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Abstract

This paper studies the liquidity of defaultable corporate bonds that are traded in an over-

the-counter secondary market with search frictions. Bargaining with dealers determines a bond’s

endogenous liquidity, which depends on both the firm fundamental and the time-to-maturity of

the bond. Corporate default and investment decisions interact with the endogenous secondary

market liquidity via the rollover channel. A default/investment-liquidity loop arises: Earlier

endogenous default worsens a bond’s secondary market liquidity, which amplifies equity holders’

rollover losses, which in turn leads to earlier endogenous default. Thus, our model characterizes

the full inter-dependence between liquidity premium and default premium in understanding

credit spreads for corporate bonds. We also study the optimal maturity implied by the model,

and an extension where worsening secondary market liquidity feeds back to endogenous under-

investment.
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1 Introduction

Although corporate bond markets make up a large part of the U.S. financial system,1 it has been well

documented that secondary corporate bond markets – which are mainly over-the-counter (OTC)

markets – are much less liquid than equity markets. For instance, Edwards, Harris, and Piwowar

(2007) study the U.S. OTC secondary trades in corporate bonds and estimate the transaction

cost to be around 150 bps, and Bao, Pan, and Wang (forthcoming) find an even larger number.2

Moreover, both papers document a strong empirical pattern that the liquidity for corporate bonds

deteriorates dramatically for bonds with lower fundamental, i.e., bonds that are issued by firms

with higher credit derivative swaps (CDS), and liquidity improves for bonds with little time-to-

maturity left. The left hand side of Figure 1 illustrates this increasing pattern w.r.t. CDS rates

by plotting the average implied transaction cost based on Bao, Pan, and Wang (forthcoming) for

bonds sorted by the firm CDS rates, suggesting firm fundamental as one of the key determinants

of the secondary market liquidity for corporate bonds. Similarly, the right hand side of Figure 1

illustrates the increasing pattern w.r.t. time-to-maturity based on the same illiquidity measure for

bonds sorted by time-to-maturity.

Additionally, the recent financial crisis of 2007-2008 has demonstrated that the deterioration of

secondary market liquidity can adversely affect the refinancing operations of firms, which in turn

exacerbates the firm fundamental and drives up the credit derivative swaps. Taken together, these

two observations suggest a positive feedback loop between the liquidity of secondary market and

the asset fundamental for corporate bonds, and our model aims to deliver such an effect.

We model the endogenous liquidity in the secondary corporate bond market as a search-based

over-the-counter (OTC) market á la Duffie, Garlenau, and Pedersen (2005). Bond investors who

are hit by liquidity shocks prefer early payments, and with a certain matching technology they

meet and trade with an intermediary dealer at an endogenous bid-ask spread. The resulting bid-
1According to flow of funds, the values of corporate bonds reaches about 4.7 trillion in the first quarter of 2011,

which consists of about one third of total liabilities of U.S. corporate businesses.
2Empirical papers that investigate secondary bond market liquidity are Hong and Warga (2000), Schultz (2001),

Harris and Piwowar (2006); Green, Hollifield, and Schurhoff (2007b,a).

1



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Group 1, lowest 
CDS 

Group 2 Group 3 Group 4 Group 5, highest 
CDS 

Average Bond Illiquidity (Transaction Cost) in 2008 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

Group 1, shortest 
maturity 

Group 2 Group 3 Group 4 Group 5, longest 
maturity 

Average Bond Illiquidity (Transaction Cost) in 2008 

Figure 1: The median corporate bond secondary market illiquidity for quintile groups with increasing CDS
(left hand side) and increasing time-to-maturity (right hand side). For each month in 2008, we first estimate
the bond illiquidity measure γ0 (which captures the mean-reversion of transaction prices) using trade-by-
trade data following Bao, Pan, and Wang (forthcoming). We then form five quintiles for firms based on their
5-year CDS rates (LHS) and time-to-maturity (RHS), and calculate the median of bond illiquidity γ0 for
each quintile. The number shown in the figure is the mean γ0 over 12 months for each quintile. Data source:
TRACE.

ask spread captures the endogenous secondary market liquidity, which in equilibrium depends on

both the firm’s distance-to-default and the bond’s time-to-maturity.

The second important ingredient for the feedback between fundamental and liquidity is the

endogenous default decision by equity holders. This mechanism is borrowed from the standard

Leland-type corporate finance structural models, i.e., Leland (1994) and Leland and Toft (1996)

(hereafter LT96). More specifically, a firm that maintains a stationary debt maturity structure has

to roll over (refinance) the maturing bonds by issuing new bonds with identical terms. When the

firm fundamental deteriorates, equity holders will face heavy rollover losses due to falling prices

of newly issued bonds. Equity holders choose an endogenous default threshold, at which point

bond investors with defaulted bonds step in to recover part of the firm value due to dead-weight

bankruptcy cost.

The liquidity of defaulted bonds is important in deriving the endogenous bond liquidity before

the firm defaults. Motivated by the fact that bankruptcy leads to not only the freezing of assets

within the company but also a delay in the payout of any cash depending on court proceedings,3

we endogenize the (il)liquidity of defaulted bonds by modeling the firm default as a delayed payout.
3The Lehman Brothers bankruptcy in September 2008 is a good case in point. After much legal uncertainty,

payouts to the debt holders only started trickling out after more than 3 years.
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This assumption results in a boundary condition when we derive the bond valuations before default

by solving a system of (linked) Partial Differential Equations (PDEs).4 We solve this system of

PDEs, as well as the equity valuation and the endogenous default boundary, in closed form in

Section 3.

Consistent with empirical findings, we show in Section 4.1 that the endogenous bid-ask spread is

increasing with the firm’s distance-to-default, holding the time-to-maturity constant, and decreasing

in the bond’s time-to-maturity, holding the distance-to-default constant. Moreover, our model

produces a novel testable empirical prediction that the slope w.r.t. time-to-maturity of the bid-ask

spread will be greater for bonds with higher distance-to-default. Intuitively, as the stated maturity

of corporate bonds plays no role in bankruptcy procedures, the difference between bonds with

different time-to-maturities vanishes if firms are close to default.

Based on the endogenous liquidity derived in this model, Section 4.2 illustrates the positive

feedback loop between fundamental and liquidity for corporate bonds that are traded in the sec-

ondary market. Essentially, the endogenous default by equity holders – via the rollover channel –

feeds the worsening secondary market liquidity back to the fundamental value of corporate bonds.

Imagine a negative shock to the firm cash flows. Because it pushes the firm closer to default, this

represents a negative shock to the bond’s fundamental value. More importantly, because bonds of

defaulted firms suffer greater illiquidity, the outside option of bondholders when bargaining with

the dealer declines. This worsens the secondary market liquidity and lowers the bond prices even

further. The wider refinancing gap (i.e., heavier rollover losses) between the newly issued bond

prices and promised principals causes equity holders to default earlier, pushing the firm even closer

to default. As a result, lower distance-to-default reduces the fundamental value of the corporate

bonds even further, and so forth.

The above mechanism emphasizes that the secondary market liquidity can feed back to the
4This arises because bond valuations depend on firm fundamental, the bond’s time-to-maturity, and the liquidity

state of bond holders. Another possibility for the bankruptcy boundary condition is to assume some adverse selection
with regard to the bankruptcy recovery value, a path we have do not pursue in this model due to the difficulties
inherent in tracking persistent private information.
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bond’s fundamental value via the firm’s endogenous distance-to-default. Since one can broadly

interpret default as a form of disinvestment, this suggests a further interaction between firm fun-

damental and the firm’s financing liquidity. Following this idea, we consider a simple extension of

our base model where equity holders make an endogenous investment decision at the initial date.

Relative to the model with exogenous financing liquidity, given negative fundamental shocks, the

endogenous financing liquidity gives a further adverse kick in equity holders’ investment incentives,

which further lowers the firm’s fundamental.

This feedback loop between fundamental and liquidity implies a full inter-dependence between

liquidity and default components in the credit spread for corporate bonds. The model contrasts with

the widely-used reduced-form approach in the empirical research, where it is common to decompose

firms’ credit spreads into independent liquidity-premium and default-premium components and then

assess their quantitative contributions, e.g., Longstaff, Mithal, and Neis (2005), Beber, Brandt, and

Kavajecz (2009), and Schwarz (2010). Our fully solved structural model calls for more structural

approaches in the future empirical study about the impact of liquidity factors upon the credit

spread of corporate bonds. Our model also offers a potential resolution to the hitherto difficulty

of structural models to match the AAA credit spread as pointed out by Huang and Huang (2003).

As our model features a non-vanishing liquidity premium due to an illiquid secondary market, even

AAA bonds feature a yield in excess of treasuries.

Additionally, our model features a trade-off between better liquidity provision by short-term

bonds, and a more severe debt-equity conflict of interest caused by a higher rollover frequency. On

the liquidity provision side, bond investors hit by liquidity shocks can either sell to dealers or sit

out shocks by waiting to receive the face value when the bond matures. Shorter maturity improves

upon the waiting option, leading to a lower bid-ask spread and hence greater secondary market

liquidity. On the other hand, equity holders are absorbing rollover losses ex post. The shorter

the maturity, the higher the rollover frequency, and the heavier the rollover losses. Consequently,

equity holders default earlier, leading to greater inefficiencies due to dead-weight bankruptcy costs.

Based on this tradeoff, we can endogenize the firm’s initial choice of debt maturity in our model.
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Our paper belongs to the recent literature on the role of secondary market trading frictions

in the corporate finance structural models as best exemplified by Black and Cox (1976), Leland

(1994) and LT96. Ericsson and Renault (2006) is an early paper which incorporates secondary

bond market liquidity into LT96. Based on numerical solutions, they emphasize the interaction

between secondary liquidity and the bankruptcy-renegotiation. He and Xiong (forthcoming) (here-

after HX11) take the simplified secondary market friction introduced in the classic article of Amihud

and Mendelson (1986) — bond investors hit by liquidity shocks are forced sell their holdings imme-

diately at an exogenous and constant transaction cost. Via the endogenous default channel, HX11

emphasize that liquidity shocks may lead to a significant rise of the default component in corporate

bonds’ credit spreads. Our paper endogenizes the secondary market liquidity by micro-founding

the bond trading in a search-based secondary market, and derives the equilibrium liquidity jointly

with equilibrium asset prices.5 It is the endogenous liquidity that distinguishes our paper from

HX11, which plays a crucial role for the positive feedback mechanism between fundamental and

liquidity for corporate bonds.

Our paper also makes a contribution to the search based asset-pricing literature, as represented

by Duffie, Garlenau, and Pedersen (2005, 2007); Weill (2007); Lagos and Rocheteau (2007, 2009).

To our knowledge, this literature with concentration on OTC markets has thus far focused on the

determinants of contact intensities and behavior of intermediaries, while eschewing time-varying

asset fundamentals and asset maturities. Undoubtedly, asset-specific dynamics are important for

the secondary corporate bond market, and we fill this gap by incorporating the firm’s distance-to-

default and the bond’s time-to-maturity in deriving the asset (bond) valuations.6 Moreover, our

paper demonstrates that, via the rollover channel, the endogenous search-based secondary market

liquidity can have significant impact on the firms’ behavior on the real side, which in turn affects
5Two other well-known endogenous market illiquidity models based on private information are Kyle (1985) and

Glosten and Milgrom (1985). We deem that the search based framework is suitable for the secondary market for
corporate bonds, and also has the advantage of being integrated seamlessly into the dynamic firm setting in LT96.

6The existing literature often assumes constant asset payoffs and infinite maturity. As far as we know, the only
paper with deterministic time dynamics in a search framework is the contemporaneous Afonso and Lagos (2011),
which introduces deterministic time dynamics via an end-of-day trading close in the federal funds market. Also,
because corporate bond payoffs are highly nonlinear in firm fundamentals, our closed-form solution with stochastic
fundamentals is nontrivial.
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secondary market liquidity.

Positive feedback is an active research topic for different research areas. For instance, the

strategic complementarity naturally gives rise to positive feedback effect in the global games liter-

ature (e.g., Morris and Shin 2009), and a similar effect emerges in He and Xiong (Forthcoming)

who study dynamic coordinations among creditors whose debt contracts mature at different times.

Through the information channel, Goldstein, Ozdenoren, and Yuan (2011) show that market prices

can feedback to firm’s investment decisions. Brunnermeier and Pedersen (2009) illustrate the pos-

itive feedback loop (spiral) between funding liquidity and market liquidity. Cheng and Milbradt

(forthcoming) show how managerial risk-shifting feeds back on bondholders decision to run, which

in turn feeds back on managerial incentives. Manso (2011) shows how credit ratings can affect a

firm’s default decision, which feeds back into the rating decision. Relative to these models that

utilize a static framework (with the exception of Manso (2011), He and Xiong (Forthcoming) and

Cheng and Milbradt (forthcoming)), our research is cast in a standard dynamic corporate finance

structural models, which has the advantage of potentially realistic calibration to data.

The paper is organized as follows. Section 2 lays out the model with a search-based secondary

bond market. Section 3 solves the model in closed-form. Section 4 illustrate the positive feedback

loop between fundamental and liquidity, and Section 5 provides discussions and extensions. Section

6 concludes. All proofs can be found in the Appendix.

2 The Model

2.1 Firm Cash Flows and Debt Maturity Structure

We consider a continuous-time model where the firm generates (after-tax) cash flows at a rate of

δt > 0, where {δt : 0 ≤ t <∞} follows a geometric Brownian motion in the risk-neutral probability

measure:
dδt
δt

= µdt+ σdZt, (1)
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where µ is the constant growth rate of cash flow rate, σv is the constant asset volatility, and {Zt :

0 ≤ t <∞} is a standard Brownian motion, representing random shocks to the firm fundamental.

We assume the risk-free rate r to be constant in this economy. As our focus is on the interaction

between secondary market liquidity and equity holders’ endogenous default decision, this treatment

is innocuous.

We follow LT96 in assuming that the firm maintains a stationary debt structure. At each

moment in time, the firm has a continuum of bonds outstanding with an aggregate principal of p

and an aggregate coupon payment of c, where p and c are constants that we take as exogenously

given. We normalize the measure of bonds to 1, so that each bond has a principal value of p and

coupon of c. Each bond has a maturity T , and expirations of the bonds are uniformly spread out

across time. Here, 1
T is the firm’s rollover frequency on its debt; that is, during a time interval

(t, t + dt), a fraction 1
T dt of the bonds matures and needs to be rolled over. In the main analysis

we take the firm’s debt maturity T as given; Section 5.3 discusses the optimal debt maturity T ∗

that maximizes the firm value.

These bonds differ only in the time-to-maturity τ ∈ [0, T ]. Denote by D(δ, τ) the value of one

unit of bond as a function of the firm fundamental δ and its time-to-maturity τ . Following the

LT96 framework, we assume that the firm commits to a stationary debt structure denoted (c, p, T ).

In other words, when a bond matures, the firm will replace it by issuing a new bond with identical

(initial) maturity T , principal value p, and coupon rate c, in the primary market (to be modeled

shortly).

