in our sample had no proposed use listed, while five categories of proposed use,

‘Retail’, ‘Industrial’, ‘Single Family’, ‘Office’, and ‘Hold for Development’, each comprised more

than 5% of our sample.

We calculate a land-value index by city for each year by regressing the log price per acre of

each sale on a set of dummy variables for each MSA or PMSA and a set of dummies for quarter

of sale. In successive specifications, we add log lot size, followed by a set of dummies for planned

use. A major concern with this approach is that the land sales we observe are not a random

sample of all land parcels. In our preferred specification, we use a geography-based weighting

scheme to mitigate potential selection bias, overweighting parcels where residential housing is

dense and underweighting parcels where it is scarce. We take the regression coefficient on each

MSA or PMSA dummy to be our index of land price differentials for each city. Some results of the

7We also exclude outlier observations with a listed price of less than $100 per acre or a lot size over 5,000 acres.
8Again, we drop outlier observations that we calculate as farther than 75 miles from the city center or that have a

predicted density greater than 50,000 housing units per square mile using the method described in section 4.1, Land
Values.

9We use the June 30, 1999 definitions provided by the Office of Management and Budget.
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land value regressions, shown in Table 1, along with further details of our geographical weighting

scheme, are discussed in section 4.1.

We calculate wage and house price differentials for each year from the 2005-2010 American

Community Survey. Our method, described in detail in the Appendix, involves regressing wages

and housing costs on a rich set of observable characteristics, including a set of indicators for each

metro area. The coefficients on these metro indicators provide our indices of wages and housing

costs. Wages are estimated separately for workers in the construction industry; as seen in Appendix

Figure B, they are generally similar to but more dispersed than overall wages.

In certain sepcifications we use an estimate of housing costs based on a combination of rents

and imputed rents so as to have a fully representative sample of the housing stock in a given area.

As seen in Appendix Figure C, housing prices are considerably more dispersed than rents.

To measure the regulatory and geographic environments of metropolitan areas, we use the

Wharton Residential Land Use Regulatory Index (WRLURI), described in Gyourko, Saiz (2008).

The index is based on survey responses from municipal planning officials regarding the regulatory

process to create 11 subindices, constructed so that higher scores corresponds to greater regulatory

stringency: the approval delay index (ADI), the local political pressure index (LPPI), the state

political involvement index (SPII), the open space index (OSI), the exactions index (EI), the local

project approval index (LPAI), the local assembly index (LAI), the density restrictions index (DRI),

the supply restriction index (SRI), the state court involvement index (SCII), and the local zoning

approval index (LZAI). The WRLURI is constructed by factor analysis.10 The components of the

WRLURI generally have positive correlations with one another but not always; for instance, the

SCII is negatively correlated with five of the other subindices.

The index of topographic constraints to residential development is developed by Saiz (2010),

who uses satellite imagery to calculate land scarcity in metropolitan areas. The index measures the

fraction of undevelopable land within a 50 km radius of the city center, where land is undevelopable

10Two of the subindices measure state-level behavior, while nine are sub-state/local. The LAI measures whether
zoning requests must be approved at a town meeting, a feature unique to New England; all other subindices are national
in scope.
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if it is covered by water or wetlands, or has a slope of 15 degrees or steeper, which effectively

inhibits development. While this land is not actually built on, it serves as a proxy for geographic

features that may lower housing productivity. In somre specifications we also use a measure of

the mean slope in a metropolitan area based on our own calculations. We re-normalize both the

WRLURI and Saiz indices to be z−scores, with a mean of zero and standard deviation one, as

weighted by population in our sample11.

Construction costs are measured using the Building Construction Cost data from the RS Means

company, which is widely used in the literature, e.g. Davis and Palumbo (2007), Glaeser, Gy-

ourko and Saks (2005b). For each city in their sample, RS Means reports construction costs for a

composite of nine common structure types, which we report proportional to the national average,

normalized to 100. The index includes the costs of labor, materials, and equipment rental, but not

cost variations from regulatory restrictions, restrictive union practices, or regional differences in

building codes.12

We restrict our analysis to metropolitan areas with at least 20 land-sale observations with at

least 10 in a given year, that have available WRLURI, Saiz and construction wage indices, leav-

ing 171 MSAs and 688 MSA-year combinations13. These use 68,757 land sale observations, 7.5

million wage observations – 339,524 of which are in the construction sector – and 4.1 million

housing-cost observations. To interpret our results, we re-normalize our housing price, wage, and

construction wage differentials, as well as the RS Means index, to have a population-weighted

mean of zero within this sample. Because these variables are calculated as log deviations from

this average, the re-normalized variables can be interpreted as the log deviation from the national

average.

We also re-normalize our measures of geographic and regulatory constraints, including their

11As Saiz (2010) does, we find that his index of topographic constraints is positively correlated with the WRLURI,
with a correlation coefficient of 0.302 (s.e. = 0.102).

12The RS Means index is based on cities as defined by three-digit zip code locations, and as such there is not
necessarily a one-to-one correspondence between metropolitan areas and RS Means cities, but in most cases the
correspondence is clear. If an MSA contains more than one RS Means city we use the construction cost index of the
city in the MSA that also has an entry in RS Means. If a PMSA is separately defined in RS Means we use the cost
index for that PMSA; otherwise we use the cost index for the principal city of the parent CMSA.

13of these, 165 are included in the RS Means construction cost index
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individual components, to have a population-weighted mean of zero within the sample. These

re-normalized variables are interpreted as standard deviations from the national average.

4 Results

Below we present results of the model accounting in sequence for non CD-production, geographic

and regulatory constraints, non-land input costs, and disaggregated measures of regulatory and

geographic constraints. In the appendix, we take a brief look at the reverse regression of land values

on housing costs and other variables, and briefly consider the stability and potential endogeneity

of our results.

4.1 Land Value Index

We report the results of our land value regressions in Table 114. Proceeding from our estimates

with few controls to our preferred estimates, we start by regressing log price per acre on a set of

MSA dummies with no additional controls. The R2 of this regression is 0.28, but the results are

similar to those in our preferred specification, column 4. The correlation coefficient of these two

measures in the sample is 0.88 when weighted by the number of observed land sales, although the

differentials in specification 1 are more variable. In column 2, we add the log lot size in acres.

Controlling for lot size improves the R2 substantially to 0.68. The coefficient on lot size is -0.65,

which implies that when parcel size doubles, the total price of the parcel rises only 42 percent: this

is the “plattage effect,” first reported by Colwell and Sirmans (1980).15 The logic used to explain

this effect is that when there are costs to subdividing parcels (e.g. because of zoning restrictions),

large lots contain more land than is optimal for their intended use, thus lowering their value per

acre. Another possible explanation for this effect is that large lots are located in less desirable parts

of the metropolitan area.

In specification 3, we add controls for quarter of sale and a number of intended-use categories.

14Currently, Table 1 reports results from regressions pooled at the MSA level.
15For a summary of subsequent documentation, see Colwell and Sirmans (1993).
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The R2 of the regression rises modestly but the land value differentials change little; the weighted

correlation between the land value differentials in specifications 2 and 3 is 0.995.

One concern with our estimation strategy for the land value differentials is selection bias, as

the sample of lots in our dataset is not a random sample of all lots. As discussed in Nichols

et al. (2010), it is impossible to correct for possible selection bias because we do not observe

lots that are not sold16. One especially relevant source of selection bias in our sample is that the

geographic distribution of observed land sales may differ systematically from the distribution of

land throughout the metro area. For instance, we may be more likely to observe land sales on the

urban fringe, where development activity is more intense.

In column 4, we control for the geographical distribution of the land sales we observe by re-

weighting our observations to reflect the distribution of housing units throughout the city. For each

MSA or PMSA, we regress the log number of housing units per square mile at the census tract level

on the North-South distance between the tract center and the city center, the East-West distance

between the tract center and city center, the squares of these differences, and the product of the

differences. We use the Google Maps definition of city centers, generally within a few blocks of

city hall. We then define the predicted density of each observed land sales using the city-specific

coefficients from this regression applied to the same set of distance controls for the individual

properties. The weighted correlation between the land rent differentials in specifications 3 and

4 is high at 0.96, but the differentials with the geographic weighting are more dispersed, with a

standard deviation of 0.698 versus 0.619 for the differentials without the geographic weighting.

Weighting by predicted density increases the R2 of the regression from 0.70 to 0.76. Figure 1

illustrates the weighted and unweighted land rent differentials for each MSA and PMSA. Table A3

reports the land rent differentials for each specification.

We take the fourth set of land value differentials in Table A3, corresponding to column 4 of

Table 1, as our preferred estimates. The highest land values in the sample are in New York and San

16There is a modest literature that attempts to control for selection bias in commercial real estate and land prices,
and it generally finds that sample selection appears to be weak in this context. See for example Colwell and Munneke
(1997), Fisher et al. (2007), and Munneke and Slade (2000, 2001).
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Francisco. In general, large, coastal cities have the highest land values, while smaller cities in the

South and Midwest have lower values. The lowest values are in the Midwest, with Youngstown,

Ohio and Evansville, Indiana having the lowest land values in our sample.

4.2 Simple Model with Constraints

The land-value and housing-cost indices are plotted against each other in figure 2A. A simple linear

regression produces a slope of 0.56, which, assuming all other costs are uniform across cities, is

land’s estimated share of costs assuming CD production. The flexible curvature in the quadratic

regression yields an estimate of the elasticity of substitution of 0.58, which implies a wide range of

cost shares across metro areas from 19 to 88 percent, although it is imprecisely estimated. Visually,

a city’s housing productivity is given by the vertical distance below the regression line: thus, San

Francisco has low housing productivity and Las Vegas has high housing productivity. The curves

here represent estimates from the data with no controls, and change as other variables are added to

the model.

Our methodology of estimating housing productivity is illustrated in figure 2B. The thick solid

curve represents the cost function of housing for cities with average productivity. As land values

rise from Denver to New York, housing prices rise, albeit at a diminishing rate, as housing pro-

ducers substitute away from land as a factor input. The higher, thinner curve represents the cost

function for a city with lower productivity, such as San Francisco. The lower productivity level

is identified by how much higher the housing price in San Francisco is relative to a city with the

same factor costs, such as in New York.

By assuming that the national economy may be represented with a single elasticity of substi-

tution, we may confound cities that have low substitutability for cities that have low productivity.

When cities have low substitutability, the cost curve is flatter, as shown by the dashed line, as

housing producers do not use less land in higher-value cities. This has the same observable conse-

quence of increasing housing prices, although theoretically the concepts are different. The supply

of housing, measured as a quantity, is less responsive to price increases when substitutability is
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low than when productivity is low.

The results in columns 1 and 2 of table 3 include the basic geographic and regulatory measures.

This reduces the estimated cost-share of land, and the estimated elasticity of substitution also

declines to 0.45, statistically lower than one. Moreover, a standard deviation increase in either the

geographic constraint or regulatory index predicts a 12 to 13 percent increase in housing costs,

respectively, effects that are consistent with theory.

Column 3 presents results using a housing-cost measure based only on gross rents; the lower

estimates suggest that rents are less responsive to differences in land values and constraints. Col-

umn 4 presents results using a measure of housing costs derived from a combination of gross rents

and imputed rents; the estimated land share is between the values derived from owner-occuied

units and rental units individually.17

Overall, the results of these simple regressions are encouraging: the estimated cost share of

land and the elasticity of substitution between land and other inputs into housing production are

quite plausible, while the coefficients on the regulatory and geographic constraints have the pre-

dicted sign and reasonable magnitudes. The surprisingly good fit, as measured by R2, of these

basic specifications suggests that land rents and the geographic and regulatory constraints drive a

substantial amount of the variation in housing costs across metro areas. The plausibility of these

results suggests that ommitted variable bias in our regressions may be less of a concern than one

might suppose.

4.3 Non-Land Input Cost Differences

Construction costs and wages are plotted against land values in figures 3A and 3B: both of these

measures of non-land input costs are strongly correlated with land values. This means that esti-

mates of φL without these costs are biased positively.18 The figures also plot estimated zero-profit

17Figure C plots housing values against housing rents and shows that the two are strongly correlated, although
a one-percent increase in rents predicts a 1.87-percent increase in housing values, or a 1.67-percent increase in the
combined housing-cost measure.

18These measures are strongly correlated, as shown in Appendix Figure A, although there are some considerable
deviations, especially in New York, where costs are high relative to wages, while the opposite is true in Las Vegas.
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conditions (ZPCs) for firms, derived from equation 5 estimated without controls. These correspond

to fixed values of housing costs and productivity, p̂j + ÂY
j . With the log-linearization, the slope of

the ZPC is the ratio of land costs to non-land costs, −φL
j /(1 − φL

j ), which in the CD case is con-

stant. With an estimated elasticity, σY , of less than one, the slope of the ZPC increases with land

values, as the land-cost share is rising with land prices. Firms in cities with higher productivity or

higher housing costs pay their inputs higher prices, and have ZPC’s further to the right.

To visualize the relationship between productivity and housing costs, consider the three-dimensional

surface shown in figure 3C, which predicts housing costs from land values and construction costs

using the estimated cost function. Cities with housing costs above this surface are identified with

lower housing productivity than cities below it.

As seen already in the figures, accounting for non-land costs lowers the implied cost-share of

land. Table 4A presents estimates using the RS Means construction costs: columns 1 and 2 use

the linear-CD specification, while columns 3 and 4 use the translog specification; columns 2 and

4 impose the CRS restrictions, which reassuringly pass at the usual statistical sizes. This means

that, conditional on productivity, housing exhibits constant returns at the firm level. The point

estimate of σY implied by the estimates in column 4 is 0.53 and the Cobb-Douglas restrictions

are not rejected at the 10% confidence level, implying that the CD specification is not wholly

unreasonable. In this specification, we find a cost-share of land of 28 percent and a somewhat

smaller impact of regulatory constraints, wich are positively correlated with construction costs.

