The Effect of Beijing's Driving Restrictions on Pollution and Economic Activity*

Abstract

We evaluate the environmental and economic effects of Beijing's driving restrictions. Based on daily data from multiple monitoring stations, air pollution falls 19% during every-other-day and 8\% during one-day-per-week restrictions. Based on hourly television viewership data, the number of viewers during the restrictions increases 1.7 to 2.3% for workers with discretionary work time but is unaffected for workers without, consistent with the restrictions' higher per-day commute costs reducing daily labor supply. Causal effects are identified from both time-series and spatial variation in air quality and intra-day variation in viewership. We provide possible reasons for the policy's success, including evidence of high compliance based on parking garage entrance records. Our results also provide new evidence on commute costs and labor supply.

Keywords: Driving restrictions; externalities; environmental economics; air pollution JEL Classification: H23, D62, L51, J22, R41.

V. Brian Viard
Cheung Kong Graduate
School of Business
Beijing 100738 China
brianviard@ckgsb.edu.cn
Tel: 86-10-8518-8858

Shihe Fu
Wang Yanan Institute for Studies in Economics (WISE)
Xiamen University
Xiamen 361005 China
fushihe@xmu.edu.cn
Tel: 86-0592-2188255
Cheung Kong Graduate
School of Business
Beijing 100738 China

This Draft: 1/20/2012

* Hongbin Cai, Yongmin Chen, Marvin Kraus, Stéphane Lambrecht, Katja Seim, Zhongmin Wang, and Michelle White provided helpful comments. We would like to thank Steven Q. Andrews for sharing the station-level data, Gula Tang for help with mapping and distance calculations, and Qing Gong, Mian Qing, and Wei Zhang for excellent research assistance. We thank seminar and conference participants at Southwestern University of Finance and Economics, Cheung Kong Graduate School of Business, Shanghai University of Finance and Economics, Beijing University, Renmin University, University of International Business \& Economics, Zhejiang University, Xiamen University, University of Antwerp, and China Economist Society 2011 Annual Conference for helpful comments. All errors are our own.

1. Introduction

Driving restrictions are used in numerous cities around the world to reduce pollution and congestion. ${ }^{1}$ Such restrictions may be ineffective either due to non-compliance or compensating responses such as inter-temporal substitution of driving or adding second vehicles. If effective, they may lower economic activity by increasing commute costs and reducing workers’ willingness to supply labor for given compensation. Except for Davis (2008)'s finding of no effect on air pollution in Mexico City, there is little empirical evidence of driving restrictions' effect on pollution and none about their effect on economic activity. We examine both effects under driving restrictions imposed by the Beijing government in preparation for the 2008 Olympics. The restrictions, based on license plate numbers, initially prevented driving every other day and later one day per week.

On the benefits side, we find that the restrictions significantly reduce particulate matter, a pollutant estimated to claim 6.4 million life-years annually (Cohen, et. al. 2005) and the most severe air pollutant in Beijing and many other urban cities worldwide. Using daily data and a regression discontinuity design (RDD), our point estimates indicate that the every-other-day restrictions reduced particulate matter by 19% and one-day-a-week restrictions by 8%. We find evidence of inter-temporal substitution of driving but the compensation is small relative to the primary reduction. To the extent that other pollutants are co-produced, results for particulate matter can be extrapolated to them.

Particulate matter's ambient properties dictate that it is deposited within a few kilometers of its release. We exploit this to develop a differences-in-differences (DD) approach that combines time-series variation and geographic variation in monitoring stations' locations to eliminate other explanations besides cars for the pollution reduction. Stations closer to a road experience larger drops in pollution and the drop becomes negligible at a distance consistent with particulate matter's dispersion radius. This means any confounding factors must be related to road proximity and therefore traffic flow. We consider, and rule out, changes in gasoline prices, parking rates, number of taxis, emissions standards, and government-imposed working hours.

[^0]Our DD approach is broadly applicable to cities that monitor air pollution since most city-level air quality measures are based on multiple monitoring locations to ensure representativeness. Our approach can be used to evaluate any policy change that can be related to identifiable pollution sources. This helps disentangle the impact of concurrent and overlapping policies that affect different pollution sources.

On the cost side, we investigate how the driving restrictions' higher commute costs affect economic activity. Lacking direct measures of work time or traffic flows, we rely on observed consumption of a major substitute - leisure time watching television (TV). To rule out confounding factors that affect viewership, we compare viewership responses of workers with discretionary work time (self-employed) to those whose days worked and daily hours are fixed conditional on their remaining employed (hourly employees). Since the one-day-a-week driving restrictions apply during most workers' regular working hours (initially from 6:00 a.m. to 9:00 p.m. and later 7:00 a.m. to 8:00 p.m.), we examine viewership during the restricted hours to ascertain the effect on days worked but also examine viewership outside the restricted hours to determine if work day length more than compensates for effects on days worked.

Using an RDD design, viewership by self-employed workers increases by 165 to 280 thousand person-hours per day during the one-day-a-week policy, consistent with a reduction in days worked and substitution to leisure in response to higher commute costs. Viewership increases slightly outside the restricted hours ruling out the possibility that longer daily work hours more than compensate for the decrease in days worked. While we cannot say with certainty that output is reduced as a result, for this not to be so would require increased efficiency during the fewer remaining work hours.

Viewership by hourly employees is unaffected during restricted hours consistent with these workers having no choice over number of days worked. Although daily work hours for these workers should also remain unchanged, their leisure time could change depending on changes in commute modes and congestion. We find a negligible increase in viewership outside the restricted hours.

Besides providing evidence on the restrictions' labor supply effects, the viewership results further corroborate our pollution results. They preclude confounding factors that decrease both public transit and auto commute times, such as expanded subway capacity, because these would also increase leisure time for those with fixed work times.

The only other detailed economic analysis of driving restrictions is Davis (2008), ${ }^{2}$ who finds no discernible effect on several pollutants (not including particulate matter) from a similar policy in Mexico City. ${ }^{3}$ Our work differs in three key respects. First, we use geographic in addition to time-series variation in pollution measures to identify the effects; this geographic variation has not previously been exploited. Second, we examine the impact on work time. Third, while Davis (2008) only describes the penalties and detection methods used in Mexico City, we provide direct, detailed compliance evidence. In the absence of publicly-available violations data, we gathered data from a centrally-located Beijing parking garage. All Beijing parking garages are required to record the time and license plate numbers of all entering cars but are not required to report offenders. Using this minute-by-minute data, we find high compliance. At a minimum this helps explain the restrictions' effectiveness in Beijing.

Chen, Jin, Kumar, and Shi (2011) employ DD estimation using nearby cities as a control group and find that Beijing's Olympics-related policies decreased pollution. Their paper complements ours in that it finds that the driving restrictions were one of two effective policies, but differs in several respects. They explicitly examine only the effects of the brief, every-other-day restrictions ${ }^{4}$ and do not consider labor supply effects. Also, their DD approach, which relies on satellite measures of pollution and distinguishes areas with higher road density, cannot rule out confounding factors that lower both auto and public transit congestion, such as expanded subway capacity. Our TV viewership results fulfill this role. Unlike our station-level data, satellite data is not precise enough (about a five-mile radius) to evaluate within-city policies affecting pollution sources in close proximity.

Our study also adds to the very small empirical literature relating commute costs to labor supply. This is important for evaluating how transport changes will affect worker productivity. That driving restrictions reduce work time implies that shifting to a commuting-related tax will not necessarily reduce the work-time distortion from an income tax. We know of one study that relates commute cost changes to work time changes while properly controlling for endogeneity.

[^1]Gutierrez-i-Puigarnau and van Ommeren (2010) find a very small elasticity of labor supply with respect to commute distance. In contrast to their study, we distinguish workers with and without discretion over work time, allowing us to compare control and treatment groups as well as separately identify the effect on those with discretion.

2. Pollution-Relevant Policies

Air pollution and its health implications are a major concern in Beijing, which was ranked in 2004 as the thirteenth "most polluted city" in the world for suspended particulates. ${ }^{5}$ The economic cost of suspended particulates to China is estimated at $\$ 22.4$ billion in 2005 (in 1997 USD) (Matus et al. 2011). Although a particularly acute problem in developing economies, particulate matter is a major concern in cities worldwide (see Watkiss, Pye, and Holland (2005) for evidence from the European Union). Particulate matter is linked to cardiopulmonary diseases, respiratory infections, and lung cancer (EPA, 2004); and is found to increase infant mortality (Chay and Greenstone, 2003). Other types of air pollutants also have negative health effects linked to infant mortality (Currie and Neidell, 2005). Cars create about 50% of suspended particulates in urban areas, highlighting the importance of reducing their negative externalities.

Figure 1 shows a timeline of the major pollution-relevant policies implemented by the Beijing government before, during, and after the Olympics. Besides driving restrictions, these included bus fare reductions, subway line openings, and temporary factory closures. In addition, during the Olympic Games many non-essential businesses were closed; and migrant workers (those without hukous) were sent home. Although the government may have had other goals for some of these policies (e.g., reduced congestion or easier commutes), they all may affect air pollution.

The driving restrictions began on July 20, 2008 with an odd-even ("OddEven") policy restricting cars to drive only every-other-day. The OddEven policy applied seven days a week and to all hours except midnight to 3:00 a.m. These restrictions ended on September 20, 2008. On October 11, 2008 the government re-instated driving restrictions, now preventing cars from driving one-day-per-week ("OneDay"). The OneDay policy applied on weekdays and initially between 6:00 a.m. and 9:00 p.m. We call this period "OneDay69." On April 11, 2009 the daily restriction period narrowed to apply between 7:00 a.m. and 8:00 p.m. and remained unchanged beyond our

[^2]sample period. We call this period "OneDay78" and use "OneDay" to apply to the combined OneDay69 and OneDay78 periods.

The OddEven and OneDay policies restricted vehicles based on the last digit of their license plate numbers. During the OddEven policy, odd-numbered license plates could drive only on odd-numbered dates and even-numbered only on even-numbered dates. The OneDay policy restricted two out of the ten plate numbers each weekday so that the restrictions followed a weekly cycle. The pairing of digits remained the same week-to-week ($(0,5),(1,6),(2,7),(3,8)$, $(4,9))$ but the assignment of these pairs to weekdays were initially rotated each month and, beginning April 11, 2009, every thirteen weeks.

The OddEven and OneDay69 policies applied to all areas within and including the $5^{\text {th }}$ Ring Road while the OneDay78 policy applied to all areas within but not including the $5^{\text {th }}$ Ring Road (Figure 2 shows these areas). Police cars, taxis, ambulances, postal vehicles, and embassy cars were exempt although these are small in number.

As Figure 1 shows, a number of policies occurred around the time of the driving restrictions. To rule out confounding factors, we supplement our time-series evidence with DD results based on geographic proximity of pollution monitoring stations to roads and with DD results using viewership across workers with and without discretionary work time.

3. Theoretical Background

Appendix A contains a model that predicts the short-run effects of Beijing's driving restrictions on pollution and economic activity. We outline the model here and discuss its main results but direct the reader to the appendix for details. It incorporates the choice of commute mode in a labor supply model. There are two groups of workers: ${ }^{6}$ those with discretionary work time and those with fixed work times. Since most Beijing workers with fixed work times must arrive at work by 8:30 a.m. and stay until 5:30 p.m., ${ }^{7}$ we assume a fixed daily schedule for them. Within each group there is a distribution of workers with heterogeneous commute properties, wages, and

[^3]non-wage income. Each individual worker chooses an optimal commute mode (auto, public transit, or not working if they have discretion over their time) considering its effect on their labor-leisure choice. Each worker's commute properties are defined by the monetary cost, time, and non-monetary disutility for each mode. Non-monetary disutility allows for the fact that some workers prefer one commute mode over another even if it requires more time and greater monetary cost. Examples of non-monetary disutility are expending effort to commute, bearing the burden of a crowded subway, or inhaling exhaust fumes while in traffic.

The model considers workers' total utility over restricted and non-restricted days. Absent the policy the two types of days are identical. With the policy, workers suffer a penalty for driving on restricted days. The model assumes perfect compliance and that workers do not purchase a second car to comply with the restrictions; any presence of these in the empirical data would bias against finding an effect. ${ }^{8}$ The model considers only short-run effects and therefore ignores changes in workforce participation, ${ }^{9}$ transitioning between discretionary and fixed work-time jobs, changes in housing prices and wages, and changes of residential or work locations. The appendix considers only first-order effects but we comment below on second-order effects due to changes in congestion.

Driving restrictions affect work time on both an extensive margin (days worked) and an intensive margin (daily work hours conditional on working that day). Workers who are indifferent between working and staying home on a particular day determine the extensive margin. Workers who are indifferent between extending their daily work time and not determine the intensive margin. Extensive margin changes affect pollution because they change the aggregate number of daily auto trips. Leisure (and therefore TV viewership) is affected on both margins since it depends on both the number of days and daily hours worked.

Extensive Margin Effects: For those with fixed work times, the restrictions have no impact on the extensive margin since they do not control their work times. They must work each day for

[^4]specific hours and will take public transit on the restricted day regardless of their preferred mode when unconstrained. Therefore,

Implication 1: Across all workers with fixed work times, days worked (the extensive margin) and therefore days spent entirely on leisure are unchanged due to the policy.

The extensive margin effect for workers with discretionary work time depends on their preferred commute mode absent the restrictions. Whether a worker commutes by public transit or auto depends on the monetary costs, times, and disutility they face for each; their return from working as determined by their wage; and the consumption their non-wage income provides. Those who prefer public transit are unaffected and will continue to work "full time" and take public transit on both restricted and non-restricted days. Given perfect compliance, workers who prefer to drive can either take public transit or not work on their restricted day ("reduced time"). Some will choose the latter due to the higher commute costs and substitute to leisure activities, including watching TV. There are two ways in which the higher commute costs may manifest themselves. First, ignoring non-monetary disutility from commuting, "reduced time" is preferable if public transit is sufficiently slower or more costly than driving. Second, even if public transit is cheaper and faster, "reduced time" is preferred if public transit is sufficiently unpleasant (non-monetary disutility is high). Therefore,

Implication 2: Across all workers with discretionary work time, days worked (the extensive margin) decrease and days spent entirely on leisure increase due to the policy.

These are the first-order effects on the extensive margin. Second-order effects may attenuate these first-order effects. Auto congestion will decline and public transit congestion will increase. This will induce some people to drive who otherwise would take public transit on their nonrestricted day.

Given perfect compliance, the pollution effects are straightforward:

Implication 3: Total auto commutes and pollution decrease due to the policy.

Because our model does not consider non-work driving and assumes all days are work days, there is no possibility of inter-temporal substitution. In a more general model, workers may drive
more on their non-restricted day because they cannot on the restricted day. ${ }^{10}$ This will attenuate the pollution effects and lower empirical estimates.

Intensive Margin Effects (Workers with Fixed Work Times): Although the restrictions do not affect work hours for those with fixed work times, their daily leisure time may change due to altered commute modes. Those who took public transit absent the restrictions will still do so and their daily leisure time is unaffected. For those who drive absent the restrictions, leisure is unaffected on non-restricted days since they continue to drive. On restricted days they must take public transit. Their leisure time increases if public transit commuting is faster than auto and decreases if not. Since our empirical data on leisure includes workers taking both commute modes, we are interested in the aggregate effect. Intensive margin effects are zero for those who normally take public transit and ambiguous for those who normally drive. Therefore, ${ }^{11}$

Implication 4: Daily hours spent working (the intensive margin) across all workers with fixed work times is unaffected by the policy. However, daily hours spent on leisure could either increase or decrease due to the policy.

Intensive Margin Effects (Workers with Discretionary Work Time): Intensive margin effects for workers with discretionary work time depend on whether they work "full time" or "reduced time" and whether they prefer public transit or driving. Workers who prefer public transit absent the restrictions continue to work "full time" and take public transit on both restricted and nonrestricted days so their work and leisure time remain the same. Those who prefer driving and choose to work "full time" must commute by public transit on restricted days. As a result, daily leisure time changes depending on how public transit commute times and costs compare to those by car. Unlike those with fixed work times, commute costs also matter because daily labor supply is discretionary. Due to diminishing marginal utility, the worker equalizes leisure time across the work days and shares the difference in commute times and costs across the restricted and non-restricted days.

For workers with discretion who work "reduced time," leisure time most likely decreases on the non-restricted days. In general, workers will compensate for working fewer days by working

[^5]longer daily hours. However, leisure time can increase if non-wage income is high enough. Since our data on leisure time includes "full-" and "reduced-time" workers using either commute mode, we are interested in the aggregate effect. Intensive margin effects are zero for those who take public transit, ambiguous for those who work "full time" and normally drive, and ambiguous but likely positive for those who work "reduced time." Therefore,

Implication 5: Daily hours spent working (the intensive margin) across all workers with discretionary work time could either increase or decrease due to the policy. As a result, daily hours spent on leisure could either increase or decrease due to the policy.

The implication for those working "reduced-time" are consistent with Gutiérrez-i-Puigarnau and van Ommeren (2009), who consider a general, concave wage function. Commute costs are fixed per daily trip so workers reduce the number of trips and generally spread these costs over longer daily hours. Allowing for a concave rather than linear wage function in our model leads to a smaller share of workers working "reduced time" and a smaller increase in daily work hours because declining marginal productivity of work would lead to a decline in wages with longer daily work hours.

4. Data

We use two primary data sets. The first is a daily measure of Beijing air pollution at both an aggregate and individual monitoring-station level. The second is an hourly measure of TV viewership by different categories of Beijing residents. We supplement these with control variables thought to affect air pollution and viewership. Our sample is from January 1, 2007 to December 31, 2009. This provides us with 1,096 total days of which 547 days occur before OddEven, 62 during OddEven, 21 between OddEven and OneDay, 182 during OneDay69, and 265 during OneDay78. This provides a fairly symmetric window - approximately 1.5 years both before and during the policy regimes. Appendix E provides descriptions and Table 1 summary statistics for all variables.