2.2 Secondary Bond Market and Search-Based Liquidity

As in Duffie, Garlenau, and Pedersen (2005), individual bond investors are subject to idiosyncratic

liquidity shocks, and once hit by shocks they need to search for market-makers/dealers for trade.

More specifically, at any time with probability ξdt individual bond holders are hit by liquidity

shocks and they need to turn their holding into cash. We model this sudden need for liquidity as

an upward jump in the discount rate from the common interest rate r to a higher level r > r. For
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simplicity, this higher discount rate persists until the agent either manages to sell his debt-holdings

or the debt matures and the face value p is paid out, after which the investor exits the market

forever. We call an agent who has been hit by a liquidity shock as being in the liquidity state, and

use L (i.e. low valuation or liquidity shocked agent) to indicate this state.

In reality, secondary corporate debt markets are less liquid than equity or primary debt markets.

Thus, we assume that the secondary debt markets are subject to the following trading frictions.

The L bond investor who wants to sell his debt-holdings has to wait an exponential time with

intensity λ to meet a dealer who can implement the transaction. When they meet, bargaining

occurs over the economic surplus generated. We follow Duffie, Garlenau, and Pedersen (2007) who

show it is sufficient to define Nash-bargaining weights 1− β of the dealer and β of the investor to

model this bargaining. We also make the additional assumption that each creditor only holds one

unit of bond— this is for tractability of the search market in terms of constant parameters.

The illiquidity of secondary bond markets give rise to wedges in bond valuations for different

investor types. Define DH (δ, τ) and DL (δ, τ) to be the valuations of debt from the high (or

normal) type and the low (or liquidity) type. Suppose that a contact between a type L investor

and the dealer occurs. We make the simplifying assumption that the dealer faces a competitive

interdealer market with a continuum of dealers, and at any time they (collectively) can contact H

type investors who are competitive as well. Therefore, the particular dealer in question can turn

around and instantaneously sell directly (or through another dealer) to H type investors at a price

of DH (δ, τ), which implies that the surplus from trade is

S (δ, τ) ≡ DH (δ, τ)−DL (δ, τ) .

The transaction price at which L types sell to the dealer, X (δ, τ), thus implements the following
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splits of the surplus,

DH (δ, τ)−X (δ, τ) = (1− β)S (δ, τ)

X (δ, τ)−DL (δ, τ) = β · S (δ, τ) ,

so that

X (δ, τ) = βDH (δ, τ) + (1− β)DL (δ, τ) . (2)

The reader should observe that this formulation treats DL (δ, τ) as the L types outside option that

he can always assure himself. It is easy to show that when λ → ∞, then S → 0, and debt values

converge to the LT96 case with perfectly liquid secondary markets.

Therefore, in our model, the ask price at which dealers sell to H type investors is simply their

valuation DH , while the bid price at which L type investors sell their bond holdings to dealers is

X. This implies that DH −X = (1− β) (DH −DL) is also the (dollar) bid-ask spread, as X is the

dealer’s purchase price while DH is his selling price to H type investors.7

A schematic representation of the different bond values and the transaction price is given in

Figure 2. As we will see later, the outside option DL changes with regard to firm fundamental δ

and time to maturity τ . The three panels of the figure give a preview of our results. The height

of the box indicates the value DH , the height of the shaded area indicates the outside option DL,

and the dashed line depicts the price at which the transaction of an L type with the dealer takes

place. The (dollar) bid-ask spread is thus the distance between the top solid line of the rectangle,

DH , and the dashed line, X. Panel (A) shows a bond that has just been issued with maturity T

and a AAA rating, panel (B) shows a bond close to maturity but away from default, and panel (C)

shows a bond close to default. In a preview of results, comparing (B) to (A), we see the maturity

effect: the outside option has increased as maturity has drawn closer, and the bid-ask spread has

decreased. Comparing (C) to (A), we see the default effect: the outside option sustained a larger
7Thus, H type investors are indifferent between buying and not buying the bond, whereas for any β > 0, L type

investors strictly prefer selling the bond.
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Figure 2: Schematic representation of DH , DL, and the transaction price X for different states
(δ, τ). (A) shows a benchmark bond that is far from the bankruptcy boundary and with the
maximum time-to-maturity T . (B) shows a bond that is away from the bankruptcy boundary, but
close to maturity. (C) shows a bond that is with maximum maturity, but close to the bankruptcy
boundary.

drop than DH as default becomes imminent, and the bid-ask spread has increased.

2.3 Debt Rollover

As mentioned, at any time the firm replaces the maturing bonds with newly issued ones in the

so-called primary market. We assume that the firm will hire a dealer who can place the new debt

to H type investors, and dealers are competitive in the primary market. Thus, the firm receives

the full bond value of the high type DH .8 Of course, the H type incorporates in his bond valuation

DH the possibility that he will be hit by a liquidity shock in the future and thus has to use the

illiquid secondary market to sell the bond.

However, the newly issued bond price in the primary market can be higher or lower than the

required principal payments of the maturing bonds, either due to changing firm fundamental or

secondary market illiquidity. Equity holders are the residual claimants of the rollover gains/losses.

Again, following LT96, we assume that any gain will be immediately paid out to equity holders

and any loss will be funded by issuing more equity at the market price. Thus, over a short time
8Segura and Suarez (2011) present a banking model without secondary markets which concentrates on the effect

of periodic shut-downs of the primary market for debt funding.
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interval (t, t+ dt), the net cash flow to equity holders (omitting dt) is

NCt = δt︸︷︷︸
CF

− (1− π) c︸ ︷︷ ︸
Coupon

+ 1
T

[DH (δt, T )− p]︸ ︷︷ ︸
Rollover

. (3)

The first term is the firm’s cash flow. The second term is the after-tax coupon payment to

bond investors, where π denotes the marginal tax benefit rate of debt: for each dollar received by

bond investors, the government is subsidizing π dollars so that equity holders only have to pay

1 − π dollars.9 The third term captures the firm’s rollover gains/losses by issuing new bonds to

replace maturing bonds. This term can be seen as a repricing of a measure 1
T bonds each t. In this

transaction, there is a 1
T dt fraction of bonds maturing, which require a principal payment of 1

T pdt;

while the primary market value of the newly issued bonds is 1
TDH(δt, T )dt. When the newly issued

bond price DH(δt, T ) drops (say because the cash flow rate δt goes down) so that DH (δt, T ) < p,

equity holders have to absorb the negative cash-flow stemming from rollover, 1
T [DH(δt, T ) − p]dt,

to prevent bankruptcy. Thus, the rollover frequency 1
T (or the inverse of debt maturity) affects the

extent of rollover losses/gains.

2.4 Bankruptcy

When the firm issues additional equity to fund these rollover losses, the equity issuance dilutes the

value of existing shares.10 Equity holders are willing to buy more shares and bail out the maturing

debt holders as long as the equity value is still positive (i.e. the option value of keeping the firm

alive justifies absorbing the rollover losses). When the firm defaults its equity value drops to zero.

The default threshold δB is endogenously determined by equity holders, which is an important
9He and Matvos (2011) present a model where corporate debt has positive externalities which offers one potential

reason for the existence of this debt tax subsidy.
10A simple example works as follows. Suppose a firm has 1 billion shares of equity outstanding, and each share is

initially valued at $10. The firm has $10 billion of debt maturing now, but the firm’s new bonds with the same face
value can only be sold for $9 billion. To cover the shortfall, the firm needs to issue more equity. As the proceeds from
the share offering accrue to the maturing debt holders, the new shares dilute the existing shares and thus reduce the
market value of each share. If the firm only needs to roll over its debt once, then the firm needs to issue 1/9 billion
shares and each share is valued at $9. The $1 price drop reflects the rollover loss borne by each share.
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ingredient for the feedback loop between firm fundamentals and secondary market liquidity.11

When the firm goes bankrupt, we simply assume that creditors can only recover a fraction α of

the firm’s unlevered value from liquidation, which is α δB
r−µ .

12 As usual, the bankruptcy cost is ex

post borne by debt holders but represents a deadweight loss to equity holders ex ante, who cannot

commit to not default. Since maturity per se does not matter in bankruptcy, for simplicity we

assume equal seniority of all creditors.

Because one driving force of our model is that agents value receiving cash early, our bankruptcy

treatment has to be careful in this regard. If bankruptcy leads investors to receive the proceeds

immediately, L type investors who are trying to sell their bonds could view default as a beneficial

outcome. In other words, bankruptcy confers a benefit similar to maturity that may outweigh the

deadweight loss stemming from the bankruptcy cost 1 − α. This “liquidity by default” is against

the fact that in practice bankruptcy leads to a much more illiquid secondary market, the freezing of

assets within the company, and a delay in the payout of any cash depending on court proceeding.13

More importantly, this is also inconsistent with the empirical pattern shown in Figure 1 that the

liquidity is lower when the firm is closer to default, which suggests a sufficient gap in the private

recovery values of αH and αL of agents of type H and L respectively.

Motivated by above empirical facts, we make the following assumption for defaulted bonds.

Suppose that after bankruptcy the cash flow stays constant at δB forever. To capture the uncertain

timing of the court decision, the payout of cash α δB
r−µ occurs at a Poisson arrival time with intensity

θ. We focus on situations where α δB
r−µ < p (which holds for all our examples) so that the recovery

rate to bond holders is below 100%. Also, the secondary market for defaulted bonds is illiquid with
11To focus on the liquidity effect originating from the debt market, we ignore any additional frictions in the equity

market such as transaction costs and asymmetric information. It is important to note that while we allow the firm
to freely issue more equity, the equity value can be severely affected by the firm’s debt rollover losses. This feedback
effect allows the model to capture difficulties faced by many firms in raising equity during a financial-market meltdown
even in the absence of any friction in the equity market.

12The bankruptcy cost 1− α can be interpreted in different ways, such as loss from selling the firm’s real asset to
second-best users, loss of customers because of anticipation of the bankruptcy, asset fire-sale losses, legal fees, etc.

13The Lehman Brothers bankruptcy in September 2008 is a good case in point. After much legal uncertainty,
payouts to the debt holders only started trickling out after more than 3 years.
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contact intensity λB. Then, the defaulted bond values DB
H and DB

L satisfy

rDB
H = θ

(
α

δB
r − µ

−DB
H

)
+ ξ

(
DB
L −DB

H

)
,

rDB
L = θ

(
α

δB
r − µ

−DB
L

)
+ λB

(
XB −DB

L

)
,

where as before XB = βDB
L + (1− β)DB

H is the transaction price received by L type investors.

Plugging XB into the above equations, we can solve for DB
i = αi

δB
r−µ for i ∈ {H,L} where

αH = θα(r+θ+λBβ+ξ)
r(ξ+θ)+r(r+θ+λBβ)+θ(ξ+θ+λBβ) ,

αL = θα(r+θ+λBβ+ξ)
r(ξ+θ)+r(r+θ+λBβ)+θ(ξ+θ+λBβ) .

One can easily see that αH > αL as r > r. We denote the (bold face) vector α ≡ [αH , αL]> as the

effective bankruptcy cost factors from the perspective of different bond holders. Clearly, the wedge

αH − αL characterizes the illiquidity of the defaulted bonds when the firm (i.e. equity holders)

declares bankruptcy. Throughout the paper we will assume that this illiquidity in the default state

is sufficiently high.

3 Model Solutions

3.1 Debt Valuations and Credit Spreads

We first derive bond valuations by taking the firm’s default boundary δB as given. Recall that

DH(δ, τ) and DL(δ, τ) are the value of one unit of bond with time-to-maturity τ ≤ T , an annual

coupon payment of c, and a principal value of p to a type H and L investor, respectively. We have

the following system of partial differential equation (PDE) for the values of DH and DL:

rDH = c− ∂DH

∂τ
+ µδ · ∂DH

∂δ
+ σ2δ2

2
∂2DH

∂δ2 + ξ [DL −DH ]︸ ︷︷ ︸
Liqidity shock

,

rDL = c− ∂DL

∂τ
+ µδ · ∂DL

∂δ
+ σ2δ2

2
∂2DL

∂δ2 + λ [X −DL]︸ ︷︷ ︸
Secondarymarket

. (4)
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where we omit the two-dimensional argument (δ, τ) for both debt value functions. More importantly,

we omit the equity holders’ default boundary δB in the above PDE system, which bond investors

take as given.

The first equation in (4) is the type H bond valuation. The left-hand side rDH is the required

(dollar) return from holding the bond for type H investors. There are four terms on the right-hand

side, capturing expected returns from holding the bond. The first term is the coupon payment.

The next three terms capture the expected value change due to change in time-to-maturity τ (the

second term) and fluctuation in the firm’s fundamental δt (the third and fourth terms). The last

term is a loss DL−DH caused by the liquidity shock that transforms H investors into L investors,

multiplied by the probability of the liquidity shock over dt.

The second equation in (4), the type L bond valuation, follows a similar explanation to the one

above. The two differences are that the left hand side now has a higher required return r, and

there is the value impact of the secondary market reflected in the last term of the right hand side.

A type L investor meets a dealer with probability of λdt and is then able to sell his bond (with a

private value DL) at a price of

X (δ, τ ; δB) = (1− β)DL (δ, τ ; δB) + βDH (δ, τ ; δB) . (5)

As explained in Section 2.2, this price is derived under the assumption that the dealer can turn

around and immediately sell the bond to H type investors through a frictionless interdealer market.

Define the matrix A so that the following decomposition holds:

A ≡

 r + ξ −ξ

−λβ r + λβ

 = PD̂P−1.

We let D̂ ≡ Diag
[
r̂1 r̂2

]
, where r̂i = r+ξ+r+λβ±

√
[(r+ξ)−(r+λβ)]2+4ξλβ

2 satisfying r̂1 > r > r̂2 > r,

be the matrix of eigenvectors of A, and denote by P be the matrix of stacked eigenvalues. For a
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given δB, we derive the closed-form solution for the bond values in the next proposition.14

Proposition 1 The debt values are given by

 DH (δ, τ)

DL (δ, τ)

 = P

 A1 +B1e
−r̂1τ [1− F (δ, τ)] + C1G1 (δ, τ)

A2 +B2e
−r̂2τ [1− F (δ, τ)] + C2G2 (δ, τ)

 . (6)

Here, by defining a ≡ µ−σ
2

2
σ2 , γ1 ≡ 0, γ2 ≡ −2a, ηj1,2 ≡ −a ±

√
a2 + 2

σ2 r̂j , and q (δ, χ, t) ≡

log(δB)−log(δ)−(χ+a)·σ2t

σ
√
t

, the constants in (6) are given by:

 A1

A2

 ≡ cD̂−1P−11,

 B1

B2

 ≡ pP−11− cD̂−1P−11,

 C1

C2

 ≡ δB
r−µP−1α− cD̂−1P−11 ,

F (δ, τ) ≡
2∑
i=1

(
δ

δB

)γi
N [q (δ, γi, τ)] , Gj (δ, τ) ≡

2∑
i=1

(
δ

δB

)ηji
N [q (δ, ηji, τ)] ,

where N (x) is the cumulative distribution function for a standard normal distribution.

