Why Nonlinear/Non-Gaussian DSGE Models?

Jesús Fernández-Villaverde

University of Pennsylvania

July 10, 2011

Motivation

- These lectures review recent advances in nonlinear and non-gaussian macro model-building.
- First, we will justify why we are interested in this class of models.
- Then, we will study both the solution and estimation of those models.
- We will work with discrete time models.

We will focus on DSGF models.

Nonlinearities

Most DSGE models are nonlinear.

 Common practice (you saw it yesterday): solve and estimate a linearized version with Gaussian shocks.

- Why? Stochastic neoclassical growth model is nearly linear for the benchmark calibration (Aruoba, Fernández-Villaverde, Rubio-Ramírez, 2005).
- However, we want to depart from this basic framework.

• I will present three examples.

Example I: Epstein-Zin Preferences

- Recursive preferences (Kreps-Porteus-Epstein-Zin-Weil) have become a popular way to account for asset pricing observations.
- Natural separation between IES and risk aversion.
- Example of a more general set of preferences in macroeconomics.
- Consequences for business cycles, welfare, and optimal policy design.
 Link with robust control.
- I study a version of the RBC with inflation and adjustment costs in The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences.

Household

Preferences:

$$U_t = \left[\left(c_t^v \left(1 - I_t
ight)^{1-v}
ight)^{rac{1-\gamma}{ heta}} + eta \underbrace{\left(\mathbb{E}_t U_{t+1}^{1-\gamma}
ight)^{rac{1}{ heta}}}_{ ext{Risk-adjustment operator}}
ight]^{rac{v}{1-\gamma}}$$

where:

$$heta = rac{1-\gamma}{1-rac{1}{1b}}.$$

• Budget constraint:

$$c_t + i_t + \frac{b_{t+1}}{p_t} \frac{1}{R_t} = r_t k_t + w_t l_t + \frac{b_t}{p_t}$$

Asset markets.

Technology

• Production function:

$$y_t = k_t^{\zeta} \left(z_t I_t \right)^{1-\zeta}$$

• Law of motion:

$$\log z_{t+1} = \lambda \log z_t + \chi \sigma_{arepsilon} arepsilon_{zt+1}$$
 where $arepsilon_{zt} \sim \mathcal{N}(0,1)$

Aggregate constraints:

$$c_t + i_t = k_t^{\zeta} (z_t I_t)^{1-\zeta}$$

$$k_{t+1} = (1 - \delta) k_t + i_t$$

Approximating the Solution of the Model

- ullet Define $s_t = \left(\widehat{k}_t, \log z_t; 1
 ight)$ where $\widehat{k}_t = k_t k_{ss}$.
- Under differentiability conditions, third-order Taylor approximation of the value function around the steady state:

$$V\left(\widehat{k}_t, \log z_t; 1\right) \simeq V_{ss} + V_{i,ss} s_t^i + \frac{1}{2} V_{ij,ss} s_t^i s_t^j + \frac{1}{6} V_{ijl,ss} s_t^i s_t^j s_t^j,$$

• Approximations to the policy functions:

$$var\left(\widehat{k}_t, \log z_t; 1\right) \simeq var_{ss} + var_{i,ss}s_t^i + \frac{1}{2}var_{ij,ss}s_t^i s_t^j + \frac{1}{6}var_{ijl,ss}s_t^i s_t^j s_t^j$$

and yields:

$$R_m\left(\widehat{k}_t, \log z_t, \log \pi_t, \omega_t; 1\right) \simeq R_{m,ss} + R_{m,i,ss} s a_t + \frac{1}{2} R_{m,ij,ss} s a_t^i s a_t^j + \frac{1}{6} R_{m,ijl,ss} s a_t^i s a_t^j s a_t^j$$

