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Problem motivation

I Want to use Google query data for nowcasting economic series

I Fat regression problem: there are many more predictors than
observations

I Millions of queries, hundreds of categories
I n ∼ 100 for monthly economic data
I k ∼ 150 for “economic” categories in I4S

I How do we choose which variables to include?
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Example: unemployment

I Sometimes simple correlation works
I Initial claims for unemployment benefits (NSA)
I Query “sign up for unemployment”
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Approaches to variable selection

I Human judgment

I Significance testing (forward and backward stepwise
regression)

I Information criteria (AIC, BIC, SIC)

I Principle component and factor models

I Lasso, penalized regression models
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Our approach

I Original approach
I forecast yt using its own past values and human-chosen

contemporaneous regressors from I4S
I non-seasonal AR1: yt = a1yt−1 + bxt + et
I seasonal AR1: yt = a1yt−1 + a12yt−12 + bxt + et

I Current approach
I Local linear trend and Kalman filter for time series
I Spike and slab regression for variable (model) selection
I Bayesian model averaging over all models for final forecast
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Basic structural model with regression

I Classic time series model with constant level, linear time
trend, regressor

I yt = µ+ bt + βxt + et
I “Local linear trend” is a stochastic generalization of this

I Observation: yt = µt + bt + zt + e1t
I State 1: µt = µt−1 + e2t
I State 2: bt = bt−1 + e3t
I State 3: zt = βxt + e4t
I In simple case where bt = β = 0

I e2t = 0 is constant mean model where best estimate is avg
I e1t = 0 is random walk where best estimate is current value

I Parameters to estimate: regression coefficients β and
variances of (eit) for i = 1, . . . , 4

I Use these variances to construct optimal Kalman forecast:
ŷt = yt−1 + βxt + kt(variances) × forecast error at t − 1
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Advantages of Kalman

I No problem with unit roots or other kinds of nonstationarity

I No problem with missing observations

I No problem with mixed frequency

I No differencing or identification stage (easy to automate)

I Nice Bayesian interpretation

I Easy to compute estimates (particuarly in Bayesian case)

I Nice interpretation of structural components

I Adaptive estimates (good for recession)

I Good forecasts
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Spike and slab regression for variable choice

I Spike
I Define vector γ that indicates variable inclusion
I γi = 1 if variable i has non-zero coefficient in regression, 0

otherwise
I Put a diffuse beta prior distribution, p(γ), on γ
I Can use an informative prior; e.g., expected number of

predictors

I Slab
I Conditional on being in regression (γi = 1) put a diffuse prior

on βi

I Estimate posterior distribution of (γ, β) using MCMC
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Bayesian model averaging

I We simulate draws from posterior using MCMC

I Each draw has a set of variables in the regression (γ) and a
set of regression coefficients (β)

I Make a forecast of yt using these cofficiency

I Take average over all the forecasts for final prediction

I Take average over draws of γ to see which predictors have
high probability of being in regression
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Example: Consumer Sentiment

I Monthly UM Consumer sentiment from Jan 2004 to Apr 2012
(n = 100)

I Google Insights for Search categories related to economics
(k = 150)

I No compelling intuition about what predictors should be
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UM Consumer Sentiment

Energy.Utilities

Search.Engines

Business.News

Investing

Financial.Planning

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

Figure: Top 6 predictors for consumer sentiment. Bars show the
probability of inclusion. Shading indicates the sign of the coefficient.
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Posterior distribution of state and observations
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Posterior distribution of state

Figure: Posterior distribution of state and the observations.
Steve Scott Hal Varian Forecasting with Many Predictors



Posterior distribution of one-step ahead forecast
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Compare Actual, AR(1), reg and BSTS predictions

Figure: Actual, AR(1), regression, and BSTS one-step ahead predictions.
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Decomposition of forecast into trend and regression
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Figure: Decomposition of forecast.
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Future work

I Seasonality — done

I Mixed frequency forecasting — almost done

I Fat tail distributions

I Parallel MCMC

I Automate the whole thing
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Abstract

We consider the problem of short-term time series forecasting when there are more pos-

sible predictors than observations. Our approach combines three Bayesian techniques:

Kalman filter for state space models, spike-and-slab regression, and model averaging.

We illustrate the method using search engine query data to nowcast consumer senti-

ment.

1 Introduction

Choi and Varian [2009a,b, 2011] described how to use search engine data to forecast contem-

poraneous values of macroeconomic indicators. This type of contemporaneous forecasting,

or “nowcasting,” is of particular interest to central banks, and there have been several sub-

sequent research studies from researches at these institutions. See, for example, Arola and

Galan [2012], McLaren and Shanbhoge [2011], Hellerstein and Middeldorp [2012], Suhoy

[2009], Carrière-Swallow and Labbé [2011].