A closer inspection of the solution reveals a linear combination (via the matrix P) of two sub-

solutions each closely related to the original LT96 solution. The main difference to the LT96 solution

is that each of these independent sub-solutions i = {1, 2} has a distorted discount rate r̂i > r (for

ξ > 0), a distorted coupon rate ĉi ≡
(
cP−11

)
i and a distorted recovery rate α̂i ≡

(
P−1α

)
i.

15

3.2 Equity Valuation

The next step in the analysis of this problem is the equity holders decision to default. Equity

holders receive the net cash flow in (3) every instant. Because equity is naturally an infinite

maturity security and we are investigating a stationary setting, its value E (δ; δB) satisfies the
14All proofs, because of the linear decomposition, would go through even if creditors would be subject to possibly

different shock states, r1, r2, ...
15Here, for any matrix or vector M, (M)i selects the i-th row and (M)ij selects the i-th row and j-th column of

the matrix.
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following ordinary differential equation:

rE = δ − (1− π) c+ 1
T

[DH (δ, T )− p]︸ ︷︷ ︸
Rollover

+ µδE′ + σ2δ2

2 E′′, (7)

where the left hand side is the required rate of return of equity holders. On the right hand side,

the first three terms are the equity holders net cash flows, and the next two terms are capturing

the instantaneous change of the firm fundamental. As mentioned earlier, the term involving square

brackets is the cash-flow term that arises from rolling over debt (while keeping coupon, principal,

and maturity stationary), with 1
T being the rollover frequency.

Similar to HX11, we cannot solve equity value as the difference between the levered firm value

and debt value as in LT96, because part of the firm value goes to the dealers in the secondary bond

market, and part vanishes because of inefficient holdings of debt by L types. Instead, we need to

solve for E (δ) based on (7), which is non-trivial due to the highly-nonlinear form of DH (δ, T ) given

in (6). The next proposition gives the equity value.16

Proposition 2 Given a default boundary δB, the equity value is given by

E (δ; δB) = K

(
δ

δB

)κ2

+ δ

r − µ
+K0 −

gF (δ)
T

2∑
j=1

P0jBje
−r̂jT + 1

T

2∑
j=1

P0jCjgGj (δ) , (8)

where P01 = P11 and P02 = P12 and Pij gives the element of P in row i and column j, κ1,2 ≡

−a±
√
a2σ4+2σ2r

σ2 , ∆κ ≡ κ1 − κ2, and

K0 ≡ 1
r

{
− (1− π) c+ 1

T

[∑2
j=1 P0jAj +

∑2
j=1 P0jBje

−r̂jT − p
]}
,

K ≡ −
[
δB +K0 − 1

T gF (δB)
∑2
j=1 P0jBje

−r̂jT + 1
T

∑2
j=1 P0jCjgGj (δB)

]
,

gF (x) ≡ 1
−∆κ

2
σ2
∑2
i=1

{
xκ2

δ
γi
B

H (x, γi, κ2, T )− xκ1

δ
γi
B

H (x, γi, κ1, T )
}
,

gGj (x) ≡ 1
−∆κ

2
σ2
∑2
i=1

{
xκ2

δ
ηij
B

H (x, ηij , κ2, T )− xκ1

δ
ηij
B

H (x, ηij , κ1, T )
}
,

H (δ, χ, κ, T ) ≡ 1
κ−χ

{
δχ−κN [q (δ, χ, T )]− δχ−κB e

1
2 [(κ+a)2−(χ+a)2]σ2TN [q (δ, κ, T )]

}
,

16We obtain closed form solution for E via a variation of coefficients solution method that is applicable to linear
ODEs, a technique shown in more detail in Milbradt (forthcoming).
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where q (·, ·, ·) is given in Proposition 1.

We can also calculate the total levered firm value at time 0 with fundamental δ0. Following

LT96,17 we assume that at time 0 the firm is issuing new bonds to H type investors only with a

uniform distribution of maturities on [0, T ].18 Given the results established above, the levered firm

value TV0 (δ0, T ; δB) is

TV0 (δ0, T ; δB)

= E (δ0; δB) + 1
T

ˆ T

0
DH (δ0, τ ; δB) dτ

= E (δ0; δB) + [P01, P02]


 A1

A2

+

 B1
(

1−e−r̂1T

r̂1T
− I1 (δ0, T )

)
B2
(

1−e−r̂2T

r̂2T
− I2 (δ0, T )

)
+

 C1J1 (δ0, T )

C2J2 (δ0, T )


 (9)

where

Ij (δ, T ) = 1
r̂jT

[
Gj (δ, T )− e−r̂jTF (δ, T )

]
,

Jj (δ, T ) = 1
(η1j + a)σ

√
T

2∑
i=1

(−1)i
(
δ

δB

)ηij
N [q (δ, ηij , T )] q (δ, ηij , T ) .

3.3 Endogenous Default Boundary

So far we have taken the default boundary δB as given. We now use the standard smooth pasting

condition Eδ (δB; δB) = 0 to determine the optimal δB that is chosen by equity holders. The

following proposition gives the closed-form solution for the endogenous default boundary δB.

Proposition 3 The endogenous default boundary δ∗B is given by

δ∗B (T ) = (r − µ)

κ2 − 1 + 1
T

2∑
j=1

P0jα̂jhGj

−1−κ2K0 + hF
T

2∑
j=1

P0jBje
−r̂jT + 1

T

2∑
j=1

P0jAjhGj

 ,
17The reader should note the difference that we have one unit measure of bonds, whereas LT96 expand the measure

of bonds according to maturity.
18The following closed form only holds if all initial bonds are issued uniformly and evenly across τ and H and L

types. The Appendix presents the integral expression that would result if H and L proportions vary with τ .
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Firm Characteristics Illiquid Secondary Market

Parameter Interpretation Value Parameter Interpretation Value

r Discount rate 8% r Liq. shock discount rate 9%
σ Volatility 18% ξ Intensity of liquidity shock 4/10
µ Drift 6% λ Intensity to meet dealers 1/10
π Tax shield 27% β Bargaining power of investors 1/2
p Principal 1 αH Recovery value H type 6/10
c Coupon 8 αL Recovery value L type 3/10
T Bond maturity 2

Table 1: Benchmark parameters.

where α̂ ≡ P−1α, P0j is defined in the previous proposition and

hF ≡ − 2
σ2
∑2
i=1

1
κ1−γi

{
N
[
− (γi + a)σ

√
T
]
− erTN

[
− (κ1 + a)σ

√
T
]}
,

hGj ≡ − 2
σ2
∑2
i=1

1
κ1−ηij

{
N
[
− (ηij + a)σ

√
T
]
− e(r−r̂j)TN

[
− (κ1 + a)σ

√
T
]}
.

One can easily verify that limT→∞
δ∗B
r−µ = limT→∞ V

∗
B = κ2(1−π)c

κ2−1 , which is the optimal bankruptcy

boundary obtained in Leland (1994). When debt maturity T goes to zero, we can further show its

finite limit, which for α = αL = αH converges to limT→0
δ∗B
r−µ = limT→∞ V

∗
B = p

α , also the boundary

derived in Leland (1994).

4 Endogenous Liquidity and Feedback Effects

Given the results derived in Section 3, we now discuss the model implications. Section 4.1 analyzes

the endogenous transaction cost that depends on both firm fundamental and time-to-maturity.

Based on endogenous liquidity, Section 4.2 shows that the endogenous liquidity implies an interest-

ing feedback effect between fundamental and liquidity for corporate bonds. Table 1 gives the the

baseline parameters that we use for illustration in this section.

4.1 Endogenous Liquidity

Our paper incorporates micro-structure trading frictions into a Leland-type corporate finance struc-

tural model, which allows us to derive an endogenous bid-ask spread that depends on both the firm
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Figure 3: Dollar bid-ask spread DH − X with T = 2 as a function of both time-to-maturity τ and
fundamental cash-flow δ. The bankruptcy boundary is δ∗

B (2) ≈ .064.

fundamental, δ
δB

, and the bond’s time-to-maturity, τ , via the surplus (and thus also L types outside

option) dynamics.

4.1.1 Endogenous bid-ask spread

The (dollar) bid-ask spread is simply the difference between the bid price X (δ, τ) and the ask price

DH (δ, τ):

(1− β)S (δ, τ) = DH (δ, τ)−X (δ, τ) . (10)

We see that the dollar bid-ask spread is just a constant positive multiple of the surplus S for any

β < 1. In the following proofs, we thus concentrate on the behavior of S. We plot the bid-ask spread

in Figure 3 as a function of both distance-to-default (that is state dynamics) and time-to-maturity

(that is time dynamics). Note that the highest time-to-maturity is just the maturity for newly

issued bonds, which in the figure is T = 2. The distance-to-default is captured by the difference

between the current firm fundamental δ from the endogenous bankruptcy boundary δ∗B (2) ≈ .064

Time-to-maturity First, let us fix the firm fundamental and study the bid-ask spread when we

vary the time-to-maturity. Figure 3 shows that the endogenous bid-ask spread is lower for shorter
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time-to-maturities. Formally, we have the following proposition.

Proposition 4 Under sufficient conditions provided in the Appendix, we have Sτ (δ, τ) > 0, i.e.

the bid-ask spread is larger for bonds with longer time-to-maturity.

The intuition for this result is simple. Because a shorter time-to-maturity delivers the full

principal back to L type investors sooner, this enhances L type investors’ bargaining position and

reduces the rent extracted by dealers, thereby resulting in a smaller bid-ask spread. In fact, it is

easy to show analytically that the bid-ask spread vanishes as time-to-maturity goes towards 0, i.e.,

lim
τ→0

S (δ, τ) = 0.

Intuitively, if the bond’s face value is almost immediately demandable from the firm, L type in-

vestors gain little value from trade with dealers, and as a result the bid-ask spread vanishes. This

indicates that short-term debt provides liquidity for bond investors, and we will discuss the role of

liquidity provision in more detail in Section 5.3.

Distance-to-default Second, let us fix the time-to-maturity τ > 0 and then investigate the

bid-ask spread by varying the distance-to-default (i.e., δ − δB). As shown in Figure 3, the bid-ask

spread rises when the firm fundamental deteriorates towards the bankruptcy boundary δB, which

is consistent with the empirical regularity in Edwards, Harris, and Piwowar (2007), Bao, Pan, and

Wang (forthcoming), and Figure 1. Formally, we have the following proposition.

Proposition 5 Under sufficient conditions provided in the Appendix, we have Sδ (δ, τ) < 0, i.e.

the bid-ask spread is smaller for bonds with higher firm fundamental.

Recall that, in Section 2.4, we assumed, motivated by the empirical facts, that the secondary

market for defaulted debt is less liquid, and bond investors need to wait some time before they

receive the cash pay-out of αδBr−µ . It is easy to show that as the firm fundamental converges towards
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δB, for any bonds that still have time-to-maturity left, i.e. τ > 0, we have

lim
δ→δB

S (δ, τ) = (αH − αL) δB
r − µ

> 0, (11)

Here, we assume that the post-default illiquidity αH − αL is sufficiently high, especially relative

to the bid-ask spread for default-free bonds.19 As a a result, the endogenous bid-ask spread rises

when the cash flow rate δ deteriorates and the firm is closer to bankruptcy.

Finally, note that for ease of analytical derivations we have focused on dollar bid-ask spread

S (δ, τ). Another commonly used illiquidity measure is the effective percentage bid-ask spread

∆ (δ, τ), which is defined as the dollar bid-ask spread S (δ, τ) divided by the mid point of transaction

prices (bid price X and ask price DH):

∆ (δ, τ) = (1− β) [DH (δ, τ)−DL (δ, τ)]
1
2X (δ, τ) + 1

2DH (δ, τ)
= 2 (1− β)S (δ, τ)

(1 + β)S (δ, τ) +DL (δ, τ) ,

which shares the same qualitative properties as S (δ, τ). A bond’s value decreases naturally as the

firm is closer to default and thus tends to shrink the overall scale S (δ, τ). This complicates our

proof of the derivatives of the dollar bid-ask spread S (δ, τ). In contrast, the percentage bid-ask

spread ∆ (δ, τ) is free of this artificial (negative) force. To the extent that percentage transaction

cost is the more empirically relevant illiquidity measure, the sufficient conditions in Proposition 5

are much stronger than necessary and our theoretical results are more general than it appears.
19The intuition is quite simple: When δ =∞, so that bonds are risk-free, we have[

DH (∞, τ)
DL (∞, τ)

]
= A−1c + exp (−Aτ)

(
p−A−1c

)
= c

(r + ξ1) (r + λβ)− ξ1λβ

[
r + ξ1 + λβ
r + ξ1 + λβ

]
+ exp (−Aτ)

[
p− c(r+ξ1+λβ)

(r+ξ1)(r+λβ)−ξ1λβ

p− c(r+ξ1+λβ)
(r+ξ1)(r+λβ)−ξ1λβ

]
Together with Sτ (δ, τ) < 0, we know that S reaches a maximum when τ = T . The most important part of the proof
is that S (δB , τ) − limδ→∞ S (δ, τ) < 0. That is, a necessary condition is that the bid-ask spread of the default-free
bond is below that of the defaulted bond. Unfortunately we are unable to show the sufficiency of this condition
due to the complex nature of the functions involved, and in the proof of Proposition 5 we impose stronger sufficient
conditions.
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Interaction between time-to-maturity and distance-to-default Interestingly, Eq. (11)

shows that at δ = δB we have a completely flat bid-ask spread across all maturities excluding only

τ = 0. Let us now switch to the percentage bid-ask spread ∆ (δ, τ) as this will be the one used

for our empirical predictions. We now investigate the impact of the interaction between time-to-

maturity and distance-to-default on the endogenous bid-ask spread. Similar to S (δ, τ), ∆ (δ, τ)

is increasing with τ for δ > δB as shorter maturity provides better liquidity. However, we also

know from (11) that, as we approach the bankruptcy boundary δB, ∆ (δ, τ) becomes independent

of τ > 0. Thus, when the firm edges closer and closer to default, the slope of ∆ (δ, τ) with respect

to time-to-maturity τ for any τ > 0 has to become flatter and flatter. In Figure 4, we observe that

the slope on time-to-maturity increases with distance to default. In other words, for financially

healthy firms, the difference between the bid-ask spreads of long-term bond and short-term bond

is greater than that of firms in imminent danger of bankruptcy.

This property is intuitive. Default, by forcing firms to enter lengthy bankruptcy proceeding that

puts all debt holders of equal seniority on equal footing, eliminates debt difference due to maturities.

For financially healthy firms, default is remote, and therefore the time-to-maturity has a positive

and significant impact on the bid-ask spread. However, when default is imminent, although the

bid-ask spreads for both long-term and short-term bonds soar, their difference diminishes as it is

more likely that the stated time-to-maturity eventually becomes irrelevant. This intuition, which

only relies on the fact that maturity plays no role in bankruptcy, holds generally, although we

cannot provide rigorous proofs for this property.

