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Abstract: Selective universities are often accused of unfair admission practices which favour

applicants from specific socioeconomic groups. We develop an empirical framework for testing

whether such admissions are academically fair, i.e., they equalize the expected performance of the

marginal admitted candidates — the admission-threshold — across socioeconomic groups. We show

that such thresholds are nonparametrically identified from admissions data if unobserved, officer-

specific heterogeneity affecting admission decisions is median-independent of applicant covariates

and the density of past-admits’ conditional expected performance is positive around the admission-

threshold for each socioeconomic group. Applying our methods to admissions-data for a large

undergraduate programme at Oxford and using first-year exam-performance as outcome, we find

that the admission-threshold for male (respectively, private-school) applicants is about 3.9 (1.6)

percentage points higher than for female (state-school) applicants. In contrast, average admission-

rates are equal across gender and school-type, both before and after controlling for applicants’

background-characteristics. The implied productivity loss is 1.8 (1) percentage points per applicant.
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1 Introduction

Background: Selective universities are frequently accused of biased admission practices which

favour applicants from advantaged backgrounds and thus contribute to the perpetuation of socioe-

conomic inequality.1 Universities usually respond to such allegations by claiming to admit students

with the best academic potential, irrespective of their socioeconomic backgrounds.2 Despite sig-

nificant media and political interest in the issue, there does not seem to exist a rigorous empirical

methodology for testing these claims on the basis of admissions data. Our purpose in this paper is

to construct a formal econometric framework within which the "academic fairness" of admissions

may be defined and empirically tested, based on pre-admission background data for all applicants

and college-performance data for the admitted ones.

The notion of fairness we focus on — in accordance with the universities’ claims — is an outcome-

oriented one. Roughly speaking, it dictates that the marginal admitted individuals in different

demographic groups (e.g. male and female) of applicants should have identical expected outcomes,

where the expectation is computed based on characteristics observed by admission-officers at the

application stage. This common value will be referred to as the admission threshold.

In economics, equalized marginal returns is a well-understood generic condition for optimal allo-

cations. In the specific context of treatment assignment, it is equivalent to requiring the treatment-

regime to maximize the expected value of the relevant population outcome subject to budget

1For example, in the UK, a highly publicized 2011 Sutton Trust report shows that 100 elite (mostly expensive

private) schools - just 3% of schools for the relevant age-group - account for 31.9% of admissions to Oxford and

Cambridge. Source:

http://www.suttontrust.com/news/news/four-schools-and-one-college-win-more-places-at-oxbridge

1.

2 In British, European and Asian universities, undergraduate admissions are typically subject-specific and almost

entirely academically focused. Extra-curricular achievements, leadership potential etc. typically play no role in

admissions. For example, Oxford claims to be "...committed to recruiting the most able students, regardless of

background", while Cambridge claims that its "aim is to offer admission to students of the greatest intellectual

potential, irrespective of social, racial, religious and financial considerations". The closest US equivalent would be

admission to post-graduate academic programs. Source:

A. http://www.ox.ac.uk/about_the_university/facts_and_figures/undergraduate_admissions_statistics/index.html

B. http://www.cam.ac.uk/admissions/undergraduate/apply/
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constraints, c.f., Bhattacharya and Dupas (2012) and Bhattacharya (2011). However, empirically

detecting who are the relevant marginal candidates and calculating their expected outcomes are dif-

ficult problems in general. The first challenge is that the definition of marginal is intertwined with

the approval process and depends on all characteristics observed by the approval-officers, some of

which may not be observable to an analyst (c.f., Heckman (1998), Persico (2009) and the references

therein). Second, in some situations, it is difficult to observe the relevant outcomes or calculate

their expected value. An example is the case of hiring workers, where it is difficult to measure an

individual worker’s productivity even after she is hired. Further, counter-factual outcomes such as

potential productivity of rejected applicants are in fact never observed. Third, approval decisions

for a large cohort of applicants, e.g., for university places, are usually made simultaneously by sev-

eral officials who apply at least some personal discretion and/or display heterogeneity in taste or

knowledge. This heterogeneity is likely to introduce idiosyncratic variation in individual decisions

around a baseline university-wide policy and make the approval stochastic, even after condition-

ing on all applicant covariates observable to the officials. Defining and identifying the "overall"

marginal candidates in such scenarios is a nontrivial problem.

In the university-application case, the first problem is essentially mitigated when the analyst

can access the same application forms and standardized test-scores as those used by the admission

officers. For example, an economist studying admissions in her own university can easily access

these data, especially if she herself is involved in conducting admissions. Furthermore, in large

universities, admission decisions for thousands of applicants are typically made within a short period

of time. Consequently, it is difficult to fine-tune the admission process to judge each candidate based

on a different set of characteristics and this leads to standardized assessment procedures based on

a generic set of background variables. Therefore in this case, access to applicant records largely

eliminates the unobserved applicant characteristics issue that plague studies of unfairness in some

other situations, such as medical treatment, where patients are treated sequentially and different

criteria are used to judge treatment appropriateness depending on the patient’s age, ethnic and

health background or gender. This reasoning further suggests that our methods can be directly used

in all treatment situations where (i) approval criteria are standardized, (ii) relevant characteristics

of the applicants are obtained through application forms and (iii) the forms are accessible to the

analyst. Two pertinent examples are the approval of housing or consumer loans (c.f. Jiang et

al (2011), discussed below) and the issuance of insurance coverage. In subsection 3.2 below we

discuss a substantive assumption under which our methods can be applied to some other types of
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treatment-assignment situations which do not have these three characteristics.

A second advantage of the admission case is that one can easily match pre-application records

with college outcomes of admitted candidates, thereby partially mitigating the unobserved outcome

problem. The mitigation is partial because potential outcomes of rejected applicants will still remain

unobserved.

Finally, the difficulty in defining and detecting marginal candidates under unobserved hetero-

geneity across admission officers, still needs to be resolved.

Our contribution: In the present paper, we construct an empirical model of admissions in-

volving (i) observed applicant covariates, (ii) unobserved heterogeneity across admission officers and

(iii) outcomes of past admitted students. We allow for the fact that not all admission offers translate

into enrolment because applicants may accept alternative offers or fail to satisfy conditions specified

in the current offer, such as securing a certain grade in the school-leaving public examination. Our

primary contribution in this setting is to show that under reasonable behavioral assumptions and

under "continuous density" type regularity conditions, the baseline admission threshold faced by

applicants from a specific demographic group can be nonparametrically identified from admission

data for current applicants and post-enrolment performance of past admitted students from that

demographic group. It is not necessary to identify potential college outcomes of rejected candidates.