Pollution Data: Our pollution measure is the daily Beijing Air Pollution Index (API) published by the State Environmental Protection Agency and Beijing Environmental Protection Bureau. The aggregate API is a simple average of the API measured at multiple monitoring stations
around Beijing. ${ }^{12}$ Station composition varied slightly over time. In 2007 the aggregate API is based on 28 stations. Five stations are dropped and four added for a net total of 27 stations in 2008 and 2009. Figure 2 shows the 2008 through 2009 locations. Chen, et al. (2011) provide evidence on the accuracy of the Beijing API using independent satellite data.

The API provides specific advice on behavior (e.g., not exercising or spending time outdoors) and ranges from 0 to 500 with higher values indicating stronger pollution concentrations and more harmful effects (EPA, 2009). Its value depends on concentrations of three different pollutants which affect breathing: particulate matter $\left(\mathrm{PM}_{10}\right)$, nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$. An API is calculated for each of the three pollutants but only the maximum is reported. To compare the relative severity of the three pollutants, the concentration of each is rescaled before choosing the maximum. ${ }^{13}$ Table 2 shows how PM_{10} is converted to the API through a piecewise linear function.

In our sample, the API ranges from 12 to 500 and averages 91 . The maximum pollutant is identified if the API exceeds 50 . We focus on PM_{10} since it is the most severe pollutant on 917 of the 953 days with an API above 50. PM_{10} is the ambient concentration (in $\mu \mathrm{g} / \mathrm{m}^{3}$) of particulates smaller than $10 \mu \mathrm{~m}$. Since there are 143 days when the API is below 50 and the maximum pollutant unknown and 29 days when the worst pollutant is other than $\mathrm{PM}_{10},{ }^{14}$ we estimate two different specifications. In one we include all days regardless of most severe pollutant. In the other we allow our policy variables to have a differential effect when the API is below 50 and when a pollutant other than PM_{10} is most severe.

Various sources create particulate matter, but autos are the major contributor in most urban areas. Autos create PM_{10} through emissions and by creating road dust. ${ }^{15} \mathrm{Hao}$, Wang, Li, Hu, and Yu (2005) find that approximately 53% of Beijing's PM_{10} is attributable to motor vehicles -23%

[^6]due to emissions and 30% due to road dust. ${ }^{16}$ Therefore, as a rough rule of thumb, autos create half of the air pollution we examine.

TV Viewership Data: We use viewership to measure how driving restrictions affect economic activity. In the absence of data on work and total leisure time, viewership is a good proxy - it is a large component of leisure and therefore a big substitute for work time. ${ }^{17}$ Also, the use of viewership biases against finding an effect. The restrictions reduce auto congestion and pollution making outdoor activities more attractive. Indoor TV viewership becomes relatively unattractive compared to other leisure. ${ }^{18}$

Our viewership measure is CSM Media Research's "Television Audience Measurement" (TAM) database, the most comprehensive TV ratings data in China. TAM measures the number of people watching each TV program and commercial. We aggregate to the hourly level across all channels. TAM's ratings are based on a household panel, although the data is individual. A "PeopleMeter," an electronic device installed inside the TV, detects when it is on and, if so, the channel displayed. Panelists use a remote-control device to enter which members are currently watching, displayed on the screen for confirmation. CSM's Beijing data covers an area very similar to that subject to the driving restrictions - all areas inside the $5^{\text {th }}$ Ring Road and a small part of the outside suburban area.

TAM provides viewership data for seven different employment categories. We use two categories for which we can ascertain the degree to which its members control their work time. Those in the "self-employed" category have great discretion, while those in the "hourly workers" category have fixed work times. The work time of an "hourly worker" could vary at their employer's discretion but only in the upward direction with overtime pay. We do not utilize the other five categories either because we do not have specific predictions for them or we are uncertain whether they have control over their work time. ${ }^{19}$ CSM conducts an establishment

[^7]survey estimating the number of individuals in each category with TV access so that viewership rates can be translated into numbers of individuals watching TV. Table 1 provides summary statistics for each category. Across all hours there are an average of 91 thousand "self-employed" and 149 thousand "hourly workers" watching TV although the number varies greatly across hours.

Control Variables: Our pollution regressions include a variety of daily weather variables known to affect particulate matter (see EPA, 2010) all taken from China Meteorological Data Sharing Service System. We include dummies for the four quartiles of the daily maximum wind speed. ${ }^{20}$ Higher wind speeds can remove particulates but also import them from neighboring areas. Beijing air quality is greatly affected by wind direction. Northerly winds carry local pollutants while Easterly and Southeasterly bring pollutants from the Eastern coastal and mid-China cities (Wiedensohler, et al., 2007). To control for this flexibly, we use dummies for the four directional quadrants and interact these with the four wind speeds. We include the daily hours of sunshine to control for the amount of atmospheric solar radiation, which creates ozone and more particulate matter.

Humidity can interact with pollutants to create secondary ones so we include daily average humidity. Precipitation has opposing effects. Rain can interact with existing pollutants to create secondary ones, but can also wash particles from the air and minimize their formation. To control for either possibility, we include total daily rainfall. Daily maximum surface temperature has an indeterminate effect on particulate matter depending on whether a temperature inversion is created.

We include dummy variables to allow for different driving behavior on weekends and holidays and monthly dummies to allow for seasonal effects. We also include a dummy for the Olympic Games period. To control for the other government policies and any pre-existing trend, we include a flexible daily time trend. Since this is an imperfect control, we supplement our RDD regressions with station-level and viewership DD regressions.

For the viewership regressions, we include measures of daily weather variables that might affect the desire to remain indoors watching TV. These include total rainfall, average wind speed, total

[^8]hours of sunshine, and average surface temperature. We use daily measures even though our regressions are at the hourly level because we assume households decide whether to travel to work based on daily expected weather. We include hourly dummies to capture intra-day variation in the appeal of other leisure activities (including sleep) and TV program quality. Similarly, we include weekend and holiday dummies to capture program differences and the differential appeal of outdoor options during these times. We include monthly dummies to capture seasonality in outdoor activity, and a dummy for the Olympic Games period since programming differed greatly then. To control for any pre-existing trend we include a flexible daily time trend.

5. Effect of Driving Restrictions on Pollution

Implication 3 predicts that traffic density and therefore pollution should decline during the policy periods. To test this we employ an RDD method using the aggregate Beijing API. Intuitively, our test determines if any pre-existing time trend in pollution is altered during the policy periods conditional on the control variables. Since coincident factors may confound these results, we provide additional evidence based on DD estimates using station-level API data. Geographic variation allows us to relate the policy impact to each station's distance from a major road. The restrictions cause the local API to drop more at stations closer to a major road than at those further away and the effects dissipate at a distance consistent with PM_{10} 's atmospheric behavior.

Effect on Aggregate Pollution: Our RDD method allows for a potential discontinuity in the aggregate API for each of the policy regimes (OddEven, OneDay69, and OneDay78 are denoted by $O E, O D 69$, and $O D 78$):

$$
\begin{align*}
& \log \left(A P I_{t}^{A}\right)=\alpha+\beta_{1} \log \left(A P I_{t-1}^{A}\right)+\sum_{i=1}^{11} \beta_{2 i} m_{t \in i}+\sum_{k=1}^{K} \beta_{3 k} Z_{t k}+\sum_{l=1}^{L} \beta_{41} t^{l}+\beta_{5} W E_{t}+ \tag{1}\\
& \quad \beta_{6} H O_{t}+\beta_{7} O E_{t}+\beta_{8} O D 69_{t}+\beta_{9} O D 78_{t}+\left(\beta_{10} O D 69_{t}+\beta_{11} O D 78_{t}\right) * W E_{t}+\varepsilon_{t}^{A} .
\end{align*}
$$

$A P I_{t}^{A}$ is the aggregate API on day t, m_{t} are monthly dummies to capture seasonality not captured by the weather controls, Z_{t} contains weather and other control variables, $W E_{t}$ is a weekend dummy, and HO_{t} is a holiday dummy. We include the lagged API to allow for persistence in air conditions. The vector β_{4} captures any pre-existing time trend using an $L^{\text {th }}$ order polynomial function. β_{5} captures any differences in pollution on weekends and β_{6} does
the same during holidays. β_{7-9} are the primary coefficients of interest and capture discontinuities due to the policies. β_{10-11} capture inter-temporal substitution to weekends within the OneDay policy periods. We expect β_{10-11} to be weakly positive.

Column 1 of Table 3 shows a baseline regression with no time trend ($L=0$). In Columns 2 and 3 , we introduce linear and quadratic time trends. The monthly dummies remain so that any identified time trend is of seasonally-adjusted data. None of the time trend coefficients is significant under either the linear or quadratic specifications and an F-test (the bottom row of Table 3) reveals that the time trend coefficients are not jointly significant. ${ }^{21}$ The main difference from the baseline results is that the OneDay coefficient is larger because it is highly correlated with a time trend. This highlights the importance of our station-level and viewership evidence presented later which do not rely exclusively on time-series variation. To be conservative, we focus on the baseline model's smaller effects.

Both policy variables are highly statistically significant and show a decrease in pollution during the restricted periods (Appendix F shows this visually). The aggregate API was 19.3% lower during the OddEven restrictions with a 95% confidence interval of 14.9 to 23.6%. With perfect compliance, no substitution to non-restricted hours, and a linear relationship between the number of cars and pollution, we would expect about a 25% decrease during the OddEven period (traffic reduced by 50% and 50% of PM_{10} produced by motor vehicles). ${ }^{22}$ The aggregate API was 7.9% lower with a 95% confidence interval of 5.2 to 10.7% during the OneDay policy. We would expect about a 10% decline (traffic reduced by 20% each day and 50% of PM_{10} created by motor vehicles). These estimates are consistent with high compliance. The API increases 9.7\% during OneDay weekends. Although this percentage increase is similar to the weekday decrease, the weekend API is lower and applies to two days rather than five so that overall pollution declines significantly.

[^9]Approximately 31\% of daily API persists. Even after controlling for this, a Durbin-Watson test revealed that the residuals exhibited order-one autocorrelation so we use Newey-West standard errors with a one-day lag in all aggregate API regressions. ${ }^{23}$ The API was significantly lower during the Olympics, consistent with the decreased business, construction, and resident population during that time. A one-degree temperature increase is associated with a 4.8% increase in the API - consistent with greater ozone and secondary pollution creation. A onepercent increase in humidity increases the API by 0.5%, consistent with humidity acting to create secondary particulates. Rainfall has no significant effect, but each additional hour of sunshine decreases the API by 3.3%.

Wind direction has no significant effect, but pollution is lower in the middle two quartiles of wind speed. This bowl-shaped effect is consistent with moderate wind speeds preventing the build-up of pollution but very high wind speeds bringing in sand particulates from the nearby Gobi desert. API is 8.4% lower on weekends but not significantly different on holidays. In unreported coefficients, four of the nine interactions between wind speed and direction are significant and ten of the eleven monthly dummies are significant with December and January having the worst API levels and July and August the best conditional on weather.

Column 4 shows the baseline regression but distinguishing between OneDay69 and OneDay78. This is demanding since the only difference between these policies is two less restricted hours for OneDay78. Coefficients on the non-policy variables are almost identical. The two policy coefficients are very statistically significant. The point estimates indicate a 7.4% drop in the API during the OneDay69 restrictions and 8.3% during OneDay78. However, an F-test rejects the hypothesis that the coefficients are unequal only at the 80% level.

Table 4 contains robustness checks. Column 1 repeats the baseline results for comparison except we no longer display the weather variables. Column 2 introduces dummy variables to distinguish observations where sulfur dioxide is the worst pollutant ("SO2") or the API is below 50 and we do not know the worst pollutant ("Blue Sky"). We also interact these with the policy variables (there are no "SO2" days during the OddEven policy). The OddEven and OneDay decreases are very similar to those in the baseline: 18.9% and 8.8% respectively. As expected, the "Blue Sky" dummy is negative and highly significant. The "SO2" dummy is significantly negative although

[^10]we have no prior expectation on this. The only significant changes are that the API is less persistent and the Olympic variable is no longer significant consistent with many of the "Blue Sky" days occurring during the Games.

Column 3 uses logged PM_{10} as the dependent variable using the transformation in Table 2 to convert from the API. Because we must drop "Blue Sky" and "SO2" days, the number of observations falls to 916 and we cannot use Newey-West standard errors although we continue to include the lagged dependent variable even though the lag sometimes exceeds one day. The results are similar to the baseline.

Effect on Station-Level Pollution: The RDD results depend entirely on time-series variation and therefore could be due to contemporaneous, confounding factors. To reduce this possibility, we use geographic variation in the location of individual monitoring stations and apply a DD test. ${ }^{24}$ These regressions test whether pollution decreased more for monitoring stations that were located closer to major roads than for stations located further away in response to the policies:

$$
\begin{gather*}
\log \left(A P I_{s t}^{S}\right)=\sum_{s=1}^{S} \alpha_{s}+\beta_{1} \log \left(A P I_{s t-1}^{S}\right)+\sum_{i=1}^{12} \beta_{2 i} m_{t \in i}+\sum_{k=1}^{K} \beta_{3 k} Z_{t k}+\sum_{l=1}^{L} \beta_{4 l} t^{l}+\beta_{5} W E_{t}+ \tag{2}\\
\beta_{6} O D_{t} * W E_{t}+\sum_{j=0}^{J}\left(\beta_{7 j} O E_{t}+\beta_{8 j} O D_{t}\right) *\left(D i s t_{s}\right)^{j}+\varepsilon_{s t}^{S}
\end{gather*}
$$

where $A P I_{s t}^{S}$ is the daily API at station s on day t. As before, we include lagged API to capture persistence, monthly dummies to capture seasonality, control variables, a flexible time trend to capture any pre-existing trend, a weekend dummy to allow for differential effects, and a OneDay-weekend interaction to allow for inter-temporal substitution. Our DD estimator is implemented by including station-level fixed-effects $\left(\alpha_{s}\right)$ and a polynomial function of distance (Dist $_{s}$) between each station and the nearest major road interacted with the policy variables. A positive coefficient for $\beta_{7}\left(\beta_{8}\right)$ indicates more pollution reduction for stations closer to a major road during the OddEven (OneDay) periods. Fixed-effects control for any time-constant, stationspecific factors including stationary pollution sources such as a nearby factory as well as the

[^11]baseline effect of distance. We use robust standard errors clustered at the station level to allow for general autocorrelation within stations and heteroskedasticity.

We use a panel of 24 stations, 22 of which operated the entire time and two of which operated from 2008 to $2009 .{ }^{25}$ Column 1 of Table 5 confirms that a station-level, fixed-effects regression $(J=0)$ produces results similar to those at the aggregate level except that the magnitude of the OneDay coefficient is greater. The OddEven policy reduces the API by 18.2% and the OneDay policy by 14.7%. Pollution is 6.9% greater on weekends during the OneDay policy consistent with inter-temporal substitution.

For our DD estimates, we use the minimum distance "as the crow flies" between a monitoring station and the nearest Ring Road. ${ }^{26}$ We use only the eight monitoring stations within the $4^{\text {th }}$ Ring Road for two reasons. First, including stations too far from major roads will bias against finding an effect because they will be outside PM_{10} 's dispersion radius. Table 1 confirms that stations within the $4^{\text {th }}$ Ring Road, where Beijing's road network is densest, are much closer to the nearest Ring Road than those outside. Second, none of the restrictions applied to the $6^{\text {th }}$ Ring Road and the OneDay78 policy did not apply to the 5th Ring Road. We would need to exclude any stations that are closest to these roads since we do not know how their traffic is affected. The restrictions decrease their traffic if, absent the restrictions, it primarily feeds into the area within the $5^{\text {th }}$ Ring Road. Traffic increases if drivers use these roads more intensively to travel from one side of the city to the other while complying with the restrictions. ${ }^{27}$ This ambiguity also rules out using monitoring stations outside the $5^{\text {th }}$ Ring Road as a control group for those inside in a DD specification.

[^12]Column 2 of Table 5 shows the results of estimating Equation (2) using a linear function of distance $(J=1)$, including station fixed-effects and the same control variables. During the OddEven (OneDay) policy pollution drops by 20.6\% (8.8\%) at the Ring Roads but the effect dissipates by 9.1 (5.8) percentage points with each kilometer from the road. According to EPA (2001, pp. $2-3$), most PM_{10} emissions are deposited in a few kilometers of their release. Extrapolated slightly out of sample, the pollution reduction dissipates at a distance of 2.3 kilometers for the OddEven policy and 1.5 kilometers for the OneDay policy. In Column 3 we allow for a quadratic distance function $(J=2)$. For the OddEven policy, both distance terms are significant, pollution drops at the Ring Road and the effect declines in distance with a minimum at 1.1 kilometers. The OneDay results are also significant with a minimum at 1.0 kilometers.

Policy Comparisons: "Back-of-the-envelope" calculations can be used to approximate the increase in gasoline prices or auto registration fees necessary to achieve the same pollution reduction as the OneDay policy (8\%). Cheung and Thomson (2004) estimate a long-run gasoline price elasticity of -0.56 in China using data from 1980 to 1999. The gas price at our sample midpoint is about RMB 6 per gallon, implying that a long-run price increase of RMB 0.85 per gallon (14\%) would achieve the same pollution reduction if pollution falls linearly with gas consumption.

An alternative is to increase registration fees to reduce the stock of cars. If registration is onetime and transferrable across owners, a fee increase is equivalent to a vehicle price increase. Deng and Ma (2010) estimate an own-price elasticity of -9.2 for autos in China using annual data from 1995 to 2001. This estimate is about three times greater than ones using U.S. data, possibly due to less elastic demand at higher incomes. Given income increases in China since 2001 it is useful to consider elasticities ranging from -3.0 to -9.2. If pollution falls linearly with car ownership and assuming an average car price of USD 15 thousand, ${ }^{28}$ a license fee increase of USD 130 to 400 (RMB 858 to 2,631) would lead to an 8% pollution reduction. This compares to the current RMB 500 (USD 76) registration price in Beijing. ${ }^{29}$

Alternative Explanations: Given the DD results, any confounding factors must be related to road proximity and therefore traffic flow. These could include gasoline prices, parking rates, vehicle

[^13]emission standards, and subway capacity expansion. The National Development and Reform Commission (NRDC) regulates retail gasoline prices and changed them somewhat during our sample period. Prior to December 19, 2008, the NRDC set a baseline price and allowed firms to charge a retail price within 8% of it. After this, NRDC imposed a retail price ceiling. The timing of price changes is generally different than the driving restriction policy changes, although there was a significant price drop around the start of the OneDay policy which would bias against our findings. Adding log retail price to our baseline aggregate API regression produces very similar results. ${ }^{30}$

Regulated parking rates at public garages did not change during our sample period. ${ }^{31}$ Private garages are allowed to charge market rates but this would bias against a reduction in driving under the restrictions. The number of official taxis in Beijing has remained constant at 66,646 since 2006 under a decision by the Beijing Council of Transportation as part of the "Tenth FiveYear Plan., ${ }^{32}$ Taxi cab emissions have declined over time through replacement of older taxis and upgrading of existing ones but this has occurred gradually. Staggered working hours were implemented in Beijing for those employed by social organizations, non-profit institutions, stateowned enterprises, and urban collective-owned enterprises but this did not take effect until April 12, 2010, after our sample period.