Empirical predictions The results discussed in Section 4.1.1 has the following testable predic-

tions regarding the relation between the corporate bond’s bid-ask spread and the bond’s time-to-

maturity and the firm’s distance-to-default. We envision the following regression specification:

∆i,t = b0 + bMaturity
+

·Maturityi,t + bCDS
+
· CDSi,t + bMaturity∗CDS

−
·Maturityi,t × CDSi,t. (12)
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Figure 4: Bid-ask spread S (δ, τ) with T = 2 as a function of time-to-maturity τ for financially healthy
firms with δ = .15 (left-hand panel) and for financially distressed firms with δ = .0642 (right-hand panel).

As shown, our model predicts a positive bMaturity, i.e., bonds with longer time-to-maturity

should have a higher bid-ask spread. Further, the model predicts a positive bCDS , i.e., the bond

that is closer to default should have a higher bid-ask spread as well. These two predictions conform

with the empirical findings in Edwards, Harris, and Piwowar (2007), and Bao, Pan, and Wang

(forthcoming). Finally, Figure 4 implies that bMaturity∗CDS < 0, i.e., the difference between the

bid-ask spreads of long-term and short-term bonds in financially healthy firms is greater than that of

financially distressed firms. As just explained, this new testable prediction is intuitive and awaiting

future empirical research.

4.1.2 Delay to trade and instantaneous transaction costs

In this section we connect our theoretical framework with the one used in AM86 and HX11. There

are two important distinctions. First, in AM86 and HX11, there is no delay to trade for investors

hit by liquidity shocks as they are forced to sell their holdings to some dealer immediately; second,

both AM86 and HX11 feature an exogenously given constant proportional transaction cost. In

contrast, our model has a secondary market modeled as a search market, which features a delay to

trade and endogenous bargaining.

First, we can establish an equivalent instantaneous transaction cost k (δ, τ) that would make

the creditor indifferent to selling immediately or using the time consuming search market. We use
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the following simple equivalence condition at the time of the shock to establish the appropriate

transaction cost:

[1− k (δ, τ)]DH (δ, τ) = DL (δ, τ)⇔ k (δ, τ) = 1− DL (δ, τ)
DH (δ, τ) , (13)

The interpretation is the following. When hit by a liquidity shock, the bond value transitions to

DL (δ, τ) in our model. This would be equivalent to being able to sell debt immediately for an

after-cost price [1− k (δ, τ)]DH (δ, τ). It is easy to show that

lim
τ→0

k (δ, τ) = 0, and limδ→δB k (δ, τ) = 1− αL
αH

> 0 ,

i.e. k (δ, τ) vanishes for ultra short-term bonds (or bonds close to maturity), and approaches a

positive constant for bonds close to default. The pattern of the implied instantaneous transaction

cost k (δ, τ) in (13) is similar to the bid-ask spread S (δ, τ) depicted in Figure 4.

Although the implied instantaneous transaction cost k (δ, τ) admits a simple interpretation, it

is not directly comparable to the exogenous transaction cost k in the benchmark model of HX11.

Rather, we will define kimplied (δ, τ) as the hypothetical constant transaction cost that equates the

debt price derived in HX11 to the newly issued price DH (δ, T ) derived in our model, i.e.

DH (δ, T ) = D (δ, T ; kimplied,HX11_Model) .

This measure will be used in Section (4.2.1) to emphasize role of endogenous liquidity. Clearly,

kimplied varies with the firm fundamental δ, which is in sharp contrast with the assumption of

constant transaction cost in HX11.

4.2 Feedback Loop between Fundamental and Liquidity

Linking the secondary market liquidity endogenously to firm fundamental is the key feature that

distinguishes our paper from HX11, as this endogenous effect allows us to study the new feed-
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back loop in which the deterioration of firm fundamental, via worsening liquidity of the secondary

bond market, edges the firm even closer to default, which in turn leads to further deterioration in

secondary market liquidity.

This result is in the spirit of Brunnermeier and Pedersen (2009). We observe that the rollover

operation of the firm is a funding operation. Thus, secondary market liquidity feeds back into the

funding liquidity of the firm, which here is the ease of raising outside money against the promise

of a fixed payment in the future. This funding liquidity in turn affects the market liquidity via its

impact on the default decision of the firm. When funding liquidity is low and therefore the firm

is close to default, raising money is difficult or costly, which in turn affects the market liquidity of

the secondary market.

4.2.1 Endogenous liquidity, rollover losses, and endogenous default

The combination of endogenous secondary market liquidity and endogenous default decision taken

by equity holders are the building blocks for the positive feedback loop between fundamental and

liquidity. For illustration, we contrast our model with HX11 who assume an exogenous transaction

cost whenever H investors are hit by liquidity shocks and have to sell the bond holding immedi-

ately.20 In both our paper and HX11, equity holders make endogenous default decision; however, in

our paper the bond market liquidity (bid-ask spread) endogenously worsens when the firm is closer

to default. Interestingly, relative to the HX11 benchmark, this endogenous pro-cyclical secondary

bond market liquidity drives equity holders to default earlier.

To understand the mechanism, consider the rollover losses borne by equity holders as a function

of firm cash flow rate δ. The dashed line in the left panel of Figure 5 graphs the benchmark rollover

losses implied by HX11 who assume a constant (proportional) transaction cost k (with a value 1.2%

in this example). In HX11, the (absolute value) of rollover losses 1
T [D (δ, T )− p] rises when the

firm fundamental deteriorates, simply because forward looking bond investors adjust the market

price of newly issued bonds downward when the firm is closer to default. This force is already
20The HX11 benchmark has discount rate r, coupon c, principal p, recovery value αH , and liquidity shock intensity

ξ given in Table 1. Additionally, we assume a proportional transaction cost of k = 1.2%.
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Figure 5: Left panel: Rollover loss 1
T [DH (δ, T )− p] as a function of fundamental value δ for main model

(solid line) and the HX11 model (dashed line) with kHX11 = 1.2%. Right panel: Implied transaction
cost kimplied for HX11 model (dashed line), and for main model with fully optimal bankruptcy boundary
(solid line).

present in LT96.

In our model, the endogenous secondary market liquidity further amplifies the rollover losses.

In Figure 3 we have seen that the bid-ask spread ∆ (δ, τ) decreases with the firm’s cash flow rate

δ, suggesting that the secondary market liquidity dries up exactly when the firm fundamental

deteriorates. The right panel of Figure 5 graphs the implied endogenous transaction cost kimplied

(solid line) of our model against the transaction cost in HX11 (dashed line) under the assumption

k = 1.2%. As mentioned in Section (4.1.2), kimplied is the hypothetical constant transaction cost

that equates the debt price derived in HX11 to our newly issued price DH (δ, T ).21 As expected, the

implied transaction cost kimplied goes up with a lower δ, indicating a worsening secondary market

liquidity for firms with lower fundamentals.22

Therefore, relative to HX11 with constant secondary market liquidity, the endogenous search

market depresses the bond market price DH (δ, T ) further for low fundamental states. Put dif-

ferently, equity holders have to absorb heavier rollover losses exactly in bad times. This result is

shown in the solid line in the left panel in Figure 5; relative to HX11, equity holders’ rollover loss

in our model is more sensitive to the firm cash flow state δ. The pro-cyclical secondary market
21The reader can think of the derivation of kimplied as an exercise very much like deriving the implied volatility

w.r.t. the Black-Scholes formula for any given or observed option price. It is thus different from the instantaneous
transaction cost k (δ, τ) as it takes into account the possible changes of k (δ, τ) over the life of the bond.

22Again, drawing parallels to empirical option pricing, there exists a “smirk” in kimplied w.r.t. δ.
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Figure 6: Feedback loop between secondary market liquidity and equity holders’ default decision.

liquidity significantly reduces the equity holders’ option value of serving the debt especially in bad

times, and consequently they default earlier.

4.2.2 Positive feedback between fundamental and liquidity

The above discussion implies an important positive feedback loop between firm fundamental and

secondary market liquidity for corporate bonds, which is illustrated in Figure 6. For investors

of defaultable corporate bonds, the bond fundamental can be measured as the firm’s distance to

default, i.e., δ − δB. Imagine a negative shock to firm cash flow rate δ. Since this negative shock

brings the firm closer to default, this constitutes a pure-fundamental driven negative shock to bond

investors and lowers the holding values of DH and DL. This force is already present in LT96 and

HX11.

Now relative to HX11 which has fixed secondary market liquidity (or transaction costs), our

model features a new endogenous loop. A shock to δ not only lowers debt values and worsens the

net cash-flow to equity holders NCt in (3), but the lower distance-to-default also affects secondary

market liquidity. The lower distance to default implies that default is more likely, which worsens the
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L types’ outside option when bargaining with a dealer (as default leads to drawn out bankruptcy

court decisions and an even less liquid secondary bond market). Consequently, the effective trans-

action costs for the L type go up and the secondary market becomes more illiquid—as indicated

by the left large arrow in Figure 6, the bid-ask spread ∆ (δ, τ) goes up. This is the pro-cyclicality

of liquidity we already discussed above.

Rational H type bondholders will thus value bonds less as they expect to face a less liquid

secondary market when they are hit by liquidity shocks and trade with dealers, and DH will

decline. As shown in Figure 6, the worsening liquidity in the secondary market lowers both the

investors’ holding values DH and DL, and consequently a lower primary market bond issuing price

DH relative to an environment with constant market liquidity.

The lower bond prices now feed back to the equity holders’ default decision via the rollover

channel, as the arrow on the right of Figure 6 indicates. Because maturing bonds still require the

same promised principal payment p, equity holders are absorbing heavier rollover losses (i.e. net

cash flow NCt in (3) goes down), as we have seen in the left panel of Figure 5 in Section 4.2.1.

Consequently, equity holders default earlier relative to an environment with a constant market

liquidity. That is, they default at a higher threshold δB.

The higher default threshold now translates into a shorter distance to default δ − δB, and

therefore a lower effective fundamental for bond investors. This, of course, has a direct impact on

bond prices (not shown in the figure) as bond default has become more likely. Additionally, there

is now an important indirect liquidity effect via the secondary market—as shown on the left-hand

side in Figure 6, the higher default boundary now further worsens market liquidity via the declining

outside option of the L type investors. The loop repeats as the lower liquidity now again lowers

effective bond prices.

The positive feedback loop between a worse asset fundamental (i.e., a lower distance-to-default,

δ
δB

) and a worse secondary market liquidity is the novel economic channel present in our model. In

equilibrium, equity holders default much earlier in our model with endogenous secondary market

liquidity, compared to the model in HX11 with exogenous constant liquidity. This positive feedback
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loop can have significant impact on observed corporate bond spreads (and equivalently ask prices

DH (δ, τ)) as bond investors rationally anticipate pro-cyclical liquidity and the default decision of

equity holders.

4.2.3 Credit spreads

The bond credit spread is the spread between the corporate bond and the risk-free rate r. The

bond yield is typically computed as the equivalent return on a bond conditional on it being held to

maturity without default or re-trading. Given a bond of value D (δ, τ), the bond yield y is defined

as the solution to the following equation:

D(δ, τ) = c

y
(1− e−yτ ) + pe−yτ (14)

where the right-hand side is the price of a bond with a constant coupon payment c over time and

a principal payment p at the bond maturity, conditional on no default or trading before maturity.

Here, we use the ask price DH (δ, τ) derived in Proposition 1 as our bond price for the left-hand

side of equation (14).

In Figure 7 we plot the credit spread y − r of the benchmark bond at τ = T as a function of

δ, under various economic settings. The dashed line gives the credit spread under HX11, who fix

the bond market liquidity at an exogenous constant. The dot-dashed line is the hypothetical bond

credit spread which takes into account the endogenous secondary market liquidity only, but fixes the

equity holders’ default boundary at δB = δHX11
B , the optimal default boundary in the HX11 model.

Because bonds become more illiquid for lower distance-to-default, the observed credit spread rises

sharply relative to the HX11 benchmark as δ deteriorates. Finally, the solid line gives the bond

credit spread predicted by our model, which takes into account the full feedback loop between the

endogenous market liquidity and the endogenous default decision. Because equity holders respond

to worsening secondary market liquidity by defaulting earlier, the observed credit spread rises even

faster when the firm fundamental deteriorates, but provides a lower credit spread than the HX11
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HX11 model with kHX11 = 1.2% (dashed line) and the off-equilibrium model of imposing the bankruptcy
boundary δHX11

B that is optimal in the HX11 model in the search-based model (dot-dashed line).

benchmark when the distance to default gets large.

5 Extensions and Discussions

5.1 Endogenous Investment

So far we focused on the feedback loop between the liquidity and fundamental of corporate bonds.

The endogenous equity holders’ default decision enters directly into the fundamental value of corpo-

rate bonds, which is mainly captured by the firm’s distance-to-default. Generally, this mechanism

should apply to the firm level, i.e., a feedback loop between the firm fundamental and the firm’s

(debt) financing liquidity, if the firm fundamental is affected by endogenous investment decision.

Indeed, one may broadly interpret default as a form of disinvestment. Although in our model

the cash flow rate δ evolves as an exogenous stochastic process in (1), the total firm value (including

both equity and debt values) in (9) depends on the equity holders’ default decision. In this section

we push this idea further to consider a simple extension where equity holders make an initial

endogenous investment decision in our base model; a full-blown model with dynamic investment
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(r−µ)2 for the LT96

model (dashed line) and for the main model (solid line).

opportunities is interesting for future research.

Suppose that at date-0 the equity holders in the firm can invest to improve the firm fundamental

δ0, where the investment technology is such that investing I > 0 can increase the initial cash flow

δ0 to δ0 + I (and thus the progression of all δ thereafter via equation (1)), at a quadratic cost of

φ
2 I

2. For simplicity, assume that equity holders bear the initial investment outlay I. Because the

equity value only depends on the post-investment cash flow δ0 + I, at date 0 equity holders are

solving

max
I>0

E (δ0 + I)− φ

2 I
2,

where E (δ0 + I) is given in (8) with the optimal δB = δ∗B (T ). The above problem gives the

endogenous date-0 investment I∗, and we are interested in the impact of endogenous secondary

market liquidity on the firm investment.

As emphasized in Diamond and He (2011), in this setting equity holders’ investment decision

suffers the classic debt overhang problem coined in Myers (1977). Our model features an addi-

tional feedback effect from the secondary market liquidity to the firm fundamental through the
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equity holders’ investment incentives. The mechanism is similar to the one illustrated in Figure 6,

where we consider a hypothetical negative shock to the initial firm fundamental cash flow δ0. The

lower fundamental worsens the firm’s financing liquidity immediately, leading to higher endogenous

transaction costs in the secondary market for its existing bonds and lower primary market prices for

its newly issued bonds. As explained, relative to models without endogenous liquidity, e.g., LT96,

this pro-cyclical financing liquidity force amplifies the equity holders’ rollover losses in bad times

which pushes equity holders to default earlier. Moreover, in our extension, earlier default feeds

back to a lower endogenous initial investment taken by equity holders, therefore an even lower firm

fundamental. This will adversely affect the the firm’s financing liquidity, which lowers the initial

investment even further, and so forth. The extra positive feedback effect is illustrated in the wedge

between the investment implied by our model and and that of LT96 in Figure 8.

