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Introduction

Motivation

©

These lectures review recent advances in nonlinear and non-gaussian
macro model-building.

©

First, we will justify why we are interested in this class of models.

©

Then, we will study both the solution and estimation of those models.

We will work with discrete time models.

©

We will focus on DSGE models.

©
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Introduction

Nonlinearities

o Most DSGE models are nonlinear.

o Common practice (you saw it yesterday): solve and estimate a
linearized version with Gaussian shocks.

o Why? Stochastic neoclassical growth model is nearly linear for the
benchmark calibration (Aruoba, Fernandez-Villaverde, Rubio-Ramirez,
2005).

o However, we want to depart from this basic framework.

o | will present three examples.
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Three Examples

Example |: Epstein-Zin Preferences

o Recursive preferences (Kreps-Porteus-Epstein-Zin-Weil) have become
a popular way to account for asset pricing observations.

o Natural separation between IES and risk aversion.

o Example of a more general set of preferences in macroeconomics.

o Consequences for business cycles, welfare, and optimal policy design.
Link with robust control.

o | study a version of the RBC with inflation and adjustment costs in

The Term Structure of Interest Rates in a DSGE Model with
Recursive Preferences.
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Three Examples

Household

o Preferences:
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o Asset markets.
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Three Examples

Technology

o Production function:

o Law of motion:
log z+1 = Alog z; + X0Te€zr+1 Where e, ~ N (0, 1)
o Aggregate constraints:
ct+ir = k¢ (zeh) 6

kt+1 - (1—5) kt+it
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Three Examples

Approximating the Solution of the Model

o Defines; = (R log z;; 1) where Et = ki — kss.

o Under differentiability conditions, third-order Taylor approximation of
the value function around the steady state:

1

iJ.l
6 Vijl,ssstsést.

—~ 1 o
% <kt, log z;; 1) = Vis o Visss{ + 5 Vijsssist +
o Approximations to the policy functions:
= i1 g 1 idcl
var <kt, log z;; l) ™ vars + var; ssS; + Evar,-j,sssts,{ + Bvar,-j/,sssts{st
o and yields:
Rm (/l;t: |0g Zt, |Og TTt, Wt, 1) =~ Rm,ss + Rm,i,sssat
1 1 o
—|—§Rm,,-j,sssa’tsajt + 6Rmv,-j/vsssa’tsajtsa£
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Three Examples

Structure of Approximation

@ The constant terms Vi, varss, or Ry, ss do not depend on 7, the
parameter that controls risk aversion.

@ None of the terms in the first-order approximation, V. g, var, s, or
Rm,.ss (for all m) depend on 7.

@ None of the terms in the second-order approximation, V. o, var, s,
or Rm,..ss depend on 7, except V335, varsss, and Rpy 33 s (for all
m). This last term is a constant that captures precautionary behavior.

@ In the third-order approximation only the terms of the form V33 s,
V3.3,55y \/.33,55 and varss. ss, Var3.3,ss, vVarisz,ss and Rm,33.,$5v Rm,3.3,ss,
R 33.ss (for all m) that is, terms on functions of x2, depend on 7.
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Three Examples

Example II: Volatility Shocks

o Data from four emerging economies: Argentina, Brazil, Ecuador, and
Venezuela. Why?

o Monthly data. Why?
o Interest rate r;: international risk free real rate+country spread.

o International risk free real rate: Monthly T-Bill rate. Transformed
into real rate using past year U.S. CPl inflation.

o Country spreads: Emerging Markets Bond Index+ (EMBI+) reported
by J.P. Morgan.
EMBI data coverage: Argentina 1997.12 - 2008.02; Ecuador 1997.12 -
2008.02; Brazil 1994.04 - 2008.02; and Venezuela 1997.12 - 2008.02.
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Three Examples

Data
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Three Examples

The Law of Motion for Interest Rates

o Decomposition of interest rates:

rr=_r_+ &wpr + Ert
~~ ~—— ~—
mean T-Bill shocks  Spread shocks

o &yt and g, ; follow:
(o
€th,t = Pep€tht—1 T € Bt U ¢, Upr ™~ _/\/'(0, 1)
(o
Sr,t - prgrvt—]_ + e r'tUr,tv ul’,t ~ N(O, 1)
o 0, and o, ¢+ follow:

Otb,t = (1 - Pgtb> Ttb + Pg,, Otb,t—1 + 1 ipUoy,t) Uoy,,t ~ N(0.1)

Ort = (1 - Pgr> (o +Pgrar,t—1 + N, Ug, t, Ug, t ™~ N(O' 1)

o | could also allow for correlations of shocks.
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Three Examples

A Small Open Economy Model |

o Risk Matters: The Real Effects of Volatility Shocks.

o Prototypical small open economy model: Mendoza (1991), Correia et
al. (1995), Neumeyer and Perri (2005), Uribe and Yue (2006).

o Representative household with preferences:

1—v
s ¢ [Ct—w_lH?}} —1
E0 ). p s |

o Why Greenwood-Hercowitz-Huffman (GHH) preferences? Absence of
wealth effects.
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Three Examples

A Small Open Economy Model Il

o Interest rates:

re =+ €&pr T Ert
a
€th,t = Pyp€tb,t—1 T € P Upht, Upht ~ N(0,1)
€t = P, Ert—1 + ear'tur,ty Ur¢ ~ N (0' 1)

Cth,t = (1 - Pgtb) Ttb + Py, Oth,t—1 + iUy, tr Uoy,t ~ N (0,1)
O-r,t = (1 _pU,> Ur +p(7,0-rvt71 + 17ru(7,,t1 uU',,t ~ N(O’ 1)

o Household's budget constraint:

D P
- D; — Wth—Rth‘f‘Ct‘f‘/t‘Ffd(Dt—i—l—D)2
1+rt 2

o Role of ®4 > 0 (Schmitt-Grohé and Uribe, 2003).
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Three Examples

A Small Open Economy Model IlI

o The stock of capital evolves according to the following law of motion:

2
Kt+1:(1_(5)Kt+< —Z<Itli1—1> )lt

o Typical no-Ponzi condition.
o Production function:
1—a
Y, = K¢ (eXth)

where:
X = pXthl + eUXUX’tI Ug t ~ ./\/‘(O, ]_) .

o Competitive equilibrium defined in a standard way.
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Three Examples

Solving the Model

o Perturbation methods.

o We are interested on the effects of a volatility increase, i.e., a positive
shock to either ug, + or ug,, ¢, while u,; =0 and ug ¢ = 0.

o We need to obtain a third approximation of the policy functions:

@ A first order approximation satisfies a certainty equivalence principle.
Only level shocks usp ¢, ur,¢, and ux ; appear.

@ A second order approximation only captures volatility indirectly via
cross products uy tUg,,t and utp tUg, ¢, Thus, volatility only has an
effect if the real interest rate changes.

@ In the third order, volatility shocks, us,+ and ug,, ¢, enter as
independent arguments.

o Moreover:

@ Cubic terms are quantitatively important.

@ The mean of the ergodic distributions of the endogenous variables and
the deterministic steady state values are quite different. Key for
calibration.
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Three Examples

Example IlI: Fortune or Virtue

(]

Strong evidence of time-varying volatility of U.S. aggregate variables.

©

Most famous example: the Great Moderation between 1984 and 2007.

©

Two explanations:

@ Stochastic volatility: fortune.

@ Parameter drifting: virtue.

o How can we measure the impact of each of these two mechanisms?

We build and estimate a medium-scale DSGE model with:

©

@ Stochastic volatility in the shocks that drive the economy.

@ Parameter drifting in the monetary policy rule.
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Three Examples

The Discussion

o Starting point in empirical work by Kim and Nelson (1999) and
McConnell and Pérez-Quirés (2000).

o Virtue: Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide
(2004).

o Sims and Zha (2006): once time-varying volatility is allowed in a
SVAR model, data prefer fortune.

o Follow-up papers: Canova and Gambetti (2004), Cogley and Sargent
(2005), Primiceri (2005).

o Fortune papers are SVARs models: Benati and Surico (2009).

o A DSGE model with both features is a natural measurement tool.
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Three Examples

The Goals

@ How do we write a medium-scale DSGE with stochastic volatility and
parameter drifting?

@ How do we evaluate the likelihood of the model and how to
characterize the decision rules of the equilibrium?

® How do we estimate the model using U.S. data and assess model fit?