A test of fairness can then be carried out by checking equality of the identified thresholds across

the groups. Our key behavioral assumptions are that (a) admission officers form their subjective

expectations on the basis of academic outcomes of past admits and (b) for each type of applicant,

the expectational errors, i.e., the differences between the officers’ subjective expectations and the

true mathematical expectations, have zero median — i.e., the errors are equally likely to be positive

or negative.3 It is important to note that the latter assumption allows the distribution, and in

particular the variance, of such errors to differ by demographic group, which is an important gen-

eralization. Indeed, one would expect that this variance is larger for historically under-represented

groups, reflecting larger magnitudes of error in an officer’s subjective beliefs regarding those types of

individuals with whom the officer has had less experience. To our knowledge, the existing literature

on detecting treatment fairness has largely ignored such unobserved, treater-specific heterogeneity.

In the context of university admissions, equal marginal returns — as emphasized above — is con-

sistent with maximization of the average academic performance of the entering cohort. Therefore,

3 If the expectational errors are systematically higher for one group, we can absorb that difference into our definition

of thresholds. Thus the assumption of a zero value for the median is an innocuous normalization.
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when admission thresholds are found to differ by demographics — e.g., due to affirmative action

policies — it is useful to quantify the extent of discrepancy by the magnitude of the expected acad-

emic achievement foregone as a result. Under a stronger assumption of full independence between

officer errors and applicant covariates, we outline a method of obtaining nonparametric bounds on

this shortfall. Calculation of such efficiency losses appear to be novel in regards to the literature

on detecting treatment fairness.

As a final step in our analysis, we apply the methods developed above to analyze admissions

data from one large undergraduate programme of study at Oxford University, focusing on first year

academic performance as the outcome of interest. The overall application success rates are seen

to be almost identical across gender and type of school, both before and after controlling for key

covariates. However, upon focusing on the marginal admitted candidates, we find that expected

performance thresholds faced by applicants who are male or from independent schools exceed those

faced by females or state school applicants. The magnitude of the gender difference is about 0.8

standard deviations and that for school-types about 0.2 standard deviations of the outcome. This

finding is suggestive of some degree of affirmative action — either explicit or implicit — within the

admissions process, which is not apparent from the equal success rates, thereby illustrating the

usefulness of our approach.

Related Literature: On the econometric front, the present paper exactly complements a

recent literature — pioneered by Manski (2004) — on the reverse problem of how treatment should be

targeted for future populations, using information from past treatment outcomes. On the economic

front, our proposed empirical methodology complements the existing theoretical literature on the

economic analysis of affirmative actions in college admissions. Fryer and Loury (2005) have provided

a critical review of this theoretical literature and a comprehensive bibliography. In regards to the

educational literature, our work is complementary to a large volume of research on the usefulness

of standardized test scores such as the SAT in predicting academic success in college and how

this predictability varies across race and gender. See, for instance, staff research papers published

online at the Central Institute of Education in the UK and the College Board in the US; Rothstein

(2004) provides a comprehensive and critical review of this literature. Finally, the present work is

substantively related to the empirical literature on the detection of so-called "taste-based" motives

in law enforcement and in medical treatment, c.f., Persico (2009) (see section 3 below for further

details and references).

Plan of the Paper: The rest of the paper is organized as follows. Section 2 sets up the formal

5



problem and defines the key parameters of interest. Section 3 discusses identification of admission

thresholds using applicant-level admissions data, discusses the applicability of our methods in other

types of treatment scenarios and contrasts our approach with alternative identification strategies

in the empirical microeconomics literature. Section 4 deals with inference. Section 5 considers

(partial) identification of the short-term productivity loss due to the use of different thresholds

for different groups, as would happen under affirmative action policies. Section 6 contains the

substantive application of our methods to admission at an Oxford undergraduate programme.

Section 7 concludes. All technical material are collected in the appendix. We will use the notation

 :=  to mean that  equals  by definition.

2 Set-Up

Let  denote an applicant’s covariates which are observed by the university. Let W denote the

support of  ,  (·) denote the C.D.F. of  and let  denote one or more discrete components of

 capturing the group identity of the applicant (such as sex, race or type of high school attended)

which forms the basis of the alleged mistreatment. For an applicant , let  denote his/her future

academic performance if admitted to the university. Let  () denote a -type student’s true

expected performance if he/she enrols.

To set up the empirical framework, we assume that we have data on pre-admission characteristics

on a pool of applicants, drawn in an I.I.D. fashion from a distribution of potential applicants. For

each applicant, we also observe whether they were made an offer of admission, for each offer we

observe whether it was accepted and finally, for each accepted offer, we observe the outcome of

interest (e.g., examination score after 1st year of university). We have such data for several years.

When referring to variables from past years or expectations calculated on the basis of past variables,

we will use the superscript  .

For a current applicant  in the data, let   denote his/her values of pre-admission char-

acteristics and let  denote the dummy for whether (s)he received an offer and the dummy 

equals 1 if and only if  was made an offer and accepted it. We observe ( ) for every

individual and the outcome  if  = 1. Let

 ( ) := 
¡
  | =  =  = 1

¢
(1)

denote the conditional expectation of outcome  for previous years’ admits with characteristics

 . We assume that when admission officers decide on whether to admit an ( ) type student
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in the current year, they base it on their subjective assessment of  ( ) which they surmise

from data on ( ) type students who were admitted in previous years. Note that  ( ) is

in general different from  ( | =  = ) which is typically unknown to admission officers in

universities (or loan officers in banks in our loan application example above).4 Indeed, a large

literature in educational statistics on so-called "validation studies" use predicted performance of

admitted candidates to infer the relative predictive ability of standardized test scores vis-a-vis high

school grades and socioeconomic indicators and prescribe policies based on this analysis. See for

example, Kobrin et al (2001), Kuncel et al (2008) and Sawyer (1996, 2010). Since our analysis

evaluates what educational institutions actually do — rather than what they should have done —

using  ( ) rather than  ( | =  = ) is the correct approach here.

Toward that end, let X denote the support of  conditional on  =  and  = 1, i.e.,

X =
©
 : Pr

¡
 = 1| =  = 

¢
 0

ª
.

These are the values of  which occur among the admits of type  in past years and so one can, in

principle, calculate the values of  ( ) when  ∈ X. We assume that a -type applicant with
a value of  outside X will be not offered admission with probability 1 (such as applicants with
very low admission test scores) in the current year. On the other hand, an applicant  with  = 

and  =  ∈ X is offered admission if and only if  ( ) ≥ +, where  denotes unobserved

heterogeneity across admission officials and  denotes the university-wide baseline threshold for

applicants of demographic type . Thus we may summarize the admission process as:

Assumption 1

 =

⎧⎨⎩ 1
©
 ( ) ≥ 

+ 
ª
, if  ∈ X

0, if  ∈ X

. (2)

Academically Fair Admissions: In this setting, we define an admission practice to be acad-

emically fair at the university level if and only if  is identical across . The underlying intuition

is that the only way covariates  should influence the admission process is through their effect on

the expected academic outcome. Having a larger  for, say, females than males implies that a male

4 If there existed trial data where admissions were randomized, then the latter can be calculated and used instead

of  ( ). Alternatively, if   were independent of  , given  (the so-called selection-on-observables case),

then the two would be identical but this is somewhat irrelevant to the task at hand since admission officers are likely

to act on the basis of  ( ), whether or not it equals ( |).
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applicant with identical expected outcomes based on observable characteristics as a female appli-

cant is more likely to be admitted. Conversely, under affirmative action,  will be lower for those

s which represent historically disadvantaged groups. Therefore, we are interested in estimating

the threshold  for various values of  and testing if they are identical across .