5.2 Liquidity Premium and Default Premium

It has been widely recognized that the credit spread of corporate bonds not only reflects a default

premium determined by the firm’s credit risk, but also a liquidity premium due to the illiquidity

of the secondary debt market, e.g., Longstaff, Mithal, and Neis (2005), and Chen, Lesmond, and

Wei (2007). However, both academics and policy makers tend to treat the default premium and

liquidity premium as independent, and thus ignore interactions between them. For instance, it

is common practice to decompose firms’ credit spreads into independent liquidity-premium and

default-premium components and then assessing their quantitative contributions, e.g., Longstaff,

Mithal, and Neis (2005), Beber, Brandt, and Kavajecz (2009), and Schwarz (2010).

The positive feedback derived in our model implies a rich interaction between the liquidity and

default premia for corporate bonds, which challenges this approach. In fact, based on reasonable

calibrations, HX11 have demonstrated that an exogenous rise of the liquidity premium (say, bond

investors become more likely to suffer liquidity shocks) will lead to a sizable increase in default

premium,23 due to the endogenous earlier default by equity holders.
23For instance, HX11 show that if an unexpected shock causes liquidity premium to increase by 100 bps, default
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Similar to HX11, this force of exogenous liquidity shocks from the investors’ side (say a surge in

the liquidity shock intensity ξ) is also present in our model. But our paper goes further, highlighting

two new economic mechanisms arising by endogenizing secondary market liquidity. First, even

with exogenous negative liquidity shocks, because equity holders default earlier facing a less liquid

corporate bond market, this leads to a lower distance-to-default for the firm, and therefore a

further worsening of secondary bond market liquidity. This amplification effect may help in future

quantitative exercises when assessing the impact of surging aggregate liquidity shocks. Second and

perhaps more importantly, we show that the origin of shock to the liquidity premium of corporate

bonds can in fact be the deterioration of the firm fundamental itself. Thus, both default premium

and liquidity premium are inter-dependent with each other, and the positive feedback loop will

further amplify and reinforce both premia in a nontrivial way.

One important implication of our model is that even far away from the default boundary, i.e.

for high δ
δB

, there is still a non-negligible credit-spread that arises because of the uninsurability of

each individual agent’s liquidity shock and the search-friction inherent in the secondary market.

Figure 7 illustrates, as even to the far right of the graph, there remains some positive credit spread.

This insight can help resolve a weak point in the structural credit literature: as Huang and Huang

(2003) point out, structural credit models have difficulty explaining the AAA credit spread in a

satisfactory manner once calibrated to historic default probabilities and asset prices. Our model

offers a resolution via the presence of illiquidity that is uninsurable on the agent level and thus

does not affect the translation of the real probabilities to the risk-neutral probilities, i.e. the pricing

kernel. A careful calibration exercise therefore is a priority for future work.

In sum, our model suggests the importance of structural models in the empirical study of

corporate bonds where the liquidity component and default component are necessarily intertwined.

We believe the theoretical results obtained in our model are helpful for future research on this

regard.

premium of a firm with speculative grade B rating and 1 year debt maturity (a financial firm) would rise by 70 bps,
which contributes to 41% of the total credit spread increase.

33



5.3 Optimal Debt Maturity

Beyond the feedback loop between fundamental and liquidity, our model features a natural trade-

off between liquidity provision and equity-debt conflict of interest, which allows us to derive the

optimal debt maturity (given the stationary maturity structure).

5.3.1 Liquidity provision: the bright side of short maturity

Section 4.1 has shown that bonds with shorter maturity have a more liquid secondary market,

suggesting the role of liquidity provision for short-term debt. For illustration, we compare the

newly issued debt value DH to the hypothetical LT96 debt valuation DLT96 without liquidity

shocks. As shown in Figure 9, this efficiency gain decreases with the debt maturity.24

The efficiency gain due to short-term maturity arises from two channels:

First, debt holders who are hit by liquidity shocks become inefficient holders of bonds, and

due to trading frictions the inefficient holding lasts for a while. Reducing maturity alleviates this

inefficiency, because of the firm’s advantage in the primary market: whenever debt matures, the

firm moves debt from inefficient L investors to efficient H investors by new issuance. As detailed

in the Appendix, the steady-state proportion of L types if the firm is able to issue only to H types

is

µL (T ) = ξ

λ+ ξ
−
ξ
[
1− e−T (λ+ξ)

]
T (λ+ ξ)2︸ ︷︷ ︸

Allocative efficiency

,

with limT→∞ µL (T ) = ξ
λ+ξ and limT→0 µL (T ) = 0. Thus, the second term in the above equation is

the allocative efficiency gain of shortening the aggregate maturity T , arising from substituting the

firm’s superior primary market liquidity for the debt holders inferior secondary market liquidity.

Second, a shorter maturity reduces the rent extracted by dealers in the secondary market, thus

leading to a bargaining efficiency gain. Intuitively, a shorter maturity, by allowing L investors to

receive principal payment earlier, raises their outside option of waiting during bargaining and in

turn lowers the dealer’s rent. Given that λ was assumed as an exogenous parameter, this effect is
24The LT96 benchmark has discount rate r, coupon c, principal p and recovery value αH .
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Figure 9: Left panel: Debt values for high type in main model (solid line) and without frictions in the
LT96 model (dashed line) as a function of initial maturity T . Right panel: Bankruptcy boundary δB (T )
in main model (solid line) and without frictions in the LT96 model (dashed line) as a function of initial
maturity T .

independent of the first effect discussed above.

5.3.2 Earlier default: the dark side of short maturity

On the other hand, as first shown in LT96 (and formally proven in HX11), shorter debt maturity

in an LT96 style model always exacerbates the conflict of interest between equity holders and debt

holders, leading to earlier default and thus greater dead-weight bankruptcy cost. In other words,

the optimal maturity in LT96 and HX11 is T ∗ =∞, so that debt should always be a consol bond.

Consider the equity holders’ rollover losses 1
T [DH (δ, T )− P ] given a low firm fundamental δ, which

is difference between the market price DH (δ, T ) for newly issued bonds and the principal payment

of P , and modulated by the rollover frequency 1
T . Although short-term debt has a greater market

price, the higher rolling over frequency leads to heavier rollover losses. In words, as the debt

maturity T shrinks, equity holders are bearing heavier rollover losses in the states with low firm

fundamental. As a result, as shown in the right panel of Figure 9, equity holders default earlier if

the firm is using shorter maturity debt.
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5.3.3 Optimal Debt Maturity

The above trade-off between liquidity provision and debt-equity conflict of interest naturally leads

to an endogenous optimal maturity structure. In Figure 10 we plot in the left-hand panel the ex

ante levered firm value TV (δ0) given in (9) for both our model (solid line) and the LT96 benchmark

model (dashed line) as a function of the debt maturity T for an initial unlevered value V (δ0) = 4.

The hump shape of levered firm value suggests that we can find an interior solution for the optimal

maturity structure, which is just less than 1 year in this case. In contrast, the total firm value in

the LT96 case is monotonically increasing in debt maturity.

As explained, we can loosely interpret the initial leverage as the distance of the initial unlevered

firm value V0 ≡ δ0
r−µ to the face value p. In the right panel of Figure 10 we draw the optimal

maturity T ∗ as a function of V0 = δ0
r−µ (for different levels of δ0, holding all other parameters

constant), which is inversely related to “initial leverage.” The solid line depicts the optimal maturity

for a secondary market with low intermediation, i.e., λ = 1/10, whereas the dashed line depicts

the optimal maturity for a secondary market with high intermediation, i.e., λ = 1. We observe

that when initial leverage is low (high), bankruptcy becomes more (less) remote, and the effect

of liquidity provision (bankruptcy cost) dominates, resulting in a shorter (longer) optimal debt
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maturity. Additionally, we see that for the poorly intermediated market with λ = 0.1, the firm

provides liquidity to its debt holders through short optimal maturity. In contrast, for a better

intermediated market with λ = 1, the firm’s optimal maturity shifts out uniformly, and jumps to

infinity for initial unlevered firm values V0 < 4.2. In other words, a better functioning secondary

market reduces the need to provide liquidity via short maturity and thus alleviates the bankruptcy

pressure generated by the short debt structure.

5.4 Further discussion

5.4.1 How about put provisions?

The firm could, instead of providing liquidity via maturity, allow bondholders with liquidity shocks

to put back their bonds at the face value p. This seemingly perfect solution suffers two important

drawbacks. First, if the firm cannot distinguish who was hit by a liquidity shock, whenever DH < p

everyone will put back their debt at the same time. In fact, the put provision is akin to making bonds

demand deposits and we are at traditional models of bank runs with potential bad run equilibrium.

Second, even if the liquidity shock is observable, there will be an additional flow term ξ [DH − p] dt

as L investors are putting back their bonds to the firm every instant. This additional refinancing

losses may influence the bankruptcy boundary in an adverse way and destroy the liquidity thus

provided. The full implications of expanded bond contract terms (beyond the choice of initial

maturity T covered in this paper) is left for future work.

6 Conclusion

We study the endogenous liquidity of defaultable bonds in a search-based OTC markets, together

with the endogenous default decision by equity holders from the firm side. By solving a system

of PDEs, we derive the endogenous secondary market liquidity jointly with the debt valuations,

equity valuations, and endogenous default policy, in closed-form. The fundamentals of corporate

bonds, which is mainly driven by the firm’s distance-to-default, affects the endogenous liquidity
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of corporate bonds. And, through the rollover channel in which equity holders are absorbing

refinancing losses, worsening liquidity of corporate bonds significantly hurts the equity holders’

option value of keeping the firm alive. As a result, illiquidity of secondary corporate bond market

feeds back to the fundamental of corporate bonds by edging the firm closer to bankruptcy. With

the aid of recent empirical techniques, we hope our fully solved structural model can pave the way

of bringing more structural approach in the empirical study of the impact of liquidity on corporate

bonds.
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A Appendix
First, let us call rH ≡ r, rL ≡ r, ξH ≡ ξ and ξL ≡ λβ, and µ̃ = µ− σ2

2 . Second, define the log-transform δ̃ = log (δ) so
that dδ̃ = µ̃dt+ σdZ. Third, for brevity we use the notation D′ ≡ ∂D

∂v
and Ḋ ≡ ∂D

∂τ
. We will, with abuse of notation,

write q
(
δ̃, ...

)
to mean δ̃B−δ̃+...

...
.

A.1 2x2 matrix formulas
As the 2x2 specification is frequently used in the text, we present the results here in compact form. Suppose

A =
[
a b
c d

]
,

then A = PD̂P−1 where

A−1 = 1
ad− bc

[
d −b
−c a

]
P =

[
1 b

r̂2−a
c

r̂1−d
1

]
D̂ =

[
r̂1 0
0 r̂2

]
,

where of course alternative versions of P can be chosen. However, to show convergence to frictionless markets we
chose this form of P as it allows convergence to an upper triangular form. The roots

r̂1/2 =
a+ d±

√
(a+ d)2 − 4 (ad− bc)

2

=
a+ d±

√
(a− d)2 + 4bc
2

solve det [A− ρI] = 0, i.e. r̂1/2 are the roots of the characteristic polynomial

g (r̂) = (a− r̂) (d− r̂)− bc = r̂2 − (a+ d) r̂ + (ad− bc) .

If a > 0 and d > 0 and b < 0 and c < 0 as well as (ad− bc) > 0, then both roots r̂1/2 > 0.
Identifying a = rH + ξH , b = −ξH , c = −ξL, d = rL + ξL, we have

r̂i =
rH + rL + ξH + ξL − (−1)i

√
[(rH + ξH)− (rL + ξL)]2 + 4ξHξL

2 .

We can also derive bounds on r̂i by noting the following results:

g (rH) = ξH (rL − rH) > 0
g (rL) = −ξL (rL − rH) < 0

g (rH + ξH) = −ξHξL < 0
g (rL + ξL) = −ξHξL < 0

g (rH + ξH + ξL) = −ξL (rL − rH) < 0
g (rL + ξH + ξL) = ξH (rL − rH) > 0

so that we know that

rH < r̂1 < min {r + ξH , rL}
max {rH + ξH + ξL, rL + ξL} < r̂2 < rL + ξH + ξL.

It is easy to show that as ξH → 0, r̂1 = rL + ξL and r̂2 = rH , and limb→0 P =
[

0 1
· ·

]
, so that DH converges

towards the LT96 solution.
Next, consider λ → ∞ such that ξL → ∞, that is, what happens when the market becomes very liquid. Note
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that we can rewrite the characteristic polynomial as

g (r̂) = ξL

[
(rH + ξH − r̂)

(
rL
ξL

+ 1− r̂

ξL

)
− ξH

]
Suppose now that r̂ is finite. Then we know that the square bracket, as ξL →∞, becomes

(rH + ξH − r̂)− ξH = 0

so that r̂2 = rH > 0. Thus, as both roots are positive, we must have that the second root r̂1 → ∞. The diagonal

decomposition becomes unstable, in that limλ→∞P =
[

0 0
1 1

]
.

Finally, for r = rH = rL we can show that P−11 =
[

1
0

]
so that ĉ =

[
c
0

]
, and for α = αH = αL we have

α̂ =
[
α
0

]
.

A.2 Proofs of Section 3
A.2.1 Debt
Proof of Proposition 1.

Applying the log transform δ̃ = log (δ) to the system of PDEs we are left with a linear system of PDEs:[
rH + ξH −ξH
−ξL rL + ξL

][
dH
dL

]
=

[
c
ρc

]
+ µ̃

[
dH
dL

]′
+ σ2

2

[
dH
dL

]′′
−

˙[
dH
dL

]
⇐⇒ A× d = c + µ̃d′ + σ2

2 d′′ − ḋ

Here we allow for general changes to the coupon payment c by premultiplying by a parameter ρ ≤ 1 to acknowledge
that there might be linear holding costs above and beyond the higher discount rate. In the paper, we have ρ = 1.
Let us decompose A = PD̂P−1 where D̂ is a diagonal matrix with its diagonal elements the eigenvalues of A and P
is a matrix of the respective stacked eigenvectors. The resulting eigenvalues are defined

g (r̂) = (rH + ξH − r̂) (rL + ξL − r̂)− ξLξH = 0

and g (rH) = ξH (rL − rH) > 0 and g (rL) = −ξL (rL − rH) < 0. We thus have r̂i = r+ξ+r+λβ±
√

[(r+ξ)−(r+λβ)]2+4ξλβ
2 .