In these studies, the researchers selected predictors using their judgment of relevance to

the particular prediction problem. For example, it seems natural that search engine queries

in the “Vehicle Shopping” category would be a good candidate for forecasting automobile

sales while queries such as “file for unemployment” could be useful in forecasting initial

claims for unemployment benefits.

One difficulty with using human judgment is that it does not easily scale to models where

the number of possible predictors exceeds the number of observations—the so-called “fat

regression” problem. For example, Google’s Insights for Search (I4S) service provides data

for millions of search queries and hundreds of search categories extending back to January
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1, 2004. Even if we restrict ourselves to using only categories of queries, we will have several

hundred possible possible predictors for 100 months of data. In this paper we describe a

scalable approach to time series prediction for fat regressions of this sort.

2 Approaches to variable selection

Castle et al. [2009, 2010] describes and compares 21 techniques for variable selection for

time-series forecasting. These techniques fall into 4 major categories.

• Significance testing (forward and backward stepwise regression, Gets )

• Information criteria (AIC, BIC)

• Principle component and factor models (e.g. Stock and Watson [2010])

• Lasso and penalized regression models (e.g., Hastie et al. [2009])

Our approach combines 3 statistical methods into an integrated system we call Bayesian

Structural Time Series or BSTS for short.

• A “basic structural model” for trend and seasonality, estimated using Kalman filters;

• Spike and slab regression for variable selection;

• Bayesian model averaging over the best performing models for the final forecast.

We briefly review each of these methods and how they fit into our framework.

2.1 Structural time series and the Kalman filter

Harvey [1991], Durbin and Koopman [2001], Petris et al. [2009] and many others have ad-

vocated the use of Kalman filters for time series forecasting. The “local linear trend” model

decomposes the time series into three components: a level, a local linear trend, and an error

term. The parameters of the model can be estimated using maximum likelihood or Bayesian

techniques and forecasts can be made using a Kalman filter.

This “local linear trend model” is a stochastic generalization of the classic constant-trend

regression model,

yt = µ+ bt+ βxt + et
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In this classic case the level (µ) and trend (b) parameters are constant, (xt) is a vector or

contemporaneous regressors, β is a vector of regression coefficients, and et is an error term.

In local linear trend model each of these structural components is stochastic:

yt = µt + bt + ztvt vt ∼ N(0, V ) (1)

µt = µt−1 + bt−1 + w1t w1t ∼ N(0,W1) (2)

bt = bt−1 + w2t w2t ∼ N(0,W2) (3)

zt = βxt + w2t w3t ∼ N(0,W3) (4)

The parameters to be estimated are the variance terms (V,W1,W2,W3) and the regression

coefficients, β.

If we drop the trend and regression coefficients by setting bt = 0 and β = 0, the “local

trend model” becomes the “local level” model. When V = 0, the local level model is

a random walk, so the best forecast of yt+1 is yt; when W1 = 0, the local level model is a

constant mean model, where the best forecast of yt+1 is the average of all previously observed

values of yt. Hence, this model yields two popular time series models as special cases.

It is easy to add a seasonal component to the local linear trend model, in which case it is

referred to as the “basic structural model.” In the Appendix we describe a general structural

time series model that contains these and other models in the literature as special cases.

2.2 Spike and slab prior distributions

The spike-and-slab approach to model selection was developed by George and McCulloch

[2007]) and Madigan and Raftery [1994].

Let γ denote a vector the same length as the list of possible regressors that indicates

where or not a particular regressor is included in the regression. More precisely, γ is a vector

the same length as β, where γi = 1 indicates βi 6= 0 and γi = 0 indicates βi = 0. Let βγ

indicate the subset of β for which γi = 1, and let σ2 be the variance of the prior distribution

on γ.

A spike and slab prior for the joint distribution of (β, γ, σ−2) can be written

p(β, γ, σ−2) = p(βγ|γ, σ−2)p(σ−2|γ)p(γ). (5)

There are several possibilities for the component distributions in equation (5), but a

convenient choice is described below.
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The “spike” part of a spike-and-slab prior refers to the point mass at zero, for which we

assume

γ ∼
∏
i

πγii (1− πi)1−γi . (6)

When detailed prior information is unavailable, it is convenient to set all πi equal to the same

number, π. The common prior inclusion probability can easily be elicited from the expected

number of nonzero coefficients. If k out of k coefficients are expected to be nonzero then set

π = k/k in the prior. More complex choices of p(γ) can be made as well. For example, a

non-binomial model could be used to encode rules such as the hierarchical principle (no high

order interactions without lower order interactions). The MCMC methods described below

are robust to the specific choice of the prior.