It is important to note that here we are not making any assumption about whether or not 

affects the distribution of  , conditional on . In our set-up, a male applicant with identical  as

a female candidate can have a higher probability of being admitted and yet the admission process

may be academically fair if males have a higher expected outcome than females with identical

. This contrasts sharply with the notion of fairness employed, for example, in Bertrand et al

(2005) which concluded racial bias if two job-applicants with identical CVs but of different race

had different probabilities of being called for interview. In order for this finding to imply unfairness

according to our criterion, one needs to assume that, conditional on the information in CVs, race

has no impact on average worker productivity — a strong assumption, indeed.

For the identification/estimation of , we impose the following conditions:

Assumption 2 (i) {(   )}=1 is an i.i.d. sequence, with  (|| |) ∞, almost
surely; (ii) median( |  ) = 0 almost surely and (iii) the distribution of  has a strictly

positive density (with respect to the Lebesgue measure) around 0, given  and , almost surely.

Discussion: The presence of  in (2) allows admission to be non-deterministic, given  and ;

in particular, the admission cut-off for expected performance faced by applicants of type  varies

randomly within -type applicants (depending on which officer handled their file) with a median

value of  stipulated by a university-wide admission policy. For academically fair admissions,

as explained above, one would expect  to be identical across . Part (ii) of Assumption 2 will

hold when the systematic determinants of admission, such as past test scores, interview grades

and demographic characteristics are observed by the econometrician but idiosyncratic preferences

and/or the deviation of the admission officers’ subjective expectation from the true  (· ·) are not.
Assumption (ii) basically says that for each type of applicant, an admission officer is equally likely

to make positive and negative errors in calculating the expected academic performance. If applicant

files are distributed randomly among admission officers, then  is likely to be independent of (),

which is sufficient for Assumption 2 part (ii) to hold. One case where full independence might fail

is when for some historically under-represented group , the variance of  is larger, reflecting

larger magnitudes of error in an officer’s subjective beliefs regarding those types of individuals with
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whom the officer has had less experience. The conditional median restriction is robust to such

scale dependence, as is well-known from Manski’s (1975) maximum score analysis, and turns out to

be sufficient here for identifying s for each value of . Notice that the type of scale dependence

mentioned above would be ruled out by the independence of  and () or by the index-restriction

assumption in Chandra and Staiger (2009, page 7). Observe also that this zero-median restriction

is weaker than requiring the error distributions to be symmetric about zero and thus allows for

arbitrary amounts of skewness.

Finally, part (iii) of Assumption 2 is a regularity condition that aids the proof of identification.

It will obviously hold for every standard continuous distribution.

Lastly, we will make a technical assumption which would imply that there exists a common

feasible threshold. Toward that end, let Ω, Υ denote respectively the support for the distribution

of  and of  (), given  = .

Assumption 3 Υ ≡ Υ for all ; Υ contains an interval  such the density of  ( ) conditional

on  =  is strictly positive on  and  lies in  for each .

To interpret this assumption, consider the case where  denotes gender and  contains one or

more continuous variables like previous test scores. Then the above assumption basically says that

the (conditional) expected outcome for men and that for women take values in the same set. So

given any value  ∈ Ω, there exists an 0 ∈ Ω such that 
 () =  (0 ).

Note that this does not require Ω to be identical across .

Under the above assumption, for every fixed , there will exist ∗ () ∈  (Ω) such that

 (∗ ()  ) = . So we can define individuals in subgroup  with  = ∗ () to be the "ideally

marginal" admits in subgroup , i.e., those ( )s who would be marginal in the absence of any ,

as would occur if the university conducted admissions as a single entity and had perfect knowledge

of  (· ·). If admissions are academically fair, then for every ,  (∗ ()  ) = ; if not, and the

marginal admits are denoted by  () in group , then  ( ()  ) ≡  will differ across . If the

common support assumption did not hold, then it would be possible that admission is academically

fair with a common  which lies within the support of  ( 1) conditional on  = 1 but not

of  ( 2) given  = 2. In that case, for group 1, we will have equality at the margin but

for group 2, the marginal admits will have expected outcome exceeding the threshold if  lies in a

"hole" with respect to the support of  ( 2) given  = 2. Figure 1 illustrates the point. The

common support assumption would hold if a situation like the top panel holds where both curves
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Th e  so lid  cu rve  re p re se n ts  a  f ic t it io u s  co n d it io n a l d en s ity  o f  µ (X ,m a le )  a nd  the  da sh ed  cu rve  th e  

d en s ity  o f  µ (X ,fem a le ) .  In  th e  to p  p an e l,  th e y  h ave  the  sam e  su p po rt  an d  th e  com m on  t re a tm en t  

th re sh o ld  gam m a   is  sh ow n  b y  th e  v e rt ic a l   lin e .  In  th e  bo ttom  p an e l,  th e  com m on  th re sh o ld   lie s   in  

th e  “ho le ”  o f  the  su p po rt  o f  µ (X ,fem a le ). So  th e re   is  no  x   in  th e  su p p o rt  o f  X  fo r  fem a le s  w he re  

µ (X ,fem a le )  can  eq u a l  th e  com m on  th re sh o ld .  

Figure 1:
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have positive height at the cutoff-point , marked by the vertical line. To be clear, this common

support assumption has nothing to do with the identification of group-specific thresholds, analyzed

in the following section. Instead, the purpose of this assumption is that it enables us to interpret

the inequality between group-specific thresholds as symptomatic of academically unfair admissions.

3 Identification of 

3.1 Identification method

The basic identification idea is to use for each fixed , the median restriction and the observed

Pr ( = 1| =  = ) to identify the values of  defining the marginal admits, viz., those 

for which Pr ( = 1| =  = ) = 12 and then average  ( ) — separately identified from

admitted students in previous years — across these marginal admits to yield .

Our identification is facilitated by the following regularity condition:

Assumption 4 For each value  in the support of , the distribution of the random variable

 () conditional on  =  has a strictly positive density (with respect to the Lebesgue measure)

on an open interval around .

The above assumption guarantees that there exists some  ∈ X, such that Pr ( = 1| =  = ) =

12. It will hold as long as  has at least one continuously distributed component and  ()

varies sufficiently with that component. We emphasize that a "large" support for  is not neces-

sary here, because for generic budget constraints,  will be located in the interior of the support

of  ( ).

We formally state the identification statement through the following proposition. Its proof also

illustrates the intuition and hence is included in the main text.

Proposition 1 Suppose that assumptions 1, 2 and 4 hold. Then for each , the threshold  is

point-identified.