In column 5 we check for the possibility that productivity in the housing sector is non-neutral,

meaning it augments one factor more than another. To test this, we estimate the interaction between

observable shifters of productivity, i.e. the geographic and regulatory constraints, with land values

minus construction costs. Both interactions are statistically insignificant, and thus we are unable

to detect factor-specific productivity differences.

In column 6, we estimate the specification from column 4, but calibrate the cost share of land

to 0.4 and the construction cost share to 0.6. The estimated elasticity of substitution is essen-

Construction wage levels are also strongly tied to local wage levels, but not perfectly.
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tially unchanged, while the estimated impacts of the geographic and regulatory constraints decline

slightly.

Results in columns 1 through 4 of table 4B, which use construction wages, rather than costs, are

similar. The point estimate for σY is 0.50, statistically less than one, so that the CD specification is

rejected at the 5% level. The estimates in column 5 imply that a 1-percent increase in construction

wages predicts a 0.55 percent increase in construction costs, which appear unrelated to land costs,

geographic constraints, and the regulatory index. In column 6, we report estimates allowing for

a third factor, capital, which is unobserved and has constant costs across areas. We constrain

its cost share to be the remainder not accounted for by land or the fraction of construction costs

predicted by constructions costs, approximately 40 percent. In column 7, we again allow for

non-neutral productivity differences, but do not find any significant evidence for them. These

specifications produce similar estimates for the land cost share and impacts of geographic and

regulatory constraints.

In columns 8 and 9, we again present results using calibrated cost shares. In column 8, we set

the cost share of land to 0.4 and the cost share of construction wages to 0.6, while in column 9 we

set the cost share of land to 0.4, the cost share of construction wages to 0.27, and the cost share

of mobile capital to 0.33, using the same procedure as in column 6. The elasticity of substitution

is estimated to be higher in column 8 than in column 4, but not significantly so, while the effects

of the geographic and regulatory constraints are estimated to be somewhat lower in columns 8

and 9. Overall, we conclude from the calibrated models that the estimates of the non-cost share

parameters are not highly sensitive to the estimated cost shares.

4.4 Disaggregating the Regulatory and Geographic Indices

As discussed above, the WRLURI regulatory index used in the analysis is an aggregation of 11

subindices. The factor loading of each subindex is reported in Table 5, ordered according to the size

of its factor load. Alongside, in column 1, are estimates from a regression of the WRLURI z-score

on the z-scores for all of it component subindices. The coefficients vary from the factor loading
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coefficients because the sample and weighting differ from those used in the original construction

of the WRLURI.

In column 2, we examine disaggregated versions of the geographic constraint index, kindly

provided to us by Albert Saiz. Specifically, we break the geographic index into two parts, the

flat land share and the solid land share. The negative coefficients on the constituent parts are

expected because the geographic constraint index measures the share of land that is unavailable for

development, while these measures indicate the fraction of land suitable for development.

In columns 3 and 4 we report results using the CRS specifications from column 4 of tables 4A

and 4B, but with the disaggregated regulatory and geographic subindices. The results are intriguing

as the subindices vary widely in terms of their estimated effects on housing costs. However, the

three subindices with the higest factor loadings, approval delays, local political pressure, and state

political involvement, are all associated with high housing costs, as is state court involvement.

None of the subindicies appears to lower costs at a statistically significant level in any of the

specifications. We find that higher flat land and solid land shares lower costs, as expected. We

find that the cost-share of land appears to be between 22 and 23 percent and that the elasticity of

substitution is between 0.62 and 0.65, significantly lower than one. In the remainder of the paper,

we take the results in column 3 of table 5 as our preferred estimates. These results predict the cost

share of land in the sample ranges between 10 and 35 percent.

4.5 Productivity in Housing and Tradeables

In table 6 we provide measures of housing productivity from the empirical model in column 6 of

table 5, where ÂY
j = Zj(−γ∗)− ε∗j , where the ∗ refers to estimates. Using our indices of land val-

ues, housing costs, and overall wages, and calibrating values for the other parameters in the model,

we also provide estimates for tradeable productivity ÂX
j and overall quality-of-life Q̂j .19 The two

productivity measures are plotted against each other in Figure 4, which displays iso-productivity

19This calibration, explained in Albouy (2009), is sw = 0.75, τ = 0.33, sy = 0.22, sx = 0.64, θL = 0.025, θN =
0.8. A few details still need to be explained.
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lines for cities with same level of productivity when housing and tradeables are weighted by their

expenditure shares. The cities with the most productive housing sectors are McAllen-Edinburg-

Mission, TX and Springfield, MO; Among metros with over one million inhabitants, the top five

are Pittsburgh, Buffalo, Indianaplois, Rochester, and Houston. The least productive metros are typ-

ically along the coasts, with Santa Rosa, CA, at the bottom of the list, followed by San Francisco

and Ventura, CA, .20

The most productive cities with over one million inhabitants in the United States overall are

New York, which has high tradeable productivity and only slightly below average housing pro-

ductivity, Philadelphia, which has above average productivity in both sectors, and Houston, which

has average tradeable productivity and very high housing productivity. In tradeables alone, the

most productive places are in the Bay Area, San Francisco and San Jose. Also shown is a line

which depicts the bias to tradeable productivity estimates if land values are proxied with housing

values, assuming housing productivities are uniform across cities (see Albouy 2009): cities along

this line would be inferred to have the same tradeable productivities, as cities with higher housing

productivity have housing values low relative to land values, leading to lower inferred measures of

tradeable productivity. In this case, cities in the Bay Area would have their land costs and tradeable

productivities over-stated.

Rather than the two productivity types matching one-for-one, the two are negatively related,

with a 1-percent increase in trade-productivity predicting a 2.3-percent decrease in housing produc-

tivity. While cities may exhibit increasing returns to scale at the city level in the tradeable sector,

there could be decreasing returns to scale in the housing sector; i.e., agglomeration economies in

tradeables are offset by agglomeration diseconomies in non-tradeables. We explore this hypothesis

in table 7, which examines the relationship of productivity with population levels, at the consol-

idated metropolitan (CMSA) level, in panel A, or density, in panel B. The negative relationship

between housing productivity and either metro population or density in column 2 is large, sig-

nificant, and larger than the positive relationships with trade productivity in column 1. Much of

20These productivities are positively related to the housing supply elasticities, with a 1-point increase in productivity
predicting a 1.94-point (s.e. = 0.24) increase in the supply elasticity (R2 = 0.41).
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this appears to be the result of endogenous regulatory behavior increasing in larger, denser cities:

the relationship is much weaker in column 3, which excludes the component of housing produc-

tivity due to the regulatory subindices. The overall agglomeration economies measured through

total productivity in column 4 are significantly smaller than the economies measured through trade

productivity alone in column 1.

4.6 Housing Productivity and Quality of Life

The analysis above suggests that the overall productivity of larger cities is hampered by regulatory

burdens that lower the welfare of individuals by inflating their housing costs. Yet, the close prox-

imity of urban life is thought to create negative externalities, which if left uncontrolled, can lower

the quality of life in cities. This raises the possible utility of regulations, especially with regards to

housing, which can mitigate the impact of these externalities, such as through “externality zoning.”

Figure 5 shows a striking negative relationship between housing productivity and quality of life

measurements. This relationship must be regarded cautiously, not only because of usual endogene-

ity issues, but because both measures are derived from housing costs: higher costs signal greater

quality of life and lower productivity, which can induce an unwarranted mechanical relationship

between the two variables. Results in table 8 temper some of these issues by controlling for pos-

sible confounding factors, with column 1 adding variables for natural amenities such as climate

and adjacency to the coast, as well as the geographic constraint index; column 2 adds artificial

amenities such the population level, density, education levels, crime rates and number of eating

and drinking establishments. These natural controls effectively serve to reduce the relationship

by roughly a half, although the artificial controls do little more. To better understand the role of

regulation and to help purge the estimates of their mechanical correlation, columns 3 and 4 use

only the portion of housing productivity predicted by the regulatory subindices. The results using

this measure are of roughly the same magnitude, which lends some credibility to the hypothesis

that regulations in the housing sector improve the welfare of local residents.

A cursory analysis based on equations (15) and (16) suggests that if the elasticity of quality
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of life with respect to housing productivity is greater in absolute value than the expenditure share

on housing, then these regulations may actually increase the overall value of land, and could be

welfare improving. In fact the coefficient estimates in table 8 are smaller at 4 to 6 percent.

Other explanations for this phenomenon are equally plausible. For instance individuals in nicer

areas may endogenously choose regulations to restrict in-migration. With preference heterogene-

ity, the quality-of-life measure represents the willingness-to-pay of the marginal resident. In cities

with low-housing productivity, the supply of housing is effectively constrained, which can raise

the willingness-to-pay of the marginal resident, much as in the “Superstar City” hypothesis of

Gyourko, Mayer, and Sinai (2006).

5 Conclusion

The best empirical model from this analysis suggest that the average share of land in housing costs

in metropolitan areas is slightly less than 22 percent. Without controls for building costs and geo-

graphic and regulatory constraints, this share may be overestimated. The elasticity of substitution

between land and other factors is about 0.6, so this share varies widely across metro ares from 0.10

to 0.35. Since residential housing constitutes roughly 22 percent of gross household expenditures,

these results suggest that income from land constitutes a fairly large portion of national income

accounts, with residential land accounting for 4.5 percent of income.

Housing productivity varies considerably across metro areas with a standard deviation of 0.25

of total costs, with coastal and larger urban areas having the least efficient housing sectors. Both

geographic and regulatory constraints play a strong role in lowering productivity. Among regula-

tory constraints, approval delays, local politial pressure, and state political involvement appear to

have the greatest role in raising costs.

Overall, diseconomies in housing productivity appear to offset some of the gains associated

with agglomeration, as measured through productivity in tradeables and seen largely in higher

wage levels. Our estimates suggest that this effect could be diminished if regulations were relaxed
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but that doing so could have negative consequences for the quality of life of local residents. Ad-

ditional research is needed to control for the possible endogenous responses of regulation, and to

better determine the causal relationships between the many factors associated with land values and

the overall welfare of the population.
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Appendix

A Factor-Specific Productivity Differences
If housing productivity is factor specific, i.e., F Y (L,M ;AY

j ) = F Y (AY L
j L,AYM

j M ; 1), then the
cost function log-linearized around the national average gives

p̂j = φLr̂j + (1− φL)v̂j −
[
φLÂY L

j + (1− φL)ÂYM
j

]
(A.1)

making it difficult to identify separately. The second-order log-linear approximation of 3 is

p̂j = φL(r̂j − ÂY L
j ) + (1− φL)(v̂j − ÂYM

j ) +
1

2
φL(1− φL)(1− σY )(r̂j − ÂY L

j − v̂j + ÂYM
j )2

(A.2)

= φLr̂j + (1− φL)v̂j +
1

2
φL(1− φL)(1− σY )(r̂j − v̂j)2 (A.3)

+ φL(1− φL)(1− σY )(r̂j − v̂j)(ÂYM
j − ÂY L

j ) (A.4)

−
[
φLÂY L

j + (1− φL)ÂYM
j

]
+

1

2
φL(1− φL)(1− σY )(ÂY L

j − ÂYM
j )2 (A.5)

The additional terms on the second-to-last line show that if σY < 1, then productivity improve-
ments that affect land more will exhibit a negative interaction with the rent variable and a positive
interaction with the material price, while productivity improvements that affect material use more,
will exhibit the opposite. The following reduced-form equation

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Z
j + γ2Z

j r̂j + γ3Z
j v̂j + εj (A.6)

may be used to identify these effects, with the restriction that γ2 = −γ3.

B Reverse Regression
An alternate way to estimate the parameters of this model is to run the reverse regression of land
values on housing costs and the other regressors. In the CD case

r̂j =
1

φL

p̂j −
1− φL

φL

v̂j +
1

φL

Âj

The results of this regression, shown in table A4, suggest a larger share of land costs relative to
non-land costs.
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C Estimate Stability
We conduct two exercises in order to guage the stability of the estimates we present. First, we split
the sample into three subsamples for 2007, 2008, and 2009. In table A5, soon to be available, we
report the results for the regressions from table 4A, column 4 and table 4B, column 4, using the
yearly samples and the pooled set of yearly samples. The replicated regressions are the translog re-
gressions restricted to have CRS and using construction costs and construction wages, respectively
as measures of non-land input costs. The average cost share of land ranges from 15.6 percent to 25
percent, while the estimated elasticity of substitution ranges from 0.29 to 0.79. The coefficients on
the geographical and regulatory constraint indices are fairly constant across samples and are close
to those estimated in the full sample.

Second, we report results for the same regressions using residential land rents only and “raw”
land rent differentials. We define land as being residential if its intended use is listed as single
family, multifamily, or apartments, and we calculate the raw land rent differentials by regressing
log price per acre on a set of MSA dummies without any additional covariates. The estimated
land cost share ranges from 24.7 percent to 31.3 percent, and the coefficients on the geographic
and regulatory constraint indices are again quite similar to their values in the other specifications.
The implied elasticity of substitution ranges from 0.32 to 1.09. We take these exercises as modest
evidence in favor of the stability of our estimates, with the caveat that the estimated elasticity of
substitution varies substantially across specifications.

D Wage and House Price Differentials
For the wage regressions, we include all workers who live in an MSA, were employed in the last
year, and reported positive wage and salary income. We calculate hours worked as average weekly
hours times the midpoint of one of six bins for weeks worked in the past year. We then divide wage
and salary income for the year by our calculated hours worked variable to find an hourly wage. We
regress the log hourly wage on a set of MSA dummies and a number of individual covariates,
including:

• survey year dummies;

• age and age squared;

• 12 indicators of educational attainment;

• a quartic in potential experience and potential experience interacted with years of education;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 5 indicators of marital status (married with spouse present, married with spouse absent,
divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;
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• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status interacted
with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).