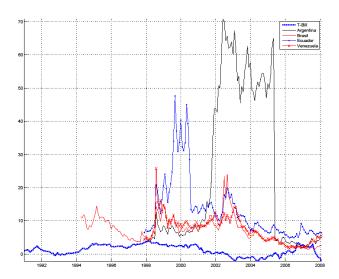
Structure of Approximation

- ① The constant terms V_{ss} , var_{ss} , or $R_{m,ss}$ do **not** depend on γ , the parameter that controls risk aversion.
- **2** None of the terms in the first-order approximation, $V_{.,ss}$, $var_{.,ss}$, or $R_{m,.,ss}$ (for all m) depend on γ .
- 3 None of the terms in the second-order approximation, $V_{..,ss}$, $var_{..,ss}$, or $R_{m,..,ss}$ depend on γ , except $V_{33,ss}$, $var_{33,ss}$, and $R_{m,33,ss}$ (for all m). This last term is a constant that captures precautionary behavior.
- **4** In the third-order approximation **only** the terms of the form $V_{33.,ss}$, $V_{33,ss}$, $V_{.33,ss}$ and $var_{33.,ss}$, $var_{.33,ss}$ and $R_{m,33.,ss}$, $R_{m,33,ss}$, $R_{m,33,ss}$ (for all m) that is, terms on functions of χ^2 , depend on γ .

Example II: Volatility Shocks

- Data from four emerging economies: Argentina, Brazil, Ecuador, and Venezuela. Why?
- Monthly data. Why?
- Interest rate r_t : international risk free real rate+country spread.
- International risk free real rate: Monthly T-Bill rate. Transformed into real rate using past year U.S. CPI inflation.
- Country spreads: Emerging Markets Bond Index+ (EMBI+) reported by J.P. Morgan.
 EMBI data coverage: Argentina 1997.12 - 2008.02; Ecuador 1997.12 -2008.02; Brazil 1994.04 - 2008.02; and Venezuela 1997.12 - 2008.02.

Data



The Law of Motion for Interest Rates

Decomposition of interest rates:

$$r_t = \underbrace{r}_{\mathsf{mean}} + \underbrace{\varepsilon_{tb,t}}_{\mathsf{T-Bill}} + \underbrace{\varepsilon_{r,t}}_{\mathsf{Spread shocks}}$$

• $\varepsilon_{tb,t}$ and $\varepsilon_{r,t}$ follow:

$$\begin{split} \varepsilon_{tb,t} &= \rho_{tb} \varepsilon_{tb,t-1} + \mathrm{e}^{\sigma_{tb,t}} u_{tb,t}, \ u_{tb,t} \sim \mathcal{N}\left(0,1\right) \\ \varepsilon_{r,t} &= \rho_{r} \varepsilon_{r,t-1} + \mathrm{e}^{\sigma_{r,t}} u_{r,t}, \ u_{r,t} \sim \mathcal{N}\left(0,1\right) \end{split}$$

• $\sigma_{tb.t}$ and $\sigma_{r.t}$ follow:

$$\sigma_{tb,t} = \left(1 - \rho_{\sigma_{tb}}\right) \sigma_{tb} + \rho_{\sigma_{tb}} \sigma_{tb,t-1} + \eta_{tb} u_{\sigma_{tb},t}, \ u_{\sigma_{tb},t} \sim \mathcal{N}\left(0,1\right)$$

$$\sigma_{r,t} = \left(1 - \rho_{\sigma_{r}}\right) \sigma_{r} + \rho_{\sigma_{r}} \sigma_{r,t-1} + \eta_{r} u_{\sigma_{r},t}, \ u_{\sigma_{r},t} \sim \mathcal{N}\left(0,1\right)$$

I could also allow for correlations of shocks.

A Small Open Economy Model I

- Risk Matters: The Real Effects of Volatility Shocks.
- Prototypical small open economy model: Mendoza (1991), Correia et al. (1995), Neumeyer and Perri (2005), Uribe and Yue (2006).
- Representative household with preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[C_t - \omega^{-1} H_t^{\omega} \right]^{1-\nu} - 1}{1-\nu}.$$

 Why Greenwood-Hercowitz-Huffman (GHH) preferences? Absence of wealth effects.