The “slab” component is a prior for the values of the nonzero coefficients, conditional on

knowledge of which coefficients are nonzero. Let b be a vector of prior guesses for regression

coefficients, let Ω−1 be an priori precision matrix, and let Ω−1γ denote rows and columns of

Ω−1 for which γi = 1. A conditionally conjugate “slab” prior is

βγ|γ, σ2 ∼ N
(
bγ, σ

2
(
Ω−1γ

)−1)
,

1

σ2
∼ Γ

(
df

2
,
ss

2

)
.

(7)

It is conventional to assume b = 0 (with the possible exception of the intercept term)

and Ω−1 ∝ XTX, in which case equation (7) is known as Zellner’s g−prior Chipman et al.

[2001]. Because XTX/σ2 is the total Fisher information in the full data, it is reasonable to

parametrize Ω−1 = κ(XTX)/n, the average information available from κ observations.

One issue with Zellner’s g−prior is that when the design matrix contains truly redundant

predictors (as is the case when the number of possible predictors exceeds the number of

observations), then XTX is rank deficient, which means that for some values of γ, p(β, σ|γ)

is improper. We can restore propriety by averaging XTX with its diagonal, so that

Ω−1 =
κ

n

[
wXTX + (1− w)diag(XTX)

]
.

The final values that need to be chosen are df and ss. These can be elicited by asking the

modeler for the R2 statistic he expects to obtain from the regression, and the weight he would

like to assign to that guess, measured in terms of the equivalent number of observations. The

df parameter is the equivalent number of observations, and ss = df(1−R2)s2y.
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Software implementing the spike-and-slab prior can make reasonable default choices for

expected model size, κ, expected R2, and df , giving the modeler the option to accept the

defaults, or provide his own inputs.

2.3 Bayesian model averaging

Bayesian inference with spike-and-slab priors is an effective way to implement Bayesian

model averaging over the space of time series regression models. Each combination of pre-

dictors is associated with a posterior probability p(γ|y) that these predictors “belong in”

the regression. Hence we can compute a weighted average over all the regression forecasts,

using the posterior probabilities as weights. This approach is motivated by the Madigan and

Raftery [1994] proof that averaging over an ensemble of models does no worse than using

the best single model in the ensemble. See ? for links to tools and applications of Bayesian

model averaging.

3 Estimating the model

The Kalman filter, spike-and-slab regression, and model averaging all have natural Bayesian

interpretations and tend to play well together. The basic parameters we need to estimate are

γ (which variables are in the regression), β (the regression coefficients), and the variances of

the error terms (V,W1,W2,W3).

As the appendix describes in detail, we specific priors for each of these parameters and

then sample from the posterior distribution using Markov Chain Monte Carlo techniques.

There are a number of attractive short cuts available that make this sampling process quite

efficient.

These techniques yield a sample from the posterior distribution for the parameters that

can be then used to construct a posterior distribution for forecasts of time series of interest.

4 Nowcasting consumer sentiment

To illustrate the use of BSTS for nowcasting, we use the University of Michigan monthly

survey of Consumer Sentiment from January 2004-April 2012. We focus on “nowcasting”

since we expect that queries at time t could be related to sentiment at time t but are not

necessarily predictive of future sentiment.
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Our data from Google Search Insights starts at January 2004, and our sample ends

in April 2012, giving us about 100 observations. For predictors, we use 151 categories from

Google Search Insights that have some connection with economics. These potential predictors

were chosen from the roughly 300 query categories using a using human judgment.

Our problem is to find a good set of predictors for 100 observations chosen from a set

of 151 possible predictors. This qualifies as a qualifies as a mildly obese, if not quite fat,

regression.

The Consumer Sentiment index is not highly seasonal but many of the potential predictors

are seasonal so we first deseasonalize the data by using the R command stl. We then detrend

the predictors by regressing each predictor on a simple time trend. A visual inspection of

the predictors indicated that these techniques were sufficient to “whiten” the data.

We then applied the BSTS estimation procedure described earlier. Figure 1 shows the

inclusion probability for the top k predictors. A white bar indicates that the predictor

has a positive relationship with consumer sentiment and a black bar indicates a negative

relationship. The size of the bar measures the proportion of the estimated models in which

that predictor was present.