Premultiplying the system by P−1 and noting that P−1A = D̂P−1 we have a delinked system PDEs with a
common bankruptcy boundary δ̃B ≡ log (δB) and payout boundary t = 0

D̂P−1d = P−1c + µ̃P−1d′ + σ2

2 P−1d′′ −P−1ḋ

⇐⇒ D̂y = ĉ + µ̃y′ + σ2

2 y′′ − ẏ

where y = P−1d and ĉ = P−1c. The rows of the system are now delinked, and we are left with two PDEs of the
form

r̂iyi = ĉi + µ̃y′i + σ2

2 y′′i − ẏi

with given boundary conditions at t = 0 and δ̃ = δ̃B , whose solutions are known from LT96. The decomposition
works because the boundaries are the same across rows. The solution takes the form

yi = Ai +Bie
−r̂it (1− Fi) + CiGi

Fj
(
δ̃, t
)

=
2∑
i=1

e(δ̃−δ̃B)γijN
[
q
(
δ̃, γij , t

)]
Gj
(
δ̃, t
)

=
2∑
i=1

e(δ̃−δ̃B)ηijN
[
q
(
δ̃, ηij , t

)]
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where
q
(
δ̃, χ, t

)
= δ̃B − δ̃ − (χ+ a) · σ2t

σ
√
t

and constants

Ai = ĉi
r̂i

Bi =
(
p̂i −

ĉi
r̂i

)
Ci =

(
α̂i

eδ̃B

r − µ −
ĉi
r̂i

)
and some yet to be determined parameters γij , ηij . Note that limt→0 q

(
δ̃, χ, t

)
= limt→0

δ̃B−δ̃
σ
√
t

= −∞ as δ̃B < δ̃, so
N
[
q
(
δ̃, χ, 0

)]
= 0 for all i and δ̃ > δ̃B . Further note that limδ̃→∞ q

(
δ̃, χ, t

)
= −∞, so limδ̃→∞N

[
q
(
δ̃, χ, t

)]
= 0.

Substituting the candidate solution yi into the PDE with Ai = ĉi
r̂i
, Bi = p̂i − ĉi

r̂i
, Ci = α̂i

exp(δ̃B)
r−µ − ĉi

r̂i
, we see that

bie
−r̂it

[
r̂i (1− Fi) + µ̃F ′i + σ2

2 F ′′ −
[
r̂i (1− Fi) + Ḟi

]]
+ci

[
r̂iGi − µ̃G′i −

σ2

2 G′′i + Ġi

]
= 0

⇐⇒ bie
−r̂it

[
µ̃F ′ + σ2

2 F ′′ − Ḟ
]

+ci
[
r̂iGi − µ̃G′i −

σ2

2 G′′i + Ġi

]
= 0

We see that both Ḟi and Ġi have no term N (·). As q is linear in δ̃, we have q′′ = 0 (where q′ = qδ̃ and q̇ = qt). We
thus have, for F ,

N
[
q
(
δ̃, γ, t

)] [
µ̃γ + σ2

2 γ2
]

+φ [q (v, γ, t)]
[
µ̃q′ + σ2

2

[
2γq′ − q

(
q′
)2
]
− q̇
]

= 0

So the roots for Fi are γ1 = 0 = −a+ a and γ2 = − 2µ̃
σ2 = −a− a where a ≡ µ̃

σ2 . We see that this is independent of i,
that is, it is independent of what row of y we picked, as r̂i is cancelled out. Further, for G, we have

N [q (v, η, t)]
[
µ̃η + σ2

2 η2 − r̂i
]

+φ [q (v, η, t)]
[
µ̃q′ + σ2

2

[
2ηq′ − q

(
q′
)2
]
− q̇
]

= 0

so the roots for Gi are ηi1 = −µ̃+
√
µ̃2+2σ2r̂i
σ2 = −a +

√
µ̃2+2σ2r̂i
σ2 and ηi2 = −a −

√
µ̃2+2σ2r̂i
σ2 . Simply plugging in the

functional form of q results in the term in square brackets in the second row to vanish.
For the boundary condition, we have

y (v, 0) = P−11 · p = p̂

y (vB , t) = P−1α
exp
(
δ̃B
)

r − µ = α̂
exp
(
δ̃B
)

r − µ

which defines the remaining parameters of the solution.
As a last step, we retranslate the system back into the original debt functions by premultiplying by P and noting

that F (v, t) = Fi (v, t) = F−i (v, t) by the symmetry of the γ’s, and by rewriting it in terms of δ instead of δ̃.
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A.2.2 Equity
Proof of Proposition 2.

Equity has the following ODE where for notational ease we define m = 1
T

rE = exp
(
δ̃
)
− (1− π) c+ µ̃E′ + σ2

2 E′′ +m
[
DH

(
δ̃, T
)
− p
]

The term in square brackets is the cash-flow term that arises out of rollover of debt (while keeping coupon, principal
and maturity stationary), a term first pointed out by LT96. We will establish the (closed-form) solution in several
steps.

First, the homogenous solutions to the ODE are M
(
δ̃
)

= eκ1δ̃ and U
(
δ̃
)

= eκ2δ̃ where

σ2

2 κ2 + µ̃κ− r = 0

so that

κ1/2 =
−µ̃±

√
µ̃2 + 2σ2r

σ2 = −a±
√
µ̃2 + 2σ2r

σ2

and κ1 > 1 > 0 > κ2. As the debt term DH is bounded, to impose the condition that equity does not grow orders of
magnitude faster than the unlevered value of the firm V = eδ̃

r−µ we need limδ̃→∞

∣∣∣K1
eκ1 δ̃

eδ̃

∣∣∣ < ∞. The only solution

is then K1 = 0.We are thus left with κ2 and the coefficient K on eκ2δ̃.
Next, let us establish the Wronskian

Wr (s) = M (s)U ′ (s)−M ′ (s)U (s)
= − (κ1 − κ2) exp {(κ1 + κ2) s}
= −∆κ ·M (s)U (s)

Then, by the variation of coefficient solutions to linear ODEs, we have

gp (x|l) = 2
σ2

ˆ l

x

part (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 2
σ2

ˆ l

x

part (s) e
−κ2seκ2x − eκ1xe−κ1s

−∆κ ds

g′p (x|l) = 2
σ2

ˆ l

x

part (s) M (s)U ′ (x)−M ′ (x)U (s)
Wr (s) ds

= 2
σ2

ˆ l

x

part (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

g′′p (x|l) = 2
σ2

ˆ l

x

part (s) κ
2
2M (s)U (x)− κ2

1M (x)U (s)
Wr (s) ds− 2

σ2 part (x)

for an arbitrary limit l ∈ (vB ,∞). Let us take l → ∞ and gp (x) ≡ gp (x|∞). We see that gp (x) and g′p (x) (and so
forth) consists of a finite sum of integrals of the form

´∞
x
ecst·sN [q (s, χ, T )] ds where cst is a constant.

Second, let us briefly establish two auxiliary results. First, let us note that for aa > 0 we have

aa

ˆ ∞
x

φ (−aa · s+ bb) ds =
ˆ −aa·x+bb

−∞
φ (y) dy = N [−aa · x+ bb]

by simple change of variables. Second, note that

ecst·xφ (−aa · x+ bb) = 1√
2π

exp
{
−1

2
[
(−aa · x+ bb)2 − 2cst · x

]}
= 1√

2π
exp
{
−1

2

[(
−aa · x+ bb+ cst

aa

)2
+ bb2 −

(
bb+ cst

aa

)2
]}

= φ
(
−aa · x+ bb+ cst

aa

)
e
cst
aa (bb+ 1

2
cst
aa )
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by a simple completion of the square. Now, we can solve the integral in question via integration by parts:
ˆ ∞
x

ecst·sN [−aa · s+ bb] ds

= ecst·s

cst
N [−aa · s+ bb]

∣∣∣∣∞
s=x

+ 1
cst

[
aa ·
ˆ ∞
x

ecst·sφ (−aa · s+ bb) ds
]

= −e
cst·x

cst
N [−aa · x+ bb] + 1

cst

[
a

ˆ ∞
x

φ
(
−aa · s+ bb+ cst

aa

)
ds

]
e
cst
aa (bb+ 1

2
cst
aa )

= −e
cst·x

cst
N [−aa · x+ bb] + 1

cst
N
[
−aa · x+ bb+ cst

aa

]
e
cst
aa (bb+ 1

2
cst
aa )

where we used the fact that limx→∞N [−aa · x+ bb] ecst·x = 0 for any constant cst.25

Next, note that Di
(
δ̃, t
)

= ...+ ...e(δ̃−δ̃B)χN
[
q
(
δ̃, χ, t

)]
+ ... for some χ, so that we are essentially facing integrals

2
σ

ˆ ∞
x

e(s−δ̃B)χN [q (s, χ, t)] M (s)U (x)
Wr (s) ds

= 2
σ

1
−∆κe

κ2xe−δ̃Bχ
ˆ ∞
x

e(χ−κ2)sN [q (s, χ, t)] ds

= 2
σ

1
−∆κe

κ2xe−δ̃Bχ
1

χ− κ2

×
[
−e(χ−κ2)N [q (x, χ, t)] +N [q (x, κ2, t)] e(χ−κ2){δ̃B− 1

2 [(κ+a)2−(χ+a)2]σ2T}
]

Here, we used cst = (χ− κ2), aa = 1
σ
√
T
, b = δ̃B−(χ+a)σ2T

σ
√
T

, q (x, χ, t) + (χ− κ)σ
√
t = q (x, κ, t) and the fact that

(χ− κ) (−)
[
χ+ a− 1

2 (χ− κ)
]

= (χ− κ) (−)
[1

2χ+ 1
2a+ 1

2κ+ 1
2a
]

= 1
2
[
(κ+ a)2 − (χ+ a)2]

where we note that the last term is independent of if we pick the larger or smaller root, as both κ and all possible χ
are centered around −a. Lastly, we note that 2

σ

´∞
x
e(s−δ̃B)χN [q (s, χ, t)] M(x)U(s)

Wr(s) ds has the same form of solution
only with κ1 replacing κ2. Define

H (x, χ, κ, T ) ≡
ˆ ∞
x

e(χ−κ)·sN [q (s, χ, T )] ds

= − 1
cst

{
ecst·xN [q (x, χ, T )]− ecst·δ̃B exp

{
−cst

(
χ+ a− 1

2cst
)
σ2T

}
N
[
q (x, χ, T ) + cst · σ

√
T
]}

= 1
κ− χ

{
e(χ−κ)xN [q (x, χ, T )]− e(χ−κ)δ̃Be

1
2 [(κ+a)2−(χ+a)2]σ2TN [q (x, κ, T )]

}
25If cst > 0, a simple application of L’Hopital’s rule is sufficient to establish the result:

lim
x→∞

N [−aa · x+ b]
e−cst·x

= ”0”
”0” = lim

x→∞

−aa · φ (−aa · x+ b)
−cst · e−cst·x = 0

as φ is of negative exponential quadratic form. However, for numerical purposes, we observe that this func-
tion can become very large before converging to zero. This observation also allows us to note that the integrals´∞
x
ecst·sN [−aa · s+ b] ds are everywhere bounded for x ≥ 0, justifying our result that K1 = 0.
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The solution to the particular part for F then is

gF (x) ≡ 2
σ2

ˆ ∞
x

F (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
eκ2xe−γiδ̃BH (x, γi, κ2, T )− eκ1xe−γiδ̃BH (x, γi, κ1, T )

}
g′F (x) ≡ 2

σ2

ˆ ∞
x

F (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
κ2e

κ2xe−γiδ̃BH (x, γi, κ2, T )− κ1e
κ1xe−γiδ̃BH (x, γi, κ1, T )

}
and the solution to the particular part for Gj is

gGj (x) ≡ 2
σ2

ˆ ∞
x

Gj (s) M (s)U (x)−M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
eκ2xe−ηjiδ̃BH (x, ηji, κ2, T )− eκ1xe−ηjiδ̃BH (x, ηji, κ1, T )

}
g′Gj (x) ≡ 2

σ2

ˆ ∞
x

Gj (s) κ2M (s)U (x)− κ1M (x)U (s)
Wr (s) ds

= 1
−∆κ

2
σ2

2∑
i=1

{
κ2e

κ2xe−ηjiδ̃BH (x, ηji, κ2, T )− κ1e
κ1xe−ηjiδ̃BH (x, ηji, κ1, T )

}
Plugging in x = δ̃B , and noting that q

(
δ̃B , χ, t

)
= − (χ+ a)σ

√
t, we make the important observation that

eκδ̃Be−χδ̃BH
(
δ̃B , χ, κ, T

)
= 1
κ− χ

{
N
[
− (χ+ a)σ

√
T
]
− e

1
2 [(κ+a)2−(χ+a)2]σ2TN

[
− (κ+ a)σ

√
T
]}

is independent of δ̃B . We thus conclude that for any particular part gp
(
δ̃B
)
, of the form given above, and its derivative

g′p
(
δ̃B
)
are independent of δ̃B besides C

(
δ̃B
)
containing eδ̃B . Also note that for χ = {γ1, γ2} we have

e
1
2 [(κ+a)2−(γ+a)2]σ2T = erT

and for χ = {ηi1, ηi2} we have

e
1
2

[
(κ+a)2−(ηij+a)2

]
σ2T = e(r−r̂i)T

Total equity is now easily written out to be

E
(
δ̃
)

= Keκ2(δ̃−δ̃B) + eδ̃

r − µ +K0 + gp
(
δ̃
)

= Keκ2(δ̃−δ̃B) + eδ̃

r − µ +K0 −m
(
P11B1e

−r̂1T + P12B2e
−r̂2T

)
gF
(
δ̃
)

+ P11mC1
(
δ̃B
)
gG1

(
δ̃
)

+ P12mC2
(
δ̃B
)
gG2

(
δ̃
)

where we scaled K by e−κ2δ̃B . The constant term K0 is

K0 = 1
r

{
− (1− π) c+m

[
A1 +A2 +

∑
j

P1jBie
−r̂jT − p

]}
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The constant K is derived by setting

0 = E
(
δ̃B
)

= K + eδ̃B

r − µ +K0 −m

(∑
j

P1jBie
−r̂jT

)
gF
(
δ̃B
)

+m
2∑
j=1

Cj
(
δ̃B
)
gGj

(
δ̃B
)

⇐⇒ K
(
δ̃B
)

= −

[
eδ̃B

r − µ +K0 −m

(∑
j

P1jBie
−r̂jT

)
gF
(
δ̃B
)

+m

2∑
j=1

Cj
(
δ̃B
)
gGj

(
δ̃B
)]

The term in brackets only features linear combinations of constants independent of δ̃B .
Proof of Proposition 3.