All covariates are interacted with gender.
This regression is first run using census-person weights. From the regressions a predicted wage

is calculated using individual characteristics alone, controlling for MSA, to form a new weight
equal to the predicted wage times the census-person weight. These new income-adjusted weights
allow us to weight workers by their income share. The new weights are then used in a second
regression, which is used to calculate the city-wage differentials from the MSA indicator variables.
In practice, this weighting procedure has only a small effect on the estimated wage differentials.
All of the wage regressions are at the CMSA level rather than the PMSA level to reflect the ability
of workers to commute relatively easily to jobs throughout a CMSA.

To calculate construction wage differentials, we drop all non-construction workers and follow
the same procedure as above. We define the construction sector as occupation codes 620 through
676 in the ACS 2000-2007 occupation codes. In our sample, 4.5% of all workers are in the con-
struction sector.

House price differentials are also calculated using the 2006-2008 American Community Survey
3% sample. The differential housing price of an MSA is calculated in a manner similar to the
differential wage, by regressing actual or imputed rent on a set of covariates. We impute a rent
of 7.85% annually on the value of owner-occupied housing. We exclude utility payments from
our measures of housing costs. The covariates used in the regression for the adjusted housing cost
differential are:

• survey year dummies;

• 9 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, and number
of rooms interacted with number of bedrooms;

• 3 indicators for lot size;

• 13 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status (owned units only).

Additionally, in one of our specifications we attempt to control for distance of the housing unit
from the city center. For each 2000 Census PUMA, we calculate population-weighted centroids
aggregated from the census tract level. We then measure the driving distance and driving time from
these centroids to the city center using the Google Maps API. We use the first listed city in each
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MSA or PMSA as our destination city, so, for instance, the destination associated with the Vallejo-
Fairfield-Napa, CA PMSA would be Google Maps’ definition of the center of Vallejo, CA. We
successfully calculated driving distances and times for 1,672 of the 1,691 metropolitan PUMAs.

A regression of housing values on housing characteristics and MSA indicator variables is first
run using only owner-occupied units, weighting by census-housing weights. A new value-adjusted
weight is calculated by multiplying the census-housing weights by the predicted value from this
first regression using housing characteristics alone, controlling for MSA. A second regression is
run using these new weights for all units, rented and owner-occupied, on the housing characteristics
fully interacted with tenure, along with the MSA indicators, which are not interacted. The house
price differentials are taken from the MSA indicator variables in this second regression. As with
the wage differentials, this adjusted weighting method has only a small impact on the measured
price differentials. In contrast to the wage regressions, the housing price regressions were run at
the PMSA level rather than the CMSA level to achieve a better geographic match between the
housing stock and the underlying land.

E Endogeneity of Land Values
One potential challenge for our estimation strategy is the possibility that land values are endoge-
nous. In our regression estimates of the housing production function, the error term has the struc-
tural interpretation of reflecting an MSA’s productivity in the housing sector that is not accounted
for by our geographic and regulatory controls. In the spatial equilibrium model we employ, land
values, wages, and house prices are simultaneously determined in a system of equations as func-
tions of quality of life, productivity in the tradeable sector, and productivity in the non-tradeable
sector, which we interpret as the housing sector21. Therefore, land values may be correlated with
productivity in the housing sector, violating the identifying assumptions of our OLS regressions.

We employ an instrumental variables approach to account for the potential endogeneity of
land values. Because of the interpretation of the error term in our regressions as productivity
in the housing sector, we wish to avoid potential instruments that might also affect productivity.
Therefore, we focus on potential instruments that affect land values through quality of life and
that we hope do not inluence productivity. The instrumental variable we choose to employ is
average winter temperature. The amenity value of average January temperatures has been well-
documented, for instance by Glaeser and Tobio (2008). We find that the average winter temperature
is positively correlated with land values as well. To be a valid instrumental variable, average
winter temperatures must also be uncorrelated with productivity in the housing sector, conditional
on our geographic and regulatory controls, i.e. warm winter temperatures per se cannot increase
productivity in the housing sector.

Table A7 displays the results of our instrumental variables regressions. Because we are unable

21The system of equations is

−sw(1− τ ′)ŵj + syp̂
j = Q̂j

θLr̂
j + θN ŵ

j = Âj
X

φLr̂
j + φN ŵ

j − p̂j = Âj
Y

See Albouy (2009) equations 4a-4c for details.
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to find a good instrument for the land value differential squared, we are limited to estimating only
the Cobb-Douglas form of our housing production function equations. In column 1, we estimate
the unrestricted version of the housing production function using the R.S. Means construction cost
data, while in column 2 we restrict the cost shares to sum to one. In columns 3 and 4 we use wages
in the construction sector in place of the construction cost data. The average winter temperature
is a statistically significant predictor of land values in all of the specifications, and the first stage
F-statistics are also very high. The cost share of land in housing is higher in the instrumental
variables regressions than in the OLS regressions. However, these differences do not appear to
be statistically significant: in no case does a Chi-squared test reject the null hypothesis that the
land value differential can be treated as exogenous at the 5% confidence level. We therefore take
the instrumental variables estimates as evidence that our baseline specifications may understate
the cost share of land in housing slightly, but that the difference does not appear to be statistically
significant.
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Figure 1: Weighted vs. Unweighted Land Rents
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Figure 2A: Housing Costs vs. Land Values
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Figure 3A: Construction Costs vs. Land Values
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Figure 3B: Construction Wages vs. Land Values
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Fig. 4: Productivity in the Tradeable and Housing Sectors
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Figure 5: Quality of Life vs. Housing Productivity
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Figure A: Construction Costs vs. Construction Wages
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Figure A: Construction Costs vs. Construction Wages
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Figure B: Construction Wages vs. Overall Wages
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Figure C: Housing Prices vs. Housing Rents
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Figure C: Housing Prices vs. Housing Rents



(1) (2) (3) (4)

Log lot size (acres) -0.646 -0.645 -0.591
(0.012) (0.012) (0.036)

No planned use -0.203 -0.341
(0.021) (0.096)

Planned use: commercial -0.387 -0.306
(0.076) (0.091)

Planned use: industrial -0.315 -0.538
(0.029) (0.128)

Planned use: retail 0.269 0.194
(0.018) (0.024)

Planned use: single family -0.026 -0.182
(0.024) (0.086)

Planned use: multi-family -0.072 -0.163
(0.041) (0.142)

Planned use: office 0.074 0.188
(0.032) (0.077)

Planned use: apartment 0.465 0.344
(0.054) (0.149)

Planned use: hold for development -0.074 -0.117
(0.026) (0.067)

Planned use: hold for investment -0.339 -0.244
(0.062) (0.062)

Planned use: mixed use 0.377 0.412
(0.046) (0.079)

Planned use: medical 0.166 -0.079
(0.039) (0.099)

Planned use: parking 0.178 0.206
(0.053) (0.103)

Number of Observations 68,757 68,757 68,757 68,757
Adjusted R-squared 0.283 0.677 0.704 0.757

Weighted by Predicted Density No No No Yes

TABLE 1: LAND VALUE AUXILLIARY REGRESSION
Dependent Variable: Log Price per Acre

Robust standard errors, clustered by MSA/PMSA, reported in parentheses.  Land-value data from
CoStar COMPS database for years 2005 to 2010.  All specifications include a full set of
dummies for MSA/PMSA and quarter of sale (not shown).  Predicted density is number of land
sales predicted by a geographical model of housing units relative to city center; please see section
4.1, Land Values, for a full description.



Name of Area Population
Land
Value

Housing
Price

Wages
(Const.
Only)

Regulation
Index

(z-score)

Geo Avail.
Index

(z-score)
Const.

Cost Index

Land
Value
Rank

Metropolitan Areas:
New York, NY PMSA 9,747,281 1,603 1.902 0.838 0.246 0.670 0.550 0.306 1

San Francisco, CA PMSA 1,785,097 152 1.738 1.284 0.213 0.782 2.152 0.232 2
Jersey City, NJ PMSA 597,924 43 1.426 0.560 0.269 0.087 0.226 0.117 3

San Jose, CA PMSA 1,784,642 217 1.237 1.077 0.213 -0.040 1.694 0.177 4
Orange County, CA PMSA 3,026,786 233 1.000 0.927 0.114 0.183 1.139 0.096 6

Washington, DC-MD-VA-WV PMSA 5,650,154 1,840 0.690 0.382 0.175 0.297 -0.746 0.007 13
Chicago, IL PMSA 8,710,824 3,511 0.551 0.136 0.056 -0.352 0.530 0.167 19

Philadelphia, PA-NJ PMSA 5,332,822 859 0.378 0.012 0.044 1.343 -0.932 0.161 24
Boston, MA-NH PMSA 3,552,421 122 0.784 0.581 0.083 2.253 0.231 0.178 11

Phoenix-Mesa, AZ MSA 4,364,094 5,946 0.116 -0.034 -0.016 0.645 -0.746 -0.101 38
Riverside-San Bernardino, CA PMSA 4,143,113 2,452 -0.105 0.215 0.114 0.465 0.426 0.071 55

Atlanta, GA MSA 5,315,841 5,229 -0.186 -0.330 0.031 -0.321 -1.229 -0.100 58
Detroit, MI PMSA 4,373,040 679 -0.554 -0.350 -0.038 -0.298 -0.229 0.051 99

Houston, TX PMSA 5,219,317 1,143 -0.447 -0.545 0.034 -0.986 -1.018 -0.121 82
Dallas, TX PMSA 4,399,895 811 -0.478 -0.466 -0.002 -0.744 -0.981 -0.141 86

Youngstown-Warren, OH MSA 554,614 49 -1.942 -0.796 -0.208 -0.982 -0.914 -0.040 170
Evansville-Henderson, IN-KY MSA 305,455 33 -2.695 -0.694 -0.334 -2.039 -1.005 -0.071 171

Saginaw-Bay City-Midland, MI MSA 390,032 41 -1.590 -0.691 -0.176 -0.391 -0.627 -0.036 166

Population Categories:
Less than 500,000 57,630,737 3,597 -0.636 -0.313 -0.104 -0.355 -0.033 -0.060 4

500,000 to 1,500,000 232,990,833 13,558 -0.539 -0.229 -0.071 -0.280 -0.180 -0.059 3
1,500,000 to 5,000,000 491,452,831 31,981 0.108 0.063 0.006 0.090 0.165 0.005 2

5,000,000+ 298,945,500 15,945 0.691 0.310 0.112 0.185 0.003 0.103 1

United States 29,671 0.851 0.509 0.152 0.959 1.008 0.141

Land-value data from CoStar COMPS database for years 2005 to 2010. Wage and housing-cost data from 2005 to 2010 American Community Survey 1 percent
samples. Wage differentials based on the average logarithm of hourly wages for full-time workers ages 25 to 55. Housing-price differentials based on the average
logarithm of housing prices. Adjusted differentials are city-fixed effects from individual level regressions on extended sets of worker and housing covariates.
Regulation Index is the Wharton Residential Land Use Regulatory Index (WRLURI) from Gyourko et al. (2008). Geographic Availability Index is the Land
Unavailability Index, constructed by Saiz (2010) at the Primary Metropolitan Statistical Area level. These indices have been turned into z-scores by subtracting the
mean and dividing by the standard deviation. Construction-cost differential from R.S. Means.

TABLE 2: MEASURES FOR SELECTED METROPOLITAN AREAS, RANKED BY LAND-VALUE DIFFERENTIAL
Adjusted Differentials Raw DifferentialsObserved

No. of
Land
Sales

standard deviations (population weighted)total



Specification
Basic Cobb-

Douglas CES Rents Only
Housing

Costs
Dependent Variable Hous. Price Hous. Price Hous. Rent Hous. Cost

(1) (2) (3) (4)

Land-Value Differential 0.333 0.328 0.159 0.262
(0.028) (0.031) (0.025) (0.034)

Land-Value Differential Squared 0.060 0.013 0.029
(0.023) (0.017) (0.025)

Geographic Constraint Index: z-score 0.132 0.127 0.041 0.109
(0.041) (0.041) (0.020) (0.032)

Regulatory Index: z-score 0.112 0.119 0.053 0.111
(0.018) (0.017) (0.013) (0.016)

Constant 0.000 -0.039 -0.009 -0.019
(0.035) (0.041) (0.024) (0.035)

Number of Observations 688 688 688 688
Adjusted R-squared 0.755 0.773 0.676 0.780

Elasticity of Substitution 1.000 0.452 0.801 0.701
(0.199) (0.240) (0.243)

Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources as described in
Table 2.  Columns (1) and (2) use owner observations, column (3) uses renter observations, and
column (4) uses owners and renters.

TABLE 3: MODEL OF HOUSING-COST DETERMINATION WITH CONSTANT NON-LAND
INPUT PRICES



Specification
Basic Cobb-

Douglas

Restricted
Cobb-

Douglas Translog
Restricted
Translog

Non-neutral
Productivity

Translog

Calibrated
Restricted
Translog

(1) (2) (3) (4) (5) (6)

Land-Value Differential 0.262 0.273 0.262 0.278 0.274 0.400
(0.033) (0.031) (0.038) (0.036) (0.036)

Construction-Cost Differential 0.986 0.727 0.904 0.722 0.726 0.600
(0.205) (0.031) (0.235) (0.036) (0.036)

Land-Value Differential Squared 0.031 0.047 0.040 0.053
(0.026) (0.024) (0.028) (0.023)

Construction-Cost Differential Squared -0.529 0.047 0.040 0.053
(1.535) (0.024) (0.028) (0.023)

Land-Value Differential X Construction-Cost
Differential 0.130 -0.094 -0.080 -0.106

(0.339) (0.048) (1.077) (0.047)

Geographic Constraint Index: z-score 0.126 0.131 0.124 0.124 0.118 0.087
(0.036) (0.038) (0.036) (0.038) (0.034) (0.013)

Regulatory Index: z-score 0.081 0.091 0.088 0.094 0.096 0.067
(0.021) (0.016) (0.019) (0.016) (0.017) (0.010)

Geographic Constraint Index times Land Value
Differential minus Construction Cost Differential 0.041

(0.040)
Regulatory Index times Land Value Differential

minus Construction Cost Differential -0.019
(0.024)

Constant 0.002 0.002 -0.017 -0.024 -0.029 -0.028
(0.032) (0.032) (0.052) (0.036) (0.036) (0.015)

Number of Observations 668 668 668 668 668 668
Adjusted R-squared 0.805 0.802 0.811 0.810 0.728 0.786

p -value for constant-returns-to-scale restrictions 0.217 0.893
p -value for Cobb-Douglas restrictions 0.544 0.149

p- value for all restrictions 0.130

Elasticity of Substitution 1.000 1.000 0.530 0.597 0.578
(0.223) (0.268) (0.201)

TABLE 4A: MODEL OF HOUSING-COST DETERMINATION WITH VARIABLE CONSTRUCTION COSTS

Dependent variable in all regressions is housing price measure.  Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources
as described in Table 2.  Factor-cost restrictions that production function exhibits constant returns to scale.  Cobb-Douglas restrictions that squared
and interacted differential coefficients equal zero (elasticity of substitution between factors equals 1).  Land-cost differential in column 6 calibrated
to 0.4 and construction-cost differential calibrated to 0.6.