Proof: Note that if there exists an  such that Pr ( = 1| =  = ) = 12, then we must

have that

Pr
£
 ( )−  ≥ | =  = 

¤
= 12

implying that

 ( )−  = 0
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by (ii) and (iii) of Assumption 2. Therefore, by averaging over all such , one obtains that



∙
 ( )−  | Pr ( = 1| = ) =

1

2
  = 

¸
= 0 (3)

The latter implies that  can be identified via the equality

 = 

∙
 ( ) | Pr ( = 1| = ) =

1

2
  = 

¸
: =

R
 ( )× 1© ( ) = 1

2

ª
| (|)R

1
©
 ( ) = 1

2

ª
| (|)



where  ( ) denotes Pr ( = 1| =  = ). Now, assumption 4 guarantees that for every

fixed , the set Π =
©
 ∈ X :  ( ) = 

ª
— identical to the observable set of  ∈ X satisfying

Pr ( = 1| =  = ) = 12 — is nonempty. Finally,  ∈ X guarantees that we can compute
 ( ) for each  ∈ Π from past cohorts, which completes the proof of identification. Q.E.D..

Thus, operationally, the identification strategy for  is to first detect current year’s applicants of

type ( ) for whom the predicted probability (conditional on  = ) of getting an offer is exactly

a half. These are the marginal candidates of type  whose  take values in the set Π. Then

calculate predicted outcome, using data on past years’ admits. Finally, average these predicted

outcomes across last years’ -type admits with values of  in Π. This average yields .

Graphical Intuition: The above identification argument can be visualized through the graph

depicted in figure 2.To interpret this graph, fix a value of , say,  = . Suppose  is one-

dimensional and that  ( ) is continuously distributed. In the top panel of the graph, we plot

 ( ) against  by the dashed curve and mark  by the horizontal dashed curve. In the bottom

panel, we plot the corresponding admission probability ( ) against X in the absence of errors

(dashed curve) and in the presence of errors (solid curve).

In the absence of errors, the admission probability would be zero for those values of  where

 ( )   and equal to one where  ( ) ≥ . Now consider what happens when there are

stochastic perception errors. Such errors will make the perceived expectation at any value  of  to

have a distribution around the dashed  ( ) curve. This is shown by the density humps in the

graph’s top panel which, given the zero median restriction, will be centered at the true  ( ).

Now, whether a particular applicant with value  of  will be admitted is probabilistic, depending

on whether the noisy subjective expectation exceeds . For a point like xh on the right, we have

 ( )  ; consequently  ( ) which equals the area under the density curve at xh above

 in the upper panel and marked by the vertical height of the solid curve in the lower panel will

exceed one-half; similarly, the probability at a point like xl,  ( )  12 and only at a point like
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Figure 2:
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xm where  ( ) = , will the density hump be centred at , making the probability of success

at exactly one-half. Notice that this argument does not require the density curves to be symmetric

or have the same spread. All that is required is that the area under the curve for  =  below

 ( ) should be equal to that above  ( ), i.e., that the perception errors are equally likely

to be positive and negative.

Once we have identified the group-specific thresholds , we can test if admission is outcome-

oriented by testing the equality of  across . This implication is facilitated by our common

support assumption (3) in the previous section for  (· ·).

Remark 1 It is useful to note that our method remains applicable in situations where universities

get applications from students with different educational backgrounds. For example, among UK

university applicants, quite a few take the International Baccalaureate instead of the A-level exams.

Since our methodology is based entirely on the predicted outcomes and predicted probability of offer

and not on the background covariates themselves, it is easy to include such students into the analysis.

One simply uses IB scores instead of A-level scores as the corresponding  for these students

and predicts outcomes and probability of offer from the corresponding regressions. Thereafter, all

applicants are pooled together and the analysis proceeds exactly as before. In some real situations,

one or more applicant characteristics may be more "qualitative" such as performance in admission

interviews. However, for large applicant pools, such information is usually given a numerical score

or grade by university officials to enable easy comparison in the final stage of selection. This score

can be used as a component of  in our proposed methodology.

Remark 2 Our analysis does not require background information for past years’ applicants who

were rejected. Universities typically do not store this information and hence it is useful to have a

method which does not require them.

3.2 Median Independence in other treatment scenarios

Our assumption of median independence is intuitive in the admissions context of the present paper

where an analyst can directly access the application forms and test scores. But it is worthwhile

to check under what conditions it may hold in other contexts such as medical treatment where

physicians are likely to observe many determinants of treatment outcome which are unobservable

to an analyst. Toward that end, suppose the doctors and the analyst observe outcomes from

randomized controlled trials where potential patient outcomes are denoted by the standard notation
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0 and 1. Let  = 1−0 and suppose doctors make treatment decision for current patients, based
on the scalar random variable  :=  () :=  ( |) where  is observable to the analyst

and  is not. Suppose that a current patient with characteristics ( ) is given the treatment if

and only if  ( )  , i.e., the treatment rule is

 = 1 { () ≥ } .

Let  () denote  (| = ) which, by the law of iterated expectations, equals  ( | = ),

which is observable to the analyst. Rewriting the treatment rule in terms of observable and unob-

servable components, we get

 = 1 [ ( ) + { −  ( )} ≥ ]

: = 1 [ ( ) +  ≥ ] .

This takes the form of (1) provided the restriction  (| ) = 0 holds almost surely. The

latter will hold if and only if

 ( −  ( ) | ) = 0, i.e.,  {|} =  {|} , a.s. (4)

Note that condition (4) makes no further assumption about the distribution of  given and allows

for arbitrary heteroskedasticity of  in  . For example, if  =  0 + , then  =  −  (| )

and the zero conditional median is equivalent to requiring that  (| ) =  (| ). This is far

weaker than requiring that  be independent of  and, in particular, allows the variance of the

unobservable  to vary by  . In particular, this condition will hold whenever  has a symmetric

distribution, in particular a Gaussian law, conditional on  . Note also that (4) is a statement

about conditional means and medians which may or may not have "causal interpretations" of any

kind.

3.3 Comparison with other identification strategies

In the empirical microeconomics literature, several alternative approaches have been proposed for

distinguishing "taste-based discrimination" from "statistical discrimination" (c.f., Persico (2009)

for a review). The issue is to test whether (disparities in) observed treatment rates across demo-

graphic groups can be justified as the consequence of treaters maximizing a specific "legitimate"

objective, based on applicant characteristics which they observe. This is essentially identical to our

15



definition of academic fairness in the college admissions context5 However, the existing approaches,

which differ depending on the application context and data availability, are not applicable to our

setting. For instance, in the context of law-enforcement, Knowles, Persico and Todd (2005)6 at-

tempt to identify racially motivated, inefficient treatment using the fact that criminals can alter

their potential outcomes in response to the crackdown regime. Such responses are not feasible in the

admissions context where applicant outcome depends on long-term human capital accumulation.