The optimal δB = eδ̃B is now easily derived. Plugging in K
(
δ̃B
)
into the smooth pasting condition E′

(
δ̃B
)

= 0,
we can derive δB = eδ̃B in closed form:

0 = E′
(
δ̃B
)

= K
(
δ̃B
)
κ2 + eδ̃B

r − µ −m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
g′F
(
δ̃B
)

+m

2∑
j=1

P1jCj
(
δ̃B
)
g′Gj

(
δ̃B
)

= κ2

[
− eδ̃B

r − µ −K0 +m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
gF
(
δ̃B
)
−m

2∑
j=1

P1j

(
α̂j

eδ̃B

r − µ −Aj
)
gGj

(
δ̃B
)]

+ eδ̃B

r − µ −m
(
B1e

−r̂1T + P12B2e
−r̂2T

)
g′F
(
δ̃B
)

+m

2∑
j=1

P1j

(
α̂j

eδ̃B

r − µ −Aj
)
g′Gj

(
δ̃B
)

= − eδ̃B

r − µ

[
κ2 − 1 +m

2∑
j=1

P1jα̂j
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)}]

−κ2K0 +m
(
B1e

−r̂1T + P12B2e
−r̂2T

){
κ2gF

(
δ̃B
)
− g′F

(
δ̃B
)}

+m

2∑
j=1

P1jAj
{
κ2gGj

(
δ̃B
)
− g′G1

(
δ̃B
)}

which yields

δB = eδ̃B = (r − µ)×

[
κ2 − 1 +m

2∑
j=1

P1jα̂j
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)}]−1

×
[
−κ2K0 +m

(
B1e

−r̂1T + P12B2e
−r̂2T

){
κ2gF

(
δ̃B
)
− g′F

(
δ̃B
)}

+m
∑2

j=1 P1jAj
{
κ2gGj

(
δ̃B
)
− g′Gj

(
δ̃B
)} ]

where we note that the right hand side is independent of δ̃B by previous results. We can simplify further by noting
that each of the terms in curly brackets can be written as

κ2gF
(
δ̃B
)
− g′F

(
δ̃B
)

= κ2
2
σ2

ˆ ∞
δ̃B

F (s)
M (s)U

(
δ̃B
)
−M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds− 2

σ2

ˆ ∞
δ̃B

F (s)
κ2M (s)U

(
δ̃B
)
− κ1M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds

= 2
σ2

ˆ ∞
δ̃B

F (s)
(κ1 − κ2)M

(
δ̃B
)
U (s)

Wr
(
δ̃B
) ds

= − 2
σ2

2∑
i=1

e(κ1−γi)δ̃BH
(
δ̃B , γi, κ1, T

)
= − 2

σ2

2∑
i=1

1
κ1 − γi

{
N
[
− (γi + a)σ

√
T
]
− e

1
2 [(κ1+a)2−(γi+a)2]σ2TN

[
− (κ1 + a)σ

√
T
]}
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We thus established a closed form, albeit quite complex, for the optimal δ̃B .
The limit limT→∞ δB can be easily derived by noting that the normal distributions either converge to 0 or 1, so

the only difficulty remaining is the term e
1
2 [(κ1+a)2−(γi+a)2]σ2T . Let us establish a series of results:

First, we note that in addition to e
1
2 [(κ1+a)2−(γi+a)2]σ2T = erHT , we have

e
1
2

[
(κ1+a)2−(ηji+a)2

]
σ2T = e(rH−r̂j)T

and since we established that r̂j > rH we note that this term is converging to zero.
Second, we note that

lim
T→∞

N
[
− (κ1 + a)σ

√
T
]

e−rHT
= ”0”

”0” = lim
T→∞

(
N
[
− (κ1 + a)σ

√
T
])′

(e−rHT )′

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
−1

2 (κ1 + a)2 σ2T + rHT
}

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
−T
[
µ̃2

2σ2 + rH − rH
]}

= lim
T→∞

(κ1 + a)σ
2rH
√
T

exp
{
− µ̃2

2σ2 T

}
= 0

where we used the fact that (κ1 + a)2 = µ̃2+2σ2rH
σ4 . Thus, all terms involving functions g vanish and no complication

arises from premultiplying by m = 1
T
, and we are left with

lim
T→∞

δB
r − µ = lim

T→∞
VB = lim

T→∞

−κ2K0 (T )
κ2 − 1 = κ2 (1− π) c

κ2 − 1

which is the same result as in Leland (1994) once we identify (in Leland’s notation) x = −κ2, so that limT→∞ VB =
(1−π) c

r
x

x+1 . In the infinite maturity limit, the equity holders care about the illiquidity they impose on bondholders via
the valuation spread between H and L only at the beginning when issuing bonds, but since there is no rollover their
default decision is not affected by bond market illiquidity for a given level of aggregate face value and coupon.

Next, let us investigate T → 0, which essentially renders the secondary bond market completely liquid. But of
course there is a large effect of T → 0 on the bankruptcy decision of the equity holders. Using L’Hopital’s rule, we
need to investigate

lim
T→0

1
T

[
κ2gF (vB)− g′F (vB)

]
We see that two terms that exactly give κi − χ explode at the rate 1√

T
, so that in the limit we have

lim
T→∞

δB
r − µ = lim

T→0
VB =

∑2
j=1 P0j (Bj +Aj)∑2

j=1 P0jα̂j
=
p
[
P01 P02

]
P−11[

P01 P02
]

P−1α

If α = αH = αL, we are back to the L96 solution of VB = p
α
.

A.3 Proofs of Section 4
Recall that debt values are given by[
DH (δ, τ)
DL (δ, τ)

]
= P

[
A1 +B1e

−r̂1τ [1− F (δ, τ)] + C1G1 (δ, τ)
A2 +B2e

−r̂2τ [1− F (δ, τ)] + C2G2 (δ, τ)

]
= P

[
A1
A2

]
+ [1− F (δ, τ)] P exp

(
−D̂τ

)
P−1P

[
B1
B2

]
+ P

[
G1 (δ, τ) 0

0 G2 (δ, τ)

]
P−1P

[
C1
C2

]
= P

[
A1
A2

]
+ [1− F (δ, τ)] exp (−Aτ) P

[
B1
B2

]
+ P

[
G1 (δ, τ) 0

0 G2 (δ, τ)

]
P−1P

[
C1
C2

]
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Here, by defining a ≡ µ−σ
2

2
σ2 , γ1 ≡ 0, γ2 ≡ −2a, ηi1,2 ≡ −a ±

√
a2σ4+2σ2r̂i

σ2 , and q (δ, χ, t) ≡ log(δB)−log(δ)−(χ+a)·σ2t
σ
√
t

,
the constants in (6) are given by:[

A1
A2

]
≡ cD̂−1P−11,

[
B1
B2

]
≡ pP−11− cD̂−1P−11,

[
C1
C2

]
≡ δB
r − µP−1α− cD̂−1P−11

P
[
A1
A2

]
≡ cA−11, P

[
B1
B2

]
≡ p1− cA−11, P

[
C1
C2

]
≡ δB
r − µα− cA

−11

and the functions F and G are given by

F (δ, τ) ≡
2∑
i=1

(
δ

δB

)γi
N [q (δ, γi, τ)] , Gj (δ, τ) ≡

2∑
i=1

(
δ

δB

)ηij
N [q (δ, ηij , τ)] ,

where N (x) is the cumulative distribution function for a standard normal distribution.

Define ω ≡ [1,−1] A =
[

(rH + ξH + ξL)
− (rL + ξH + ξL)

]>
and S ≡ DH − DL = [1,−1]

[
DH
DL

]
. We will also write the

shorthand
√
· for

√
[(r + ξ)− (r + λβ)]2 + 4ξλβ and note that r̂1 −

√
· = r̂2 > 0.

A.3.1 Time-to-maturity τ derivative
Proof of Proposition 4.

The derivative w.r.t. τ is easily established: First, we note that qτ (δ, χ, τ) = log(δ)−log(δB)−(χ+a)σ2τ
σ
√
τ

1
2τ , so δ and

δB have reversed signs. Then, we have

˙[
DH (δ, τ)
DL (δ, τ)

]
= P

[
−r̂1B1e

−r̂1τ [1− F (δ, τ)]−B1e
−r̂1τ Ḟ (δ, τ) + C1Ġ1 (δ, τ)

−r̂2B2e
−r̂2τ [1− F (δ, τ)]−B2e

−r̂2τ Ḟ (δ, τ) + C2Ġ2 (δ, τ)

]
and the derivatives of the auxiliary functions are

Ḟ (δ, τ) =
2∑
i=1

(
δ

δB

)γi
φ [q (δ, γi, τ)] qτ (δ, γi, τ)

= φ [q (δ, 0, τ)]
2∑
i=1

qτ (δ, γi, τ)

= φ [q (δ, 0, τ)]
log
(
δ
δB

)
στ3/2 > 0

Ġj (δ, τ) =
2∑
i=1

(
δ

δB

)ηij
φ [q (δ, ηij , τ)] qτ (δ, ηij , τ)

= φ [q (δ, 0, τ)] e−r̂jτ
2∑
i=1

qτ (δ, ηij , τ)

= φ [q (δ, 0, τ)] e−r̂jτ
log
(
δ
δB

)
στ3/2

= e−r̂jτ Ḟ (δ, τ) > 0

where we used (
δ

δB

)γi
φ [q (δ, γi, τ)] = φ [q (δ, 0, τ)](

δ

δB

)ηij
φ [q (δ, ηij , τ)] = φ [q (δ, 0, τ)] e−r̂jτ
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This is easily derived:

(
δ

δB

)γi
φ [q (δ, γi, τ)] = e−γi(δ̃B−δ̃) 1√

2π
e
− 1

2

[
δ̃B−δ̃−(γi+a)σ2t

σ
√
t

]2

= exp
{
−γi

(
δ̃B − δ̃

)} 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

(γi + a)σ2t
(
δ̃B − δ̃

)
2σ2t

+
[
(γi + a)σ2t

]2

2σ2t

]}

= 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

a
(
δ̃B − δ̃

)
σ2t

2σ2t
+

(γi + a)2 (σ2t
)2

2σ2t

]}

= 1√
2π

exp

{
−

[(
δ̃B − δ̃

)2

2σ2t
− 2

a
(
δ̃B − δ̃

)
σ2t

2σ2t
+
a2 (σ2t

)2

2σ2t
+
(
2γia+ γ2

i

) (
σ2t
)2

2σ2t

]}

= φ [q (δ, 0, τ)] exp

{
−
(
2γia+ γ2

i

)
σ2t

2

}

and we finally note that µ̃γ + σ2

2 γ
2 = 0 ⇐⇒ 2µ̃

σ2 γ + γ2 = 0 ⇐⇒ 2γa+ γ2 = 0 which gives the result in conjunction
with the fact that (γi + a) + (γ−i + a) = 0 as they are complementary roots centered around −a. Plugging in, we
have

˙[
DH (δ, τ)
DL (δ, τ)

]
= P

[
−r̂1B1e

−r̂1τ [1− F (δ, τ)] + (C1 −B1) e−r̂1τ Ḟ (δ, τ)
−r̂2B2e

−r̂2τ [1− F (δ, τ)] + (C2 −B2) e−r̂2τ Ḟ (δ, τ)

]
= P

[
e−r̂1τ 0

0 e−r̂2τ

][
−r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= P exp

(
−D̂τ

) [ −r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= P exp

(
−D̂τ

)(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
− [1− F (δ, τ)] AP

[
B1
B2

]
+ Ḟ (δ, τ) P

[
C1 −B1
C2 −B2

])
where we used the fact that P exp

(
−D̂τ

)
= exp (−Aτ) P and PD̂ = AP. Premultiplying by the difference vector

[1,−1] and plugging in the definitions of A, Bi, Ci, we have

Ṡ (δ, τ) = [1,−1]
˙[

DH (δ, τ)
DL (δ, τ)

]
= [1,−1] exp (−Aτ)

{
[1− F (δ, τ)]

[
c− prH
c− prL

]
+ Ḟ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}

Let us derive a formula for a general vector
[
x
y

]
:

[1,−1] exp (−Aτ)
[
x
y

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
[x (rL − rH − ξH − ξL)− y (rH − rL − ξL − ξH)] +

√
·
(

1 + eτ
√
·
)

[x− y]
}

= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)(
[rL,−rH ]

[
x
y

]
− ω

[
x
y

])
+
√
·
(

1 + eτ
√
·
)

[1,−1]
[
x
y

]}
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)(
[rL,−rH ]− ω +

√
· [1,−1]

) [ x
y

]
+ 2
√
· [1,−1]

[
x
y

]}

When x > y, it is clear that for τ = 0, we have [1,−1] exp (−A · 0)
[
x
y

]
= (x− y) > 0. Further, if it is to hold for
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any τ , we need (
eτ
√
· − 1

)(
[rL,−rH ]

[
x
y

]
− ω

[
x
y

]
+
√
· [1,−1]

[
x
y

])
≥ 0

Our derivation of Ṡ has two terms of this form, multiplied by [1− F ] > 0 and Ḟ > 0. To ensure positivity, this

implies conditions on p, c, rH , rL, αH , αL, δB once we identify
[
x
y

]
=
[
c− prH
c− prL

]
and

[
x
y

]
=
[

δB
r−µαH − p
δB
r−µαL − p

]
.

Thus, we have the following two conditions for these two cases:[
c− prH
c− prL

]
: − (rL − rH)

[
p
(
rH + rL + ξH + ξL −

√
·
)
− 2c

]
> 0

⇐⇒ (rL − rH) 2 [c− pr̂2] > 0
⇐⇒ w1 ≡ c− pr̂2 > 0[

δB
r−µαH − p
δB
r−µαL − p

]
: VB

[
αL
(
rL − rH + ξH + ξL −

√
·
)
− αH

(
rH − rL + ξH + ξL −

√
·
)]

+ 2p (rH − rL) > 0

⇐⇒ VB [αL (−2rH + 2r̂2)− αH (−2rL + 2r̂2)] + 2p (rH − rL) > 0
⇐⇒ w2 ≡ VB [αL (r̂2 − rH) + αH (rL − r̂2)]− p (rL − rH) > 0

where we note that rH < r̂2 < rL. So we need sufficiently high c > pr̂2 and also sufficiently high αL, αH in the face
of a large discount differential rL − rH . We thus have proved the following proposition. Thus, under the sufficient
conditions

w1 ≡ c− pr̂2 ≥ 0
w2 ≡ VB [αL (r̂2 − rH) + αH (rL − r̂2)]− p (rL − rH) ≥ 0,

we have Sτ (δ, τ) > 0, i.e. the bid-ask spread (1− β)S (δ, τ) is larger for bonds with longer time-to-maturity.
If either of these conditions are not satisfied, then we can still find τcp and/or τapr such that

[1,−1] exp (−Aτcpr)
[
c− prH
c− prL

]
= 0

[1,−1] exp (−Aτap)
[
VBαH − p
VBαL − p

]
= 0

and where τxy is given by

τxy = 1√
·

log

1− 2
√
· (x− y)(

[rL,−rH ]− ω −
√
· [1,−1]

) [ x
y

]


Then a sufficient (but of course not necessary) condition for Ṡ > 0 is τ ≤ min {τcpr, τap}, where τxy = ∞ if the
positivity condition holds.