Specification
Basic Cobb-

Douglas

Restricted
Cobb-

Douglas 1 Translog
Restricted
Translog

Const. Cost
Model

Restricted
Cobb-

Douglas 2

Non-neutral
Productivity

Translog

Calibrated
Restricted
Translog

Calibrated
Cobb-

Douglas

Dependent Variable Hous. Price Hous. Price Hous. Price Hous. Price Const. Cost Hous. Price Hous. Price Hous. Price Hous. Price
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Land-Value Differential 0.251 0.258 0.231 0.260 0.025 0.281 0.256 0.400 0.400
(0.024) (0.026) (0.031) (0.029) (0.019) (0.027) (0.029)

Construction-Wage Differential 0.896 0.742 0.974 0.740 0.549 0.325 0.744 0.600 0.271
(0.152) (0.026) (0.125) (0.029) (0.113) (0.006) (0.029)

Implied Capital-Cost Differential -0.147 0.000 -0.205 0.000 0.455 0.394 0.000 0.000 0.329
(0.150) (0.111) (0.062) (0.015)

Land-Value Differential Squared 0.010 0.048 0.041 0.051
(0.023) (0.020) (.026) (0.024)

Construction-Wage Differential Squared 1.026 0.048 0.041 0.051
(0.404) (0.020) (.026) (0.024)

Land-Value Differential X Construction-Wage
Differential 0.356 -0.096 -0.082 -0.101

(0.161) (0.040) (0.052) (0.048)

Geographic Constraint Index: z-score 0.149 0.148 0.146 0.143 0.018 0.144 0.138 0.099 0.106
(0.032) (0.033) (0.030) (0.034) (0.014) (0.036) (0.031) (0.012) (0.012)

Regulatory Index: z-score 0.078 0.086 0.082 0.089 0.008 0.098 0.091 0.059 0.066
(0.018) (0.014) (0.016) (0.013) (0.014) (0.015) (0.015) (0.009) (0.009)

Geographic Constraint Index times Land Value
Differential minus Construction Cost Differential -0.015

(0.024)
Regulatory Index times Land Value Differential

minus Construction Cost Differential 0.038
(0.037)

Constant 0.000 0.000 -0.054 -0.026 0.000 0.000 -0.032 -0.027 0.000
(0.027) (0.028) (0.034) (0.031) (0.014) (0.031) (0.029) (0.015) (0.011)

Number of Observations 688 688 688 688 171 688 688 688 688
Adjusted R-squared 0.808 0.806 0.832 0.815 0.523 0.786 0.816 0.785 1.000

p -value for constant-returns-to-scale restrictions 0.331 0.000 0.000
p -value for Cobb-Douglas restrictions 0.000 0.018

p- value for all restrictions 0.000

Elasticity of Substitution 1.000 1.000 0.499 1.000 0.574 0.578 1.000
(0.194) (0.258) (0.201)

Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources as described in Table 2.  Factor-cost restrictions that production function exhibits constant returns to
scale.  Cobb-Douglas restrictions that squared and interacted differential coefficients equal zero (elasticity of substitution between factors equals one).    Land-cost and construction-wage
differentials calibrated to values shown in columns 8 and 9.

TABLE 4B: MODEL OF HOUSING-COST DETERMINATION WITH VARIABLE CONSTRUCTION WAGES



Specification

Regulatory
Index Factor

Loading

Restricted
Translog w
Cons Cost

Dependent Variable Reg Index Geo Index Hous. Price
(1) (2) (3)

Land-Value Differential 0.227
(0.024)

Land-Value Differential Squared 0.031
(0.015)

Approval Delay: z-score 0.29 0.514 0.106
(0.040) (0.054)

Local Political Pressure: z-score 0.22 0.187 0.061
(0.069) (0.031)

State Political Involvement: z-score 0.22 0.386 0.058
(0.023) (0.020)

Open Space: z-score 0.18 0.134 0.024
(0.084) (0.060)

Exactions: z-score 0.15 -0.021 0.045
(0.075) (0.075)

Local Project Approval: z-score 0.15 0.215 -0.012
(0.019) (0.018)

Local Assembly: z-score 0.14 0.139 -0.025
(0.046) (0.027)

Density Restrictions: z-score 0.09 0.107 -0.065
(0.091) (0.064)

Supply Restrictions: z-score 0.02 -0.021 -0.013
(0.086) (0.066)

State Court Involvement: z-score -0.03 -0.132 0.073
(0.021) (0.022)

Local Zoning Approval: z-score -0.04 -0.102 -0.027
(0.073) (0.045)

Flat Land Share: z-score -0.481 -0.100
(0.036) (0.031)

Solid Land Share: z-score -0.790 -0.077
(0.063) (0.020)

Constant 0.000 0.000 -0.016
(0.021) (0.044) (0.025)

Number of Observations 688 688 668
Adjusted R-squared 0.946 0.842 0.871

Elasticity of Substitution 0.641
(0.159)

Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources as described in Table 2;
constituent components of Wharton Residential Land Use Regulatory Index (WRLURI) from Gyourko et al (2008).
Constituent components of geographical index provided to the authors by Albert Saiz.  Mean slope is based on
authors' calculations at the Census tract level.

TABLE 5: MODEL OF HOUSING COSTS WITH DISAGGREGATED GEOGRAPHIC CONSTRAINTS AND
REGULATORY INDICES



Name

Housing
(Including
Indices)

Unexplained
Housing

Component Tradeables
Quality of

Life

Total
Amenity

Value
(1) (2) (3) (4) (5)

Metropolitan Areas:
San Francisco, CA PMSA -0.660 -0.025 0.192 0.065 0.070

New York, NY PMSA -0.110 0.031 0.141 0.067 0.137
San Jose, CA PMSA -0.645 -0.182 0.180 0.037 0.036

Jersey City, NJ PMSA -0.117 -0.098 0.126 0.036 0.095
Oakland, CA PMSA -0.632 -0.171 0.167 0.008 0.000

Washington, DC-MD-VA-WV PMSA -0.222 -0.194 0.104 0.006 0.033
Boston, MA-NH PMSA -0.271 0.017 0.083 0.031 0.036

Chicago, IL PMSA 0.105 0.032 0.052 0.012 0.064
Philadelphia, PA-NJ PMSA 0.186 0.115 0.056 -0.003 0.067

Riverside-San Bernardino, CA PMSA -0.198 -0.026 0.055 -0.019 -0.019
Phoenix-Mesa, AZ MSA -0.033 0.060 -0.007 0.007 -0.004

Atlanta, GA MSA 0.197 0.030 -0.017 -0.020 0.004
Dallas, TX PMSA 0.239 -0.034 -0.025 -0.035 -0.008

Houston, TX PMSA 0.340 0.103 -0.006 -0.046 0.012
Detroit, MI PMSA 0.264 0.238 -0.017 -0.034 0.003

Evansville-Henderson, IN-KY MSA 0.245 0.001 -0.133 -0.094 -0.135
Saginaw-Bay City-Midland, MI MSA 0.387 0.332 -0.126 -0.054 -0.066

Youngstown-Warren, OH MSA 0.436 0.048 -0.171 -0.059 -0.090
El Paso, TX MSA 0.330 -0.003 -0.195 -0.002 -0.067

Population Categories:
Less than 500,000 0.114 0.049 -0.073 -0.014 -0.041

500,000 to 1,500,000 0.071 -0.019 -0.055 -0.014 -0.036
1,500,000 to 5,000,000 -0.038 0.006 0.011 0.004 0.004

5,000,000+ -0.068 -0.007 0.068 0.018 0.049

United States 0.287 0.135 0.082 0.034 0.048

TABLE 6: INFERRED ATTRIBUTES OF SELECTED METROPOLITAN AREAS, RANKED BY TOTAL
AMENITY VALUE

Productivity

standard deviations (population weighted)

Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources as described in Table 2.
Housing productivity in column 1 calculated from specification in Table 5, column 3 as the negative of the
sum of the regression residual (reported in column 2) plus the housing price predicted by the WRLURI and
Saiz subindices.  Productivity in tradeables calculated as 0.825 times the overall wage differentials plus
0.025 times the land value differentials.  Quality of Life calculated as 0.15 times the housing price
differential plus 0.18 times the price differential of other non-tradeable goods minus 0.15 times the overall
wage differential.  Total Amenity Value differential calculated as 0.18 times the housing productivity
differential plus 0.64 times the tradeable productivity differential plus the quality of life differential.  Quality
of Life and Total Amenity Value are expressed as a fraction of local household income.



Tradeables
Productivity

Housing
Productivity

Unexplained
Hous. Prod.

Total
Productivity

(1) (2) (3) (4)
Panel A: Population

Log of Population 0.053 -0.108 -0.056 0.015
(0.005) (0.033) (0.024) (0.007)

Number of Observations 171 171 171 171
Adjusted R-squared 0.623 0.216 0.122 0.192

Panel B: Population Density

Weighted Density Differential 0.065 -0.132 -0.066 0.018
(0.005) (0.045) (0.032) (0.007)

Number of Observations 171 171 171 171
Adjusted R-squared 0.476 0.166 0.086 0.143

TABLE 7: PRODUCTIVITY IN TRADEABLE AND HOUSING SECTORS ACCORDING TO
METROPOLITAN POPULATION

Dependent Variable

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as described in
Table 2. Tradeables and Housing Productivity differentials calculated as in Table 6. Total
Productivity calculated as 0.18 times Housing Productivity plus 0.64 times Tradeables
Productivity. Weighted Density Differential calculated as the population density at the census tract
level weighted by population.



(1) (2) (3) (4)

Housing Productivity -0.040 -0.027 -0.060 -0.040
(0.016) (0.015) (0.015) (0.016)

Natural Controls X X X X
Artificial Controls X X

Number of Observations 165 165 165 165
Adjusted R-squared 0.55 0.75 0.56 0.75

TABLE 8: QUALITY OF LIFE AND HOUSING PRODUCTIVITY
Dependent Variable: Quality of Life

Robust standard errors, clustered by CMSA, in parentheses. Quality of Life calculated as in Table
6. Housing Productivity predicted by regulation based upon the projection of housing costs on the
subindices in column 3 of table 5. Natural controls: heating and cooling degree days, July
humidity, annual sunshine, annual precipitation, adjacency to coast, geographic constraint index.
Artificial controls include metropolitan population, density, eating and drinking establishments,
violent crime rate, and fractions with a college degree, some college, and high-school degree.

Total Housing Productivity
Housing Productivity

Predicted by Regulation



Full Name Population

Cen-
sus

Div-
ision

Obs.
Land
Sales

Land
Value

Land
Value
(No

Wts.)
Housing

Price
Wages
(All)

Wages
(Const.
Only)

Reg.
Index

(z-score)

Geo
Avail.
Index

(z-score)

Const.
Cost
Index Housing

Tradea-
bles

Land
Value
Rank

Metropolitan Areas:
New York, NY PMSA 9,747,281 2 1,603 1.902 1.525 0.838 0.151 0.246 0.670 0.550 0.306 -0.110 0.141 1

San Francisco, CA PMSA 1,785,097 9 152 1.738 1.375 1.284 0.206 0.213 0.782 2.152 0.232 -0.660 0.192 2
Jersey City, NJ PMSA 597,924 2 43 1.426 1.453 0.560 0.152 0.269 0.087 0.226 0.117 -0.117 0.126 3

San Jose, CA PMSA 1,784,642 9 217 1.237 1.230 1.077 0.206 0.213 -0.040 1.694 0.177 -0.645 0.180 4
San Diego, CA MSA 3,053,793 9 957 1.017 0.835 0.735 0.060 0.092 0.267 1.675 0.064 -0.446 0.064 5

Orange County, CA PMSA 3,026,786 9 233 1.000 1.137 0.927 0.086 0.114 0.183 1.139 0.096 -0.620 0.082 6
Seattle-Bellevue-Everett, WA PMSA 2,692,066 9 1,626 0.935 0.820 0.415 0.049 0.033 1.038 0.707 0.064 -0.148 0.062 7
Visalia-Tulare-Porterville, CA MSA 429,668 9 32 0.866 0.594 -0.204 -0.023 -0.004 0.357 -0.478 0.000 -0.143 0.002 8

Los Angeles-Long Beach, CA PMSA 9,848,011 9 1,760 0.864 0.916 0.858 0.086 0.114 0.381 1.139 0.096 -0.589 0.079 9
Miami, FL PMSA 2,500,625 5 1,233 0.840 0.853 0.283 -0.058 -0.083 1.133 2.323 -0.076 -0.147 -0.017 10

Boston, MA-NH PMSA 3,552,421 1 122 0.784 0.659 0.581 0.087 0.083 2.253 0.231 0.178 -0.271 0.083 11
Newark, NJ PMSA 2,045,344 2 142 0.696 0.379 0.511 0.151 0.254 0.708 0.064 0.130 -0.259 0.110 12