@ How do we build counterfactual histories?
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Three Examples

Model |: Preferences

o Household maximizes:

mi t
Eo ) B'dy {Iog (¢jt — hejr—1) +vlog (pjt) - G"tl/’lJJr 9

t=0

o Shocks:
logd; = pylogdi—1+0q €4,

log ¢, = p,log @, 1 +0¢repr

o Stochastic Volatility:

logoy = (1 — pgd) log oy + [ log 0t 1+ Nyud ¢

logoy,: = (1 — p%) log 7y + 0, log ot 1 411, gt
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Three Examples

Model Il: Constraints

o Budget constraint:

mjt  bjria
Gt + Xjt + —— + =

+/th+1,tajt+1dwj,t+1,t =
Pt %

mijg— b
Jtl‘f’Rtl +ajt+Tt+Ft

wjtl; + (rtth - V;lq) [”jf]) kjt—1 +

Pt
o The capital evolves:

o= 00 1V [2] ) o

Xjt—1

o Investment-specific productivity y, follows a random walk in logs:

logp, = Ay +logp, |+ 0y cpt

o Stochastic Volatility:

log oy, = (1 — Pa,,) log oy —|—ng log oy r1 + "y, Uyt
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Three Examples

Model Ill: Nominal Rigidities

o Monopolistic competition on labor markets with sticky wages (Calvo
pricing with indexation).

o Monopolistic intermediate good producer with sticky prices (Calvo
pricing with indexation):

o d 1-a
yit = Atki_q (Iit> — ¢z
log At = Aa+log Ar—1 + 04 c€a

o Stochastic Volatility:
logoa: = (1 - PUA) logoa+p,, 108041+ 1,ua¢
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Three Examples

Model 1V: Monetary Authority

o Modified Taylor rule:

Tr e . ’
Rt — Rt—l E ' Yi1 eXp (0_ € )
R R l—I exp (A d) m,temt

o Stochastic Volatility:

logom: = (1 - Pam> logom + 0, 108 Tm -1 + 1, Um,t

o Parameter drifting:

log V11, = (1 - Pam) log Y11 + 0, 108 Y11,e1 + et

IOg r)/y,t = <]‘ - p')/y) IOg ’Yy +p'yy IOg r)/y,tfl + rlygyvt
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More About Nonlinearities

More About Nonlinearities |

o The previous examples are not exhaustive.
o Unfortunately, linearization eliminates phenomena of interest:

@ Asymmetries.

@ Threshold effects.

@ Precautionary behavior.

@ Big shocks.

® Convergence away from the steady state.

® And many others....
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More About Nonlinearities

More About Nonlinearities Il

Linearization limits our study of dynamics:

@ Zero bound on the nominal interest rate.

@ Finite escape time.

@ Multiple steady states.

@ Limit cycles.

® Subharmonic, harmonic, or almost-periodic oscillations.

® Chaos.
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More About Nonlinearities

More About Nonlinearities IlI

o Moreover, linearization induces an approximation error.
o This is worse than you may think.
@ Theoretical arguments:

@ Second-order errors in the approximated policy function imply
first-order errors in the loglikelihood function.

@ As the sample size grows, the error in the likelihood function also grows
and we may have inconsistent point estimates.

@ Linearization complicates the identification of parameters.
@ Computational evidence.
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More About Nonlinearities

Arguments Against Nonlinearities

@ Theoretical reasons: we know way less about nonlinear and
non-gaussian systems.

@ Computational limitations.

@ Bias.

Mark Twain
To a man with a hammer, everything looks like a nail.

Teller's Law
A state-of-the-art computation requires 100 hours of CPU time on the
state-of-the art computer, independent of the decade.

4
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Solution

Solving DSGE Models

o We want to have a general formalism to think about solving DSGE
models.

©

We need to move beyond value function iteration.

©

Theory of functional equations.

o We can cast numerous problems in macroeconomics involve
functional equations.