China's auto emissions regulations are similar to European Standards I to V and changed once during our sample period. From the beginning of our sample through February 28, 2008 autos registered in Beijing had to conform to the Level III standard. From March 1, 2008 through the end of our sample, new vehicles had to meet the stricter Level IV standard. This timing differs from those of the driving restrictions and since the change applied only to new vehicles occurred gradually.

Beijing added subway capacity during our sample period (see Figure 1). The timings did not generally coincide with the OddEven and OneDay policies; however some of the effect that we

[^14]measure could result from substitution from auto to public transit commuting. The following viewership results eliminate this possibility.

6. Effect of Driving Restrictions on TV Viewership

We examine viewership for two reasons. First, it provides evidence on how the restrictions affect economic activity. Implications 1 and 2 predict that the restrictions should have different extensive margin effects on viewership for workers with and without labor supply discretion. We test this using viewership for two different employment categories: "self-employed" and "hourly workers." Second, it provides a means to rule out additional confounding factors that might explain the pollution reductions. Factors that reduce both auto and public transit congestion, such as greater subway capacity, should increase viewership for both groups - an implication we test.

Our comparison embeds RDD estimation within a DD design. We estimate the policy's effect on each worker category using an RDD. This estimates whether there is a discontinuity in viewership during the policy periods relative to any pre-existing time trend conditional on control variables. We then use a DD design to see if the policy change affects the two groups differently.

Since most workers' regular work hours occur during the restricted hours, we measure extensive margin effects by changes in aggregate viewing during restricted hours. Although extensive margin changes may extend outside the restricted hours if work day length exceeds the restricted period, they will certainly affect viewership inside the restricted hours. Therefore, we can restate the testable implications:

Implication 1': During the policy period, TV viewership across all workers with fixed work times is unchanged during regular work (restricted) hours.

Implication 2': During the policy period, TV viewership across all workers with discretionary work time increases during regular work (restricted) hours.

Since the intensive margin will adjust primarily outside restricted hours, we measure intensive margin effects by changes in aggregate viewership outside the daily restricted period. Given the less-than-perfect correspondence between regular work and restricted hours and since theory is
ambiguous about the intensive margin effects (see Implications 4 and 5), our primary goal in estimating the intensive margin effects is to see if they overwhelm those on the extensive margin.

Our RDD design allows for a potential discontinuity for each of the three policies (OddEven, OneDay69, and OneDay78). For the OneDay69 and OneDay78 policies we allow for intra-day discontinuities to estimate the effect on the extensive and intensive margins. We allow for only a daily discontinuity for the OddEven policy because the Olympic Games greatly disrupted intraday work patterns. For the same reason, we focus on the OneDay results. We estimate:

$$
\begin{align*}
& \log \left(\text { View }_{t h}^{c}\right)=\beta_{0}+\beta_{1} \log \left(\text { View }_{t, h-1}^{c}\right)+\sum_{i=1}^{23} \beta_{2 i} \alpha_{i=h}+\sum_{j=1}^{11} \beta_{3 j} m_{t \in j}+\sum_{k=1}^{K} \beta_{4 k} Z_{t k}+\sum_{l=1}^{L} \beta_{5 t} t^{l}+ \\
& \beta_{6} W E_{t}+\beta_{7} H o l_{t}+\beta_{8} O E_{t}+\left(\beta_{9} O E_{t}+\beta_{10} O D 69_{t}+\beta_{11} O D 78_{t}\right) * W E_{t}+ \tag{3}\\
& \quad\left(\beta_{12} O E_{t}+\beta_{13} O D 69_{t}+\beta_{14} O D 78_{t}\right) * \text { Hol }_{t}+\left(\beta_{15} O D 69_{t}+\beta_{16} O D 78_{t}\right) * R H_{t h}+ \\
& \left(\beta_{17} O D 69_{t}+\beta_{18} O D 78_{t}\right) * N M H_{t h}+\left(\beta_{19} O D 69_{t}+\beta_{20} O D 78_{t}\right) * N E H_{t h}+\varepsilon_{t h}^{c} .
\end{align*}
$$

View $w_{t h}^{c}$ is thousands of people watching TV on day t during hour h for worker category c ("self-employed" and "hourly workers"). We include lagged hourly viewership since viewing is persistent across programs (Goettler and Shachar, 2001). This hourly dependency is distinct from the daily time trend. The hourly dummies (α) capture baseline differences in hourly viewing and Z_{t} contains weather and other control variables. The vector β_{5} captures any pre-existing time trend in daily viewership using an $L^{\text {th }}$-order polynomial function. β_{6} and β_{7} capture differences in weekend and holiday viewership before the policy and β_{8} captures change in viewership during the OddEven policy. β_{9-11} capture difference in viewership on weekends during the different policy regimes while β_{12-14} do the same for holidays.

The primary coefficients of interest are β_{15-20}, which capture viewership differences during the OneDay periods relative to the pre-existing trend. We divide the day into three time segments to separately estimate the effects on the extensive and intensive margins. $R H_{t h}$ equals one during restricted hours and zero otherwise. For non-restricted hours, $N M H_{t h}$ equals one during morning hours (midnight to 6:00 a.m. during OneDay69 and midnight to 7:00 a.m. during OneDay78) and $N E H_{t h}$ equals one during evening hours (9:00 p.m. to midnight during OneDay69 and 8:00 p.m. to midnight during OneDay78) and zero otherwise. We expect the extensive margin effects to be positive for "self-employed" $\left(\beta_{15}>0\right)$ and zero for "hourly workers" $\left(\beta_{16}=0\right)$. β_{17-20} capture
intensive margin effects and theory is ambiguous about these. Morning and evening segments are a parsimonious way to distinguish non-restricted periods with very different viewing patterns.

We employ a seventh-order polynomial function of days to control for any pre-existing trend -a choice justified below. The residuals exhibit autocorrelation with a maximum lag of four hours, so we use Newey-West standard errors with a four-hour lag.

Viewership by Workers with Discretionary Work Time: Columns 1 and 2 of Table 6 display the "self-employed" results. Viewership persists with 55% of viewers watching from the previous hour. Greater rainfall has a statistically significant but negligible effect. More sunlight hours are associated with less viewership. "Self-employed" watch more TV on weekends, holidays, and during the Olympics. Viewership increases 11.6% during the OddEven policy but only by 2.4% during OddEven holidays. We do not have specific predictions for the OddEven period because the Olympics greatly altered regular work and leisure patterns.

Viewership during the OneDay69 restricted hours is 10.8% higher with a t-statistic of 6.6 and 15.2% higher during the OneDay78 restricted hours with a t-statistic of 7.1. On the extensive margin, workers with discretionary labor supply work less and enjoy more leisure in the restricted periods. This is consistent with marginal workers who normally drive finding it too costly to do so on their restricted days.

On average, there are 102.1 thousand "self-employed" viewers during the restricted hours of the OneDay69 policy. This implies 11.0 thousand more viewers per hour in the restricted OneDay69 hours. Assuming that preferences for viewing and commute cost sensitivity are uncorrelated, this extrapolates to 1.7% of the 656 thousand self-employed people and 0.12% of the 9.2 million employed people in Beijing. ${ }^{33}$ During the OneDay78 restricted hours there are an average of 98.1 thousand viewers so our estimates imply an increase of 14.9 thousand additional "selfemployed" viewers or 2.3% of all self-employed.

Viewership outside the restricted hours (the intensive margin) can either increase or decrease. Those who do not work on their restricted day may compensate by working longer hours on nonrestricted days; therefore, it is important to check whether intensive margin changes undo some

[^15]or all of the extensive margin effects. During the OneDay69 policy, viewership is not significantly different outside the restricted hours. During the OneDay78 policy, viewership increases in both the evening and morning hours. While not the only possibilities, this could reflect decreased auto congestion or a less-than-perfect correspondence between regular work hours and restricted hours (i.e., regular work hours of "self-employed" would have exceeded the restricted hours had they not stayed home on their restricted day).

The intensive margin effects do not offset those on the extensive margin and the increased commute costs under the driving restrictions increase total viewership. The OneDay69 policy increases viewing by 165.2 thousand person-hours and the OneDay 78 policy by 279.6 thousand on each restricted day. ${ }^{34}$ Work time would decrease less than this if TV viewing became more attractive relative to other leisure during the policy periods. It is more likely that we understate the effects because increased commute costs increase other leisure activities besides TV watching. Overall output fell unless productivity increased during the fewer hours not spent watching TV.

Viewership by Workers with Fixed Work Times: Columns 3 and 4 of Table 6 display the results for "hourly workers." Consistent with predictions for the extensive margin (Implication 1), viewership is unaffected during the restricted hours of both the OneDay69 and OneDay78 policies. The point estimates are "tight zeroes" - they are not due to lack of variation. These workers must commute to work despite the restrictions and their leisure during required working times is unaffected. The effects of the control variables are similar to those for "self-employed" except that viewership is less persistent, is significantly lower on warmer days, and displays a greater differential on weekends and holidays. Viewership is higher during the OddEven period as it was for "self-employed" but the magnitude is smaller.

Theory is ambiguous about intensive margin changes. Work day length will not be affected given fixed work times, but leisure time may decrease or increase depending on whether public transit takes more or less time than car commuting. Viewership is unaffected during OneDay69 non-restricted hours. For OneDay78, viewership increases 8.9% in the morning. Although this is a large percentage increase, it represents only 2.1 thousand additional viewers given the small viewership in morning hours. Viewership also increases 4.0% in the evening. While not the only

[^16]possibilities, this increase is consistent with lower auto congestion on non-restricted days allowing workers extra leisure time or shorter public transit than auto commute times on restricted days.

Robustness and Alternative Explanations: Appendix G shows the impact of the time trend on estimates of the policy effect on restricted hours. The top panel shows that for "self-employed," the coefficients on both the OneDay69 and OneDay78 interactions are positive and highly statistically significant. The time trend affects the magnitude of the coefficients but they are quite stable at a second-order time trend or higher. ${ }^{35}$ In contrast, the bottom panel shows that "hourly worker" interaction coefficients are small, variable, and mostly insignificant beginning with the fourth-order time trend.

To ensure robustness to the grouping of hours into three segments, we re-estimate Equation (3) but interact the OneDay69 and OneDay78 policy variables each separately with 24 hourly dummies. The results confirm our main estimates. Appendix H, Panel A plots the coefficients on the interaction terms between OneDay69 and the 24 hourly dummies for the "self-employed" category. The magnitudes of the coefficients are plotted on the y-axis only if significant at the 10% level or better. Viewership is higher during eleven of the fifteen restricted hours and all eleven are significant at the 5% level or better. ${ }^{36}$ The decrease in the first restricted hour (6:00 7:00 a.m.) is consistent with workers who otherwise would have driven during this hour shifting their commute earlier to comply with the restrictions.

Panel B provides the same graph for the "hourly workers" category. The results again confirm our main estimates. Viewership is largely unaffected during the restricted period with only five of the thirteen hours showing an increase. There is also a decrease in the first hour of the restrictions (6:00-7:00 a.m.) similar to that for "self-employed" and consistent with some workers shifting their commute earlier. Although not displayed for brevity, the results for the OneDay78 policy are qualitatively similar but stronger. For "self-employed," viewership is significantly higher during all thirteen restricted hours and all are significant at the 1% level or better. For "hourly workers" viewership is not significantly different during any restricted hour.

[^17]
Abstract

Alternative explanations must be consistent with the differing policy effects for those with and without discretionary work time. This excludes increased subway capacity which would directly decrease public transit commute times and indirectly decrease auto commute times as commuters substitute from buses, taxis, or private cars to subways. While this could partially explain our pollution results to the extent its timing overlapped with the driving restrictions, it cannot explain our intra-day viewership results. It is at odds with the "self-employed" increasing their viewership during restricted hours. Quicker auto and public transit commute times should stimulate daily labor supply. Also, shorter commute times should increase leisure time in nonrestricted hours for both groups of workers (Appendix D shows this formally). While it does so for "self-employed" it does so for "hourly workers" only during the OneDay78 policy and only to a small degree.

7. Reasons for Effectiveness

The only other systematic economic evaluation of driving restrictions is Davis (2008), which examines a similar one-day-per-week driving restriction in Mexico City. The study finds no effect from the restrictions, even in the short run, primarily because it increased the number of vehicles in use and the proportion of high-emissions, used vehicles. Since the supply of used cars is fixed, they must have been imported from outside Mexico City.

Both of the reasons that Davis (2008) cites for the policy's failure in Mexico City are probably less relevant in Beijing. Although auto ownership is increasing quickly in Beijing, its cost is still a significant fraction of income for most residents. In 2008, the average annual salary in Beijing was RMB 44,715 (USD 6,800) compared to USD 25,258 in Mexico City. ${ }^{37}$ Since sharing cars is difficult, purchasing a second vehicle with a different plate number to satisfy the restrictions is prohibitively expensive for most residents as is purchasing a first vehicle in response to the reduced auto congestion created by the restrictions.

Cars added in Beijing are also likely to be newer, lower-emissions vehicles. The number of vehicles in Beijing increased rapidly from 62 million in 1992 to 344 million in 2008. ${ }^{38}$ This implies a younger auto stock compared to more developed countries where widespread car

[^18]ownership began much earlier. Cars remain less prevalent in China than in developed countries. As of 2007, China had 24 cars per thousand people compared to 787 in the U.S. and 211 in Mexico. ${ }^{39}$ This means cheaper, higher-emissions used cars are not as readily available anywhere in China and therefore cannot be imported easily into Beijing from other cities.

Although the viewership results rule out Beijing's increase in public transit capacity as an explanation for the pollution reduction, it may play a complementary role. It may have provided better commuting options thereby lowering compliance costs and limiting the labor supply decrease.

Compliance Evidence: We find detailed evidence of high compliance in Beijing. It is uncertain whether compliance differences might explain the different outcomes in Beijing and Mexico City. Davis (2008) argues that penalties and monitoring in Mexico City are high but does not provide direct compliance evidence. In Beijing there are about 2,215 traffic surveillance cameras (one for every 7.7 square kilometers) and about five thousand traffic police officers to detect violations. Every year, the first violation triggers a loss of approximately RMB 595 (about USD 90). Subsequent violations in the same year incur a fine of RMB 100 (about USD 15). Violators also incur time costs and possibly psychic costs (Appendix I provides more details on penalties and detection).

To test the effectiveness of these penalties and detection methods, we obtained entrance records for a parking garage located within Beijing's $4^{\text {th }}$ Ring Road. The garage serves a mall and office tower so that parkers are a mix of shoppers and workers. The police require all Beijing garages to record the license plate number and entrance time to the minute of each entering car; however, they are not required to take any action against violators of the restrictions. We obtained one week of data (June 27 to July 3, 2010) chosen at random among weeks not containing holidays or government meetings that might affect traffic. The garage's document retention policy prevented us from taking a sample within the time period of our main data. ${ }^{40}$

We divide the week's hours into three categories: restricted weekday, non-restricted weekday, and weekend (non-restricted). The week occurred during OneDay78 so we define restricted

[^19]hours as weekday hours between 7:00 a.m. and 8:00 p.m. and non-restricted hours as weekday hours between 9:00 p.m. and 6:00 a.m. We avoid sampling data from 6:00-7:00 a.m. and 8:00 9:00 p.m. because commuting from the $5^{\text {th }}$ Ring Road to the inner part of Beijing can take up to one hour and therefore these hours may contain a mixture of restricted and non-restricted activity.

Since we do not know whether this garage represents Beijing traffic more generally, we only make within-garage comparisons. Weekend activity, when no drivers are restricted, should closely represent that absent restrictions. Weekend driving may increase overall as drivers substitute from restricted weekdays, but we expect this to be fairly uniform across plate numbers. Therefore, we use the weekend distribution of plate numbers as the expected distribution. We compare this expected distribution to that observed during weekday restricted and weekday nonrestricted periods. We discuss the results for regular (hourly) parkers first.

The expected distribution shown in Figure 3 contains 5,975 observations with at least 83 observations for each plate number. The distribution is not uniform because drivers can pay extra to choose a plate number. The number " 4 " is least popular as it is considered unlucky, while the number " 9 " is most popular because it is considered lucky. To measure compliance, we compare this to each weekday's observed distribution.

Figure 4 illustrates the comparison of the expected (weekend) distribution to the observed distribution during Tuesday restricted hours when plates " 2 " and " 7 " are restricted. The two restricted plates appear much less frequently than on the weekend and the other plates appear more frequently. ${ }^{41}$ Appendix J analyzes data for all five weekdays and applies formal statistical tests. Overall, compliance is high. Of the ten restricted plate numbers during the week, eight are not significantly different from zero. Only plates " 8 ," restricted on Wednesday, and " 9 ," restricted on Friday, are significantly different from zero and only in proportions of 2.7% and 2.4% and at significance levels of 7.3% and 8.3%. A few cars entered the garage with no license plate - likely a method for avoiding detection by camera - but they did not exceed 1.3% of all cars on any of the five days. The garage serves primarily professional businesses and an upscale mall so this may understate compliance to the extent that the parkers are high income and less sensitive to penalties.