In the context of medical treatment, Chandra and Staiger (2009) attempt to identify difference in

outcome thresholds for surgery by assuming an index-restriction on unobservables distributions. As

explained above, this approach fails when the unobservable’s distribution has covariate-dependent

scale, as is quite likely when decision-makers have comparatively less experience with applicants

from specific groups and thus make errors with larger variances for such groups. In the medical

context, Bhattacharya (2010) suggests an alternative approach to testing outcome-oriented treat-

ment assignment via a partial identification analysis using a combination of observational data and

experimental findings. Such experimental results are typically difficult to come by in the college

admissions context.

In the medical setting, Anwar and Fang (2011) consider a test of taste-based prejudice in emer-

gency room discharge using the re-admission rate as the outcome of interest. The key assumption

is that physicians have at their disposal a continuous choice variable related to diagnostic tests

which they can choose optimally in order to determine suitability for discharge. The identification

strategy is then based on comparing the re-admission rates of patients of different race who had

undergone the diagnostic test at the physician-optimized level of intensity. In the admissions set-up,

there is no such continuous choice variable available to admission officers.

In recent work, Bertrand et al (2010) have examined the consequences of affirmative action in

admission to Indian engineering colleges on the graduates’ earnings. In their context, admission

is based on a single exam score and admission thresholds vary by applicants’ social caste. These

thresholds are publicly fixed and commonly known, thereby removing the key empirical challenge

— that of defining and identifying the marginal admits and rejects — arising in general admissions

5We deliberately refrain from using the term discrimination because it is suggestive of prejudice. Neither we,

nor the existing research in our reading, can pinpoint the bahavioral source of any observed discrepency from the

economic ideal of identical marginals. As such, any such discrepency is stated to have arisen from "taste-based"

motives, by definition.
6Related recent papers include Anwar and Fang (2006), Grogger and Ridgeway (2006), Antonovic and Knight

(2009) and Brock et al (2011).
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contexts where entrance is based on several background variables.7

In ongoing work, Jiang, Nelson and Vytlacil (2011) analyze the identification of a deterministic

model of loan approval using information on approved loans alone. Their setting and their goal

are different from those of the present paper. In particular, JNV wish to identify the analog of the

 (·) function in the deterministic model  = 1
¡
 ( )  0

¢
but when they only observe the

distribution of  | = 1. In contrast, we observe  for all applicants, the relevant  function is

identified directly from past outcomes data, the determination of  involves additional heterogene-

ity and the goal is to identify the threshold ’s which potentially vary by  . Like us, JNV also

assume, realistically, that all characteristics of loan-applicants that the banks observe and system-

atically use are available to the analyst via the application forms but, unlike us, they cannot allow

for any unobserved heterogeneity in the approval equation, given their data limitations.

4 Estimation and Inference

We now consider the calculation of  from admissions data collected for one or more cohorts of

applicants. Note that any particular cohort may be viewed as a random sample from the overall

population of all applicants. Therefore, the values of  calculated based on a specific cohort will

suffer from sampling uncertainty; so a test of equal ’s requires a distribution theory, which we

derive in this section.

Motivated by the restriction of (3), we first present an estimator of . Observe that our

identification strategy is fully nonparametric and does not require any functional form assumption.

With a large enough sample size, one can consider fully nonparametric estimation of  ( ),

 ( ) and, eventually, . But for our sample size, this is difficult to implement due to curse of

dimensionality. We therefore resort to estimating  ( ) and  ( ) via parametric models here.

For estimating  we consider both parametric as well as non-parametric kernel based approaches;

in our empirical application, we report the results from both approaches. In the appendix we

7Our use of the term "marginal" is different from the notion of marginal individuals in Carneiro, Heckman and

Vytlacil (2009). Firstly, the set-up in their paper involves an instrumental variable, satisfying an exclusion restriction

and with large support, which affects allocation to treatment. No such IV seems to be available in our context.

Without such an IV, the analog of CHV’s "marginal individuals" of type ( ) in our set-up are those for whom the

corresponding admission officer’s unobservable error  satisfies  =  ( )−. But since we are primarily interested
in identifying the university-wide baseline  from knowledge of  ( ), such individuals are not of primary interest

to us. Instead, the relevant -type marginal individuals for us are those whose  satisfy  ( ) = .
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state and prove formal theorems describing the distribution theory for this semiparametric case,

c.f., theorem 1 in subsection 8.3. For the sake of pedagogical completeness, in the last part of the

appendix we state and prove the asymptotic distribution of ̂ resulting from a fully nonparametric

estimation of  ( ),  ( ), c.f., theorem 2, subsection 8.3.

In the semiparametric approach, we estimate  ( ) and  ( ) parametrically in the first

step and then in the second step, we estimate  by a weighted average of ̂
 (), where the

weights are a decreasing function of the distance between ̂ () and 1/2,

̂ =

X

=1
 (̂ ( )− 12) ̂ ( )1 { = }X

=1
 (̂ ( )− 12)1 { = }



Here  () =  () ;  (·) is a kernel function;  is a smoothing parameter (bandwidth);
̂ ( ) and ̂ ( ) are first-step estimators of  ( ) (:= Pr [ = 1| ( ) = ( )]) and

 ( ), respectively. This is exactly the average predicted outcome for those ( ) types for

whom the predicted probability of getting an offer, i.e.,  ( ) is close to a half, where closeness is

determined by the kernel and the bandwidth .

We may contrast this with a benchmark, fully parametric approach, which is easier to implement

and does not require subjective bandwidth choice. In this case, we estimate  ( ) and  ( )

parametrically in the first step and then in the second step, project the estimated  ( ) on

(functions of) the estimated  ( ), using linear regression. Then  is estimated by the predicted

value of the final regression, evaluated at ̂ ( ) = 12.

In order to increase our sample size, we will make the following stationarity assumption, which

will let us combine the current year performance data (whenever available) with past data to

calculate the estimates.

Assumption 5 The past and current cohorts are drawn from the same population distribution of

applicants and the admission thresholds have not changed over the entire period of analysis.

In view of this stationarity assumption 5, we drop the  superscript from now on and combine

all available years of data for estimating conditional means and probabilities in order to maximize

precision.8

8Also, note that if the outcome is available for every individual  admitted in the curent year as well, then we may

use the outcome  itself instead of ̂
 ( ). However, if such data are not available, we cannot average them

and no one in the past data may have exactly the same value of  for applicant  in the current data (especially if

 contains continuous components like test scores) whose  we could use directly. This would force us to average
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For the fully parametric case, due to the smoothness of the estimator of  in the regression

parameters, the estimator will be root-n normal and one can use the bootstrap to get its standard

errors. The semiparametric case is somewhat different from standard 2-step estimators where the

first step is nonparametric and the second step involves some form of averaging of the first step

estimators, leading eventually to
√
-normal estimates. Here, due to kernel smoothing at the second

step, even if the first step is parametric, one cannot estimate  at the parametric rate. We now

outline the distribution theory in this case.