Washington, DC-MD-VA-WV PMSA 5,650,154 5 1,840 0.690 0.704 0.382 0.130 0.175 0.297 -0.746 0.007 -0.222 0.104 13
Fort Lauderdale, FL PMSA 1,766,476 5 741 0.661 0.766 0.178 -0.057 -0.083 0.776 2.277 -0.101 -0.109 -0.021 14

Oakland, CA PMSA 2,532,756 9 132 0.657 0.678 0.903 0.205 0.198 0.614 1.590 0.169 -0.632 0.167 15
Las Vegas, NV-AZ MSA 2,141,893 8 2,553 0.641 0.691 -0.019 0.043 -0.065 -1.475 0.141 -0.111 0.077 0.065 16

Bergen-Passaic, NJ PMSA 1,387,028 2 79 0.582 0.687 0.678 0.151 0.254 0.694 0.550 0.117 -0.464 0.107 17
Nassau-Suffolk, NY PMSA 2,875,904 2 396 0.563 0.611 0.660 0.151 0.245 0.750 0.550 0.306 -0.310 0.108 18

Chicago, IL PMSA 8,710,824 3 3,511 0.551 0.205 0.136 0.053 0.056 -0.352 0.530 0.167 0.105 0.052 19
Trenton, NJ PMSA 366,222 2 35 0.538 0.577 0.316 0.155 0.251 2.422 -0.852 0.112 -0.120 0.109 20
Madison, WI MSA 491,357 3 239 0.501 -0.200 -0.069 -0.078 -0.189 0.272 -0.874 -0.003 0.188 -0.025 21

Ventura, CA PMSA 802,983 9 131 0.496 0.603 0.816 0.086 0.118 1.549 2.470 0.078 -0.654 0.070 22
Naples, FL MSA 318,537 5 78 0.475 0.506 0.477 0.005 -0.256 0.088 2.273 0.000 -0.166 0.060 23

Philadelphia, PA-NJ PMSA 5,332,822 2 859 0.378 0.098 0.012 0.060 0.044 1.343 -0.932 0.161 0.186 0.056 24
West Palm Beach-Boca Raton, FL MSA 1,279,950 5 321 0.332 0.413 0.283 0.000 0.077 0.081 1.705 -0.127 -0.319 -0.005 25

San Luis Obispo-Atascadero-Paso Robles, CA MSA 266,971 9 43 0.323 0.395 0.732 -0.002 0.005 1.404 1.794 0.037 -0.645 0.005 26
Reno, NV MSA 414,820 8 57 0.317 0.207 0.020 -0.026 -0.200 -0.860 1.314 -0.024 0.023 0.018 27

Vallejo-Fairfield-Napa, CA PMSA 541,884 9 146 0.304 0.399 0.526 0.206 0.213 1.164 0.978 0.119 -0.377 0.156 28
Tacoma, WA PMSA 796,836 9 539 0.294 0.363 0.075 0.049 0.032 1.883 0.367 0.041 0.010 0.046 29

Atlantic-Cape May, NJ PMSA 367,803 2 37 0.289 -0.196 0.194 0.063 0.029 0.724 1.762 0.101 -0.067 0.059 30
Sarasota-Bradenton, FL MSA 688,126 5 601 0.279 0.362 0.125 -0.104 -0.062 1.096 1.833 -0.096 -0.149 -0.076 31

Portland-Vancouver, OR-WA PMSA 2,230,947 9 1,191 0.253 0.303 0.136 -0.050 -0.073 0.053 0.409 0.011 -0.085 -0.026 32
Orlando, FL MSA 2,082,421 5 1,612 0.247 0.327 -0.120 -0.089 -0.123 0.131 0.340 -0.093 0.091 -0.052 33

Olympia, WA PMSA 250,979 9 250 0.215 0.198 0.059 0.052 0.046 0.542 0.455 0.030 0.000 0.044 34
Tampa-St. Petersburg-Clearwater, FL MSA 2,747,272 5 1,220 0.178 0.224 -0.119 -0.092 -0.142 -0.722 0.609 -0.062 0.096 -0.054 35
Middlesex-Somerset-Hunterdon, NJ PMSA 1,247,641 2 101 0.150 0.288 0.441 0.151 0.254 1.417 0.550 0.116 -0.325 0.096 36

Baltimore, MD PMSA 2,690,886 5 802 0.135 0.173 0.161 0.130 0.175 2.160 -0.358 -0.062 -0.192 0.090 37
Phoenix-Mesa, AZ MSA 4,364,094 8 5,946 0.116 0.244 -0.034 -0.014 -0.016 0.645 -0.746 -0.101 -0.033 -0.007 38

Santa Rosa, CA PMSA 472,102 9 153 0.114 0.512 0.813 0.206 0.213 1.737 1.655 0.131 -0.686 0.152 39
New Haven-Meriden, CT PMSA 558,692 1 43 0.114 -0.141 0.272 0.153 0.245 -0.366 0.774 0.107 -0.172 0.098 40

Provo-Orem, UT MSA 545,307 8 47 0.083 0.237 -0.260 -0.149 -0.279 -0.041 1.488 -0.141 0.157 -0.084 41
Melbourne-Titusville-Palm Bay, FL MSA 536,357 5 420 0.047 0.055 -0.174 -0.113 -0.067 0.455 1.717 -0.075 0.112 -0.089 42

Denver, CO PMSA 2,445,781 8 2,015 0.029 -0.065 -0.006 -0.011 0.002 0.991 -0.610 -0.040 -0.032 -0.009 43
Salem, OR PMSA 396,103 9 54 0.020 -0.207 -0.096 -0.047 -0.074 0.273 0.189 0.003 0.091 -0.029 44

Salt Lake City-Ogden, UT MSA 1,567,650 8 145 0.000 0.084 -0.174 -0.091 -0.173 -0.421 2.095 -0.126 0.062 -0.053 45
Springfield, MA MSA 609,993 1 28 -0.014 -0.223 0.069 -0.037 -0.009 0.712 -0.103 0.050 -0.049 -0.032 46

Austin-San Marcos, TX MSA 1,705,075 7 384 -0.015 -0.352 -0.310 -0.051 -0.071 -0.824 -1.245 -0.209 0.137 -0.034 47
Allentown-Bethlehem-Easton, PA MSA 706,374 2 85 -0.023 0.066 -0.158 -0.051 0.103 -0.341 -0.408 0.054 0.185 -0.064 48

Adjusted Differentials Raw Differentials Productivity
TABLE A1 (PROVISIONAL): LIST OF METROPOLITAN AREAS BY LAND PRICE DIFFERENTIAL, 2005-2010
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Monmouth-Ocean, NJ PMSA 1,217,783 2 124 -0.028 0.045 0.364 0.152 0.251 2.151 0.550 0.306 -0.137 0.093 49
Fort Myers-Cape Coral, FL MSA 586,908 5 294 -0.029 0.132 -0.033 -0.086 -0.079 -0.611 1.173 -0.120 -0.083 -0.065 50

Stockton-Lodi, CA MSA 674,860 9 163 -0.053 0.062 0.222 0.066 0.164 0.567 -0.839 0.077 -0.187 0.030 51
Wilmington-Newark, DE-MD PMSA 635,430 5 107 -0.071 0.016 -0.034 0.060 0.044 0.373 -0.711 0.057 0.055 0.045 52

Jacksonville, FL MSA 1,301,808 5 793 -0.092 0.088 -0.202 -0.078 -0.132 -0.408 0.888 -0.155 0.045 -0.050 53
Nashville, TN MSA 1,495,419 6 455 -0.098 -0.175 -0.284 -0.077 -0.111 -1.020 -0.801 -0.119 0.155 -0.052 54

Riverside-San Bernardino, CA PMSA 4,143,113 9 2,452 -0.105 -0.008 0.215 0.086 0.114 0.465 0.426 0.071 -0.198 0.055 55
Minneapolis-St. Paul, MN-WI MSA 3,269,814 4 846 -0.121 -0.009 -0.058 0.023 -0.006 -0.099 -0.488 0.128 0.118 0.019 56

Savannah, GA MSA 343,092 5 64 -0.164 -0.178 -0.264 -0.116 -0.182 -1.208 1.513 -0.180 0.076 -0.077 57
Atlanta, GA MSA 5,315,841 5 5,229 -0.186 -0.178 -0.330 -0.008 0.031 -0.321 -1.229 -0.100 0.197 -0.017 58

Fort Pierce-Port St. Lucie, FL MSA 406,296 5 71 -0.196 -0.087 -0.173 -0.077 -0.174 0.337 1.749 0.000 -0.110 -0.045 59
Raleigh-Durham-Chapel Hill, NC MSA 1,589,388 5 782 -0.219 -0.128 -0.242 -0.051 -0.041 0.425 -1.032 -0.232 0.002 -0.044 60

Boulder-Longmont, CO PMSA 311,786 8 183 -0.234 -0.070 0.199 -0.011 0.002 3.767 0.683 -0.090 -0.333 -0.016 61
Norfolk-Virginia Beach-Newport News, VA- MSA 1,667,410 5 392 -0.235 -0.175 -0.005 -0.086 -0.061 -0.182 1.497 -0.118 -0.148 -0.072 62

Myrtle Beach, SC MSA 263,868 5 84 -0.264 -0.660 -0.233 -0.188 -0.156 -1.697 1.599 0.000 0.101 -0.149 63
Lancaster, PA MSA 507,766 2 57 -0.267 -0.413 -0.222 -0.089 -0.159 0.088 -0.846 -0.062 0.101 -0.060 64

Springfield, MO MSA 383,637 4 43 -0.280 -0.715 -0.630 -0.213 -0.211 -1.570 -1.105 -0.099 0.510 -0.162 65
Modesto, CA MSA 510,385 9 142 -0.300 -0.174 0.118 0.040 0.043 0.021 -0.730 0.078 -0.133 0.021 66

Charleston-North Charleston, SC MSA 659,191 5 214 -0.300 -0.330 -0.102 -0.122 -0.077 -1.657 1.530 -0.189 -0.124 -0.103 67
Milwaukee-Waukesha, WI PMSA 1,559,667 3 399 -0.329 -0.462 -0.071 -0.036 0.015 0.355 0.616 0.050 0.031 -0.043 68

Eugene-Springfield, OR MSA 351,109 9 36 -0.333 -0.279 0.044 -0.166 -0.176 0.174 1.631 -0.001 -0.128 -0.127 69
Newburgh, NY-PA PMSA 444,061 2 54 -0.341 -0.065 0.113 0.155 0.257 -0.446 0.038 0.161 -0.063 0.086 70

Lakeland-Winter Haven, FL MSA 583,403 5 561 -0.375 -0.175 -0.363 -0.139 -0.202 -0.091 0.146 -0.071 0.214 -0.100 71
New Orleans, LA MSA 1,211,035 7 66 -0.377 -0.238 -0.253 -0.071 -0.170 -2.348 2.237 -0.111 0.078 -0.044 72

Albuquerque, NM MSA 841,428 8 114 -0.378 -0.016 -0.187 -0.101 -0.209 0.222 -0.860 -0.100 0.015 -0.064 73
Boise City, ID MSA 571,271 8 106 -0.386 -0.505 -0.281 -0.150 -0.201 -1.110 0.350 -0.112 0.101 -0.110 74

Tucson, AZ MSA 1,020,200 8 1,749 -0.400 -0.290 -0.075 -0.124 -0.179 2.045 -0.300 -0.135 -0.130 -0.090 75
Worcester, MA-CT PMSA 547,274 1 56 -0.404 -0.363 0.146 0.085 0.108 3.167 0.231 0.110 -0.155 0.048 76

McAllen-Edinburg-Mission, TX MSA 741,152 7 61 -0.414 -0.366 -0.989 -0.205 -0.093 -1.088 -1.384 -0.262 0.679 -0.178 77
Kenosha, WI PMSA 165,382 3 58 -0.418 -0.142 -0.171 0.052 0.051 0.984 0.916 0.010 0.078 0.027 78

Daytona Beach, FL MSA 587,512 5 93 -0.419 -0.047 -0.202 -0.149 -0.317 0.389 1.534 -0.108 0.030 -0.090 79
Chattanooga, TN-GA MSA 510,388 6 51 -0.424 -0.400 -0.461 -0.157 -0.207 -1.521 -0.165 -0.148 0.240 -0.116 80

Colorado Springs, CO MSA 604,542 8 892 -0.426 -0.258 -0.235 -0.135 -0.152 1.010 -0.339 -0.071 0.077 -0.106 81
Houston, TX PMSA 5,219,317 7 1,143 -0.447 -0.400 -0.545 0.012 0.034 -0.986 -1.018 -0.121 0.340 -0.006 82

Indianapolis, IN MSA 1,823,690 3 193 -0.461 -0.463 -0.527 -0.072 -0.132 -1.463 -1.359 -0.060 0.369 -0.053 83
Fayetteville-Springdale-Rogers, AR MSA 425,685 7 43 -0.468 -0.312 -0.436 -0.144 -0.150 -1.017 -0.013 -0.273 0.105 -0.115 84

Cincinnati, OH-KY-IN PMSA 1,776,911 3 637 -0.476 -0.436 -0.399 -0.053 -0.042 -1.339 -0.925 -0.074 0.227 -0.053 85
Dallas, TX PMSA 4,399,895 7 811 -0.478 -0.442 -0.466 -0.015 -0.002 -0.744 -0.981 -0.141 0.239 -0.025 86
Fresno, CA MSA 1,063,899 9 137 -0.483 -0.326 0.060 -0.018 -0.073 1.074 -0.799 0.080 -0.107 -0.015 87

Fort Collins-Loveland, CO MSA 298,382 8 344 -0.485 -0.326 -0.083 -0.117 -0.217 0.940 0.101 -0.086 -0.100 -0.080 88
Hamilton-Middletown, OH PMSA 363,184 3 151 -0.493 -0.317 -0.471 -0.053 -0.042 -0.335 -1.087 -0.090 0.283 -0.053 89