[^20]There is little evidence of inter-temporal substitution across weekdays. Only four of the forty non-restricted plates during the week occur in a proportion greater than expected. Drivers do not seem to compensate by driving more on non-restricted days. We find no evidence of intra-day substitution when we compare the expected distribution to that for weekday, non-restricted hours. Of the fifty combinations of day/plate numbers, only five occur in greater proportion than expected and only one (" 2 " on Tuesday) is restricted. ${ }^{42}$

The parking data separately identify monthly pass holders. The expected (weekend) distribution contains only 168 observations but the weekdays all have more than 235 observations, consistent with this group containing mostly workers. This group also exhibits high compliance. Of the ten restricted plates none of them are statistically different from zero. As with regular parkers, we find little evidence of inter-temporal substitution across weekdays. Of the forty non-restricted plate/day observations, only six appear in significantly greater proportion than expected. There was insufficient data on monthly pass holders during non-restricted, weekday hours to perform statistical tests for intra-day substitution.

8. Conclusion

Beijing's driving restrictions reduced air pollution, but at the cost of less work time by those with discretionary labor supply. We identify the pollution reduction both inter-temporally and spatially, with larger drops at monitoring stations that are closer to major roads. This spatial test improves upon previous analyses by ruling out coincident policies unrelated to driving. Since most cities that monitor air pollution collect data from multiple locations, our approach can be used elsewhere to improve identification of policy changes that can be linked to identifiable locations of emissions. Because the approach allows precise distance measures, it can be used to disentangle the effects of different policies that affect separate but proximately close areas. We offer possible reasons for the policy's success in contrast to evidence of failure in Mexico City. Many of these reasons are shared by other rapidly-developing economies, which bear a substantial portion of the worldwide burden from urban air pollution (Cohen, et. al., 2005).

The higher commute costs created by the restrictions reduce daily labor supply. To overcome data limitations in measuring work time, we use substitution to TV viewership. Workers with discretion over their work time increase their viewership during restricted driving hours,

[^21]consistent with reduced work time due to higher commute costs. Viewership by workers with fixed work is unaffected consistent with their inability to adjust work time in the short run. Since factors that reduce both auto and public transit congestion, such as expanded subway capacity, would increase viewership for all kinds of workers, we can also eliminate these as explaining the pollution reduction. Driving restrictions impact workers with discretion the most; these workers are often business owners and entrepreneurs and important sources of new jobs and innovations.

We consider only short-run effects. As incomes in China increase, demand for driving will increase and so will the number of cars. ${ }^{43}$ Thus, to keep auto pollution levels constant may require further increases in driving costs (e.g., by restricting driving more than one day per week). To the extent that sharing vehicles is costly, this will keep average driving costs high and reduce the equilibrium number of cars. One cost of this would be further decreases in work time.

Although effective, the restrictions are not the most economically efficient way to reduce auto pollution. The restrictions arbitrarily reduce demand based on the last digit of a driver's license plate regardless of willingness to pay for driving. A more efficient allocation would result from increasing vehicle license fees. We provide rough calculations of the increase in fees necessary to accomplish an equivalent pollution reduction. Beijing has moved in this direction, beginning to limit the number of new car registrations in December 2010; however, it is too early to tell how binding the restrictions will be.

Bibliography

Andrews, S. Q. (2008). "Inconsistencies in Air Quality Metrics: ‘Blue Sky’ Days and PM_{10} Concentrations in Beijing," Environmental Research Letters, 3, 1-14.

Angrist, J. D. and J. Pischke (2009). Mostly Harmless Econometrics. Princeton University Press, Princeton, New Jersey.

Arnott, R. and M. Kraus (2003). "Principles of Transport Economics," in Randolph W. Hall, ed., Handbook of Transportation Science, 2nd ed., Kluwer Academic, 689-726.
Black, D. A., N. Kolesnikova, and L. J. Taylor (2010). "Why Do So Few Women Work in New York (And So Many in Minneapolis)? Labor Supply of Married Women across U.S. Cities," Federal Reserve Bank of St. Louis Working Paper \#2007-043F.
Cambridge Systematics, Inc. (2007). "Congestion Mitigation Commission Technical Analysis: License Plate Rationing Evaluation," memorandum.

[^22]Chay, K. Y. and M. Greenstone (2003). "The Impact of Air Pollution on Infant Mortality: Evidence from Geographic Variation in Pollution Shocks Induced by a Recession," The Quarterly Journal of Economics, 118, 1121 - 1167.
Chen, Y., G. Z. Jin, N. Kumar, and G. Shi (2011). "The Promise of Beijing: Evaluating the Impact of the 2008 Olympic Games on Air Quality," NBER Working Paper \#16907.
Cheung, K. and E. Thomson (2004). "The Demand for Gasoline in China: a Cointegration Analysis," Journal of Applied Statistics, 31, 533 - 544.
Cropper, M. L., Y. Jiang, A. Ablerini, and P. Baur (2010). "Getting Cars off the Road: The CostEffectiveness of an Episodic Pollution Control Program," Resources for the Future Discussion Paper \#10-25.
Cui, C., L. Lei, X. Deng, and L. Guo (2009). "Research on Transport Policy Effect for TECC Dynamic Calculation Model Based on TEPCC," Transport Standardization, 211, 84 - 86 (in Chinese).
Currie, J. and M. Neidell (2005). "Air Pollution and Infant Health: What Can We Learn from California's Recent Experience?" The Quarterly Journal of Economics, 120, 1003-1030.
Davis, L. W. (2008). "The Effect of Driving Restrictions on Air Quality in Mexico City," Journal of Political Economy, 116, $38-81$.

Deng, H. and A. C. Ma (2010). "Market Structure and Pricing Strategy of China’s Automobile Industry," The Journal of Industrial Economics, 58, 818-845.

Dong, X., D. Liu, Y. Yuang, and R. Che (2008). "Distribution Characteristics of Extractable Organic Matter in Atmospheric PM10 in Beijing," Geoscience, 22, 325 - 332 (in Chinese).
Duranton, G. and M. A. Turner (2011). "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, forthcoming.
EPA (2001). "National Air Pollutant Emission Trends, 1990 - 1998," EPA-454/R-00-002, March 2000.
EPA (2004). "Air Quality Criteria for Particulate Matter," EPA/600/P-99/002aF, October, 2004.
EPA (2009). "Air Quality Index: A Guide to Air Quality and Your Health," EPA-456/F-09-002, August 2009.
EPA (2010). "Air Pollution Control Orientation Course," accessed at http://www.epa.gov/apti/course422/.
Eskeland, G. S. and T. Feyzioglu (1995). "Rationing Can Backfire: The 'Day without a Car" in Mexico City," World Bank Policy Research Working Paper \#1554.
Gibbons, S. and S. Machin (2006). "Transport and Labour Market Linkages: Empirical Evidence, Implications for Policy and Scope for Further UK Research," Working Paper.
Goettler, R. and R. Shachar (2001). "Spatial Competition in the Network Television Industry," RAND Journal of Economics, 32, 624-656.

Gutiérrez-i-Puigarnau, E. and J. N. van Ommeren (2009). "Labour Supply and Commuting: Implications for Optimal Road Taxes," Tinbergen Institute Discussion Paper \#TI 2009008/3.

Gutiérrez-i-Puigarnau, E. and J. N. van Ommeren (2010). "Labour Supply and Commuting," Journal of Urban Economics, 68, 82 - 89.
Hao, J., L. Wang, L. Li, J. Hu, and X. Yu (2005). "An Analysis of Air Pollutant Contributors in Beijing and Alleviation Strategies," Science in China Series D Earth Sciences, 35, 115 122 (in Chinese).
Mahendra, A. (2008). "Vehicle Restrictions in Four Latin American Cities: Is Congestion Pricing Possible?" Transport Review, 28, 105-133.
Matus, K. et al. (2011). "Health Damages from Air Pollution in China," MIT Joint Program on the Science and Policy of Global Change Report No. 196.
Osakwe, R. (2010). "An Analysis of the Driving Restriction Implemented in San José, Costa Rica," Environment for Development Policy Brief.
Salas, C. (2010). "Evaluating Public Policies with High Frequency Data: Evidence for Driving Restrictions in Mexico City Revisited," Catholic University of Chile Working Paper No. 374.

Small, K. and E. Verhoef (2007). The Economics of Urban Transportation, Routledge, New York.

Watkiss, P., S. Pye, and M. Holland (2005). "CAFE CBA: Baseline Analysis 2000 to 2020," Report to the European Commission DG Environment, AEAT/ED51014/Baseline Scenarios, April 2005.
Wiedensohler, A., et al. (2007). "Secondary Particle Formation and Growth of Nucleated Particle into the CCN Size Range in a Polluted Region of North-Eastern China," in Leibniz Institute for Tropospheric Research, Biennial Report 2006-2007, 63 - 65.
Wolff, H. and L. Perry (2010). "Trends in Clean-Air Legislation in Europe: Particulate Matter and Low Emissions Zones," Working Paper.

Figure 1 Timeline of Pollution-Relevant Policies

Bus Fare ${ }^{1}$ 01/01	01/01/07				
Subway Fare ${ }^{2}$ 01/10/07	01/10/07				
Subway Line 5^{3} 07/10/07					
OddEven	07/20/08		09/20/08		
Subway Line 10/Airport ${ }^{4}$		07/19/08			
Olympic Games		08/08/08	08/24/08		
Factory Closures		07/20/08	09/20/08		
Subway Line $\mathbf{8}^{5}$				10/09/08	
OneDay69				04/10/09	
OneDay78				04/11/09	Present
Subway Line $\mathbf{4}^{6}$				09/28/09	

${ }^{1}$ Bus fares reduced from RMB 1 per trip to 0.4 for regular bus pass holders and to 0.2 for student pass holders. On January 15,2008 an additional reduction on suburban routes went into effect - fares were lowered by 60% for adults and by 80% for students. "Suburban" routes connect the ten districts and counties outside the inner city with the eight city districts inside. ${ }^{2}$ Subway fares reduced from RMB 2 per transfer to RMB 2 per trip regardless of number of transfers. ${ }^{3}$ Subway Line 5 runs south to north. ${ }^{4}$ Subway Line 10 runs southeast to northwest including the airport. ${ }^{5}$ Subway Line 8 serves the Olympics Park area. It had been opened on a more limited basis earlier to serve Olympic athletes and tourists. ${ }^{6}$ Subway Line 4 runs south to northwest.

Figure 2 Map of Beijing Traffic Restrictions and Monitoring Station Locations in 2008 and 2009

Map shows the locations of the monitoring stations (represented by triangles) within or close to the $6^{\text {th }}$ Ring Road (additional stations are located outside the $6^{\text {th }}$ Ring Road). The dashed lines are subway lines. The solid lines are the Ring Roads. The inner-most solid line (which partially overlaps with a subway line) is the $2^{\text {nd }}$ Ring Road and expanding out from there are the $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$, and $6^{\text {th }}$ Ring Roads.

Figure 3 Expected (Weekend) Distribution of License Plate Numbers

Ending license plate numbers of autos entering a Beijing parking garage inside the $4^{\text {th }}$ Ring Road on June 27 (Sunday) and July 3 (Saturday), 2010 collected by authors.

Figure $4 \quad$ Expected (Weekend) versus Observed (Tuesday) Distribution of License Plate Numbers

Ending license plate numbers of autos entering a Beijing parking garage inside the $4^{\text {th }}$ Ring Road collected by authors. Expected distribution based on June 27 (Sunday) and July 3 (Saturday), 2010. Observed distribution based on Tuesday, June 29, 2010 between the hours of 7:00 a.m. and 8:00 p.m. when plates " 2 " and " 7 " were restricted.

Table 1 Descriptive Statistics

Variable	N	Mean	Standard Deviation	Min	Max
Daily Aggregate Pollution Data					
Aggregate API	1,096	90.834	49.527	12.000	500.000
Log(Aggregate API)	1,096	4.392	0.486	2.485	6.215
PM 10	917	146.652	79.097	18.000	600.000
$\log \left(\mathrm{PM}_{10}\right)$	917	4.867	0.482	2.890	6.397
OddEven	1,096	0.075	0.263	0.000	1.000
OneDay	1,096	0.408	0.492	0.000	1.000
OneDay69	1,096	0.166	0.372	0.000	1.000
OneDay78	1,096	0.242	0.428	0.000	1.000
Olympics	1,096	0.016	0.124	0.000	1.000
Weekend	1,096	0.259	0.438	0.000	1.000
Holiday	1,096	0.071	0.257	0.000	1.000
Maximum Temperature	1,096	18.896	11.144	-6.900	39.600
Average Humidity	1,096	52.527	20.271	11.000	97.000
Total Rainfall	1,096	24.014	85.061	0.000	327.000
Sunshine	1,096	6.619	3.974	0.000	14.000
Wind Direction - Northeast	1,096	0.243	0.429	0.000	1.000
Wind Direction - Southeast	1,096	0.168	0.374	0.000	1.000
Wind Direction - Southwest	1,096	0.376	0.485	0.000	1.000
Wind Direction - Northwest	1,096	0.214	0.410	0.000	1.000
Max. Wind Speed - 1st Quartile	1,096	0.253	0.435	0.000	1.000
Max. Wind Speed - 2nd Quartile	1,096	0.249	0.433	0.000	1.000
Max. Wind Speed - 3rd Quartile	1,096	0.255	0.436	0.000	1.000
Max. Wind Speed - 4th Quartile	1,096	0.243	0.429	0.000	1.000
Daily Station-Level Pollution Data					
Station-Level API	25,482	90.227	50.751	6.000	500.000
Log(Station-Level API)	25,482	4.375	0.512	1.792	6.215
Station-Level Data					
Distance from Ring Road	24	8.210	11.884	0.406	38.578
Distance from Ring Road (w/i 4th Ring Road)	8	0.831	0.264	0.406	1.280
Viewership Data					
"Self-Employed" Viewership (thousands)	26,304	91	76	0	480
"Self-Employed" Log(thousands viewers)	26,304	4.042	1.179	0.000	6.176
"Hourly Workers" Viewership (thousands)	26,304	149	129	0	652
"Hourly Workers" Log(thousands viewers)	26,304	4.377	1.445	0.000	6.482
Total Rainfall	26,304	24.014	85.024	0.000	327.000
Average Wind Speed	26,304	2.212	0.915	0.500	6.700
Sunshine	26,304	6.619	3.972	0.000	14.000
Average Temperature	26,304	13.600	10.976	-9.400	31.600
Weekend	26,304	0.285	0.451	0.000	1.000
Holiday	26,304	0.071	0.257	0.000	1.000
Olympics	26,304	0.016	0.124	0.000	1.000
OddEven	26,304	0.075	0.263	0.000	1.000
OneDay69	26,304	0.166	0.372	0.000	1.000
OneDay78	26,304	0.242	0.428	0.000	1.000

Table 2 Relationship between API and PM_{10}

API	PM_{10}	Conversion Formula
0-50	0-50	API $=\mathrm{PM}_{10}$
50-200	50-350	API $=(1 / 2) * \mathrm{PM}_{10}+25$
200-300	350-420	API $=(10 / 7) * \mathrm{PM}_{10}-300$
300-400	420-500	API $=(5 / 4) * \mathrm{PM}_{10}-225$
400-500	500-600	$\mathrm{API}=\mathrm{PM}_{10}-100$

[^23]Table 3 Effect of Driving Restrictions on Log Aggregate Beijing Daily API (2007-2009), N = 1,095