A Small Open Economy Model II

Interest rates:

$$\begin{split} r_{t} &= r + \varepsilon_{tb,t} + \varepsilon_{r,t} \\ \varepsilon_{tb,t} &= \rho_{tb} \varepsilon_{tb,t-1} + \mathrm{e}^{\sigma_{tb,t}} u_{tb,t}, \ u_{tb,t} \sim \mathcal{N}\left(0,1\right) \\ \varepsilon_{r,t} &= \rho_{r} \varepsilon_{r,t-1} + \mathrm{e}^{\sigma_{r,t}} u_{r,t}, \ u_{r,t} \sim \mathcal{N}\left(0,1\right) \\ \sigma_{tb,t} &= \left(1 - \rho_{\sigma_{tb}}\right) \sigma_{tb} + \rho_{\sigma_{tb}} \sigma_{tb,t-1} + \eta_{tb} u_{\sigma_{tb},t}, \ u_{\sigma_{tb},t} \sim \mathcal{N}\left(0,1\right) \\ \sigma_{r,t} &= \left(1 - \rho_{\sigma_{r}}\right) \sigma_{r} + \rho_{\sigma_{r}} \sigma_{r,t-1} + \eta_{r} u_{\sigma_{r},t}, \ u_{\sigma_{r},t} \sim \mathcal{N}\left(0,1\right) \end{split}$$

Household's budget constraint:

$$\frac{D_{t+1}}{1+r_t} = D_t - W_t H_t - R_t K_t + C_t + I_t + \frac{\Phi_d}{2} (D_{t+1} - D)^2$$

• Role of $\Phi_d > 0$ (Schmitt-Grohé and Uribe, 2003).

A Small Open Economy Model III

• The stock of capital evolves according to the following law of motion:

$$\mathcal{K}_{t+1} = (1-\delta)\mathcal{K}_t + \left(1 - \frac{\phi}{2}\left(\frac{I_t}{I_{t-1}} - 1\right)^2\right)I_t$$

- Typical no-Ponzi condition.
- Production function:

$$Y_t = K_t^{lpha} \left(e^{X_t} H_t
ight)^{1-lpha}$$

where:

$$X_{t} = \rho_{x} X_{t-1} + e^{\sigma_{x}} u_{x,t}, \ u_{x,t} \sim \mathcal{N}(0,1).$$

Competitive equilibrium defined in a standard way.

Solving the Model

- Perturbation methods.
- We are interested on the effects of a volatility increase, i.e., a positive shock to either $u_{\sigma_t,t}$ or $u_{\sigma_{tb},t}$, while $u_{r,t}=0$ and $u_{tb,t}=0$.
- We need to obtain a third approximation of the policy functions:
 - ① A first order approximation satisfies a certainty equivalence principle. Only level shocks $u_{tb,t}$, $u_{r,t}$, and $u_{X,t}$ appear.
 - ② A second order approximation only captures volatility indirectly via cross products $u_{r,t}u_{\sigma_r,t}$ and $u_{tb,t}u_{\sigma_{tb},t}$. Thus, volatility only has an effect if the real interest rate changes.
 - 3 In the third order, volatility shocks, $u_{\sigma,t}$ and $u_{\sigma_{tb},t}$, enter as independent arguments.
- Moreover:
 - 1 Cubic terms are quantitatively important.
 - ② The mean of the ergodic distributions of the endogenous variables and the deterministic steady state values are quite different. Key for calibration.

Example III: Fortune or Virtue

- Strong evidence of time-varying volatility of U.S. aggregate variables.
- Most famous example: the Great Moderation between 1984 and 2007.
- Two explanations:
 - Stochastic volatility: fortune.
 - 2 Parameter drifting: virtue.
- How can we measure the impact of each of these two mechanisms?
- We build and estimate a medium-scale DSGE model with:
 - 1 Stochastic volatility in the shocks that drive the economy.
 - 2 Parameter drifting in the monetary policy rule.

The Discussion

- Starting point in empirical work by Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000).
- Virtue: Clarida, Galí, and Gertler (2000) and Lubik and Schorfheide (2004).
- Sims and Zha (2006): once time-varying volatility is allowed in a SVAR model, data prefer fortune.
- Follow-up papers: Canova and Gambetti (2004), Cogley and Sargent (2005), Primiceri (2005).
- Fortune papers are SVARs models: Benati and Surico (2009).
- A DSGE model with both features is a natural measurement tool.