Distribution of the semiparametric estimator: For the first stage, one may use any

parametric model satisfying some mild conditions (c.f., assumptions 11 and 12, below) e.g., a

probit or logit model for  (); and a linear (regression) model for  (). Define ̃ as the infeasible

estimator that would result if the true values  ( ) and  ( ) were used instead of their

estimates:

̃ :=

X

=1
 ( ( )− 12) ( )1 { = }X

=1
 ( ( )− 12)1 { = }

 (5)

for each  ∈ {}. We show in the appendix (see theorem 1) that our semiparametric estimator

̂ () has the same asymptotic distribution as ̃. Since ̃ is a nonparametric regression of the

dependent variable ̃evaluated at  ( ) = 12, its distribution follows from standard conditions

and takes the form:
√

£
̃ −  − 2B ()

¤ →  (0  ()) 

whereB () and  () denote bias and variance terms. Under appropriate undersmoothing — leading

to the asymptotic disappearance of the bias — one can construct confidence intervals for . The

forms of the bias and variance together with the sufficient technical conditions are formally stated

as theorem 1 in the appendix.

Remark 3 Note that the convergence rate of ̂ does not depend on the dimension of  since the

asymptotic distribution of ̂ and the infeasible ̃ are identical (shown in theorem 1 in the appen-

dix). This result is generic and also obtains even when  ( ) and  ( ) are nonparametrically

estimated. The latter is shown in theorem 2 in the appendix subsection 8.3.

Choosing Bandwidths: Note that our parameter of interest,  is essentially the conditional

mean  ( () | () = 12  = ). So we recommend the standard method based on cross-

Y’s for the past years for individuals whose X values are close to . In order to be robust to this situation, we use

̂ ( ) instead of .
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validation, which uses a global goodness of fit criterion for the conditional mean  ( () | ()   = ).

In the present context, cross-validation is achieved by minimizing the leave-one-out criterion

 () =
X

=1

1 ( = )× [̂ (  )−− (̂ (  )  ) ;]
2 , where

− ( ;) =

X

=1
6=

 (̂ ( )− ) ̂ ( )1 { = }X

=1
6=

 (̂ ()− )1 { = }

is an estimator of  ( () | () =  = ), calculated using the bandwidth . The min-

imizer ̂ of the CV criterion is optimal in that it converges to the minimizer of the true mean

squared error of the estimator. However, if we let  = ̂ , then we incur the asymptotic bias,

since the order of ̂ is 
−15. To remove the bias, we use  = ̂  (ln) in our implementation.

This undersmoothing, as is well-known, serves to reduce the asymptotic bias and makes it possible

to construct confidence intervals for  without explicitly estimating the bias component.
9

5 Productivity Loss from Unequal Thresholds

Many universities deliberately apply a lower threshold for applicants from historically disadvantaged

backgrounds — such as women or racial minorities. From a policy perspective, it is important

to cast the social benefits of such a policy against the short-term loss in productive efficiency

— measured as the academic achievement foregone by the university — as a consequence of the

policy. In this section of the paper, we outline a method of calculating such productivity shortfalls.

Note that these calculations do not capture the full, general equilibrium consequences of equating

thresholds across demographic groups, starting from a situation of unequal thresholds. The latter

would require a more comprehensive modelling of the action of various types of colleges as well as

application decisions by youths which would depend on, among other things, the financial returns

to college education. This type of analysis is outside the scope of the present paper.10 Instead,

our motivation for studying the productivity effects is that it can be used as a metric of how far

9Note that the need for the undersmoothing is not a problem unique to our estimator, but is shared by any kernel-

based estimators (see, e.g., pp. 41-43 in Pagan and Ullah, 1999). Alternatively, we might be able to estimate the

bias component. However, it is not easy since B () involves derivatives of relevant functions, whose nonparametric

estimation requires some other bandwidth choice.
10Arcidiacono (2005) conducts a structural, simulation-based analysis of the general equilibrium effects of changing

finacial aid policies on black enrolment at elite US colleges and on black college attendance in general. However, he

is not concerned with detecting unfair treatment or quantifying its effect.
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the actual admission process deviates from the (expected) outcome-maximizing ideal. Indeed, for

males and females, say, the difference  −  is itself one such metric. However, such a difference

does not capture the efficiency loss per se because the latter depends not just on the thresholds

but also on the distribution of productivities  () and  ( ) as well as the distributions of

the officer errors .11

Toward that end, suppose that progressive motives lead a university to choose a lower threshold

for female candidates, i.e.,   . Then, the efficiency cost of this policy may be computed as

the achievement foregone by replacing high ability males with low ability females relative to the

efficient situation where a common threshold ̃ ∈ ¡  ¢ is used. This intermediate ̃ can be
chosen so that the aggregate number of admits, if the common ̃ is used, will remain identical to

current number of admits in expectation.

Under the new threshold, the model of admission is given by: admit a candidate of type  = 

and  =  (where  is either male () or female ()), according to the rule

 =

⎧⎨⎩ 1 { ( ) ≥ ̃ + } , if  ∈ X
0, if  ∈ X.

.

Note that under this change in policy, the set X remains the same; so those characteristics for which
the probability of admission was zero before the change will still lead to outright rejection. It’s only

individuals with characteristics in X who will now be treated differently, corresponding to the use
of a new threshold ̃. This restriction is needed because even under the new university-specified

threshold, admission officers do not have any information on the outcomes of individuals whose 

lie outside X (except perhaps that their conditional expectation are at most inf∈X  ( )). We
assume therefore that under the new thresholds, they continue to use the set X. The assumption
does not seem overtly restrictive because individuals with  outside X are likely to be extremely
weak and even under ̃, their probability of getting an offer will be very small, so that they

will contribute very little to the expected outcome anyway. We also maintain the stationarity

assumption throughout this section, so that we will drop the  superscript everywhere and to fix

ideas, we will use gender to be the covariate of interest.

Before turning to the actual derivation, it may be worth noting that we can, in general, only

bound such efficiency costs. The intuitive reason for this is that we cannot exactly extrapolate

probabilities of getting an offer under the counterfactual ̃ ∈ ¡  ¢ for male candidates with
11Fryer and Loury (1996), while simulating efficiency loss from "color-blind" admissions", measure it relative to

the loss from ignoring standardized test-scores. This is of course another alternative.
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high enough values of  () and females with low enough values of  ( ). All we can say is that

their probabilities under ̃ will be higher than the highest and lower than the lowest probabilities

respectively, under the current thresholds.

By way of notation, let  denote the fraction of applicants who are male. Given the new

threshold ̃, define the two sets

 =

½
 ∈ X :  () +  − ̃  sup

∈X
 ()

¾
,

 =

½
 ∈ X :  ( ) +  − ̃  inf

∈X
 ( )

¾
.

These sets represent individuals for whom we can directly compute the probability of admission

offer corresponding to the new threshold and these will be used in our calculations below.

We will now strengthen some of our previous assumptions, which is needed for calculating the

change in expected average outcome resulting from the new threshold.