	Baseline	Linear Trend	Quadratic Trend	$\begin{gathered} \hline \text { OneDay69 } \\ \text { vs. OneDay78 } \end{gathered}$
Lagged Log API	$\begin{aligned} & 0.31244^{* * *} \\ & (0.0300) \end{aligned}$	$\begin{aligned} & 0.3127^{* * *} \\ & (0.0300) \end{aligned}$	$\begin{gathered} 0.31144^{* * *} \\ (0.0300) \end{gathered}$	$\begin{aligned} & 0.31233^{* * *} \\ & (0.0300) \end{aligned}$
OddEven	$\begin{aligned} & -0.1928{ }^{* * *} \\ & (0.0436) \end{aligned}$	$\begin{aligned} & -0.21744^{\text {*** }} \\ & (0.0497) \end{aligned}$	$\begin{aligned} & -0.2068{ }^{* * *} \\ & (0.0512) \end{aligned}$	$\begin{aligned} & -0.19466^{* * *} \\ & (0.0447) \end{aligned}$
OneDay	$\begin{aligned} & -0.07933^{* * *} \\ & (0.0273) \end{aligned}$	$\begin{aligned} & -0.1308{ }^{* *} \\ & (0.0583) \end{aligned}$	$\begin{aligned} & -0.1481 \\ & (0.0591) \end{aligned}$	
OneDay*Weekend	$\begin{gathered} 0.0968 \text { ** } \\ (0.0460) \end{gathered}$	$\begin{aligned} & (0.0967) \\ & (0.0458) \end{aligned}$	$\begin{aligned} & (0.0965)^{* *} \\ & (0.0460) \end{aligned}$	$\begin{gathered} 0.0968 \text { ** } \\ (0.0460) \end{gathered}$
OneDay69				$\begin{aligned} & -0.0735^{* *} \\ & (0.0332) \end{aligned}$
OneDay78				$\begin{aligned} & -0.0833 \text { ** } \\ & (0.0334) \end{aligned}$
Olympics	$\begin{aligned} & -0.2105^{* * *} \\ & (0.0807) \end{aligned}$	$\begin{aligned} & -0.21099^{* * *} \\ & (0.0805) \end{aligned}$	$\begin{aligned} & -0.2107^{* * *} \\ & (0.0805) \end{aligned}$	$\begin{aligned} & -0.2107^{* * *} \\ & (0.0808) \end{aligned}$
Weekend	$\begin{aligned} & -0.0843^{* * *} \\ & (0.0312) \end{aligned}$	$\begin{aligned} & -0.0839^{* * *} \\ & (0.0310) \end{aligned}$	$\begin{aligned} & -0.08377^{\text {*** }} \\ & (0.0311) \end{aligned}$	$\begin{aligned} & -0.0843^{* * *} \\ & (0.0312) \end{aligned}$
Holiday	$\begin{array}{r} -0.0745 \\ (0.0485) \end{array}$	$\begin{array}{r} -0.0775 \\ (0.0485) \end{array}$	$\begin{array}{r} -0.0774 \\ (0.0489) \end{array}$	$\begin{gathered} -0.0745 \\ (0.0484) \end{gathered}$
Maximum Temperature	$\begin{gathered} 0.0483 \text { *** } \\ (0.0036) \end{gathered}$	$\begin{gathered} 0.0489 \text { *** } \\ (0.0036) \end{gathered}$	$\begin{aligned} & 0.0491 \\ & (0.0036) \end{aligned}$	$\begin{gathered} 0.04833^{* * *} \\ (0.0036) \end{gathered}$
Average Humidity	$\begin{aligned} & 0.0050 \text { *** } \\ & (0.0011) \end{aligned}$	$\begin{aligned} & 0.0050 \text { *** } \\ & (0.0011) \end{aligned}$	$\begin{aligned} & 0.0050 \text { *** } \\ & (0.0011) \end{aligned}$	$\begin{gathered} 0.0050 \text { *** } \\ (0.0011) \end{gathered}$
Total Rainfall	$\begin{array}{r} -0.0001 \\ (0.0001) \end{array}$	$\begin{array}{r} -0.0001 \\ (0.0001) \end{array}$	$\begin{array}{r} -0.0001 \\ (0.0001) \end{array}$	$\begin{gathered} -0.0001 \\ (0.0001) \end{gathered}$
Sunshine	$\begin{aligned} & -0.03266^{* * *} \\ & (0.0041) \end{aligned}$	$\begin{aligned} & -0.03277^{\text {*** }} \\ & (0.0042) \end{aligned}$	$\begin{aligned} & -0.0328{ }^{* * *} \\ & (0.0042) \end{aligned}$	$\begin{aligned} & -0.03266^{* * *} \\ & (0.0041) \end{aligned}$
Wind Direction - Southeast	$\begin{array}{r} 0.0117 \\ (0.0512) \end{array}$	$\begin{array}{r} 0.0135 \\ (0.0512) \end{array}$	$\begin{array}{r} 0.0157 \\ (0.0512) \end{array}$	$\begin{array}{r} 0.0110 \\ (0.0514) \end{array}$
Wind Direction - Southwest	$\begin{array}{r} 0.0300 \\ (0.0416) \end{array}$	$\begin{array}{r} 0.0309 \\ (0.0417) \end{array}$	$\begin{array}{r} 0.0323 \\ (0.0417) \end{array}$	$\begin{array}{r} 0.0295 \\ (0.0418) \end{array}$
Wind Direction - Northwest	$\begin{array}{r} -0.1809 \\ (0.1414) \end{array}$	$\begin{array}{r} -0.1819 \\ (0.1406) \end{array}$	$\begin{gathered} -0.1736 \\ (0.1414) \end{gathered}$	$\begin{gathered} -0.1822 \\ (0.1422) \end{gathered}$
Max. Wind Speed - 2nd Quartile	$\begin{aligned} & -0.1955^{* * *} \\ & (0.0626) \end{aligned}$	$\begin{aligned} & -0.20033^{\text {*** }} \\ & (0.0628) \end{aligned}$	$\begin{aligned} & -0.19900^{\text {*** }} \\ & (0.0630) \end{aligned}$	$\begin{aligned} & -0.19500^{* * *} \\ & (0.0625) \end{aligned}$
Max. Wind Speed - 3rd Quartile	$\begin{aligned} & -0.22600^{* * *} \\ & (0.0575) \end{aligned}$	$\begin{aligned} & -0.22888^{* * *} \\ & (0.0574) \end{aligned}$	$\begin{aligned} & -0.22755^{* * *} \\ & (0.0574) \end{aligned}$	$\begin{aligned} & -0.2260 \text { *** } \\ & (0.0575) \end{aligned}$
Max. Wind Speed - 4th Quartile	$\begin{array}{r} -0.0006 \\ (0.0633) \end{array}$	$\begin{array}{r} -0.0034 \\ (0.0632) \end{array}$	$\begin{array}{r} 0.0025 \\ (0.0637) \end{array}$	$\begin{gathered} -0.0010 \\ (0.0635) \end{gathered}$
Adjusted R ${ }^{2}$ Prob > F (Time Trend)	0.5011	$\begin{gathered} 0.5017 \\ 25.6 \\ \hline \end{gathered}$	$\begin{gathered} 0.5023 \\ 34.6 \end{gathered}$	0.5011

Dependent variable is log of aggregate, daily API. Standard errors in parentheses. NeweyWest standard errors with one-day lag used in all regressions. $*=10 \%$ significance, $* *=5 \%$ significance, ${ }^{* * *}=1 \%$ significance. Month dummies and interactions between wind speed and wind direction included in all regressions. A linear time trend is included in Model 2 and a quadratic time trend in Model 3. The F-test is the joint significance level of the time trend variables.

Table 4 Effect of Driving Restrictions on Aggregate Daily Pollution Levels (2007-2009)

	Log(API)		Log(PM10)
	Baseline	Blue Sky/ SO_{2}	
Lagged Log API (PM_{10})	$\begin{aligned} & 0.3124^{* * *} \\ & (0.0300) \end{aligned}$	$\begin{gathered} 0.24566^{* * *} \\ (0.0255) \end{gathered}$	$\begin{aligned} & 0.28399^{* * *} \\ & (0.0238) \end{aligned}$
OddEven	$\begin{aligned} & -0.19288^{* * *} \\ & (0.0436) \end{aligned}$	$\begin{aligned} & -0.18877^{* * *} \\ & (0.0322) \end{aligned}$	$\begin{aligned} & -0.25155^{* * *} \\ & (0.0468) \end{aligned}$
OneDay	$\begin{aligned} & -0.07933^{* * *} \\ & (0.0273) \end{aligned}$	$\begin{aligned} & -0.08777^{* * *} \\ & (0.0234) \end{aligned}$	$\begin{aligned} & -0.10455^{* * *} \\ & (0.0294) \end{aligned}$
OneDay*Weekend	$\begin{gathered} 0.0968 \text { ** } \\ (0.0460) \end{gathered}$	$\begin{array}{r} 0.0499 \\ (0.0384) \end{array}$	$\begin{array}{r} 0.0749 \\ (0.0540) \end{array}$
Olympics	$\begin{aligned} & -0.2105{ }^{* * *} \\ & (0.0807) \end{aligned}$	$\begin{aligned} & -0.0181 \\ & (0.0625) \end{aligned}$	$\begin{gathered} -0.1326{ }^{*} \\ (0.0790) \end{gathered}$
Weekend	$\begin{aligned} & -0.08433^{* * *} \\ & (0.0312) \end{aligned}$	$\begin{aligned} & -0.07199^{* * *} \\ & (0.0260) \end{aligned}$	$\begin{aligned} & -0.1198{ }^{* * *} \\ & (0.0348) \end{aligned}$
Holiday	$\begin{gathered} -0.0745 \\ (0.0485) \end{gathered}$	$\begin{gathered} -0.0364 \\ (0.0380) \end{gathered}$	$\begin{gathered} -0.0769 \\ (0.0523) \end{gathered}$
Blue Sky		$\begin{aligned} & -0.75188^{* * *} \\ & (0.0555) \end{aligned}$	
Blue Sky*OddEven		$\begin{gathered} 0.23855^{* * *} \\ (0.0738) \end{gathered}$	
Blue Sky*OneDay		$\begin{array}{r} 0.0787 \\ (0.0682) \end{array}$	
SO2		$\begin{aligned} & -0.29055^{* * *} \\ & (0.0705) \end{aligned}$	
SO2*OneDay		$\begin{array}{r} 0.0984 \\ (0.0905) \end{array}$	
$\begin{aligned} & \text { Adjusted } R^{2} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} 0.5011 \\ 1,095 \\ \hline \end{gathered}$	$\begin{gathered} 0.6722 \\ 1,095 \\ \hline \end{gathered}$	$\begin{gathered} 0.4742 \\ 916 \\ \hline \end{gathered}$

Standard errors in parentheses. For Models 1 and 2, Newey-West standard errors with one-day lag are used. $*=10 \%$ significance, $* *=5 \%$ significance, $* * *=1 \%$ significance. Month dummies, maximum temperature, average humidity, total rainfall, hours of sunshine, wind speed, wind direction, and interactions between wind speed and wind direction included in all regressions.

Table 5 Effect of Driving Restrictions on Log Daily API at Beijing Pollution Monitoring Stations, Fixed Effects Estimates (2007-2009)

	All Stations	Stations within 4th Ring Road	
		Linear Distance	Quadratic Distance
Lagged Log API	$\begin{aligned} & 0.32277^{* * *} \\ & (0.0047) \end{aligned}$	$\begin{aligned} & 0.31388^{* * *} \\ & (0.0035) \end{aligned}$	$\begin{aligned} & 0.31344^{* * *} \\ & (0.0036) \end{aligned}$
OddEven	$\begin{aligned} & -0.18233^{* * *} \\ & (0.0088) \end{aligned}$	$\begin{aligned} & -0.20633^{* * *} \\ & (0.0223) \end{aligned}$	$\begin{aligned} & -0.31866^{* * *} \\ & (0.0297) \end{aligned}$
OddEven*Distance		$\begin{gathered} 0.09111^{* * *} \\ (0.0291) \end{gathered}$	$\begin{gathered} 0.3824{ }^{* * *} \\ (0.0687) \end{gathered}$
OddEven*Distance ${ }^{2}$			$\begin{aligned} & -0.1726{ }^{* * * *} \\ & (0.0384) \end{aligned}$
OneDay	$\begin{aligned} & -0.14744^{* * *} \\ & (0.0097) \end{aligned}$	$\begin{aligned} & -0.0884^{* * *} \\ & (0.0226) \end{aligned}$	$\begin{aligned} & -0.19399^{* * *} \\ & (0.0273) \end{aligned}$
OneDay*Distance		$\begin{gathered} 0.0578{ }^{* *} \\ (0.0285) \end{gathered}$	$\begin{gathered} 0.33100^{* * *} \\ (0.0690) \end{gathered}$
OneDay*Distance ${ }^{2}$			$\begin{aligned} & -0.16200^{* * *} \\ & (0.0404) \end{aligned}$
OneDay*Weekend	$\begin{aligned} & 0.0690 \text { *** } \\ & (0.0039) \end{aligned}$	$\begin{aligned} & 0.0782^{* * *} \\ & (0.0053) \end{aligned}$	$\begin{aligned} & 0.07822^{* * *} \\ & (0.0053) \end{aligned}$
Olympics	$\begin{aligned} & -0.22444^{* * *} \\ & (0.0088) \end{aligned}$	$\begin{aligned} & -0.21666^{* * *} \\ & (0.0173) \end{aligned}$	$\begin{aligned} & -0.21666^{* * *} \\ & (0.0173) \end{aligned}$
Weekend	$\begin{aligned} & -0.05877^{* * *} \\ & (0.0030) \end{aligned}$	$\begin{aligned} & -0.06788^{* * *} \\ & (0.0037) \end{aligned}$	$\begin{aligned} & -0.06777^{* * *} \\ & (0.0037) \end{aligned}$
Holiday	$\begin{aligned} & -0.0738{ }^{* * *} \\ & (0.0034) \end{aligned}$	$\begin{aligned} & -0.06422^{* * *} \\ & (0.0077) \end{aligned}$	$\begin{aligned} & -0.06433^{* * *} \\ & (0.0077) \end{aligned}$
Adjusted R ${ }^{2}$	0.4952	0.4960	0.4960
Number of Stations	24	8	8
N	25,390	8,319	8,319

Dependent variable is log of daily API at monitoring stations. Robust standard errors clustered at the station level in parentheses. * = 10\% significance, ${ }^{* *}=5 \%$ significance, ${ }^{* * *}=1 \%$ significance. Month dummies, maximum temperature, average humidity, total rainfall, hours of sunshine, wind speed quartiles, wind direction dummies, interactions between wind speed and wind direction included in all regressions. A quadratic time trend included in Model 1 and a cubic time trend in Models 2 and 3.

Table 6 Effect of Driving Restrictions on Log Hourly Television Viewership (2007-2009), N = 26,303

	"Self-Employed"		"Hourly Workers"	
	Coeff.	Std. Err.	Coeff.	Std. Err.
Lagged Viewership	0.5507	$(0.0081){ }^{* * *}$	0.4373	(0.0094) ***
Total Rainfall	-0.0001	$(0.0000){ }^{* *}$	-0.0001	$(0.0000){ }^{* *}$
Average Wind Speed	0.0048	(0.0031)	0.0045	(0.0030)
Sunshine	-0.0024	(0.0007) ***	-0.0016	$(0.0007){ }^{* *}$
Average Temperature	-0.0009	(0.0009)	-0.0020	$(0.0009){ }^{* *}$
Weekend	0.0183	(0.0080) **	0.0709	$(0.0082){ }^{* * *}$
Holiday	0.0487	(0.0125) ***	0.1306	$(0.0140){ }^{* * *}$
Olympics	0.0971	$(0.0196){ }^{* * *}$	0.0902	$(0.0229){ }^{* * *}$
OddEven	0.1157	$(0.0153){ }^{* * *}$	0.0620	$(0.0150){ }^{* * *}$
OddEven*Weekend	-0.0118	(0.0174)	0.0329	(0.0198) *
OddEven*Holiday	-0.0916	$(0.0399){ }^{* *}$	-0.0640	(0.0422)
OneDay69*Weekend	0.0235	(0.0207)	0.0142	(0.0199)
OneDay69*Holiday	0.0979	(0.0319) ***	0.0060	(0.0379)
OneDay78*Weekend	0.0865	(0.0242) ***	0.0264	(0.0211)
OneDay78*Holiday	0.0718	(0.0389) *	-0.0310	(0.0320)
OneDay69*Restr. Hours	0.1079	$(0.0164){ }^{* * *}$	0.0147	(0.0163)
OneDay69*Non-Restr. Evening Hours	0.0074	(0.0165)	-0.0039	(0.0161)
OneDay69*Non-Restr. Morning Hours	-0.0533	(0.0355)	-0.0066	(0.0312)
OneDay78*Restr. Hours	0.1521	(0.0213) ***	-0.0231	(0.0187)
OneDay78*Non-Restr. Evening Hours	0.0761	$(0.0206){ }^{* * *}$	0.0402	$(0.0180){ }^{* *}$
OneDay78*Non-Restr. Morning Hours	0.1553	$(0.0307){ }^{* * *}$	0.0887	(0.0277) ***
R^{2}	0.8850		0.9291	

Dependent variable is log number of thousands of individuals watching television each hour. Newey-West standard errors with four-hour lag in parentheses. * $=10 \%$ significance, $* *=5 \%$ significance, ${ }^{* * *}=1 \%$ significance. Hour and month dummies and a 7th-order polynomial expansion of a daily time trend included in both regressions.

Appendix A Labor Supply Model with OddEven Driving Restrictions

Consider a two-stage model. In the first stage, workers choose their optimal commute mode (auto, public transit, or not working if they have discretion over their time). In stage two, they choose work time, leisure time, and goods consumption to maximize utility given their first-stage choice. Workers consider how their commute choice affects their utility so we solve the model by backward induction. For second-stage utilities, we modify a standard CobbDouglas labor supply function to accommodate commute mode choice and distinguish restricted from non-restricted days. We model the OddEven restrictions and consider each worker's utility over a representative two-day period: one non-restricted and one restricted day. With driving restrictions, the worker suffers a penalty for driving on the restricted day. Absent the policy, the two days are identical. We consider the OddEven policy because it is simpler to model than and generates the same intuition as the OneDay policy. ${ }^{1}$

There are two groups of workers: those with discretionary work time (D) and those with fixed work times (F) in proportions λ^{D} and $\lambda^{F}=1-\lambda^{D}$ respectively. The distribution of workers in each group is given by the cumulative density functions $G^{D}(\theta)$ and $G^{F}(\theta)$ where $\theta=\left\{w, Y, c_{i}, t_{i}, M_{i}\right\} . W$ is hourly wage, Y is two-day non-wage income, and i is commute mode. Possible commute modes are auto $(i=A)$, public transit $(i=P)$, and for those with discretion, not working $(i=0)$. For mode i, c_{i} is daily commute cost and t_{i} time (with $t_{0}=c_{0}=0$). M_{i} is the worker's daily non-monetary disutility from commuting by mode i. Commuting by either mode is unpleasant: $M_{P}, M_{A}>M_{0}=0$. A worker's two-day utility conditional on commute choices (i for the non-restricted and j for the restricted day) is:

$$
\begin{equation*}
U_{i j}(\theta)=L_{N i j}^{\alpha} X_{w j}^{1-\alpha} L_{R j}^{\alpha} X_{R j}^{1-\alpha}-M_{i}-M_{j}-\mathrm{I}_{\text {Policy }} \mathrm{I}_{j=A} Q ; i, j \in\{A, P, 0\} \tag{A1}
\end{equation*}
$$

with $(0<\alpha<1)$. This distinguishes the restricted (R) and non-restricted (N) days. L is daily leisure hours and X daily consumption of other goods. We ignore across-day discounting and assume that utility derived from each twoday period is independent of other two-day periods. I is an indicator variable equal to one when the condition is true and zero otherwise and Policy is a logical variable distinguishing the policy period. Q is expected penalty (monetary and psychic) in utility terms of driving a car while restricted.

We assume perfect compliance and full-time work absent the restrictions and focus on short-run effects:
(A) Absent the restrictions, commute times and costs are low enough that it is optimal for all workers to work both days.
(B) Compliance costs are small enough that workers do not leave the workforce or transition between jobs with discretionary and fixed work times. This ensures that the restrictions do not change these proportions.
(C) Wages and house prices do not adjust, workers do not move their residences or change their workplace (i.e., commute times and costs are fixed), and workers do not purchase a second car to comply with the restrictions.
(D) The penalty is great enough that it is never optimal to drive on a restricted day.
(E) License plate numbers are uniformly distributed with half restricted each day.

After solving the model for each worker we examine the aggregate effects on pollution and work time across the distributions of workers.