The Goals

4 How do we write a medium-scale DSGE with stochastic volatility and parameter drifting?

2 How do we evaluate the likelihood of the model and how to characterize the decision rules of the equilibrium?

3 How do we estimate the model using U.S. data and assess model fit?

4 How do we build counterfactual histories?

Model I: Preferences

• Household maximizes:

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} d_{t} \left\{ \log \left(c_{jt} - h c_{jt-1} \right) + v \log \left(\frac{m_{jt}}{\rho_{t}} \right) - \frac{\varphi_{t} \psi}{1 + \vartheta} \frac{I_{jt}^{1+\vartheta}}{1 + \vartheta} \right\}$$

Shocks:

$$\log d_t = \rho_d \log d_{t-1} + \sigma_{d,t} \varepsilon_{d,t}$$

$$\log \varphi_t = \rho_\varphi \log \varphi_{t-1} + \sigma_{\varphi,t} \varepsilon_{\varphi,t}$$

Stochastic Volatility:

$$\begin{split} \log \sigma_{d,t} &= \left(1 - \rho_{\sigma_d}\right) \log \sigma_d + \rho_{\sigma_d} \log \sigma_{d,t-1} + \eta_d u_{d,t} \\ \log \sigma_{\varphi,t} &= \left(1 - \rho_{\sigma_\varphi}\right) \log \sigma_\varphi + \rho_{\sigma_\varphi} \log \sigma_{\varphi,t-1} + \eta_\varphi u_{\varphi,t} \end{split}$$

Model II: Constraints

Budget constraint:

$$c_{jt} + x_{jt} + \frac{m_{jt}}{p_t} + \frac{b_{jt+1}}{p_t} + \int q_{jt+1,t} a_{jt+1} d\omega_{j,t+1,t} =$$

$$w_{jt} I_{jt} + \left(r_t u_{jt} - \mu_t^{-1} \Phi \left[u_{jt} \right] \right) k_{jt-1} + \frac{m_{jt-1}}{p_t} + R_{t-1} \frac{b_{jt}}{p_t} + a_{jt} + T_t + F_t$$

The capital evolves:

$$k_{jt} = (1 - \delta) k_{jt-1} + \mu_t \left(1 - V \left[\frac{x_{jt}}{x_{jt-1}} \right] \right) x_{jt}$$

ullet Investment-specific productivity μ_t follows a random walk in logs:

$$\log \mu_t = \Lambda_\mu + \log \mu_{t-1} + \sigma_{\mu,t} \varepsilon_{\mu,t}$$

Stochastic Volatility:

$$\log \sigma_{\mu,t} = \left(1 - \rho_{\sigma_{\mu}}\right) \log \sigma_{\mu} + \rho_{\sigma_{\mu}} \log \sigma_{\mu,t-1} + \eta_{\mu} u_{\mu,t}$$

Model III: Nominal Rigidities

- Monopolistic competition on labor markets with sticky wages (Calvo pricing with indexation).
- Monopolistic intermediate good producer with sticky prices (Calvo pricing with indexation):

$$y_{it} = A_t k_{it-1}^{\alpha} \left(I_{it}^{d} \right)^{1-\alpha} - \phi z_t$$
$$\log A_t = \Lambda_A + \log A_{t-1} + \sigma_{A,t} \varepsilon_{A,t}$$

Stochastic Volatility:

$$\log \sigma_{A,t} = \left(1 - \rho_{\sigma_A}\right) \log \sigma_A + \rho_{\sigma_A} \log \sigma_{A,t-1} + \eta_A u_{A,t}$$

Model IV: Monetary Authority

Modified Taylor rule:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\Pi}\right)^{\gamma_{\Pi,t}} \left(\frac{\frac{y_t^d}{y_{t-1}^d}}{\exp\left(\Lambda_{y^d}\right)}\right)^{\gamma_{y,t}}\right)^{1-\gamma_R} \exp\left(\sigma_{m,t} \varepsilon_{mt}\right)$$

Stochastic Volatility:

$$\log \sigma_{m,t} = \left(1 - \rho_{\sigma_m}\right) \log \sigma_m + \rho_{\sigma_m} \log \sigma_{m,t-1} + \eta_m u_{m,t}$$

Parameter drifting:

$$\begin{split} \log \gamma_{\Pi,t} &= \left(1 - \rho_{\gamma_\Pi}\right) \log \gamma_\Pi + \rho_{\gamma_\Pi} \log \gamma_{\Pi,t-1} + \eta_\Pi \varepsilon_{\pi,t} \\ &\log \gamma_{y,t} = \left(1 - \rho_{\gamma_y}\right) \log \gamma_y + \rho_{\gamma_y} \log \gamma_{y,t-1} + \eta_y \varepsilon_{y,t} \end{split}$$

More About Nonlinearities I

- The previous examples are not exhaustive.
- Unfortunately, linearization eliminates phenomena of interest:
 - Asymmetries.
 - 2 Threshold effects.
 - 3 Precautionary behavior.
 - Big shocks.
 - Sonvergence away from the steady state.
 - 6 And many others....