We conclude with the observation that

Ṡ (δ, 0) = [1− F (δ, 0)] p (rL − rH) + lim
τ→0

Ḟ (δ, 0) δB
r − µ (αH − αL)

= p (rL − rH) > 0

A.3.2 Proof of S′ < 0 via the system of PDEs and LHS
Proof of Proposition 5.
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First, note that when we subtract the second line from the first line of the differential equation we have

[1,−1]
[
rH + ξH −ξH
−ξL rL + ξL

][
DH
DL

]
= [1,−1]

([
c
c

]
+ µ̃δ

[
DH
DL

]′
+ σ2

2 δ2
[
DH
DL

]′′
−

˙[
DH
DL

])

⇐⇒ ω

[
DH
DL

]
+ Ṡ = µ̃S′ + σ2

2 S′′

⇐⇒ LHS = µ̃S′ + σ2

2 S′′

where
ω ≡ [rH + ξH + ξL,− (rL + ξL + ξH)] .

Let us first establish a limit of LHS (δ, τ):

lim
τ→0

LHS (δ, τ) = ω

[
DH (δ, 0)
DL (δ, 0)

]
+ lim
τ→0

Ṡ (δ, τ)

= −p (rL − rH) + p (rL − rH)
= 0

Outline of the proof:
1. Show that ˙LHS as a function of τ only changes sign once.
2. Show, when τ is small, that LHS increases, that is

˙LHS (δ, τ) > 0

3. Show that LHS (δ,∞) ≥ 0.
4. Show that

S (δB , τ)− lim
δ→∞

S (δ, τ) > 0

Then we are done: (1.) implies that the can at most be one local extrema. By (2.), we know that there is a local
maximum in LHS in terms of τ , i.e., LHS has to go up and then down again to approach from above the value in (3.),
which is zero or something positive. Finally, (4.) gives us a contradiction if ever S′ > 0. First, by continuity of the
expectation, we have that S′ < 0 for some part of the state space (δB ,∞), as otherwise the surplus couldn’t be less at
∞ than at 0. Suppose now that there is an interval on which S′ < 0. This means that there exist a local maximum
with S′ = 0 > S′′. But this would imply LHS = µ̃S′ + σ2

2 S
′′ < 0, a contradiction. Thus, S′ > 0 everywhere.

Step 1: Recall that

˙[
DH (δ, τ)
DL (δ, τ)

]
= exp (−Aτ) P

[
−r̂1B1 [1− F (δ, τ)] + (C1 −B1) Ḟ (δ, τ)
−r̂2B2 [1− F (δ, τ)] + (C2 −B2) Ḟ (δ, τ)

]
= exp (−Aτ) P

(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
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Thus, we have

¨[
DH (δ, τ)
DL (δ, τ)

]
= exp (−Aτ) (−A) P

(
− [1− F (δ, τ)] D̂

[
B1
B2

]
+ Ḟ (δ, τ)

[
C1 −B1
C2 −B2

])
+ exp (−Aτ) P

(
Ḟ (δ, τ) D̂

[
B1
B2

]
+ F̈ (δ, τ)

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
[1− F (δ, τ)] A2P

[
B1
B2

]
− Ḟ (δ, τ) AP

[
C1 −B1
C2 −B2

])
+ exp (−Aτ)

(
Ḟ (δ, τ) AP

[
B1
B2

]
+ Ḟ (δ, τ) (...) P

[
C1 −B1
C2 −B2

])
= exp (−Aτ)

(
[1− F (δ, τ)] A2P

[
B1
B2

])
+ exp (−Aτ) Ḟ (δ, τ)

(
AP

[
2B1 − C1
2B2 − C2

]
+ (...) IP

[
C1 −B1
C2 −B2

])
where we used the fact that AP = PD̂ and A exp (−Aτ) = PD̂P−1P exp

(
−D̂τ

)
P−1 = PD̂ exp

(
−D̂τ

)
P−1 =

P exp
(
−D̂τ

)
D̂P−1 = exp (−Aτ) A as diagonal matrices of the same order commute.

Thus, if we can show that ˙LHS > 0 for any δ > δB we are done. Note that

∂2S (δ, τ)
∂τ2 = S̈ = [1,−1] (−A)

˙[
DH (δ, τ)
DL (δ, τ)

]
+ [1,−1] exp (−Aτ)

{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
= [1,−1] exp (−Aτ)

{
−A

(
[1− F (δ, τ)]

[
c− prH
c− prL

]
+ Ḟ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

])
− Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
= −ω

˙[
DH (δ, τ)
DL (δ, τ)

]
+ [1,−1] exp (−Aτ)

{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}
where we used the fat that A exp (−Aτ) = PD̂P−1P exp

(
−D̂τ

)
P−1 = PD̂ exp

(
−D̂τ

)
P−1 = P exp

(
−D̂τ

)
D̂P−1 =

exp (−Aτ) A as diagonal matrices of the same order commute.

We realize that the ω
˙[

DH (δ, τ)
DL (δ, τ)

]
parts cancel out in ˙LHS, and we are left with

˙LHS (δ, τ) = [1,−1] exp (−Aτ)
{
−Ḟ (δ, τ)

[
c− prH
c− prL

]
+ F̈ (δ, τ)

[
δB
r−µαH − p
δB
r−µαL − p

]}

Further note that with Ḟ (δ, τ) = φ [q (δ, 0, τ)]
log
(
δ
δB

)
στ3/2 , qτ (δ, 0, τ) =

log
(
δ
δB

)
−aσ2τ

2στ3/2 , and φ′ (x) = −xφ (x), we have

F̈ (δ, τ) = φ′ [q (δ, 0, τ)] qτ (δ, 0, τ)
log
(
δ
δB

)
στ3/2 + φ [q (δ, 0, τ)]

log
(
δ
δB

)
στ3/2

(
− 3

2τ

)
= Ḟ (δ, τ)

[
−q (δ, 0, τ) qτ (δ, 0, τ)− 3

2τ

]
= Ḟ (δ, τ)

[
−
− log

(
δ
δB

)
− aσ2τ

σ
√
τ

·
log
(
δ
δB

)
− aσ2τ

2στ3/2 − 3
2τ

]

= Ḟ (δ, τ)

[
log
(
δ
δB

)2 − a2 (σ2)2
τ2

2σ2τ2 − 3
2τ

]

= Ḟ (δ, τ)

[
log
(
δ
δB

)2

σ2τ2 − a2σ2

2 − 3
2τ

]
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so that

˙LHS (δ, τ) = Ḟ (δ, τ) [1,−1] exp (−Aτ)

{(
log
(
δ
δB

)2

σ2τ2 − a2σ2

2 − 3
2τ

)[
δB
r−µαH − p
δB
r−µαL − p

]
−
[
c− prH
c− prL

]}
Let us now write out this term in more detail. First, note that

[1,−1] exp (−Aτ)
[
VBαH − p
VBαL − p

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
[1,−1] exp (−Aτ)

[
c− prH
c− prL

]
= e−r̂1τ

2
√
·
×
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}
Then, let x ≡ log

(
δ
δB

)2 ∈ (0,∞), to simplify to

˙LHS = Ḟ×e
−r̂1τ

2
√
·

[(
x

σ2τ2 −
a2σ2

2 − 3
2τ

){(
eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
−
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}]
As Ḟ × e−r̂1τ

2
√
· > 0, we know that the term [·] determines the sign of ˙LHS. Writing it out, we have[(

x

σ2τ2 −
a2σ2

2 − 3
2τ

){(
eτ
√
· − 1

)
w2 + 2

√
·VB (αH − αL)

}
−
{(

eτ
√
· − 1

)
w1 + 2

√
·p (rL − rH)

}]
=

(
eτ
√
· − 1

)[(
x

σ2τ2 −
a2σ2

2 − 3
2τ

)
w2 − w1

]
+ 2
√
· [VB (αH − αL)− p (rL − rH)]

We note that limτ→0
eτ
√
·−1
τ

= ”0”
”0” =

√
· > 0, so that limτ→∞

eτ
√
·−1
τ2 = ∞. Thus, at τ in the vicinity of 0, the sign

of the term is determined by w2. Next, when τ →∞, we have the sign being determined by −a
2σ2

2 w2 − w1 < 0.
Multiplying out w2

(
eτ
√
· − 1

)
> 0, and defining Q1 (x, τ) =

(
x

σ2τ2 − a2σ2

2 − 3
2τ

)
, we have

Q (x, τ) = Q1 (x, τ)− w1

w2
+ 2
√
· [VB (αH − αL)− p (rL − rH)](

eτ
√
· − 1

)
w2

= Q1 (x, τ)−

(
eτ
√
· − 1

)
w1 − 2

√
· [VB (αH − αL)− p (rL − rH)](
eτ
√
· − 1

)
w2

= Q1 (x, τ)−

(
eτ
√
· − 1

)
w1 − w3(

eτ
√
· − 1

)
w2

= Q2 (x, τ)−Q2 (τ)

where
w3 = 2

√
· [VB (αH − αL)− p (rL − rH)] .

Note that Q1 (x, τ) changes sign only once. Then, we know that

Q̇2 (τ) =

√
·eτ
√
·w1

(
eτ
√
· − 1

)
w2 −

[(
eτ
√
· − 1

)
w1 − w3

]√
·eτ
√
·w2

(·)2

= w2w3
√
·eτ
√
·

(·)2

Thus, if w2w3 > 0, then Q̇2 (τ) > 0 and we know that Q (x, τ) is composed of a part that crosses from positive to
negative as τ increase (Q1 (x, τ)) and of a part that is monotonically decreasing as τ increases (−Q2 (τ)).

Step 2: From the derivation above, we know that for τ in the vicinity of 0, the sign of the ˙LHS is determined by
w2. Next, when τ →∞, we have the sign being determined by −a

2σ2

2 w2 − w1 < 0.
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Step 3: Note that

LHS (δ,∞) = ωP
[ (

δ
δB

)η12 0
0

(
δ
δB

)η22

]
P−1P

[
C1
C2

]
with η12 < η22 < 0, so that 0 < X1 =

(
δ
δB

)η12
<
(
δ
δB

)η22 = X2. Note that for δ → δB , the LHS becomes

lim
δ→δB

LHS (δ,∞) = −αL (rL − rH) + (αH − αL) rH + ξH + ξL
2

P
[
C1
C2

]
= δB

r − µα− cA
−11

ωP
[
X1 0
0 X2

]
P−1α = ωP

[
X1 0
0 X2

]
P−1

[
αH
αL

]
=

αL (rL − rH)
[
r̂1 (X2 −X1)−X2

√
·
]

√
·

+ (αH − αL) (X2 −X1) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]
2
√
·

+ (αH − αL) (X1 +X2) rH + ξH + ξL
2

ωP
[
X1 0
0 X2

]
P−1A−11 = (rL − rH) (X2 −X1)√

·

Let ε = η22 − η12 > 0, and x = log
(
δ
δB

)
. Then sufficient condition for LHS (δ,∞) > 0 for all δ is

ωP
[
−ε exp (−εx) 0

0 0

]
P−1P

[
C1
C2

]
= VB

αL (rL − rH) r̂1√
·

− c (rL − rH)√
·

− VB (αH − αL) rH + ξH + ξL
2

+VB (αH − αL) [(rH + ξH) (rL − rH − ξH)− ξL (rL + ξL + 2ξH)]
2
√
·

> 0

as well as
−αL (rL − rH) + (αH − αL) rH + ξH + ξL

2 > 0

Step 4: We have

S (δB , τ) = δB
r − µ (αH − αL)

lim
δ→∞

S (δ, τ) = [1,−1]
[
cA−11 + exp (−Aτ)

(
p1− cA−11

)]
Under our assumption that Sτ (δ, τ) > 0, we know that the highest S (δ, τ) is at τ =∞. Noting

[1,−1] A−11 = rL − rH
(rH + ξH) (rL + ξL)− ξHξL

[1,−1] exp (−Aτ) 1 =
(rL − rH) e−r̂1τ

(
e
√
·τ − 1

)
√
·

[1,−1] exp (−Aτ) A−11 = −
(rL − rH) e−r̂1τ

[
r̂1

(
e
√
·τ − 1

)
+
√
·
]

√
· [(rH + ξH) (rL + ξL)− ξHξL]

we have

S (δB , τ)− lim
δ→∞

S (δ, τ) > lim
τ→∞

{
S (δB , τ)− lim

δ→∞
S (δ, τ)

}
= (αH − αL) δB

r − µ − (rL − rH) c

[(rH + ξH) (rL + ξL)− ξHξL] > 0
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for appropriate parameter restrictions.
Taken together, we established parameter restrictions that result in Sδ (δ, τ) < 0.
Looser sufficiency conditions can be established for Sδ (δ, τ) in the vicinity of τ = 0 or δ = δB . We omit these

proofs for brevity.

A.4 The steady-state distribution of types
We now derive the cross-sectional (w.r.t. τ) steady-state distribution of L types. Let pH (t, τ) be the proportion at
time t of H types of maturity τ . Then we have

∂pH (t, τ)
∂t

− ∂pH (t, τ)
∂τ

= λpL (t, τ)− ξpH (t, τ)

as when time advances, maturity shrinks. To impose a steady-state, we note that ∂pH (t,τ)
∂t

= 0 and that pH (t, T ) = 1,
i.e., at any time t, due to the firm being able to issue to only H types, the proportion of H types with the longest
maturity T is always 1. Further note that pH + pL = 1, so that in the end we have

−∂pH (τ)
∂τ

= λpL (t, τ)− ξpH (t, τ)

pH (τ) = λ+ ξe(τ−T )(λ+ξ)

λ+ ξ

pL (τ) = ξ

λ+ ξ

[
1− e(τ−T )(λ+ξ)]

Let p̃i (τ) ≡ pi(τ)
T

so that
´ T

0 p̃H (τ)+ p̃L (τ) dτ = 1 and we are appropriately adjusting for the amount of outstanding
bonds (of measure 1). The steady state mass of H and L types then is

µH (T ) =
ˆ T

0
p̃H (τ) dτ

= λ

λ+ ξ
+
ξ
(
1− e−T (λ+ξ))
T (λ+ ξ)2

µL (T ) = ξ

λ+ ξ
−
ξ
(
1− e−T (λ+ξ))
T (λ+ ξ)2

and we note that limT→0 µH (T ) = 1 and limT→0 µL (T ) = 0, as well as limT→∞ µH (T ) = λ
λ+ξ and limT→∞ µL (T ) =

ξ
λ+ξ .

The steady-state total value of the firm, given by the simple sum of the equity holders and creditors value
functions, is thus

TVss (δ0, T ; δB) = E (δ0; δB) +
ˆ T

0
[p̃H (τ)DH (δ0, τ ; δB) + p̃L (τ)DL (δ0, τ ; δB)] dτ.

A similar expression can be established for the steady-state value function of dealers, which requires solving an ODE
for the value of intermediating bonds of only maturity τ (which can be solved in closed form), and then integrating
with respect to p̃L (τ) (which, as TVss above, cannot to our knowledge be integrated out in closed-form).
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