Second Stage: Discretionary Work Time: Those with discretion may choose to work either "full time" (both days) or "reduced time" (one day). Assumption (A) and diminishing marginal utility of consumption ensure that the

[^24]worker will at most remain home on the restricted day. ${ }^{2}$ We consider only a representative two-day period so all restricted days are identical. As a result, "reduced time" means taking every other day off from work. A more general model with random variation in daily productivity and leisure options would allow for less regular and extreme reductions. This simple model is adequate since we do not use it for calibration or direct estimation. Ignoring the penalty Q, the worker's second-stage problem conditional on mode choices i and j is:
\[

$$
\begin{align*}
& \text { Max } \quad U_{i j}=L_{\mathrm{Nj}}^{\alpha} X_{\mathrm{Nj}}^{1-\alpha} L_{\mathrm{Rj}}^{\alpha} X_{\mathrm{Rj}}^{1-\alpha}-M_{i}-M_{j} ; i, j \in\{A, P, 0\} \quad \text { st: } \tag{A2}\\
& \left\{H_{\text {Nij }}, L_{N i j}, X_{\text {Nij }}\right\} \\
& Y+w\left(H_{N i j}+H_{R i j}\right)-\left(X_{N i j}+c_{i}\right)-\left(X_{R i j}+c_{j}\right)=0, \tag{A3}\\
& T-\left(H_{N i j}+t_{i}\right)-L_{N i j}=0 \text {, } \tag{A4a}\\
& \text { (A4b) } T-\left(H_{R i j}+t_{j}\right)-L_{R i j}=0 \text {, } \\
& \text { (A5b) } \quad H_{R i j} \geq 0 \leftarrow \kappa_{R} \text {; }
\end{align*}
$$
\]

where T is total available hours per day, H is daily working hours, and the κ 's are Kuhn-Tucker multipliers. Equation (A3) is the resident's two-day budget constraint with the price of X normalized to one. Equations (A4a) and (A4b) are the resident's day-by-day time constraints. We assume that the budget and time constraints bind but that the constraints on positive working hours may not. Substituting (A3) and (A4) the problem becomes:
(A6) $\underset{\left\{H_{N j},,_{N i j}, H_{R i j}\right\}}{\operatorname{Max}} U_{i j}=\left(T-H_{N i j}-t_{i}\right)^{\alpha} X_{N i}^{(1-\alpha)}\left(T-H_{R i j}-t_{j}\right)^{\alpha}\left(Y+w H_{N i j}+w H_{R i j}-X_{N i j}-c_{i}-c_{j}\right)^{1-\alpha}-M_{i}-M_{j}$
The first-order conditions for the worker's problem are:

$$
\begin{equation*}
\left[H_{N i j}\right]: \frac{\alpha\left(U_{i j}+M_{i}+M_{j}\right)}{T-H_{N i j}-t_{i}}=\frac{(1-\alpha) w\left(U_{i j}+M_{i}+M_{j}\right)}{Y+w H_{N i j}+w H_{R i j}-X_{N i j}-c_{i}-c_{j}}, \tag{A7a}
\end{equation*}
$$

$$
\begin{equation*}
\left[H_{R i j}\right]: \frac{\alpha\left(U_{i j}+M_{i}+M_{j}\right)}{T-H_{R i j}-t_{j}}-\kappa=\frac{(1-\alpha) w\left(U_{i j}+M_{i}+M_{j}\right)}{Y+w H_{N i j}+w H_{R i j}-X_{N i j}-c_{i}-c_{j}}, \tag{A7b}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{N i j}\right]: \frac{(1-\alpha)\left(U_{i j}+M_{i}+M_{j}\right)}{X_{N i j}}=\frac{(1-\alpha)\left(U_{i j}+M_{i}+M_{j}\right)}{Y+w H_{N i j}+w H_{R i j}-X_{N i j}-c_{i}-c_{j}}, \tag{A8}
\end{equation*}
$$

A9a) $\left[\kappa_{R}\right]: H_{R i j} \kappa_{R}=0$,
(A9b) $\left[\kappa_{N}\right]: H_{N i j} \kappa_{N}=0$.
There are two cases to solve: "full time" $\left(H_{N i j}, H_{R i j}>0 ; i, j \in\{A, P\}\right)$ and "reduced time" $\left(H_{N i 0}>0, \quad i \in\{A, P\}\right.$; but $H_{R i 0}=0$ or vice versa). Conditional on the commute mode choices i and j, define:
(A10a) $N T_{N i}=T-t_{i}$ and $N T_{R j}=T-t_{j}$,
(A10c) $\Delta t_{j i}=t_{j}-t_{i}$,
$(\mathrm{A} 10 \mathrm{~d}) \quad \Delta c_{j i}=\left(c_{j}-c t_{i}\right) / w$.
$N T_{N i}$ and $N T_{R j}$ are the time available net of commuting on restricted and non-restricted days while $N I_{i j}$ is the twoday, non-wage income net of commute costs. $\Delta t_{j i}$ and $\Delta c_{j i}$ are the difference in commute times and costs respectively on the restricted versus non-restricted days. Both $N I_{i j}$ and $\Delta c_{j i}$ are converted to hours based on the opportunity cost of time.

[^25]Case 1): "Full Time" $\left(H_{N i j}, H_{R i j}>0 ; i, j \in\{A, P\}\right)$. Solving the model (the Optional Appendix contains a detailed derivation), the results are:
(A11a) $\quad H_{N i j}=(1-\alpha) N T_{N i}-\frac{\alpha}{2}\left[N I_{i j}-\Delta t_{j i}\right]$,
(A11b) $\quad H_{R i j}=(1-\alpha) N T_{R j}-\frac{\alpha}{2}\left[N I_{i j}+\Delta t_{j i}\right]$;
(A12) $L_{N i j}=L_{R i j}=\alpha\left[N T_{N i}+\frac{1}{2}\left(N I_{i j}-\Delta t_{j i}\right)\right]$,
(A13) $\quad X_{N i j}=X_{R i j}=(1-\alpha) w\left[N T_{N i}+\frac{1}{2}\left(N I_{i j}-\Delta t_{j i}\right)\right]$.
Two-day indirect utility is, where we re-introduce the penalty Q :

$$
\begin{equation*}
U_{i j}=\left(k w^{(1-\alpha)}\right)^{2}\left(N T_{N i}+\frac{N I_{i j}}{2}-\frac{\Delta t_{j i}}{2}\right)^{2}-M_{i}-M_{j}-\mathrm{I}_{\text {Policy }} \mathrm{I}_{j=A} Q ; i, j \neq 0 \text { where }\left(k=\alpha^{\alpha}(1-\alpha)^{(1-\alpha)}\right) . \tag{A14}
\end{equation*}
$$

Leisure time is equated across the days. For workers who prefer public transit the work day lengths are the same: $H_{R P P}-H_{N P P}=0$. For those who prefer driving, their restricted work day will be shorter or longer than their nonrestricted depending on whether their public transit commute is longer or shorter than by car $\left(H_{R A P}-H_{N A P}=(\alpha-1) \Delta t_{P A}\right)$.

Case 2): "Reduced Time" ($H_{N i 0}>0, i \in\{A, P\}$ but $H_{R i j}=0$). We solve the model assuming zero hours on the restricted day. In this case $t_{R}=c_{R}=0$. The results for instead working zero hours on the non-restricted days are symmetric but Appendix B shows that this is not optimal under fairly general conditions. Solving (the Optional Appendix contains a detailed derivation), the results are:
(A15a)

$$
H_{N i 0}=\frac{2}{1+(1-\alpha)}\left[(1-\alpha) N T_{N i}-\frac{\alpha}{2} N I_{i 0}\right],
$$

(A15b) $H_{R i 0}=0$;
(A16a) $\quad L_{N i 0}=\frac{\alpha}{1+(1-\alpha)}\left[N T_{N i}+N I_{i 0}\right]$,
(A16b) $L_{R i 0}=T$;
(A17a) $\quad X_{N i 0}=\frac{(1-\alpha) w}{1+(1-\alpha)}\left[N T_{i}+N I_{i 0}\right]$,
(A17b) $\quad X_{R i 0}=\frac{(1-\alpha) w}{1+(1-\alpha)}\left[N T_{i}+N I_{i 0}\right]$.
Two-day indirect utility is:

$$
\begin{equation*}
U_{i 0}=\frac{\left(k w^{(1-\alpha)}\right)^{2}}{(1+(1-\alpha))^{1+(1-\alpha)} \alpha^{\alpha}}\left(N T_{N i}+N I_{i 0}\right)^{1+(1-\alpha)} T^{\alpha}-M_{i} \text {, where }\left(k=\alpha^{\alpha}(1-\alpha)^{(1-\alpha)}\right) \tag{A18}
\end{equation*}
$$

The worker cannot balance leisure or work time across restricted and non-restricted days. The results for $H_{N i j}=0$ but $H_{R i j}>0$ are obtained by replacing N with R, i with 0 , and 0 with j.

Second Stage: Fixed Work Times: Since daily work hours are fixed $\left(H_{N i j}=H_{R i j}=\bar{H}>0 ; i, j \in\{A, P\}\right)$, the worker chooses only $L_{N i j}, L_{R i j}, X_{N i j}$, and $X_{R i j}$. Solving, (the Optional Appendix contains a detailed derivation), the results are:
(A19a) $L_{N i j}=T-\bar{H}-t_{i}$,
(A19b) $L_{R i j}=T-\bar{H}-t_{j}$;

$$
\begin{equation*}
X_{N i j}=X_{R i j}=w\left[\bar{H}+\frac{1}{2} N I_{i j}\right] . \tag{A20}
\end{equation*}
$$

Two-day indirect utility is, where we re-introduce the penalty Q :

$$
\begin{equation*}
U_{i j}=w^{2(1-\alpha)}\left[\left(T-\bar{H}-t_{i}\right)\left(T-\bar{H}-t_{j}\right)\right]^{\alpha}\left(\bar{H}+\frac{N I_{i j}}{2}\right)^{2(1-\alpha)}-M_{i}-M_{j}-\mathrm{I}_{\text {Policy }} \mathrm{I}_{j=A} Q ; i, j \neq 0 \tag{A21}
\end{equation*}
$$

The difference in leisure time on restricted versus non-restricted days depends on relative commute times for the chosen modes $\left(L_{R i j}-L_{N i j}=\Delta t_{j i}\right)$ but the difference is not shared across the two days.

This completes the second-stage solution for type θ. We now consider the first stage when workers choose their commute mode. Using the distributions of the θ 's we can specify the share of each commute mode for both categories of workers: $s_{i j}^{k}, k \in\{D, F\} ; i, j \in\{A, P, 0\}$. We solve the first stage with and without the restrictions.

First Stage - Without Restrictions: Without the restrictions, the two days are identical and the worker makes the same choice across days $(i=j)$. The shares of each mode are $(k=D, F)$:
(A22a) $s_{\mu}^{k}=\int\left\{\theta \mid U_{A A}(\theta)>U_{i i}(\theta) ; i=P, 0\right\} d G^{k}(\theta) d \theta,\left(\right.$ A22b) $s_{p p}^{k}=\int\left\{\theta \mid U_{P P}(\theta)>U_{i i}(\theta) ; i=A, 0\right\} d G^{k}(\theta) d \theta$,
where $U_{i j}$ is given by (A14) and Assumption (A) implies $s_{00}^{k}=0$ so that $s_{A M}^{k}+s_{p p}^{k}=1$.
First Stage - With Restrictions: Assumption (D) ensures that Q is great enough that no workers drive on their restricted day so that $i \in\{A, P\}$ and $j \in\{P, 0\}$. Regardless of whether they have discretion or not, commuters who prefer public transit absent the restrictions will take public transit both days under the restrictions so that $\hat{s}_{P p}^{k}=s_{P p}^{k} ; k \in\{D, F\}$ where we use hats to denote outcomes under the restrictions. This follows because $U_{P P}(\theta)>U_{A A}(\theta)$ implies $U_{P P}(\theta)>U_{A P}(\theta)$ in both Equations (A14) and (A21).

Workers who prefer to drive absent the restrictions will continue to drive on the non-restricted day. On the restricted day, those with fixed work times must take public transit on the restricted day so that $\hat{s}_{A 0}^{F}=0$ and $\hat{s}_{A P}^{F}=s_{M A}^{F}$. On the restricted day, those with discretion can either take public transit or not work. The shares doing each are:
(A23a) $\hat{s}_{A P}^{D}=\int\left\{\theta \mid U_{A P}(\theta)>U_{A 0}(\theta)\right\} d G^{D}(\theta) d \theta$, (A23b) $\hat{s}_{A 0}^{D}=\int\left\{\theta \mid U_{A 0}(\theta)>U_{A P}(\theta)\right\} d G^{D}(\theta) d \theta$.
Given Assumption (B), we know that $\hat{S}_{A P}^{D}+\hat{S}_{A 0}^{D}=s_{A A}^{D}$ and if some commuters find it optimal to stay home when restricted $\left(\hat{s}_{A 0}^{D}>0\right)$ then $\hat{S}_{A P}^{D}<s_{A A}^{D}$.

Extensive Margin Effects: For those with fixed work times, there is no effect on the extensive margin since they have no control over work time (i.e., $\hat{s}_{A P}^{F}=s_{A A}^{F}$ and $\hat{s}_{P P}^{F}=s_{P P}^{F}$). This yields Implication 1 in the main text.

Assumption (A) implies that absent the restrictions no workers with discretionary work time stay home on the restricted day. ${ }^{3}$ With the restrictions, this increases to $\lambda^{D} \hat{S}_{A 0}^{D} / 2$ - the density of workers choosing "reduced time." This yields Implication 2 in the main text.

[^26]Under the restrictions, daily car density and pollution on Beijing roads decreases by $\frac{1}{2}\left(\lambda^{D} s_{A}^{D}+\lambda^{F} s_{M}^{F}\right)$. That is, half the drivers cannot drive on a given day. This yields Implication 3 in the main text.

Intensive Margin Effects - Workers with Fixed Work Times: Those who took public transit absent the restrictions will still do so and their leisure time is unaffected $\left(\hat{L}_{N P P}-L_{N P P}=\hat{L}_{R P P}-L_{R P P}=0\right)$ by Equation (A19). Those who prefer to drive, with density $\lambda^{F} s_{A A}^{F} / 2$, are forced to take public transit and leisure is unaffected on non-restricted $\left(\hat{L}_{N A P}-L_{N A A}=0\right)$ but affected on restricted days $\left(\hat{L}_{R A P}-L_{R A A}=-\Delta t_{P A}\right)$ by Equation (A19). Since intensive margin effects are zero for those who normally take public transit and ambiguous for those who normally drive, the total effect $\left(-\lambda^{F} s_{A A}^{F} \Delta t_{P A} / 2\right)$ could be positive or negative. This yields Implication 4 in the main text.

Intensive Margin Effects - Workers with Discretionary Work Time: Workers who prefer public transit absent the restrictions choose to work "full time" and there is no effect on leisure time: $\hat{L}_{N P P}-L_{N P P}=\hat{L}_{R P P}-L_{R P P}=0$ by Equation (A12). Those who prefer driving absent the restrictions and choose to work "full time" must commute by public transit on the restricted day and their leisure time could increase or decrease depending on whether public transit commute times and costs are less than those by car or not: $\hat{L}_{N A P}-L_{N A A}=\hat{L}_{R A P}-L_{R A A}=-\alpha / 2\left(\Delta c_{P A}+\Delta t_{P A}\right)$ by Equation (A12).

For workers who work "reduced time," leisure time most likely decreases on the non-restricted day. Equations (A12) and (A16a) imply:

$$
\begin{equation*}
\hat{L}_{N A 0}-L_{N A A}=\frac{\alpha}{1+(1-\alpha)}\left[(\alpha-1)\left(T-t_{A}\right)+\frac{\alpha}{2} \frac{Y}{w}+(1-\alpha) \frac{c_{A}}{w}\right] \equiv \Upsilon . \tag{A24}
\end{equation*}
$$

That the expression in Equation (A24) can be positive (negative) is most easily seen by setting α close to one (zero). This expression is more likely positive the greater Y, c_{A}, or t_{A}. The total effect across all workers with discretionary work time is $\lambda^{D}\left[\hat{S}_{A 0}^{D} r-\hat{S}_{A P}^{D} \alpha / 2\left(\Delta c_{P A}+\Delta t_{P A}\right)\right]$, which could be positive or negative. This yields Implication 5 in the main text.

Appendix B

Non-Optimality of Staying Home on Non-Restricted Day

Working on the restricted day but not on the non-restricted is not optimal under at least two general cases:
Case 1: $M_{A}=M_{P}$ and $c_{A}>c_{P}$. For a worker who prefers to commute by auto, $U_{A A}>U_{P P}$ which by Equation (A14) implies:

$$
\begin{equation*}
\left(N T_{N A}+\frac{N I_{A A}}{2}\right)^{2}>\left(N T_{N P}+\frac{N I_{P P}}{2}\right)^{2} \Rightarrow\left(t_{P}-t_{A}\right)>\frac{2}{w}\left(c_{A}-c_{P}\right) \text {. Now: } \tag{B1}
\end{equation*}
$$

(B2) $\quad c_{A}>c_{P} \Rightarrow \frac{1}{w}\left(c_{A}-c_{P}\right)<\frac{2}{w}\left(c_{A}-c_{P}\right) \Rightarrow\left(t_{P}-t_{A}\right)>\frac{1}{w}\left(c_{A}-c_{P}\right)$ which implies:
(B3) $\quad\left(N T_{N A}+N I_{A 0}\right)>\left(N T_{N P}+N I_{P 0}\right) \Rightarrow\left(N T_{N A}+N I_{A 0}\right)^{1+(1-\alpha)}>\left(N T_{N P}+N I_{P 0}\right)^{1+(1-\alpha)}$. This implies $U_{A 0}>U_{P 0}$ using Equation (A18).

Case 2: $t_{A}=t_{P}$ and $c_{A}=c_{P}$ but $M_{A} \neq M_{P}$. By Equation (A14) $U_{A A}>U_{P P} \Rightarrow M_{P}>M_{A}$. This implies $U_{A 0}>U_{P 0}$ using Equation (A18).

Assumption (A) ensures that the worker will remain home on at most the restricted day since the non-restricted day is unaffected and extra leisure is already enjoyed on the restricted day under "reduced-time" work.