More About Nonlinearities II

Linearization limits our study of dynamics:

- 1 Zero bound on the nominal interest rate.
- ② Finite escape time.
- Multiple steady states.
- 4 Limit cycles.
- 5 Subharmonic, harmonic, or almost-periodic oscillations.
- 6 Chaos.

More About Nonlinearities III

- Moreover, linearization induces an approximation error.
- This is worse than you may think.
 - ① Theoretical arguments:
 - Second-order errors in the approximated policy function imply first-order errors in the loglikelihood function.
 - 2 As the sample size grows, the error in the likelihood function also grows and we may have inconsistent point estimates.
 - 3 Linearization complicates the identification of parameters.
 - ② Computational evidence.

Arguments Against Nonlinearities

- Theoretical reasons: we know way less about nonlinear and non-gaussian systems.
- ② Computational limitations.
- 3 Bias.

Mark Twain

To a man with a hammer, everything looks like a nail.

Teller's Law

A state-of-the-art computation requires 100 hours of CPU time on the state-of-the art computer, independent of the decade.

Solving DSGE Models

- We want to have a general formalism to think about solving DSGE models.
- We need to move beyond value function iteration.
- Theory of functional equations.
- We can cast numerous problems in macroeconomics involve functional equations.
- Examples: Value Function, Euler Equations.

Functional Equation

- Let J^1 and J^2 be two functional spaces, $\Omega \subseteq \Re^I$ and let $\mathcal{H}: J^1 \to J^2$ be an operator between these two spaces.
- A functional equation problem is to find a function $d:\Omega \to \Re^m$ such that

$$\mathcal{H}(d) = \mathbf{0}$$

Regular equations are particular examples of functional equations.

 Note that 0 is the space zero, different in general that the zero in the reals.

Example: Euler Equation I

Take the basic RBC:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t\right) \\ c_t + k_{t+1} &= e^{z_t} k_t^{\alpha} + \left(1 - \delta\right) k_t, \ \forall \ t > 0 \\ z_t &= \rho z_{t-1} + \sigma \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1) \end{aligned}$$

• The first order condition:

$$u'\left(c_{t}\right) = \beta \mathbb{E}_{t}\left\{u'\left(c_{t+1}\right)\left(1 + \alpha e^{z_{t+1}} k_{t+1}^{\alpha-1} - \delta\right)\right\}$$

• There is a policy function $g: \Re_+ \times \Re \to \Re_+^2$ that gives the optimal choice of consumption and capital tomorrow given capital and productivity today.

Example: Euler Equation II

Then:

$$u'\left(g^{1}\left(k_{t},z_{t}\right)\right)=\beta\mathbb{E}_{t}\left\{u'\left(g^{1}\left(k_{t+1},z_{t+1}\right)\right)\left(1+f\left(g^{2}\left(k_{t},z_{t}\right),z_{t+1}\right)-\delta\right)\right\}$$

or, alternatively:

$$\begin{aligned} u'\left(g^{1}\left(k_{t},z_{t}\right)\right) \\ -\beta \mathbb{E}_{t}\left\{u'\left(g^{1}\left(g^{2}\left(k_{t},z_{t}\right),z_{t+1}\right)\right)\left(1+f\left(g^{2}\left(k_{t},z_{t}\right),z_{t+1}\right)-\delta\right)\right\} = 0 \end{aligned}$$

- We have functional equation where the unknown object is the policy function $g(\cdot)$.
- More precisely, an integral equation (expectation operator). This can lead to some measure theoretic issues that we will ignore.

Example: Euler Equation III

• Mapping into an operator is straightforward:

$$\mathcal{H} = u'(\cdot) - \beta \mathbb{E}_{t} \left\{ u'(\cdot) \left(1 + f(\cdot, z_{t+1}) - \delta \right) \right\}$$
$$d = g$$

• If we find g, and a transversality condition is satisfied, we are done!