Gary, IN PMSA 657,809 3 111 -0.495 -0.528 -0.460 0.052 0.060 -1.479 0.114 0.034 0.371 0.024 90
Asheville, NC MSA 251,894 5 41 -0.495 -0.348 -0.079 -0.187 -0.245 -1.346 1.875 -0.265 -0.247 -0.139 91

Columbus, OH MSA 1,718,303 3 671 -0.498 -0.395 -0.398 -0.059 -0.042 0.041 -1.307 -0.046 0.244 -0.058 92
Reading, PA MSA 407,125 2 36 -0.504 0.207 -0.342 -0.063 -0.103 0.505 -0.622 0.014 0.246 -0.052 93
Merced, CA MSA 245,321 9 64 -0.512 -0.387 0.065 0.002 0.079 0.644 -0.932 0.000 0.032 -0.024 94

Biloxi-Gulfport-Pascagoula, MS MSA 355,075 6 30 -0.515 -0.925 -0.537 -0.122 0.086 -1.952 1.120 -0.178 0.272 -0.137 95
Galveston-Texas City, TX PMSA 286,814 7 39 -0.534 -0.632 -0.583 0.017 0.041 0.671 2.248 -0.140 0.345 -0.005 96

Cleveland-Lorain-Elyria, OH PMSA 2,192,053 3 416 -0.551 -0.415 -0.420 -0.084 -0.116 -0.622 0.554 0.009 0.300 -0.070 97
Richmond-Petersburg, VA MSA 1,119,459 5 399 -0.551 -0.446 -0.161 -0.020 -0.080 -0.975 -0.998 -0.124 -0.057 -0.018 98
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Detroit, MI PMSA 4,373,040 3 679 -0.554 -0.509 -0.350 -0.010 -0.038 -0.298 -0.229 0.051 0.264 -0.017 99
York, PA MSA 428,937 2 47 -0.556 -0.395 -0.278 -0.037 -0.122 1.015 -0.837 -0.022 0.132 -0.026 100

Pittsburgh, PA MSA 2,287,106 2 240 -0.557 -0.731 -0.562 -0.101 -0.130 -0.216 0.041 0.015 0.450 -0.083 101
St. Louis, MO-IL MSA 2,733,694 4 364 -0.573 -0.601 -0.338 -0.049 -0.152 -1.421 -0.887 0.043 0.242 -0.033 102
Ann Arbor, MI PMSA 630,518 3 136 -0.574 -0.828 -0.234 -0.011 -0.037 0.198 -0.954 0.018 0.119 -0.018 103

Omaha, NE-IA MSA 799,130 4 118 -0.631 -0.562 -0.543 -0.137 -0.080 -1.263 -1.266 -0.093 0.328 -0.125 104
Greensboro--Winston Salem--High Point, NC MSA 1,416,374 5 438 -0.633 -0.494 -0.428 -0.135 -0.191 -0.969 -1.276 -0.241 0.092 -0.104 105

Tulsa, OK MSA 873,304 7 245 -0.633 -0.540 -0.576 -0.143 -0.083 -1.561 -1.121 -0.219 0.260 -0.130 106
Gainesville, FL MSA 243,574 5 34 -0.644 -0.159 -0.148 -0.170 -0.636 -0.258 -0.675 -0.130 -0.102 -0.060 107

Lincoln, NE MSA 281,531 4 24 -0.654 -0.171 -0.481 -0.214 -0.241 0.840 -1.352 -0.117 0.239 -0.168 108
Greeley, CO PMSA 254,759 8 320 -0.676 -0.379 -0.307 -0.011 0.001 -0.471 -0.936 -0.154 0.036 -0.027 109
Hartford, CT MSA 1,231,125 1 101 -0.680 -0.749 0.141 0.076 0.076 0.385 -0.289 0.102 -0.204 0.038 110

Spokane, WA MSA 468,684 9 55 -0.695 -0.587 -0.262 -0.132 -0.163 0.722 -0.091 -0.054 0.064 -0.108 111
Brazoria, TX PMSA 309,208 7 62 -0.716 -0.842 -0.602 0.021 0.041 -1.199 -1.018 -0.121 0.350 -0.006 112

Canton-Massillon, OH MSA 408,005 3 40 -0.719 -0.805 -0.588 -0.137 0.030 -1.659 -0.813 -0.067 0.375 -0.146 113
La Crosse, WI-MN MSA 132,923 3 21 -0.732 -0.476 -0.386 -0.167 -0.270 0.285 0.323 -0.051 0.183 -0.123 114

Harrisburg-Lebanon-Carlisle, PA MSA 667,425 2 89 -0.757 -0.542 -0.379 -0.076 -0.015 0.438 -0.253 -0.012 0.209 -0.085 115
Louisville, KY-IN MSA 1,099,588 6 126 -0.765 -0.634 -0.425 -0.115 -0.155 -1.114 -0.808 -0.080 0.194 -0.096 116

Bryan-College Station, TX MSA 179,992 7 34 -0.787 -0.815 -0.549 -0.194 -0.184 0.240 -1.115 -0.197 0.218 -0.163 117
Little Rock-North Little Rock, AR MSA 657,416 7 110 -0.788 -0.921 -0.518 -0.130 -0.195 -1.725 -0.758 -0.157 0.221 -0.103 118

Rockford, IL MSA 409,058 3 104 -0.799 -0.667 -0.577 -0.097 -0.018 -1.217 -1.322 0.102 0.493 -0.104 119
Racine, WI PMSA 200,601 3 80 -0.806 -0.685 -0.212 -0.036 0.016 -0.711 1.220 0.014 0.057 -0.055 120

Dayton-Springfield, OH MSA 933,312 3 116 -0.809 -0.684 -0.568 -0.133 -0.207 -1.105 -1.378 -0.092 0.320 -0.104 121
Amarillo, TX MSA 238,299 7 27 -0.812 -0.846 -0.604 -0.151 -0.689 -1.008 -1.258 -0.182 0.280 -0.038 122

Fort Worth-Arlington, TX PMSA 2,113,278 7 506 -0.822 -0.653 -0.574 -0.015 -0.002 -0.782 -1.189 -0.172 0.258 -0.034 123
Memphis, TN-AR-MS MSA 1,230,253 6 173 -0.836 -0.689 -0.549 -0.061 -0.112 1.509 -0.833 -0.138 0.259 -0.057 124

Montgomery, AL MSA 354,108 6 33 -0.839 -1.317 -0.601 -0.149 -0.174 -1.953 -0.903 -0.204 0.253 -0.125 125
Baton Rouge, LA MSA 685,419 7 99 -0.843 -0.606 -0.357 -0.071 -0.039 -1.669 0.212 -0.149 0.058 -0.078 126

Bakersfield, CA MSA 807,407 9 64 -0.886 -0.661 -0.141 0.030 -0.116 0.257 -0.244 0.064 0.013 0.024 127
Akron, OH PMSA 699,935 3 169 -0.887 -0.667 -0.447 -0.084 -0.116 -0.265 -1.113 -0.025 0.241 -0.078 128

Fort Wayne, IN MSA 528,408 3 39 -0.889 -0.799 -0.724 -0.156 -0.125 -2.316 -1.304 -0.105 0.450 -0.141 129
Jackson, MS MSA 483,852 6 43 -0.902 -0.866 -0.548 -0.128 -0.229 -1.536 -0.875 -0.153 0.232 -0.098 130

Columbia, SC MSA 627,630 5 139 -0.914 -1.128 -0.469 -0.144 -0.149 -1.591 -0.684 -0.236 0.097 -0.127 131
El Paso, TX MSA 751,296 7 94 -0.925 -0.772 -0.718 -0.229 -0.196 0.787 -1.178 -0.235 0.330 -0.195 132

San Antonio, TX MSA 1,928,154 7 348 -0.946 -0.897 -0.628 -0.134 -0.145 -0.712 -1.274 -0.188 0.277 -0.119 133
Knoxville, TN MSA 785,490 6 193 -0.960 -0.790 -0.446 -0.164 -0.183 -0.966 0.457 -0.202 0.080 -0.140 134

Hickory-Morganton-Lenoir, NC MSA 365,364 5 88 -0.962 -0.810 -0.491 -0.214 -0.186 -1.292 -0.403 -0.304 0.046 -0.185 135
Syracuse, NY MSA 725,610 2 65 -0.977 -1.384 -0.627 -0.098 -0.070 -1.307 -0.555 -0.017 0.428 -0.100 136

Kalamazoo-Battle Creek, MI MSA 462,250 3 31 -0.980 -1.081 -0.615 -0.159 -0.177 -0.240 -0.946 -0.062 0.361 -0.137 137
Augusta-Aiken, GA-SC MSA 516,357 5 66 -0.992 -1.037 -0.530 -0.119 -0.115 -2.113 -0.918 -0.167 0.191 -0.112 138

Green Bay, WI MSA 247,319 3 49 -1.028 -0.668 -0.352 -0.093 -0.068 0.541 -0.289 -0.030 0.117 -0.097 139
Dutchess County, NY PMSA 293,562 2 33 -1.041 -0.790 0.278 0.155 0.251 0.194 0.550 0.161 -0.352 0.070 140

Lexington, KY MSA 554,107 6 29 -1.057 -0.817 -0.539 -0.187 -0.212 -0.075 -1.140 -0.120 0.224 -0.158 141
Greenville-Spartanburg-Anderson, SC MSA 1,096,009 5 507 -1.067 -1.023 -0.517 -0.134 -0.183 -1.863 -0.799 -0.253 0.093 -0.116 142

Brownsville-Harlingen-San Benito, TX MSA 396,371 7 52 -1.069 -1.046 -1.015 -0.253 -0.294 -1.896 -0.077 0.000 0.208 -0.203 143
Kansas City, MO-KS MSA 2,005,888 4 477 -1.103 -0.753 -0.462 -0.070 -0.087 -1.636 -1.145 0.048 0.285 -0.075 144

Des Moines, IA MSA 536,664 4 99 -1.106 -0.954 -0.428 -0.092 -0.050 -1.712 -1.127 -0.112 0.123 -0.102 145
Pensacola, FL MSA 455,102 5 102 -1.122 -0.999 -0.397 -0.187 -0.176 -1.738 1.145 -0.138 0.062 -0.165 146

Lansing-East Lansing, MI MSA 453,603 3 40 -1.124 -1.242 -0.518 -0.126 -0.104 -0.066 -1.093 -0.012 0.285 -0.123 147
Oklahoma City, OK MSA 1,213,704 7 395 -1.206 -1.042 -0.588 -0.162 -0.285 -0.916 -1.309 -0.176 0.217 -0.127 148
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Flint, MI PMSA 424,043 3 85 -1.222 -1.088 -0.693 -0.011 -0.043 -0.875 -0.960 -0.010 0.450 -0.033 149
Corpus Christi, TX MSA 391,269 7 74 -1.229 -1.105 -0.693 -0.167 -0.169 -0.764 0.432 -0.231 0.259 -0.152 150

Grand Rapids-Muskegon-Holland, MI MSA 1,157,672 3 121 -1.240 -1.219 -0.508 -0.127 -0.191 -0.594 -0.975 -0.123 0.164 -0.112 151
Rochester, NY MSA 1,093,434 2 110 -1.279 -1.960 -0.598 -0.103 -0.085 -0.464 0.062 0.006 0.362 -0.110 152

Buffalo-Niagara Falls, NY MSA 1,123,804 2 104 -1.286 -1.143 -0.653 -0.090 -0.081 -0.696 -0.497 0.033 0.436 -0.099 153
Portland, ME MSA 256,178 1 25 -1.293 -1.401 0.101 -0.064 -0.180 1.711 0.992 -0.084 -0.421 -0.059 154

Mobile, AL MSA 591,599 6 135 -1.293 -1.165 -0.482 -0.152 -0.249 -1.964 0.006 -0.155 0.102 -0.127 155
Duluth-Superior, MN-WI MSA 242,041 4 22 -1.296 -1.119 -0.530 -0.161 -0.069 -0.958 0.256 0.073 0.345 -0.165 156

Cedar Rapids, IA MSA 209,226 4 33 -1.301 -1.129 -0.550 -0.138 -0.176 -1.029 -1.256 -0.089 0.226 -0.127 157
Wichita, KS MSA 589,195 4 54 -1.310 -1.087 -0.729 -0.119 -0.146 -2.265 -1.348 -0.177 0.327 -0.115 158

Beaumont-Port Arthur, TX MSA 378,477 7 60 -1.323 -1.370 -0.823 -0.062 -0.218 -1.388 -0.506 -0.177 0.420 -0.051 159
Killeen-Temple, TX MSA 358,316 7 32 -1.350 -1.254 -0.777 -0.213 -0.322 -1.981 -1.266 -0.261 0.298 -0.170 160

Albany-Schenectady-Troy, NY MSA 906,208 2 120 -1.360 -1.419 -0.234 -0.039 -0.082 -0.498 -0.287 -0.004 -0.027 -0.055 161
Appleton-Oshkosh-Neenah, WI MSA 385,264 3 79 -1.431 -1.356 -0.424 -0.104 -0.072 -0.650 -0.551 -0.069 0.101 -0.116 162

Lubbock, TX MSA 270,550 7 45 -1.444 -1.347 -0.787 -0.228 -0.106 -1.913 -1.407 -0.209 0.337 -0.223 163
Davenport-Moline-Rock Island, IA-IL MSA 362,790 4 28 -1.454 -1.349 -0.630 -0.130 0.070 -1.827 -1.205 -0.051 0.316 -0.165 164

Birmingham, AL MSA 997,770 6 148 -1.486 -1.191 -0.436 -0.079 -0.150 -0.747 -0.726 -0.113 0.123 -0.083 165
Saginaw-Bay City-Midland, MI MSA 390,032 3 41 -1.590 -1.518 -0.691 -0.130 -0.176 -0.391 -0.627 -0.036 0.387 -0.126 166