©

Examples: Value Function, Euler Equations.
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Solution

Functional Equation

o Let J! and J? be two functional spaces, O C R/ and let H : J* — J?
be an operator between these two spaces.

o A functional equation problem is to find a function d : QO — ™ such
that

H(d)=0
Regular equations are particular examples of functional equations.

o Note that 0 is the space zero, different in general that the zero in the
reals.
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Solution

Example: Euler Equation |

o Take the basic RBC:

maxEo ) | Bfu(ct)
t=0
Ct+kt+1 :eszﬁ‘—k(l—é)kt, Vt>0
Zy = PZt—1 + 0&s, & ~ N(O, ].)

o The first order condition:
u' (ct) = BE: {u' (ces1) (L4 ae” ki —6)}

o There is a policy function g : Ry x R — R2 that gives the optimal
choice of consumption and capital tomorrow given capital and
productivity today.
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Solution

Example: Euler Equation Il

o Then:

v (g' (keozt)) = BE: {U (g" (kew1, ze41)) (1 +F (8 (kev2e) , ze21) —6) )

or, alternatively:

v (g' (ke zt))
BB A (6 (& (k) 20m)) (1 (2 (ko) 2001) — ) } =

o We have functional equation where the unknown object is the policy
function g (+).

o More precisely, an integral equation (expectation operator). This can
lead to some measure theoretic issues that we will ignore.
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Solution

Example: Euler Equation Il

o Mapping into an operator is straightforward:

Ho=u' ()= BEe{u/ () (147 (- 2e41) = 0)}
d=g

o If we find g, and a transversality condition is satisfied, we are done!
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Solution

Example: Euler Equation IV

o Slightly different definitions of H and d can be used.

o For instance if we take again the Euler equation:
U/ (Ct) - ﬁ]Et {Ul (Cf+1) (1 + Déezt+1kgé<;11 — 5)} =0

we may be interested in finding the unknown conditional expectation
Ee {0 (ccer) (1+ wem K22 — 0) )

o Since IE; is itself another function, we write
H(d)=u ()~ pd =0

where d = E; {0} and 0 = v/ () (L + f (+, zt41) — 9).
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Solution
How Do We Solve Functional Equations?
Two Main Approaches

@ Perturbation Methods:

d" (x,0) = ;9; (x —x)'

We use implicit-function theorems to find coefficients 6;.

@ Projection Methods:
d" (X, 9) = ZQ,“F,‘ (X)
i=0

We pick a basis {¥; (x)}i-, and “project” H (-) against that basis.
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Solution

Relation with Value Function lteration

o There is a third main approach: the dynamic programing algorithm.

o Advantages:

@ Strong theoretical properties.

@ Intuitive interpretation.

o Problems:

@ Difficult to use with non-pareto efficient economies.

@ Curse of dimensionality.
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Estimation

Evaluating the Likelihood Function

How do we take the model to the data?

©

©

Usually we cannot write the likelihood of a DSGE model.

©

Once the model is nonlinear and/or non-gaussian we cannot use the
Kalman filter to evaluate the likelihood function of the model.

o How do we evaluate then such likelihood? Using Sequential Monte
Carlo.
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Estimation

Basic Estimation Algorithm 1: Evaluating Likelihood

Input: observables Y ', DSGE model M with parameters
rYyeY.

Output: 1likelihood p (yT;’y) .

@ Given 7, solve for policy functions of M.

@ With the policy functions, write the state-space form:

St = f(St—lv Wt;’)’,')
Ye =g (5 Vi)
@ With state space form, evaluate likelihood:

T\ — g t—1.,
p(y m) =T1p (ely 7))
t=1
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Estimation

Basic Estimation Algorithm 2: MLE

Input: observables Y ', DSGE model M parameterized by
rYeyY.

Estimates: 7

@ Set /=0. Fix initial parameter values 7%;.
@ Compute p(yT;’)f,-) using algorithm 1.
@ Is 4, = argmaxp(yT;')f)?

® Yes: Make y = ;. Stop.

@ No: Make 7; ~> v, 1. Go to step 2.
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Estimation

Basic Estimation Algorithm 3: Bayesian

Input: observables Y ', DSGE model M parameterized by
v €Y with priors 7 (7).

Posterior distribution: 7 (7y|YT)

Q@
@

Fix /. Set i =0 and chose initial parameter values 7;.
Compute p(yT;’y,-) using algorithm 1.

Propose ¢* = 7, +¢ where ¢ ~ N (0,X).

. L)
Compute & = min {P(YT:%)N(“Y,-)' 1} :

With probability &, make 7, ,; = 7*. Otherwise 7y;,; =7;.

If i<M, i~7+1. Go to step 3. Otherwise Stop.

Jesis Fernandez-Villaverde (PENN) Nonlinear/Non-Gaussian DSGE July 10, 2011 38 /38



	Introduction
	Three Examples
	More About Nonlinearities
	Solution
	Estimation