Example: Euler Equation IV

- ullet Slightly different definitions of ${\cal H}$ and d can be used.
- For instance if we take again the Euler equation:

$$u'\left(c_{t}\right)-\beta\mathbb{E}_{t}\left\{u'\left(c_{t+1}\right)\left(1+\alpha e^{z_{t+1}}k_{t+1}^{\alpha-1}-\delta\right)\right\}=0$$

we may be interested in finding the unknown conditional expectation $\mathbb{E}_{t}\left\{u'\left(c_{t+1}\right)\left(1+\alpha e^{z_{t+1}}k_{t+1}^{\alpha-1}-\delta\right)\right\}.$

• Since \mathbb{E}_t is itself another function, we write

$$\mathcal{H}\left(d\right) = u'\left(\cdot\right) - \beta d = \mathbf{0}$$

where $d = E_t \{ \emptyset \}$ and $\vartheta = u'(\cdot) (1 + f(\cdot, z_{t+1}) - \delta)$.

How Do We Solve Functional Equations?

Two Main Approaches

Perturbation Methods:

$$d^{n}(x,\theta) = \sum_{i=0}^{n} \theta_{i}(x - x_{0})^{i}$$

We use implicit-function theorems to find coefficients θ_i .

2 Projection Methods:

$$d^{n}(x,\theta) = \sum_{i=0}^{n} \theta_{i} \Psi_{i}(x)$$

We pick a basis $\{\Psi_i(x)\}_{i=0}^{\infty}$ and "project" $\mathcal{H}(\cdot)$ against that basis.

Relation with Value Function Iteration

- There is a third main approach: the dynamic programing algorithm.
- Advantages:
 - Strong theoretical properties.
 - 2 Intuitive interpretation.
- Problems:
 - 1 Difficult to use with non-pareto efficient economies.
 - 2 Curse of dimensionality.

Evaluating the Likelihood Function

• How do we take the model to the data?

Usually we cannot write the likelihood of a DSGE model.

 Once the model is nonlinear and/or non-gaussian we cannot use the Kalman filter to evaluate the likelihood function of the model.

 How do we evaluate then such likelihood? Using Sequential Monte Carlo.

Basic Estimation Algorithm 1: Evaluating Likelihood

Input: observables Y^T , DSGE model M with parameters $\gamma \in Y$.

Output: likelihood $p(y^T; \gamma)$.

- floor Given γ , solve for policy functions of M.
- With the policy functions, write the state-space form:

$$S_t = f(S_{t-1}, W_t; \gamma_i)$$
$$Y_t = g(S_t, V_t; \gamma_i)$$

3 With state space form, evaluate likelihood:

$$p\left(y^{T};\gamma_{i}\right) = \prod_{t=1}^{T} p\left(y_{t}|y^{t-1};\gamma_{i}\right)$$

Basic Estimation Algorithm 2: MLE

Input: observables Y^T , DSGE model M parameterized by $\gamma \in Y$.

Estimates: $\widehat{\gamma}$

- ① Set i=0. Fix initial parameter values γ_i .
- ② Compute $p(y^T; \gamma_i)$ using algorithm 1.
- 3 Is $\gamma_i = \arg \max p(y^T; \gamma)$?
 - ① Yes: Make $\widehat{\gamma}=\gamma_i$. Stop.
 - ② No: Make $\gamma_i \leadsto \gamma_{i+1}$. Go to step 2.

Basic Estimation Algorithm 3: Bayesian

Input: observables Y^T , DSGE model M parameterized by $\gamma \in Y$ with priors $\pi\left(\gamma\right)$.

Posterior distribution: $\pi(\gamma|Y^T)$

- ① Fix I. Set i=0 and chose initial parameter values γ_i .
- ② Compute $p(y^T; \gamma_i)$ using algorithm 1.
- ③ Propose $\gamma^* = \gamma_i + \varepsilon$ where $\varepsilon \sim \mathcal{N}\left(0, \Sigma\right)$.
- $\textbf{ 4 Compute } \alpha = \min \left\{ \frac{p \left(y^T; \gamma^* \right) \pi(\gamma^*)}{p \left(y^T; \gamma_i \right) \pi(\gamma_i)}, 1 \right\}.$
- forall With probability lpha, make $\gamma_{i+1}=\gamma^*$. Otherwise $\gamma_{i+1}=\gamma_i$.
- **6** If i < M, $i \leadsto \overline{\imath} + 1$. Go to step 3. Otherwise Stop.