Toledo, OH MSA 631,275 3 107 -1.657 -1.457 -0.576 -0.104 -0.225 -1.276 -0.501 -0.010 0.283 -0.096 167
Scranton--Wilkes-Barre--Hazleton, PA MSA 614,565 2 27 -1.691 -1.581 -0.588 -0.184 -0.227 -0.361 -0.020 0.017 0.304 -0.169 168

Erie, PA MSA 280,291 2 29 -1.693 -1.787 -0.752 -0.196 -0.051 -1.371 1.067 -0.043 0.415 -0.210 169
Youngstown-Warren, OH MSA 554,614 3 49 -1.942 -1.748 -0.796 -0.176 -0.208 -0.982 -0.914 -0.040 0.436 -0.171 170

Evansville-Henderson, IN-KY MSA 305,455 3 33 -2.695 -2.664 -0.694 -0.136 -0.334 -2.039 -1.005 -0.071 0.245 -0.133 171

Census Divisions:
New England 6,755,683 1 375 0.215 0.096 0.376 0.073 0.079 1.611 0.180 0.131 -0.227 0.058 3

Middle Atlantic 35,672,020 2 4,515 0.465 0.296 0.255 0.070 0.123 0.579 0.073 0.168 0.000 0.054 2
East North Central 32,786,507 3 8,405 -0.384 -0.449 -0.279 -0.036 -0.048 -0.549 -0.282 0.032 0.222 -0.033 6

West North Central 11,413,610 4 2,108 -0.653 -0.535 -0.349 -0.060 -0.084 -1.071 -0.891 0.026 0.232 -0.056 8
South Atlantic 40,292,714 5 19,366 0.041 0.097 -0.046 -0.031 -0.035 -0.019 0.185 -0.100 -0.029 -0.021 4

East South Central 8,457,649 6 1,416 -0.796 -0.730 -0.454 -0.113 -0.151 -0.769 -0.536 -0.136 0.184 -0.095 9
West South Central 24,734,026 7 4,730 -0.638 -0.596 -0.545 -0.068 -0.076 -0.981 -0.805 -0.163 0.265 -0.064 7

Mountain 15,381,913 8 14,471 0.035 0.115 -0.077 -0.042 -0.087 0.301 -0.054 -0.096 0.000 -0.022 5
Pacific 39,176,402 9 10,729 0.604 0.623 0.609 0.081 0.091 0.513 0.960 0.090 -0.407 0.072 1

Population Categories:
Less than 500,000 57,630,737 3,597 -0.636 -0.607 -0.313 -0.084 -0.104 -0.355 -0.033 -0.060 0.114 -0.073 4

500,000 to 1,500,000 232,990,833 13,558 -0.539 -0.469 -0.229 -0.060 -0.071 -0.280 -0.180 -0.059 0.071 -0.055 3
1,500,000 to 5,000,000 491,452,831 31,981 0.108 0.120 0.063 0.011 0.006 0.090 0.165 0.005 -0.038 0.011 2

5,000,000+ 298,945,500 15,945 0.691 0.545 0.310 0.077 0.112 0.185 0.003 0.103 -0.068 0.068 1



Observations 68,757

Median Lot Size (Acres) 3.490

Mean Lot Size (Acres) 26.414
(130.512)

Median Price Per Acre (Dollars) 272,838

Mean Price Per Acre (Dollars) 1,536,374
(15,700,000)

No Proposed Use 15.9%
Proposed Use Commercial 0.3%

Proposed Use Industrial 7.5%
Proposed Use Retail 8.1%

Proposed Use Single Family 10.7%
Proposed Use MultiFamily 3.3%

Proposed Use Office 6.3%
Proposed Use Apartment 3.6%

Proposed Use Hold for Development 19.2%
Proposed Use Hold for Investment 4.3%

Proposed Use Mixed Use 1.7%
Proposed Use Medical 1.0%
Proposed Use Parking 0.9%

Mean Predicted Density (Housing
Units/Sq. Mile) 1,334

(2,918)

Sale in 2005 21.7%
Sale in 2006 20.5%
Sale in 2007 20.3%
Sale in 2008 15.6%
Sale in 2009 10.6%
Sale in 2010 11.4%

TABLE A2: SUMMARY STATISTICS FOR OBSERVED LAND SALES
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New York, NY PMSA 1,603 1,603 3.291 1.551 1.525 1.902 0.810

San Francisco, CA PMSA 152 152 2.493 1.471 1.375 1.738 1.047
Jersey City, NJ PMSA 43 43 2.599 1.419 1.453 1.426 0.055

San Jose, CA PMSA 217 217 1.675 1.301 1.230 1.237 0.591
San Diego, CA MSA 957 957 0.944 0.862 0.835 1.017 0.469

Orange County, CA PMSA 233 233 1.874 1.177 1.137 1.000 0.282
Seattle-Bellevue-Everett, WA PMSA 1,626 1,626 1.194 0.840 0.820 0.935 0.127
Visalia-Tulare-Porterville, CA MSA 32 32 0.641 0.475 0.594 0.866 -0.202

Los Angeles-Long Beach, CA PMSA 1,760 1,760 1.661 0.945 0.916 0.864 0.015
Miami, FL PMSA 1,233 1,233 1.231 0.833 0.853 0.840 -0.208

Boston, MA-NH PMSA 122 122 0.730 0.639 0.659 0.784 -0.565
Newark, NJ PMSA 142 142 0.802 0.366 0.379 0.696 0.166

Washington, DC-MD-VA-WV PMSA 1,840 1,840 0.695 0.700 0.704 0.690 0.078
Fort Lauderdale, FL PMSA 741 741 1.112 0.773 0.766 0.661 -0.442

Oakland, CA PMSA 132 132 1.414 0.702 0.678 0.657 -0.173
Las Vegas, NV-AZ MSA 2,553 2,553 0.564 0.666 0.691 0.641 -0.075

Bergen-Passaic, NJ PMSA 79 79 1.255 0.670 0.687 0.582
Nassau-Suffolk, NY PMSA 396 396 0.752 0.596 0.611 0.563 -0.240

Chicago, IL PMSA 3,511 3,511 -0.030 0.203 0.205 0.551 -0.063
Trenton, NJ PMSA 35 35 -0.134 0.578 0.577 0.538
Madison, WI MSA 239 239 -0.243 -0.154 -0.200 0.501 -0.853

Ventura, CA PMSA 131 131 0.369 0.576 0.603 0.496 -0.457
Naples, FL MSA 78 78 0.423 0.525 0.506 0.475 -0.529

Philadelphia, PA-NJ PMSA 859 859 -0.173 0.085 0.098 0.378 -0.520
West Palm Beach-Boca Raton, FL MSA 321 321 1.170 0.410 0.413 0.332 -0.059

San Luis Obispo-Atascadero-Paso Robles, CA MSA 43 43 1.121 0.393 0.395 0.323
Reno, NV MSA 57 57 -0.083 0.229 0.207 0.317 -0.609

Vallejo-Fairfield-Napa, CA PMSA 146 146 0.249 0.425 0.399 0.304 -0.597
Tacoma, WA PMSA 539 539 0.180 0.356 0.363 0.294 -0.396

Atlantic-Cape May, NJ PMSA 37 37 -0.003 -0.155 -0.196 0.289 -0.355
Sarasota-Bradenton, FL MSA 601 601 0.203 0.321 0.362 0.279 -0.312

Portland-Vancouver, OR-WA PMSA 1,191 1,191 0.325 0.290 0.303 0.253 -0.314
Orlando, FL MSA 1,612 1,612 -0.012 0.304 0.327 0.247 -0.616

Olympia, WA PMSA 250 250 -0.156 0.200 0.198 0.215 -0.518
Tampa-St. Petersburg-Clearwater, FL MSA 1,220 1,220 0.215 0.221 0.224 0.178 -0.730
Middlesex-Somerset-Hunterdon, NJ PMSA 101 101 -0.057 0.204 0.288 0.150

Baltimore, MD PMSA 802 802 0.180 0.163 0.173 0.135 -0.442
Phoenix-Mesa, AZ MSA 5,946 5,946 -0.550 0.212 0.244 0.116 -0.721

Santa Rosa, CA PMSA 153 153 0.283 0.487 0.512 0.114 -0.201
New Haven-Meriden, CT PMSA 43 43 0.066 -0.199 -0.141 0.114

Provo-Orem, UT MSA 47 47 0.282 0.258 0.237 0.083 -0.622
Melbourne-Titusville-Palm Bay, FL MSA 420 420 -0.221 0.039 0.055 0.047 -1.145

Denver, CO PMSA 2,015 2,015 0.098 -0.047 -0.065 0.029 -0.753
Salem, OR PMSA 54 54 -0.010 -0.264 -0.207 0.020 -0.867

Salt Lake City-Ogden, UT MSA 145 145 0.306 0.065 0.084 0.000 -1.093
Springfield, MA MSA 28 28 -0.388 -0.245 -0.223 -0.014 -0.407

Austin-San Marcos, TX MSA 384 384 -0.617 -0.293 -0.352 -0.015 -1.318
Allentown-Bethlehem-Easton, PA MSA 85 85 -0.566 0.023 0.066 -0.023

Monmouth-Ocean, NJ PMSA 124 124 -0.128 0.015 0.045 -0.028 -0.460
Fort Myers-Cape Coral, FL MSA 294 294 0.053 0.113 0.132 -0.029

Stockton-Lodi, CA MSA 163 163 -0.076 -0.002 0.062 -0.053 -0.806

TABLE A3: DIFFERENT MEASURES OF THE LAND PRICE DIFFERENTIAL
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Wilmington-Newark, DE-MD PMSA 107 107 -0.482 -0.029 0.016 -0.071
Jacksonville, FL MSA 793 793 -0.266 0.071 0.088 -0.092 -0.900

Nashville, TN MSA 455 455 -0.223 -0.159 -0.175 -0.098 -0.809
Riverside-San Bernardino, CA PMSA 2,452 2,452 -0.459 -0.020 -0.008 -0.105 -1.117

Minneapolis-St. Paul, MN-WI MSA 846 846 0.011 0.014 -0.009 -0.121 -1.302
Savannah, GA MSA 64 64 -0.711 -0.219 -0.178 -0.164 -1.105

Atlanta, GA MSA 5,229 5,229 -0.613 -0.187 -0.178 -0.186 -1.061
Fort Pierce-Port St. Lucie, FL MSA 71 71 -0.287 -0.084 -0.087 -0.196 -1.490

Raleigh-Durham-Chapel Hill, NC MSA 782 782 -0.397 -0.114 -0.128 -0.219 -1.179
Boulder-Longmont, CO PMSA 183 183 -0.139 -0.051 -0.070 -0.234 -1.126

Norfolk-Virginia Beach-Newport News, VA- MSA 392 392 -0.526 -0.174 -0.175 -0.235 -1.080
Myrtle Beach, SC MSA 84 84 -0.466 -0.628 -0.660 -0.264

Lancaster, PA MSA 57 57 -0.910 -0.428 -0.413 -0.267 -0.962
Springfield, MO MSA 43 43 -0.821 -0.762 -0.715 -0.280 -1.878

Modesto, CA MSA 142 142 -0.208 -0.201 -0.174 -0.300 -0.709
Charleston-North Charleston, SC MSA 214 214 -0.366 -0.311 -0.330 -0.300 -1.099

Milwaukee-Waukesha, WI PMSA 399 399 -0.721 -0.451 -0.462 -0.329 -1.481
Eugene-Springfield, OR MSA 36 36 -0.110 -0.387 -0.279 -0.333

Newburgh, NY-PA PMSA 54 54 -0.759 -0.117 -0.065 -0.341 -0.868
Lakeland-Winter Haven, FL MSA 561 561 -0.880 -0.198 -0.175 -0.375 -1.311

New Orleans, LA MSA 66 66 0.063 -0.279 -0.238 -0.377 -1.030
Albuquerque, NM MSA 114 114 0.192 -0.039 -0.016 -0.378

Boise City, ID MSA 106 106 -0.400 -0.483 -0.505 -0.386
Tucson, AZ MSA 1,749 1,749 -0.418 -0.319 -0.290 -0.400 -1.120

Worcester, MA-CT PMSA 56 56 -0.688 -0.395 -0.363 -0.404
McAllen-Edinburg-Mission, TX MSA 61 61 -0.445 -0.375 -0.366 -0.414

Kenosha, WI PMSA 58 58 -1.080 -0.130 -0.142 -0.418
Daytona Beach, FL MSA 93 93 -0.135 -0.009 -0.047 -0.419 -0.702

Chattanooga, TN-GA MSA 51 51 -0.355 -0.425 -0.400 -0.424
Colorado Springs, CO MSA 892 892 -0.059 -0.244 -0.258 -0.426 -0.957

Houston, TX PMSA 1,143 1,143 -0.514 -0.386 -0.400 -0.447 -1.106
Indianapolis, IN MSA 193 193 -0.787 -0.476 -0.463 -0.461 -1.547

Fayetteville-Springdale-Rogers, AR MSA 43 43 -0.267 -0.251 -0.312 -0.468 -1.464
Cincinnati, OH-KY-IN PMSA 637 637 -0.632 -0.434 -0.436 -0.476 -2.034

Dallas, TX PMSA 811 811 -0.451 -0.416 -0.442 -0.478 -1.287
Fresno, CA MSA 137 137 -1.030 -0.322 -0.326 -0.483 -0.729

Fort Collins-Loveland, CO MSA 344 344 -0.352 -0.291 -0.326 -0.485 -1.340
Hamilton-Middletown, OH PMSA 151 151 -0.731 -0.305 -0.317 -0.493 -2.006

Gary, IN PMSA 111 111 -0.598 -0.549 -0.528 -0.495 -2.323
Asheville, NC MSA 41 41 -0.472 -0.370 -0.348 -0.495 -2.044

Columbus, OH MSA 671 671 -0.716 -0.392 -0.395 -0.498 -1.307
Reading, PA MSA 36 36 -0.199 0.302 0.207 -0.504 -0.544
Merced, CA MSA 64 64 -0.948 -0.392 -0.387 -0.512 -0.493