The top predictor is Financial Planning which is included in almost all of the models

explored. The top queries in this category in the US can be found on the Google Search

Insights web page. They are schwab, 401k, charles schwab, ira, smith barney, fidelity 401k,

john hancock, 403b, 401k withdrawl, and roth ira.

The second most probable predictor is Investing, which tends to have a negative rela-

tionship with confidence. The top queries in this category are stock, gold, fidelity, stocks,

stock market, silver, gold price, mutual, scottrade, and finance.

The inclusion of the Energy and Hybrid Vehicle categories are likely due to gasoline

prices, which are known to have a negative impact on consumer sentiment in the US.

Figure 2 shows the posterior distribution of the one-step ahead forecast along with the

actual observations.

Note that the regression parameters are estimated using the entire sample of data, but

the forecasts for period t are made using the value of consumer sentiment at t − 1 and the

observed query categories at time t (for the included categories).

The model predicts reasonably well with a mean absolute one-step-ahead prediction error

of about 4.5%. A naive AR(1) model has a mean absolute one-step-ahead prediction error

of 5.2%, indicating an improvement of about 14%. See 3 for a time series plot of the actual,

AR(1), and BSTS one-step-ahead predictions.
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Figure 1: Top 5 predictors for consumer sentiment. Bars show the probability of inclusion.
Shading indicates the sign of the coefficient.
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Figure 2: Posterior distribution of forecast and the observations.

Figure 3: Actual, base AR(1), regression, and BSTS one-step ahead predictions.
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Figure 4: Decomposition of forecast.

As we have seen BSTS system can decompose the forecast into the trend and regression

components. The trend component is basically the univariate Kalman filter forecast, while

the regression component uses the predictors from the query categories. This decomposition,

shown in This is shown in Figure 4, illustrates how much of the forecast is due to trend

extrapolation and how much is due to the predictors.

5 Appendices

A Structural time series models

We focus on structural time series models of the standard form

yt = ZT
t αt + εt εt ∼ N (0, Ht)

αt+1 = Ttαt +Rtηt ηt ∼ N (0, Qt) .
(8)

Here yt is time series to be modeled and the vector αt is a latent variable indicating the

state of the model; it contains any trend, seasonal, or other components deemed necessary

by the modeler.

Zt is a vector of coefficients applied to the state variables, εt is a Normally distributed

error term with mean zero and Ht is its variance. Each state component contributes to the
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block diagonal transition matrix Tt, the rectangular block diagonal residual matrix Rt, and

the observation vector Zt. The error term ηt has covariance matrix Qt.

The model matrices (Z, T,R,H,Q) can be used to construct the Kalman filter, which

can then be used to forecast future values yt+τ from current observations (y1, . . . , yt). One

attractive feature of the Kalman filter is that it has a natural Bayesian interpretation and

can easily be combined with the variable selection and model averaging techniques we have

chosen.

A.1 Regression

Regressors can be included in a structural time series model in either a static framework

(where the regression coefficients are fixed) or dynamic framework (where the regression

coefficients can change over time).

In a dynamic regression the coefficients are a component of the state vector which evolve

over time according to some stochastic process. In a static regression, by contrast, the

coefficients are fixed, unknown parameters. A convenient way to include a static regression

component in the model is to set αt = 1, tt = 1, qt = 0, and zt = βtxt. This specification

adds βtxt to the contributions of the other state components in a computationally efficient

way, because it only adds one additional state to the model. A small dimension is helpful

because the kalman recursions are quadratic in the dimension of the state space.

B Estimating the model using Markov Chain Monte

Carlo

We estimate the posterior distribution of the model parameters using Markov Chain Monte

Carlo. Let θ denote the collection of model parameters (β, σ, ψ) where ψ is the collection

of all model parameters associated with state components other than the static regression.

Then the complete data posterior distribution is

p(θ,α|y) ∝ p(θ)p(α0)
n∏
t=1

p(yt|αt, θ)p(αt|αt−1, θ). (9)

In order to sample from the posterior distribution we use an efficient Gibbs sampling al-

gorithm that alternates between draws of p(α|θ,y) and p(θ|α,y), which produces a sequence

(θ,α)0, (θ,α)1, . . . from a Markov chain with stationary distribution p(θ,α|y).
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The key point is that, conditional on α, the time series and regression components of the

model are independent. Thus the draw from p(θ|α,y) decomposes into several independent

draws from the different conditional posterior distributions of the state components. In

particular, p(ψ, β, σ−2|α,y) = p(ψ|α,y)p(β, σ−2|α,y).