Appendix C

Conditions for "Reduced-Time" Work for Discretionary Workers

We consider two cases:
Case 1: $M_{A}=M_{P}=0$. Comparing Equations (A14) and (A18), $U_{A 0}>U_{A P}$ when:

$$
\begin{equation*}
\frac{\left(N T_{N A}+N I_{A 0}\right)^{1+(1-\alpha)} T^{\alpha}}{\left(N T_{N A}+N I_{A 0}-\frac{c_{P}}{2}-\frac{\Delta t_{P A}}{2}\right)^{2}}>(1+(1-\alpha))^{1+(1-\alpha)} \alpha^{\alpha} \tag{C1}
\end{equation*}
$$

It follows immediately that this is more likely the greater c_{P} or $\Delta t_{P A}$.
Case2: $\left(M_{P} \gg 0\right)$. Since $U_{A 0}$ in Equation (A18) does not depend on M_{P} and $U_{A P}$ in Equation (A14) is decreasing in M_{P} it follows directly that $U_{A 0}>U_{A P}$ when M_{P} is sufficiently large $\left(M_{P} \gg 0\right)$.

Appendix D Effect of Expanded Subway Capacity on Leisure Time

Expanded subway capacity reduces both public transit and auto commute times: $\tilde{t}_{A}<t_{A}$ and $\tilde{t}_{P}<t_{P}$, where tildes indicate outcomes after the expansion. Assume that the expansion has no effect on commute costs ($\tilde{c}_{A}=c_{A}$ and $\tilde{c}_{P}=c_{P}$) and does not change workers' optimal commute modes. Assuming all workers obey the restrictions and continue to work "full time" (i.e., there is no extensive margin effect), compute the change in leisure time due to the subway expansion for each category of worker and commute mode. For those with discretionary work time who prefer driving and public transit respectively (by Equation (A12)):

$$
\begin{align*}
& \tilde{L}_{N A P}-L_{N A A}=\tilde{L}_{R A P}-L_{R A A}=\alpha\left[\left(t_{A}-\tilde{t}_{A}\right)+\frac{1}{2} \frac{c_{A}-c_{P}}{w}-\frac{1}{2}\left(t_{P}-\tilde{t}_{A}\right)\right] \tag{D1}\\
& \tilde{L}_{N P P}-L_{N P P}=\tilde{L}_{R P P}-L_{R P P}=\alpha\left(t_{P}-\tilde{t}_{P}\right) . \tag{D2}
\end{align*}
$$

For those with fixed work times who prefer driving and public transit respectively (by Equation (A19)):
(D3a) $\tilde{L}_{N A P}-L_{N A A}=\left(t_{A}-\tilde{t}_{A}\right)$,
(D3b) $\widetilde{L}_{R A P}-L_{R A A}=\left(t_{A}-\tilde{t}_{P}\right)$;
(D4) $\quad \tilde{L}_{N P P}-L_{N P P}=\tilde{L}_{R P P}-L_{R P P}=\left(t_{P}-\tilde{t}_{P}\right)$.

All of the expressions on the right-hand sides of Equations (D1) through (D4) are weakly decreasing in both \tilde{t}_{A} and \tilde{t}_{P} and are strictly decreasing in one of them for at least one commute mode within each group of workers. This implies that leisure time increases for both groups due to the expansion.

Appendix E
Variable Descriptions and Data Sources

Variable	Description	Frequency/ Availability	Data Source
Aggregate API	Aggregate Air Pollution Index; see text for detailed description.	Daily	SEPA and BJEPA
Station-Level API	Air Pollution Index from 24 monitoring stations.	Daily	Andrews (2008)
Maximum Temperature	Maximum daily temperature in celcius.	Daily	CMDSSS
Average Humidity	Average percent humidity over the day.	Daily	CMDSSS
Total Rainfall	Total rainfall over the day in centimeters.	Daily	CMDSSS
Wind Direction	Predominant direction of wind during the day divided into four quadrants (Northeast, Southeast, Southwest, Northwest).	Daily	CMDSSS
Max. Wind Speed	Maximum of the average wind speed over 15 -minute increments across the day in meters per second.	Daily	CMDSSS
Sunshine	Number of total hours of sunlight during the day.	Daily	CMDSSS
Distance from Ring Road	Distance in kilometers of monitoring station from nearest Ring Road.	Once	Geographic Information System calculations
Average Wind Speed	Average daily wind speed in meters per second.	Daily	CMDSSS
Average Temperature	Average daily temperature in celsius.	Daily	CMDSSS
Television Viewership	Number of people in thousands watching television.	Hourly	CSM Media Research Television Audience Measurement (TAM)
CMDSSS refers to China Meteorological Data Sharing Service System, SEPA to State Environmental Protection Agency, and BJEPA to Beijing Environmental Protection Agency.			

Appendix F
Air Pollution Index Discontinuity due to Policies

Residuals from estimating Equation (1) in the main text without $O E$, $O D 69$, $O D 78$, and time trend. Moving left to right, the four vertical lines demarcate the beginning and end of the OddEven policy, the beginning of OneDay69 policy, and the beginning of OneDay78 policy. The fitted line allows for a quadratic time trend along with differing intercepts for the OddEven, OneDay69, and OneDay78 policy periods. The fitted line shows a large decrease in the API during the OddEven policy, a commensurate increase at its expiration, and then a smaller decrease during the OneDay69 and OneDay78 policy periods. The effects for the OneDay69 and OneDay78 policies are indistinguishable. The line also reflects a slight upward trend in the API over time (although it is not statistically significant).

Appendix G

Sensitivity of Policy Coefficients to Order of Polynomial Daily Time Trend in Regression of Log Hourly Television Viewership, N = 26,303

	0-Order	1-Order	2-Order	3-Order	4-Order	5-Order	6-Order	7-Order
"Self-Employed"								
OneDay69*Restricted Hours	$\begin{gathered} 0.1887^{* * *} \\ (0.0084) \end{gathered}$	$\begin{gathered} 0.1126 \\ (0.0107) \end{gathered}$	$\begin{aligned} & 0.10200^{* * *} \\ & (0.0110) \end{aligned}$	$\begin{aligned} & 0.1019 \\ & (0.0138) \end{aligned}$	$\begin{gathered} 0.1297^{* * *} \\ (0.0155) \end{gathered}$	$\begin{gathered} 0.1099 \\ (0.0159) \end{gathered}$	$\begin{aligned} & 0.1110 \\ & (0.0160) \end{aligned}$	$\begin{gathered} 0.1079 \\ (0.0164) \end{gathered}$
OneDay78*Restricted Hours	$\begin{gathered} 0.2708 \\ (0.0088) \end{gathered}$	$\begin{gathered} 0.1566{ }^{* * *} \\ (0.0132) \end{gathered}$	$\begin{gathered} 0.1044^{* * *} \\ (0.0184) \end{gathered}$	$\begin{gathered} 0.1043^{* * *} \\ (0.0190) \end{gathered}$	$\begin{gathered} 0.1410 \\ (0.0206) \end{gathered}$	$\begin{gathered} 0.14766^{* * *} \\ (0.0209) \end{gathered}$	$\begin{gathered} 0.1488 \\ (0.0209) \end{gathered}$	$\begin{aligned} & 0.1521 \\ & (0.0213) \end{aligned}$
χ^{2} (Time Trend)		10.2	60.6	40.6	32.8	28.2	23.5	20.2
"Hourly Workers"								
OneDay69*Restricted Hours	$\begin{gathered} 0.1058 \\ (0.0074) \end{gathered}$	$\begin{gathered} 0.0784^{* * *} \\ (0.0106) \end{gathered}$	$\begin{aligned} & 0.0681 \\ & (0.0105) \end{aligned}$	$\begin{gathered} 0.0589 \\ (0.0135) \end{gathered}$	$\begin{array}{r} 0.0127 \\ (0.0143) \end{array}$	$\begin{gathered} 0.0310 \text { ** } \\ (0.0158) \end{gathered}$	$\begin{array}{r} 0.0236 \\ (0.0158) \end{array}$	$\begin{array}{r} 0.0147 \\ (0.0163) \end{array}$
OneDay78*Restricted Hours	$\begin{gathered} 0.1407 \\ (0.0063) \end{gathered}$	$\begin{gathered} 0.0994^{* * *} \\ (0.0134) \end{gathered}$	$\begin{gathered} 0.0487^{* * *} \\ (0.0166) \end{gathered}$	$\begin{gathered} 0.0425 \\ (0.0174) \end{gathered}$	$\begin{array}{r} -0.0185 \\ (0.0183) \end{array}$	$\begin{array}{r} -0.0246 \\ (0.0184) \end{array}$	$\begin{gathered} -0.0326{ }^{*} \\ (0.0185) \end{gathered}$	$\begin{array}{r} -0.0231 \\ (0.0187) \end{array}$
X^{2} (Time Trend)		3.6	17.9	12.5	22.0	19.0	18.0	15.6

Coefficents on selected policy variables in regression of log viewership on control variables and a polynomial time trend as in Table 6. Dependent variable is log number of thousands of individuals watching television each hour. Newey-West standard errors with four-hour lag in parentheses. ${ }^{*}=10 \%$ significance, ${ }^{* *}=5 \%$ significance, $* * *=1 \%$ significance. All regressions include the control variables shown in Table 6 as well as hour and month dummies. The X^{2} value is the test statistic for the joint significance of the time trend variables.

Appendix H

Coefficients on Interaction between Policy Variables and Hourly Dummies

Panel A - "Self-Employed" Percentage Difference in Viewership during OneDay69 Period

Chart shows coefficients on interactions between the OneDay69 policy variable and hourly dummies in the regression of Columns 1 and 2 of Table 6 but with OneDay69 and OneDay78 interacted with each hour separately. Coefficients are shown only if significant at the 10% level or better. The vertical dotted lines demarcate the restricted period.

Panel B - "Hourly Workers" Percentage Difference in Viewership during OneDay69 Period

Chart shows coefficients on interactions between the OneDay69 policy variable and hourly dummies in the regression of Columns 3 and 4 of Table 6 but with OneDay69 and OneDay78 interacted with each hour separately. Coefficients are shown only if significant at the 10% level or better. The vertical dotted lines demarcate the restricted period.

Appendix I
 Penalties for and Detection of Driving Restrictions Violations

Violation penalties include monetary and time costs and depend on the detection method. Violators are immediately fined RMB 100 and incur a time cost because payment requires going to the relevant police station for documentation and then to a bank to pay. The latter step can be done online but only if the recipient has an account at the Industrial and Commercial Bank of China. The driver can delegate these tasks to someone with a lower cost of time by loaning them their national identity card. If a police officer detects the violation, it must be paid within fifteen days or interest is accrued at RMB 3 per day. For violations detected by cameras there is no immediate deadline. Regardless of how detected, the fine must be paid before renewal of the vehicle's bi-annual registration. During our sample period, only one penalty could be issued per day. ${ }^{4}$

A first-time violation would also trigger the loss of several fee waivers. Those complying with the OddEven restrictions received a waiver of three months' vehicle taxes (about RMB 100) ${ }^{5}$ and highway maintenance fees (about RMB 330). ${ }^{6}$ During the OneDay period the waiver equaled one month's fees. During both the OddEven and OneDay periods, a driver received a discount on auto insurance equal to the number of days their car was restricted. Although the precise amount depended on individual premiums, the average reduction was RMB 65 during the OneDay69 period. ${ }^{7}$

Beijing had 1,958 traffic surveillance cameras as of March 31, 2009 and the number increased to 2,215 by the end of 2009. This equals 0.13 cameras per square kilometer if equally spaced. ${ }^{8}$ As of October, 2010 Beijing had about five thousand police officers to direct traffic. ${ }^{9}$

[^27]
Appendix J

Detailed Compliance Results

Panel A: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering Beijing Parking Garage during Restricted Hours (7:00 am - 8:00 pm) from June 27 to July 3, 2010 - Regular Parkers

The top panel shows the expected distribution from the two weekend days (June 27 and July 3). The second panel shows data for the Monday (June 28) restricted hours, when plate numbers " 1 " and " 6 " were banned:

- The first two rows show the observed distribution of plate numbers.
- The third row tests whether each plate's proportion during the restricted hours is significantly greater than zero using a onetailed test. Plain text indicates that the proportion is not significantly greater than zero (plates " 1, " " 4 ," and " 6 ") and bold indicates that it is statistically greater than zero (all other plates).
- The fourth row tests whether the observed proportion of each non-restricted plate differs from the expected proportion using a two-tailed test. In doing so, we adjust the expected distribution for the fact that there should be no " 1 " and " 6 " plates (i.e., we compute the expected proportion assuming only the presence of the eight other plates). Bold significance levels indicate that the plate appears in statistically greater proportion than expected (none), those in bold italics indicate that it appears in significantly lower proportion than expected (plates " 2 " and " 3 ") and those in plain text that it is not significantly different (all others).
The data for the other weekdays is in the same format. Restricted numbers are shown in boxes.

Distribution	0	1	2	3	4	5	6	7	8	9	Total	No Plate
Expected Distribution (Weekend)												
Number	635	534	594	597	83	593	753	636	743	807	5,975	96
Percentage	10.6\%	8.9\%	9.9\%	10.0\%	1.4\%	9.9\%	12.6\%	10.6\%	12.4\%	13.5\%	100.0\%	1.6\%
Observed Distributions												
Monday (1, 6 Restricted)												
Number	398	45	312	315	54	380	67	400	486	490	2,947	28
Percentage	13.5\%	1.5\%	10.6\%	10.7\%	1.8\%	12.9\%	2.3\%	13.6\%	16.5\%	16.6\%	100.0\%	1.0\%
Different from Zero (SL) ${ }^{1}$	0.0\%	20.2\%	0.0\%	0.0\%	15.8\%	0.0\%	10.6\%	0.0\%	0.0\%	0.0\%		
Different from Expected (SL) ${ }^{2}$	54.7\%		3.2\%	3.7\%	67.3\%	34.5\%		50.8\%	14.1\%	93.8\%		
Tuesday (2, 7 Restricted)												
Number	357	319	50	325	63	339	436	63	440	456	2,848	26
Percentage	12.5\%	11.2\%	1.8\%	11.4\%	2.2\%	11.9\%	15.3\%	2.2\%	15.4\%	16.0\%	100.0\%	0.9\%
Different from Zero (SL) ${ }^{1}$	0.0\%	0.0\%	17.2\%	0.0\%	11.6\%	0.0\%	0.0\%	11.6\%	0.0\%	0.0\%		
Different from Expected (SL) ${ }^{2}$	34.3\%	29.6\%		18.8\%	4.8\%	44.9\%	46.7\%		31.2\%	35.5\%		
Wednesday (3, 8 Restricted)												
Number	353	270	327	31	43	351	453	393	75	447	2,743	29
Percentage	12.9\%	9.8\%	11.9\%	1.1\%	1.6\%	12.8\%	16.5\%	14.3\%	2.7\%	16.3\%	100.0\%	1.1\%
Different from Zero (SL) ${ }^{1}$	0.0\%	0.0\%	0.0\%	27.6\%	20.4\%	0.0\%	0.0\%	0.0\%	7.3\%	0.0\%		
Different from Expected (SL) ${ }^{2}$	35.4\%	4.7\%	30.4\%		30.7\%	26.4\%	15.2\%	8.2\%		30.9\%		
Thursday (4, 9 Restricted)												
Number	382	375	333	369	0	409	492	372	526	79	3,337	29
Percentage	11.4\%	11.2\%	10.0\%	11.1\%	0.0\%	12.3\%	14.7\%	11.1\%	15.8\%	2.4\%	100.0\%	0.9\%
Different from Zero (SL) ${ }^{1}$	0.0\%	0.0\%	0.0\%	0.0\%	N/A ${ }^{4}$	0.0\%	0.0\%	0.0\%	0.0\%	8.3\%		
Different from Expected (SL) ${ }^{2}$	29.9\%	14.9\%	3.8\%	56.4\%		22.1\%	71.4\%	13.6\%	5.7\%			
Friday (0, 5 Restricted)												
Number	69	349	340	373	46	68	402	348	497	533	3,025	39
Percentage	2.3\%	11.5\%	11.2\%	12.3\%	1.5\%	2.2\%	13.3\%	11.5\%	16.4\%	17.6\%	100.0\%	1.3\%
Different from Zero (SL) ${ }^{1}$	10.2\%	0.0\%	0.0\%	0.0\%	20.0\%	10.6\%	0.0\%	0.0\%	0.0\%	0.0\%		
Different from Expected (SL) ${ }^{2}$		26.8\%	33.8\%	66.6\%	60.9\%		2.2\%	8.8\%	7.4\%	10.5\%		

Ending license plate numbers of autos entering a Beijing parking garage inside the 4th Ring Road collected by authors. ${ }^{1}$ SL = significance level. Bold indicates significantly greater than zero (at the 10% level or better) using a one-tailed equality of proportions test. ${ }^{2}$ SL $=$ significance level. Bold indicates significantly greater (at the 10% level or better) than expected proportion (assuming restricted plates occur in proportion zero) using a two-tailed equality of proportions test and bold, italics $\underline{\text { significantly lower. }{ }^{3} \text { No observations - significance level is undefined. Boxes indicate restricted plate numbers on that day. }}$

ONLINE APPENDIX

Appendix J

Detailed Compliance Results

Panel B: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering Beijing Parking Garage during Non-Restricted Weekday Hours (9:00 pm - 6:00 am) from June 27 to July 3, 2010 - Regular Parkers

The top panel shows the expected distribution from the two weekend days (June 27 and July 3). The second panel shows data for the Monday (June 28) non-restricted hours:

- The first two rows show the observed distribution of plate numbers.
- The third row provides test statistics comparing the observed proportion of each plate to the expected based on a two-tailed test. Bold font indicates that the observed proportion is significantly greater than expected (none), bold italics lower (none), and plain text not significantly different (all plates).
The data for the other weekdays is in the same format. Restricted numbers are shown in boxes.

Ending license plate numbers of autos entering a Beijing parking garage inside the 4th Ring Road collected by authors. ${ }^{1}$ SL $=$ significance level. Bold indicates significantly greater (at the 10% level or better) than expected proportion using a one-tailed equality of proportions test, bold italics indicates significantly less (at the 10% level or better) than expected proportion using a two-tailed equality of proportions test. Boxes indicate restricted plate numbers on that day.