Biloxi-Gulfport-Pascagoula, MS MSA 30 30 -1.183 -1.021 -0.925 -0.515 -2.251
Galveston-Texas City, TX PMSA 39 39 -1.051 -0.630 -0.632 -0.534 -1.490

Cleveland-Lorain-Elyria, OH PMSA 416 416 -0.649 -0.425 -0.415 -0.551 -2.162
Richmond-Petersburg, VA MSA 399 399 -0.774 -0.446 -0.446 -0.551 -1.068

Detroit, MI PMSA 679 679 -0.598 -0.528 -0.509 -0.554 -1.536
York, PA MSA 47 47 -0.800 -0.342 -0.395 -0.556

Pittsburgh, PA MSA 240 240 -0.979 -0.723 -0.731 -0.557 -1.561
St. Louis, MO-IL MSA 364 364 -0.761 -0.612 -0.601 -0.573 -1.645
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Ann Arbor, MI PMSA 136 136 -1.412 -0.833 -0.828 -0.574 -2.509
Omaha, NE-IA MSA 118 118 -0.501 -0.591 -0.562 -0.631 -1.314

Greensboro--Winston Salem--High Point, NC MSA 438 438 -0.770 -0.463 -0.494 -0.633 -1.604
Tulsa, OK MSA 245 245 -0.489 -0.510 -0.540 -0.633 -2.141

Gainesville, FL MSA 34 34 0.121 -0.119 -0.159 -0.644
Lincoln, NE MSA 24 24 0.013 -0.281 -0.171 -0.654 -1.543

Greeley, CO PMSA 320 320 -1.074 -0.372 -0.379 -0.676 -1.347
Hartford, CT MSA 101 101 -0.787 -0.729 -0.749 -0.680 -3.173

Spokane, WA MSA 55 55 -0.227 -0.591 -0.587 -0.695 -1.564
Brazoria, TX PMSA 62 62 -1.255 -0.845 -0.842 -0.716

Canton-Massillon, OH MSA 40 40 -1.013 -0.844 -0.805 -0.719
La Crosse, WI-MN MSA 21 21 -0.084 -0.462 -0.476 -0.732 -1.382

Harrisburg-Lebanon-Carlisle, PA MSA 89 89 -0.905 -0.551 -0.542 -0.757 -1.798
Louisville, KY-IN MSA 126 126 -0.626 -0.648 -0.634 -0.765 -1.830

Bryan-College Station, TX MSA 34 34 -0.781 -0.852 -0.815 -0.787
Little Rock-North Little Rock, AR MSA 110 110 -0.791 -0.928 -0.921 -0.788 -2.032

Rockford, IL MSA 104 104 -1.733 -0.702 -0.667 -0.799
Racine, WI PMSA 80 80 -1.226 -0.678 -0.685 -0.806 -1.612

Dayton-Springfield, OH MSA 116 116 -0.797 -0.709 -0.684 -0.809 -2.015
Amarillo, TX MSA 27 27 -1.110 -0.883 -0.846 -0.812 -2.648

Fort Worth-Arlington, TX PMSA 506 506 -0.528 -0.642 -0.653 -0.822 -1.612
Memphis, TN-AR-MS MSA 173 173 -0.812 -0.677 -0.689 -0.836

Montgomery, AL MSA 33 33 -0.945 -1.345 -1.317 -0.839
Baton Rouge, LA MSA 99 99 -0.522 -0.579 -0.606 -0.843 -2.338

Bakersfield, CA MSA 64 64 -0.874 -0.732 -0.661 -0.886 -2.442
Akron, OH PMSA 169 169 -1.122 -0.692 -0.667 -0.887 -1.489

Fort Wayne, IN MSA 39 39 -1.009 -0.641 -0.799 -0.889 -1.813
Jackson, MS MSA 43 43 -1.239 -0.867 -0.866 -0.902

Columbia, SC MSA 139 139 -1.124 -1.126 -1.128 -0.914
El Paso, TX MSA 94 94 -0.432 -0.768 -0.772 -0.925 -1.808

San Antonio, TX MSA 348 348 -0.908 -0.892 -0.897 -0.946 -1.965
Knoxville, TN MSA 193 193 -0.870 -0.758 -0.790 -0.960

Hickory-Morganton-Lenoir, NC MSA 88 88 -1.475 -0.843 -0.810 -0.962 -2.493
Syracuse, NY MSA 65 65 -1.922 -1.419 -1.384 -0.977 -1.485

Kalamazoo-Battle Creek, MI MSA 31 31 -0.949 -1.071 -1.081 -0.980
Augusta-Aiken, GA-SC MSA 66 66 -1.040 -0.986 -1.037 -0.992 -1.949

Green Bay, WI MSA 49 49 -0.721 -0.651 -0.668 -1.028 -1.521
Dutchess County, NY PMSA 33 33 -2.148 -0.809 -0.790 -1.041 -0.788

Lexington, KY MSA 29 29 -0.590 -0.854 -0.817 -1.057
Greenville-Spartanburg-Anderson, SC MSA 507 507 -1.177 -0.984 -1.023 -1.067 -2.180

Brownsville-Harlingen-San Benito, TX MSA 52 52 -0.908 -1.056 -1.046 -1.069 -1.935
Kansas City, MO-KS MSA 477 477 -0.744 -0.716 -0.753 -1.103 -2.077

Des Moines, IA MSA 99 99 -1.020 -0.964 -0.954 -1.106
Pensacola, FL MSA 102 102 -0.620 -1.010 -0.999 -1.122 -1.865

Lansing-East Lansing, MI MSA 40 40 -1.262 -1.188 -1.242 -1.124 -2.545
Oklahoma City, OK MSA 395 395 -0.900 -1.070 -1.042 -1.206

Flint, MI PMSA 85 85 -1.504 -1.057 -1.088 -1.222 -2.119
Corpus Christi, TX MSA 74 74 -0.974 -1.134 -1.105 -1.229 -2.340

Grand Rapids-Muskegon-Holland, MI MSA 121 121 -1.097 -1.259 -1.219 -1.240
Rochester, NY MSA 110 110 -2.365 -2.028 -1.960 -1.279 -3.469

Buffalo-Niagara Falls, NY MSA 104 104 -1.073 -1.114 -1.143 -1.286 -1.632



Full Name

Total
Land
Sales

Residen-
tial Land

Sales
Land

Diff. 1
Land

Diff. 2
Land

Diff. 3
Land

Diff. 4
Land

Diff. 5

TABLE A3: DIFFERENT MEASURES OF THE LAND PRICE DIFFERENTIAL

Portland, ME MSA 25 25 -1.788 -1.454 -1.401 -1.293
Mobile, AL MSA 135 135 -1.282 -1.207 -1.165 -1.293 -2.462

Duluth-Superior, MN-WI MSA 22 22 -0.344 -1.104 -1.119 -1.296
Cedar Rapids, IA MSA 33 33 -1.194 -1.247 -1.129 -1.301 -1.911

Wichita, KS MSA 54 54 -0.881 -1.170 -1.087 -1.310 -2.121
Beaumont-Port Arthur, TX MSA 60 60 -1.387 -1.387 -1.370 -1.323 -2.372

Killeen-Temple, TX MSA 32 32 -1.097 -1.267 -1.254 -1.350
Albany-Schenectady-Troy, NY MSA 120 120 -1.626 -1.411 -1.419 -1.360 -2.450
Appleton-Oshkosh-Neenah, WI MSA 79 79 -1.613 -1.313 -1.356 -1.431 -2.246

Lubbock, TX MSA 45 45 -1.258 -1.401 -1.347 -1.444
Davenport-Moline-Rock Island, IA-IL MSA 28 28 -1.133 -1.382 -1.349 -1.454 -1.503

Birmingham, AL MSA 148 148 -1.048 -1.209 -1.191 -1.486
Saginaw-Bay City-Midland, MI MSA 41 41 -1.752 -1.530 -1.518 -1.590 -2.019

Toledo, OH MSA 107 107 -1.541 -1.450 -1.457 -1.657
Scranton--Wilkes-Barre--Hazleton, PA MSA 27 27 -2.073 -1.689 -1.581 -1.691 -3.245

Erie, PA MSA 29 29 -1.491 -1.892 -1.787 -1.693
Youngstown-Warren, OH MSA 49 49 -1.972 -1.745 -1.748 -1.942

Evansville-Henderson, IN-KY MSA 33 33 -1.999 -2.913 -2.664 -2.695
Land-value data from CoStar COMPS database for years 2005 to 2010.  Land value differentials 1 through 4 for each MSA
correspond to the specifications in Table 1; differential 5 is the same as differential 4 but for residential land only.



Specification
Cobb-Douglas

Land Only
Cobb-Douglas

Const Cost
Housing-Cost Measure Average Average

(1) (2)

Land-Value Differential 1.346 1.438
(0.163) (0.139)

Construction-Cost Differential -0.326
(0.439)

Geographic Constraint Index: z-score 0.002 0.021
(0.051) (0.044)

Regulatory Index: z-score 0.003 All
(0.048) Subindices

Constant 0.000 -0.001
(0.043) (0.039)

Number of Observations 688 668
Adjusted R-squared 0.647 0.661

Implied Land-Cost Share 0.743 0.695
(0.090) (0.067)

Implied Material-Cost Share 0.227
(0.297)

TABLE A4: REVERSE REGRESSION OF LAND VALUES ON HOUSING COSTS

Robust standard errors, clustered by CMSA, reported in parentheses. Data sources as
described in Table 1; constituent components of Wharton Residential Land Use
Regulatory Index (WRLURI) from Gyourko et al (2008).



Specification

Restricted
Translog

Residential
Land Only

Restricted
Translog

Raw Land
Differentials

Restricted
Translog

Residential
Land Only

Restricted
Translog

Raw Land
Differentials

Dependent Variable Hous. Price Hous. Price Hous. Price Hous. Price
(1) (2) (3) (4)

Land-Value Differential 0.282 0.231 0.255 0.215
(0.025) (0.015) (0.024) (0.014)

Construction-Cost Differential 0.718 0.769
(0.025) (0.015)

Construction-Wage Differential 0.745 0.785
(0.024) (0.014)

Land-Value Differential Squared 0.083 -0.005 0.075 0.005
(.013) (.018) (.013) (.016)

Construction-Cost Differential Squared 0.083 -0.005
(.013) (.018)

Construction-Wage Differential Squared 0.075 0.005
(.013) (.016)

Land-Value Differential X Construction-Cost Differential -0.166 0.010
(.026) (.036)

Land-Value Differential X Construction-Wage Differential -0.150 -0.010
(.026) (.032)

Geographic Constraint Index: z-score 0.137 0.105 0.160 0.126
(0.014) (0.013) (0.013) (0.012)

Regulatory Index: z-score 0.107 0.100 0.102 0.095
(0.010) (0.008) (0.010) (0.008)

Constant 0.189 0.004 0.170 -0.002
(0.021) (0.012) (0.019) (0.011)

Number of Observations 593 668 609 688
Adjusted R-squared 0.783 0.832 0.782 0.833

Elasticity of Subsitution 0.590 1.030 0.608 0.971
(0.046) (0.214) (0.044) (0.186)

TABLE A6: MODEL OF HOUSING-COST DETERMINATION WITH ALTERNATIVE MEASURES OF LAND VALUES

Robust standard errors, clustered by CMSA, reported in parentheses.  Data sources as described in Table 2.  Residential Land
includes only those sales with a proposed use of Single Family, MultiFamily, or Apartments.  Raw Land differentials are the land
value differentials obtained by regressing log price per acre on a set of MSA dummies with no other covariates.



Dependent Variable Land Rent
Land Rent minus

Construction Costs Land Rent
Land Rent minus

Construction Wages
(1) (2) (3) (4)

Panel A: First Stage

Construction-Cost Differential 3.582
(0.312)

Construction-Wage Differential 1.547
(0.287)

Geographic Constraint Index: z-score 0.100 0.254 0.280 0.290
(0.052) (0.065) (0.061) (0.065)

Regulatory Index: z-score 0.100 0.206 0.146 0.183
(0.052) (0.056) (0.063) (0.060)

Average Winter Temperature: z-score 0.290 0.106 0.065 0.054
(0.046) (0.060) (0.057) (0.061)

Constant -0.281 -0.282 -0.277 -0.280
(0.045) (0.053) (0.050) (0.053)

F-statistic 88.582 39.745 44.391 41.249

Specification Cobb-Douglas
Restricted Cobb-

Douglas Cobb-Douglas
Restricted Cobb-

Douglas
Dependent Variable House Price House Price House Price House Price

Panel B: Second Stage

Land-Value Differential 0.547 0.615 0.281 0.202
(0.172) (0.397) (0.532) (0.617)

Construction-Cost Differential 0.352 0.385
(0.492) (0.397)

Construction-Wage Differential 0.933 0.798
(0.744) (0.617)

Geographic Constraint Index: z-score 0.069 0.046 0.154 0.181
(0.053) (0.120) (0.155) (0.180)

Regulatory Index: z-score 0.050 0.032 0.069 0.098
(0.034) (0.079) (0.085) (0.110)

Constant 0.153 0.172 0.080 0.057
(0.073) (0.121) (0.164) (0.189)

Number of Observations 165 165 171 171
Adjusted R-squared 0.703 0.511 0.791 0.687

Land-Value Differential from OLS
Regression 0.269 0.286 0.290 0.296

(0.051) (0.052) (0.044) (0.044)

p-value from Chi-squared test of
regressor endogeneity 0.068 0.328 0.987 0.879

TABLE A7: INSTRUMENTAL VARIABLES ESTIMATES

Robust standard errors, clustered by CMSA, in parentheses.  Specifications in columns 1 and 2 correspond to specifications 1 and 2
from table 4A, respectively; specifications in columns 3 and 4 correspond to specifications 1 and 2 from table 4B, respectively.  Data
sources as described in Table 2, except Average Winter Temperature, which is taken from Albouy et al. (2011).