Assumption 6  is independent of , given ; i.e., for all , the conditional c.d.f. of  satisfies

|== (·) = |= (·).

Assumption 7 Conditional on each  in the support of , the random variable  () assumes

every value within max∈X  ( ) and min∈X  ( ) with positive probability. That is, for any

 ∈
³
inf∈X  ( )  sup∈X  ( )

´
, there exists  ∈ Ω such that  ( ) = .

Assumption 8 Acceptance of an offer and the outcome are independent of , given  and , i.e.,

corresponding to any pair of offer thresholds  ̃, we have

 ( | = 1  ≤  ()−  =  = )

=  ( | = 1  ≤  ()− ̃  =  = ) ,

and

Pr ( = 1| ≤  ()−  =  = )

= Pr ( = 1| ≤  ()− ̃  =  = ) .

We denote the probability of accepting an offer (conditional on having got an offer) by male and

female applicants of type  =  by  () and  (), respectively.

Discussion: Assumption 6 strengthens the conditional median independence of assumption 2

(ii) to conditional distributional independence. Note, however, that this assumption still allows
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the variance of  to depend on , which is a useful generalization, as noted above. Assumption 7

strengthens the support condition above to require that there are no "holes" in the (conditional

on  = ) support of  ( ). These two assumptions enable us to compute the (counterfactual)

probabilities Pr |==
£
̃ ≤  ()−   

¤
for  =  and  =  , which are ingredients of

the productivity change calculations below. Assumption 8 says that two candidates with identical

values of  and  who are offered admission have the same expected outcome and the same prob-

ability of acceptance, irrespective of the offer generating mechanism. This assumption is implied

by the stronger condition that  is a purely officer-specific error and applicant files are randomly

allocated among admission officers. Note that assumption 8 still allows acceptance to be corre-

lated with () and with unobserved determinants of  and thus includes cases where more able

students (who also have higher test-scores on average) get outside offers and do not accept the

university’s offer or less able students cannot satisfy the conditions of the offer and drop out.

Bounds on productivity loss: For  ∈  , define ̃ (; ̃) as a solution to:  (̃) =

 () +  − ̃. For  ∈  define ̄ (; ̃) as a solution to  (̄ ) =  ( ) +  − ̃. Since

 ≤ ̃ ≤ , by assumption 7 , such an ̃ ( ̃) must necessarily exist in X and ̄ (; ̃) in X .
Under assumptions 6, 7 and 8, the productivity gain achieved by raising the threshold from  to

̃ for women and lowering it from  to ̃ for men is given by the difference  (̃)− (̃), where
the constituent terms can be bounded as follows. The derivations appear in the appendix.

•  (̃) ∈ [ (̃)   (̃)] where

 (̃) = 

Z
∈

 () () { (̃ (; ̃))−  ()}  (| = )

+

Z
∈X∩

 () () {1−  ()}  (| = ) ,

 (̃) = 

Z
∈

 () () { (̃ (; ̃))−  ()}  (| = )

+

Z
∈X∩

 () ()

½
sup
∈X

 ()−  ()

¾
 (| = ) . (6)
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•  (̃) ∈ [ (̃)   (̃)], where

 (̃) = (1− )

Z
∈

 () () { ()−  (̄ ( ̃))}  (| = )

+ (1− )

Z
∈X∩ 

 () ()

½
 ()− inf

∈X
 ()

¾
 (| = ) ,

 (̃) = (1− )

Z
∈

 () () { ()−  (̄ ( ̃))}  (| = )

+ (1− )

Z
∈X∩ 

 () ()  ()  (| = ) . (7)

• If
inf
∈X

 () = 0 and sup
∈X

 () = 1 (8)

then the bounds shrink to singletons

 (̃) =  (̃) =  (̃)

 (̃) =  (̃) =  (̃) .

We summarize the above results into a proposition.

Proposition 2 Under assumptions 6, 7 and 8, the change in expected overall outcome resulting

from the use of a common threshold ̃ is given by the difference  (̃)−  (̃), where bounds for

 (̃) and  (̃) are provided in (6) and (7) respectively.

Proof: See Appendix

An interesting special case is where ̃ is chosen such that the net enrolment in expectation

remains the same as before, i.e., ̃ satisfies with  (; ̃) and  (; ̃) denoting the probabilities

of offer under the new threshold ̃:



Z
∈X

 (; ̃) () |= () + (1− )

Z
∈X

 (; ̃) () |= ()

= 

Z
∈X

 () () |= () + (1− )

Z
∈X

 () () |= () . (9)

The probabilities on the LHS of the above equation can be calculated in the same way as above.

In particular, assuming inf∈X  () = 0 and sup∈X  () = 1 (as in our application), the LHS

equals



Z
∈

 ()  (̃ (; ̃))  (| = )

+

Z
∈X∩

 ()  (| = )

+ (1− )

Z
∈

 ()  (̄ (; ̃))  (| = ) .
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Plugging into (9), one can solve for the budget neutral ̃.

Developing the distribution theory for this functional is complicated. The complication arises

from the possible non-uniqueness of ̃ (; ̃) and ̄ (; ̃) and the need to estimate the sets and 

which involve extrema of estimated functions. In such cases, naive bootstrap and/or subsampling

are now well-known to provide inconsistent inference in a uniform sense. So we report the point

estimates in the application.

6 Application to Oxford Admissions

Background: Our application is based on admissions data from a large undergraduate programme

at Oxford University. The data pertain to three recent cohorts of applicants. We focus on UK-

based applicants who have (i) written a substantive essay (a requirement for entry), (ii) had taken a

standardized aptitude test (comparable to the SAT for US colleges), (iii) had taken the standardized

school-leaving examination in the UK, viz., the GCSE, and (iv) have either taken or will take the

advanced school qualifications — A-levels — before college begins. Almost all UK-based applicants

would normally satisfy these four criteria.

The application process consists of an initial stage whereby a standardized "UCAS" form is

filled by the applicant and submitted to the university. The form records the applicant’s name,

gender, school type, prior academic performance, a personal statement and a letter of reference

from the school. The aptitude-test and essay-assessment scores are separately entered into the

central database.

About one-third of all applicants are selected for interview on the basis of UCAS information,

aptitude test and essay, and the rest rejected. Selected candidates are then assessed via a face-

to-face interview and the interview scores are recorded in the central database. This sub-group

of applicants who have been called to interview will constitute our sample of interest. Therefore,

we are in effect testing the academic fairness of the second round of the selection process, taking

the first round as given. Accordingly, from now on, we will refer to those summoned for interview

as the applicants. The final admission decision is made by considering all the above information

from among the candidates called for interviews. Whenever a student has not yet taken the A-

level exams, the schools’ prediction of their A-level performance is taken into account. In such

cases, admission offers are made conditional on the applicant securing the predicted grades. For

the application, we use anonymized data for three cohorts of applicants from their records held

25



0

10

20

30

40

50

60

1 = Not important

2

3

4

5 = Very important

Figure 3:

at the central admissions database at Oxford. For the admitted students, we merged these with

their performance in the first year examinations, in which students take three papers. The scores

across the three papers are averaged to calculate the overall performance, which we take to be the

outcome of interest.