Appendix J

Detailed Compliance Results
Panel C: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering Beijing Parking Garage during Restricted Hours (7:00 am - 8:00 pm) from June 27 to July 3, 2010 - Monthly Parkers

The top panel shows the expected distribution from the two weekend days (June 27 and July 3). The second panel shows data for the Monday (June 28) restricted hours, when plate numbers " 1 " and " 6 " were banned:

- The first two rows show the observed distribution of plate numbers.
- The third row tests whether each plate's proportion during the restricted hours is significantly greater than zero using a one-tailed test. Plain text indicates that the proportion is not significantly greater than zero (plates " 1 ," " 4 ", and " 6 ") and bold indicates that it is statistically greater than zero (all other plates).
- The fourth row tests whether the observed proportion of each non-restricted plate differs from the expected proportion using a two-tailed test. In doing so, we adjust the expected distribution for the fact that there should be no
" 1 " and " 6 " plates (i.e., we compute the expected proportion assuming only the presence of the eight other plates). Bold significance levels indicate that the plate appears in statistically greater proportion than expected (plates " 3 " and " 5 "), those in bold italics indicate that it appears in significantly lower proportion than expected (plate " 8 ") and those in plain text
that it is not significantly different (all others).
The data for the other weekdays is in the same format. Restricted numbers are shown in boxes.

Distribution	0	1	2	3	4	5	6	7	8	9	Total	No Plate
Expected Distribution (Weekend)												
Number	14	20	15	7	1	9	27	20	29	26	168	3
Percentage	8.3\%	11.9\%	8.9\%	4.2\%	0.6\%	5.4\%	16.1\%	11.9\%	17.3\%	15.5\%	100.0\%	1.8\%
Observed Distributions												
Monday (1,6 Restricted)												
Number	46	3	46	56	6	60	6	60	58	70	411	1
Percentage	11.2\%	0.7\%	11.2\%	13.6\%	1.5\%	14.6\%	1.5\%	14.6\%	14.1\%	17.0\%	100.0\%	0.2\%
Different from Zero (SL) ${ }^{1}$	0.8\%	44.1\%	0.8\%	0.1\%	38.3\%	0.1\%	38.3\%	0.1\%	0.1\%	0.0\%		
Different from Expected (SL) ${ }^{2}$	96.9\%		77.4\%	1.6\%	57.6\%	3.3\%		66.7\%	1.3\%	31.0\%		
Tuesday (2, 7 Restricted)												
Number	26	27	3	21	3	28	36	5	44	42	235	3
Percentage	11.1\%	11.5\%	1.3\%	8.9\%	1.3\%	11.9\%	15.3\%	2.1\%	18.7\%	17.9\%	100.0\%	1.3\%
Different from Zero (SL) ${ }^{1}$	3.6\%	3.1\%	42.2\%	7.6\%	42.2\%	2.6\%	0.5\%	37.1\%	0.1\%	0.1\%		
Different from Expected (SL) ${ }^{2}$	78.7\%	39.3\%		17.3\%	61.9\%	9.3\%	28.4\%		58.1\%	80.7\%		
Wednesday (3, 8 Restricted)												
Number	36	29	51	3	3	43	36	49	11	51	312	2
Percentage	11.5\%	9.3\%	16.3\%	1.0\%	1.0\%	13.8\%	11.5\%	15.7\%	3.5\%	16.3\%	100.0\%	0.6\%
Different from Zero (SL) ${ }^{1}$	1.5\%	4.2\%	0.1\%	43.2\%	43.2\%	0.4\%	1.5\%	0.1\%	26.3\%	0.1\%		
Different from Expected (SL) ${ }^{2}$	66.0\%	10.3\%	12.7\%		80.4\%	2.6\%	2.4\%	73.6\%		51.9\%		
Thursday (4, 9 Restricted)												
Number	25	23	21	27	0	34	38	26	31	11	236	2
Percentage	10.6\%	9.7\%	8.9\%	11.4\%	0.0\%	14.4\%	16.1\%	11.0\%	13.1\%	4.7\%	100.0\%	0.8\%
Different from Zero (SL) ${ }^{1}$	4.3\%	5.8\%	7.6\%	3.1\%	$\mathrm{N} / \mathrm{A}^{4}$	0.8\%	0.3\%	3.6\%	1.5\%	23.2\%		
Different from Expected (SL) ${ }^{2}$	72.1\%	25.2\%	68.3\%	2.4\%		1.2\%	58.2\%	46.0\%	8.8\%			
Friday (0, 5 Restricted)												
Number		47	41	54	3	9	66	61	59	66	407	4
Percentage	0.2\%	11.5\%	10.1\%	13.3\%	0.7\%	2.2\%	16.2\%	15.0\%	14.5\%	16.2\%	100.0\%	1.0\%
Different from Zero (SL) ${ }^{1}$	48.0\%	0.7\%	1.6\%	0.2\%	44.1\%	32.6\%	0.0\%	0.1\%	0.1\%	0.0\%		
Different from Expected (SL) ${ }^{2}$		54.1\%	99.5\%	0.4\%	93.7\%		58.5\%	65.0\%	15.1\%	72.0\%		

Ending license plate numbers of autos entering a Beijing parking garage inside the 4 th Ring Road collected by authors. SL $=$ significance level. Bold indicates
significantly greater than zero (at the 10% level or better) using a one-tailed test. ${ }^{2} \mathrm{SL}=$ significance level. Bold indicates significantly greater (at the 10% level or better) than expected proportion (assuming restricted plates occur in proportion zero) using a two-tailed test and bold, italics significantly lower. 3 No observations significance level is undefined. Boxes indicate restricted plate numbers on that day.

[^0]: ${ }^{1}$ These include Santiago, Mexico City, São Paulo, Bogotá, San Jose, La Paz, Athens, Barcelona, Amsterdam, Tokyo, all of Honduras, and several Italian cities. See Mahendra (2008), Wolff and Perry (2010), and "With Mixed Results, Cities Battle Traffic and Pollution," Spiegel Online, April 4, 2005.

[^1]: ${ }^{2}$ Policy papers examining driving restrictions include Osakwe (2010); Cropper, Jiang, Alberini, and Baur (2010); and Cambridge Systematics, Inc. (2007).
 ${ }^{3}$ Salas (2010) finds that the Davis (2008) results are sensitive to assumptions about time window and time trend. Eskeland and Feyzioglu (1995) use data on gasoline consumption to conclude that the Mexico City restrictions increased driving but they do not control for any pre-existing time trend.
 ${ }^{4}$ See Table 11 which controls only for the every-other-day policy. In Table 12 the authors include time-period dummies that extend partially into the one-day-per-week policy and conclude that it becomes ineffective; however, the results show a sustained, although diminished, pollution decrease.

[^2]: ${ }^{5}$ See "Beijing Pollution: Facts and Figures," BBC News, August 11, 2008.

[^3]: ${ }^{6}$ The restrictions apply to non-commuters but they likely have greater flexibility for inter-temporal substitution. Including non-commuters, as our pollution data does, will bias us toward finding no effects. Since our viewership data is comprised only of workers the model applies directly to it. According to the $3^{\text {rd }}$ Beijing Transportation Comprehensive Survey (Beijing Transportation Research Center, 2006), 48\% of daily Beijing travelers across all modes are commuters.
 ${ }^{7}$ After our sample period (beginning April 12, 2010) official working hours became 9 a.m. to 6 p.m.

[^4]: ${ }^{8}$ Eskeland and Feyzioglu (1995) model the latter effect. Due to the integer nature of car purchases, some households are on the margin between zero and one car while others are on the margin between one and two. Driving restrictions reduce the service flow from owning a single vehicle and can lead the former to sell their vehicle but the latter to buy another vehicle.
 ${ }^{9}$ Gibbons and Machin (2006) discuss the theoretical effect of increased commute costs on the labor participation/non-participation margin. Black, Kolesnikova, and Taylor (2010) find that female labor force participation rates are lower in cities with longer commute times consistent with women as the primary margin of labor supply adjustments.

[^5]: ${ }^{10}$ The OneDay policy restrictions also do not apply on weekends allowing for more inter-temporal substitution. We allow for this in our empirical tests.
 ${ }^{11}$ The second-order effects (increased public transit ridership and decreased auto commute times) of the restrictions also impact Implications 4 and 5 but do not change their ambiguity.

[^6]: ${ }^{12}$ We thank Steven Q. Andrews for making this data available to us. Our description of the pollution data is based on Andrews (2008).
 ${ }^{13}$ For the daily, station-level API an average concentration at each station for each of the three pollutants is first calculated across 24 hourly readings. Each of the three is converted to an API measure and the maximum is the daily API reading for that station. For the aggregate API, an average is taken across all stations of the average daily concentration at each station for each pollutant and then each is scaled to an API. The maximum API of the three pollutants is the daily aggregate API.
 ${ }^{14}$ The other 7 days when the API is above 50 the pollutant identity is missing.
 ${ }^{15}$ Some governments measure $\mathrm{PM}_{2.5}$, which includes only smaller particulates (below $2.5 \mu \mathrm{~m}$) and does not capture road dust.

[^7]: ${ }^{16}$ Jiang, X. ("23\% of PM10 in Beijing Comes From Vehicular Emissions," Road Traffic and Safety, 1, 45, 2006 (in Chinese)) and Dong, Liu, and Che (2008) corroborate this breakdown, finding that 23% and 24% respectively of Beijing's PM_{10} is due to auto emissions. Cui, Deng, and Guo (2009) estimate that autos create 62% of all air pollutants, including PM_{10}.
 ${ }^{17}$ A 2008 survey conducted by the Beijing Statistics Bureau (2009) estimates that the average Beijing resident spends 7.6 hours working, 1.4 hours commuting, 1.8 hours on household chores, and 3.5 hours on leisure activities during a work day. TV watching comprises 1.9 hours or 54% of total leisure time.
 ${ }^{18}$ TV viewing on mobile devices is extremely limited during our sample period.
 ${ }^{19}$ For brevity we call TAM's "proprietor/private" category as "self-employed" and for clarity we refer to "workers" as "hourly workers." The unused categories are "unemployed," "cadres/managers," "junior civil servants,"
 "students," and "other."

[^8]: ${ }^{20}$ Maximum is across averages during all ten-minute periods of the day. We experimented with using average daily speed, wind gusts (maximum speed during any three-second period), and maximum level directly. Quartiles of maximum daily speed provided the best fit of all these.

[^9]: ${ }^{21}$ We experimented with higher-order time trends and found the coefficients were jointly insignificant up to a $7^{\text {dh_}}$ order. The results are also robust to using year dummies rather than a time trend and allowing different time trends during the pre-treatment and policy periods as suggested in Angrist and Pischke (2009, page 255). There was also a four-day period (August 17 to 20, 2007) when odd-even restrictions were tested. Setting the OddEven variable to one for these days yields very similar results.
 ${ }^{22}$ Substitution effects are likely small since the restrictions applied except from midnight to 3:00 a.m. Pollution rises convexly with car density because congestion causes cars to spend more time idling and a longer time traveling the same distance (see Arnott and Kraus, 2003; Small and Verhoef, 2007). During the OneDay policy, a larger adjustment for inter-temporal substitution is required because the OneDay restrictions do not apply in the late evening and early morning hours.

[^10]: ${ }^{23}$ An OLS baseline regression produced very similar standard errors. A Tobit regression constraining the API to a maximum of 500 produced almost identical results. We do not use this as the primary specification because it does not control for autocorrelation.

[^11]: ${ }^{24}$ Another DD approach would use any non-uniformity in the plate number distribution and allow for differential effects in which plate numbers were restricted on a given day. However, plate numbers were assigned randomly by the Beijing Traffic Management Bureau for a uniform fee through March 9, 2009. Only after that could a plate number be selected from a set of available numbers for a fee. Since April 10, 2009 plates can be exchanged at no cost but only from a list of ten numbers.

[^12]: ${ }^{25} \mathrm{~A}$ balanced panel would include only the 22 stations. We add the two stations because they are present during most of our time period and are located within the $4^{\text {th }}$ Ring Road which adds identifying variation to our distance estimates below. Balanced panel results are very similar. There are a few missing observations because no API was reported for some days at some stations.
 ${ }^{26}$ Specifically, we use the Geographic Information System (GIS) software's ARCINFO command "Near" to compute the distance between the monitoring station and the nearest point on the road. The busiest roads in Beijing are segments (East, West, North, or South) of the four Ring Roads ($2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, or $5^{\text {th }}$) according to 2006 data from the Beijing Transportation Research Institute. Using distances from the nearest Class 1 road - any multi-lane highway with controllable entries and exits - produces very similar results.
 ${ }^{27}$ We estimated the regression in Column 1 of Table 5 but distinguished stations outside the $66^{\text {th }}$ Ring Road during the OddEven and OneDay69 policies and stations outside the $5^{\text {th }}$ Ring Road during the OneDay78 policy. We found no differential effect on these stations consistent with the restrictions reducing traffic that otherwise would have fed into the area inside the $5^{\text {th }}$ Ring Road.

[^13]: ${ }^{28}$ Unless otherwise noted, all exchange rate conversions performed at January 2011 rates (1 RMB $=0.152$ USD). Most 2009 car purchasers targeted a car price of RMB 50 to 150 thousand according to "Annual Report of China Car Industry 2009 - 2010," An, et al. (2010). The midpoint of this range yields USD 15.2 thousand.
 ${ }^{29}$ See "Beijing's Plan to Steer Clear of Traffic Jams," China Daily, December 14, 2010.

[^14]: ${ }^{30}$ The price coefficient was insignificant in the regression. Price data taken from NDRC documents at the Beijing Development and Reform Council website (http://www.bjpc.gov.cn).
 ${ }^{31}$ According to parking regulations in, "Notice of Adjusting the Rates for Non-Residential Parking Lots in Beijing," Beijing Municipal Commission of Development and Reform (2010), File No. 144 (in Chinese) and "Notice of Adjusting the Rates of Motor Vehicle Parking Lots in Beijing," Beijing Bureau of Commodity Prices (2002), File No. 194 (in Chinese).
 ${ }^{32}$ According to Beijing Statistic Yearbook (2007, 2008, 2009), China Statistics Press.

[^15]: ${ }^{33}$ Population data according to The China Urban Statistic Yearbook 2009, China Statistics Press. These calculations assume all Beijing residents have access to a TV. There were 134 color TVs per 100 households in Beijing in 2008 according to Beijing Statistics Yearbook 2009, China Statistics Press.

[^16]: ${ }^{34}$ For OneDay69 this equals 11.0 thousand additional viewers for 15 restricted hours. For OneDay78 this equals the sum of 14.9 thousand additional viewers for 13 restricted hours, 15.3 thousand for 4 evening hours, and 3.4 thousand for 7 morning hours.

[^17]: ${ }^{35}$ More than a $7^{\text {th }}$-order time trend created collinearities between the time trend and control variables.
 ${ }^{36}$ The four significant effects in the early morning hours are large in percentage but small in absolute terms. The average decrease from midnight to 4:00 a.m. is 4.0 thousand viewers per hour. The effect on absolute viewership is much greater during the restricted hours. The average increase from 7:00 a.m. to 7:00 p.m. is 12.8 thousand viewers per hour. These magnitudes are similar to the average effects in the three time-segment model of Table 6.

[^18]: ${ }^{37}$ Beijing data from "A Survey Report on Daily Time Allocation of Beijing Residents in 2008," Beijing Statistics Bureau (2009) (in Chinese) and Mexico City from http://mexico-city.co.tv/.
 ${ }^{38}$ Data from "Independent Environmental Assessment: Beijing 2008 Olympic Games," United Nations Environment Programme, February 2009 (page 42).

[^19]: ${ }^{39}$ Based on "Urban Population, Development and the Environment," United Nations Department of Economic and Social Affairs, United Nations Publication \#ST/ESA/SERA/274 (2008).
 ${ }^{40}$ Therefore the sample is not necessarily representative of the plate number distribution during the time period of our pollution and viewership data. In particular, over time drivers may have sought out less common plate numbers to avoid congestion.

[^20]: ${ }^{41}$ Figure 4 does not control for the fact that plates " 2 " and " 7 " should not occur under perfect compliance. Our detailed analysis in Appendix J does so.

[^21]: ${ }^{42}$ We cannot test for substitution to weekends because we cannot measure activity "but for" the restrictions.

[^22]: ${ }^{43}$ Duranton and Turner (2009) provide empirical evidence that a fundamental law of auto congestion holds, in which a natural level of congestion is reached in the long run which equates driving demand and average cost of commuting as determined by road capacity.

[^23]: Based on Andrews (2008).

[^24]: ${ }^{1}$ It is straightforward to adapt the model to the OneDay policy and the results differ only in magnitude. The commute costs it imposes are lower making "reduced time" less likely. However, declining marginal utility makes "reduced time" more likely because goods consumption suffers less from not working one day out of five rather than one day out of two. A full analysis of the OneDay model is available from the authors.

[^25]: ${ }^{2}$ Appendix B shows that it is not optimal to work on the restricted day and instead stay home on the non-restricted day under fairly general conditions.

[^26]: ${ }^{3}$ In our data, this is not literally zero due to multiple daily work shifts, vacations, and sick days.

[^27]: ${ }^{4}$ As of December 24, 2010 the law was changed to allow multiple citations to be issued per day.
 ${ }^{5}$ Annual vehicle taxes ranged from RMB 300 to 600 depending on vehicle size according to Beijing Local Taxation Bureau Document Nos. 329 (2004) and 339 (2007).
 ${ }^{6}$ Until December 31, 2008, monthly highway maintenance fees for passenger vehicles were RMB 22 for each seat of capacity according to the Beijing Highway Bureau (http://www.ylfzhj.bj.cn). For a common passenger vehicle with five seats the monthly fees would therefore be RMB 110. After December 31, 2008, the fees were absorbed into fuel taxes and not affected by a violation.
 ${ }^{7}$ According to China Insurance Regulatory Commission Beijing Bureau (http://www.chinainsurance.com/newscenter/newslist.asp?id=132329).
 ${ }^{8}$ Data taken from Beijing Traffic Management Bureau, accessed at http://www.bjitgl.gov.cn. Density calculation based on Beijing's land area of 16,411 square kilometers.
 ${ }^{9}$ According to http://www.chinanews.com/gn/2010/10-11/2579335.shtml.