B.1 Sampling α

The idea of using Kalman filtering to sample the state in a linear Gaussian structural

time series model was independently proposed by [Carter and Kohn, 1994] and [Frühwirth-

Schnatter, 1994]. Various improvements to the early algorithms have been made by [de Jong

and Shepard, 1995] [Rue, 2001], and others. We use the method proposed by [Durbin and

Koopman, 2002], who observed that the variance of p(α|θ,y) does not depend on the nu-

merical value of y. Durbin and Koopman [2001] describes a fast smoothing method for

computing E(α|y, θ) using the Kalman filter.

Thus one may simulate a fake data set (y∗,α∗) ∼ p(y,α|θ) by simply iterating equa-

tion (8). Then the fast mean smoother can be used to subtract the conditional mean

E(α∗|θ,y∗) from α∗, which is now mean zero with the correct variance. A second fast

smoother can be used to add in E(α|y, θ), yielding a draw of α with the correct moments.

Because p(α|y, θ) is Gaussian, the correct moments imply the correct distribution.

B.2 Sampling θ

Many of the usual models for state components are simple random walks, whose variance

parameters are trivial to sample conditional on α. For example, consider the state variables

for the local linear trend model described in 1

µt+1 = µt + δt + η0t

δt+1 = δt + η1t,

where η0 and η1 are independent Gaussian error terms with variances ψ2
0 and ψ2

1. With

independent Gamma priors on ψ−20 ∼ Γ(df0/2, ss0/2) and ψ−21 ∼ Γ(df1/2, ss1/2), their full

conditional is the product of two independent Gamma distributions

p(ψ−20 , ψ2
1|α) = Γ

(
df0 + n− 1

2
,
SS0

2

)
Γ

(
df1 + n− 1

2
,
SS1

2

)
,
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where SS0 = ss0 +
∑n

t=2(µt − µt−1 − δt−1)
2 and SS1 = ss1 +

∑n
t=2(δt − δt−1)

2. These

complete data sufficient statistics are observed given α, so drawing ψ−20 and ψ−21 from their

full conditional distribution is trivial. Most of the traditional state models can be handled

similarly, including the seasonal component of the BSM and dynamic regression coefficients.

The full conditional for (β, σ−2) is likewise independent of the other state components,

with ỹt = yt − ZT
t αt + βTxt ∼ N

(
βTxt, σ

2
)
. Thus, by subtracting the contributions from

the other state components from each yt we are left with a standard spike and slab regres-

sion. The posterior distribution can be simulated efficiently by drawing from p(γ|α,y) using

a sequence of Gibbs sampling steps, and then drawing from the well known closed form

p(βγ, σ
−2|γ,α,y). This technique is known as “stochastic search variable selection” [George

and McCulloch, 1997]. There have been many suggested improvements to the SSVS algo-

rithm (notably [Ghosh and Clyde, 2011]), but we have obtained satisfactory results with the

basic algorithm.

The conditional posteriors for βγ and σ−2 can be found in standard texts [e.g. Gelman

et al., 2002]. They are

p(β|y,α, γ, σ−2) = N
(
β̃γ, σ

2Vγ

)
, and

p(σ−2|y,α, γ) = Γ

(
df + n

2
, ss+ S̃

)
,

(10)

where the complete data sufficient statistics are V −1γ = XTXγ+Ω−1γ , β̃γ = Vγ(X
T ỹγ+Ω−1γ bγ),

and S̃ =
∑n

t=1(ỹt − xTt β̃γ)
2 + (β̃γ − bγ)TΩ−1γ (β̃γ − bγ). The distribution for p(γ|α,y) can be

shown to be

p(γ|y,α) ∝ |Ω
−1|−1/2

|V −1γ |−1/2
S̃−(df+n)/2. (11)

Let |γ| denote the number of included components. Under Zellner’s g−prior it is easy to see

that
|Ω−1γ |
|Vγ|

=

(
κ/n

1 + κ/n

)|γ|
is decreasing in |γ|. It is true in general that |Ω−1| ≤ |Ω−1 + XTXγ| which implies that

p(γ|y,α) prefers models with few predictors and small residual variation.

Equation (11) can be used in a Gibbs sampling algorithm that draws each γi given

γ−i (the elements of γ other than γi). Each full conditional distribution is proportional

to equation (11), and γi can only assume two possible values. Notice that p(γ|y,α) only

requires matrix computations for those variables that are actually included in the model.
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Thus if the model is sparse the Gibbs sampler involves many inexpensive decompositions

of small matrices, which makes SSVS computationally tractable even for problems with a

relatively large number of predictors.
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