In table 0, we provide explanation of the labels used in the subsequent tables.

Choice of covariates: We chose a preliminary set of potential covariates, based mainly on

intuition and personal anecdotal experiences with colleagues. To confirm our choice, we conducted

an anonymized online survey of the subject-tutors in Oxford, who participate in the admission

process. The survey asked the tutors to state how much weight they attach during admissions

to each of these potential covariates with "1" representing no weight and "5" denoting maximum

weight. The results, based on 52 responses, are summarized in figure 4. One may count the fraction

of "important (score=4)" and "very important (score=5)" for each category (equivalently the sum

of heights of the bottom two sections of the bars in figure 4) to gauge its perceived importance

in the admissions process. The A-levels appear to be the most important criterion, followed by

the aptitude test and interview scores and then GCSE performance. The choice of subjects at
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A-level (two specific subjects , referred to as subjects 1 and 2, are recommended by Oxford for

this particular programme of study) are given medium weights and the personal statement and

school reference are given fairly low weights. We therefore settle on using scores from the GCSE,

A-levels, aptitude test scores and the interview for our analysis. We also use dummies for whether

the applicant studied the two recommended subjects at A-level.

Group Identities : We consider fairness of admissions with regards to two different group

identities, viz., gender and type of school attended by the applicant. Oxford University is frequently

criticized for the relatively high proportion of privately-educated students admitted overall (c.f.,

footnote 1 above). The implication is that applicants from independent (private) schools, where

spending per student is very much higher than in state schools (Graddy and Stevens, 2005), have

an unfair advantage in the admissions process. As regards gender, in the UK, as in most OECD

countries, the higher education participation rate is higher for women, having overtaken the partic-

ipation rate for men in 1993. However, Oxford University appears to have lagged behind the trend:

in 2010/11, 55% of undergraduates in UK universities were female, but 56% of students admitted

to Oxford were male.12 Typically, gender imbalances are more pronounced in certain programmes

and includes the one we study, where male enrolment is nearly twice the female enrolment.

Given our focus on these group-identities, we separately asked tutors in our survey whether

they took into account gender and school-type of the applicants in making their decision. This

question is more politically sensitive than the previous ones and an affirmative answer is likely

more trustable than a negative one. The responses are plotted in figure 5 where we see that tutors

claim to use both characteristics in making their decision and school-type is paid more attention

in general than applicant gender. Given these findings, we include school-type as an explanatory

variable when calculating thresholds by gender and vice versa.

Outcome: After entering university, the candidates take examinations at the end of their first

year. There are three papers, and each script is marked blindly, i.e., the marking tutors do not know

anything about the candidate’s background. We use the average score over the three papers as our

outcome — labelled prelim_tot — which can range from 0 to 100. Obviously, this variable is available

for admitted candidates only. There are two advantages of using the preliminary year score as the

relevant outcome measure. One, every admit sits the same preliminary exam in any given year,

so that there is no confounding from the difference in score distributions across different optional

12See, for instance, a recent Guardian newspaper report at:

http://www.guardian.co.uk/education/2009/aug/19/oxford-university-men-places-women
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subjects, as often happens in the final examinations at the end of the 3-year course. Secondly, the

first year is closer to the time of entry; between the first and the third year, students have widely

different academic experiences which likely play a significant role in determining their performance

in the final exam. In other words, pre-admission characteristics, on which admissions are based,

are likely to play a comparatively larger role in first year performance.

Summary statistics and success rates: We provide summary statistics for the data in

Tables 1A and 1B.We first focus on differences in admission patterns by gender. Table 1A shows

that male applicants have better aptitude test scores and interview averages and male admits score

an average of about 2 points (out of 100) higher in the first year exams. They perform worse on

average in their GCSE and A-levels. These differences are statistically significant at 5%. Note that

there is no significant difference in offer rates between male and female candidates.

In table 2 we report the results of (i) a probit regression of receiving an offer as a function of

various characteristics among all applicants and (ii) a linear regression of first year average outcome

among the admitted candidates, as a function of the same characteristics. Table 2A strengthens

the findings from table 1A and 1B by showing that even after controlling for covariates, gender

and school-type do not affect the average success rate among applicants. On a more minor note,

table 2A and 2B further show that the aptitude test and interview scores have the largest impact

upon receiving an offer for the applicant population and a relatively smaller impact on first year

performance among the admitted candidates. But since the underlying samples are different, the

effects are not directly comparable. It is conceivable that among the sample selected to receive an

admission offer, those with lower aptitude-test score are better along other dimensions than those
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with low aptitude test-scores among the general applicant pool. This would serve to mitigate the

effect of the aptitude test scores on first year performance among the admitted students relative to

their impact on the potential outcomes of all applicants.

Threshold results: We now turn to the key results from applying the ideas of the present

paper —viz., a test of whether the marginal admitted male and the marginal admitted female student

have identical expected first year scores. To do this test, for each gender, we compute the expected

score as a linear function of age, GCSE score, A-level scores, dummies for whether the candidate

took the recommended subjects at A-level, aptitude-test scores, the interview score and whether

the applicant came from an independent school. Using the zero conditional median restriction

on errors, as explained above, we calculate the threshold faced by each gender as the average of

expected first year scores for admitted applicants whose probability of being admitted is predicted

(through a probit) to be close to 0.5. To choose the bandwidth for defining "closeness", we use the

leave-one-out cross-validation. The CV criterion is plotted in figure 5 for the four cases of (clockwise

from top left) male, female, state-school and independent-school. The numerical minimum of this

criterion over a grid of 0.01 to 0.1 is taken to be the optimal bandwidth.

In table 3A, we show the difference in estimated admission thresholds for a range of bandwidths

(which define "closeness to 0.5") and an Epanechnikov kernel  () = 3
4

¡
1− 2

¢ × 1 (|| ≤ 1).
The middle bandwidth(shaded row) is the optimal one, according to the cross validation criterion

calculated above divided by log of the number of -type applicants where  is either male or female.

The other rows correspond to bandwidths that are 0.5 times the optimal one and 2 times the

optimal one respectively. The very last row corresponds to a fully parametric analysis where the

parametrically estimated ̂ ( ) is regressed on the parametrically estimated ̂ ( ) and its square

and the predicted value at ̂ = 12 is taken to be the estimate of ̂. The second row in table 3A,

for instance, may be read as follows. The first column specifies the scale by which the optimal

bandwidth is multiplied (in this case 1), the second column reports the male threshold: we see that

the marginal male admits are expected to score 60.9 percent in their first year examination. The

third column shows that the marginal female admits can be expected to score 57 percent, implying

a difference of 3.9 percent (reported in the 4th column). This difference has a 1-sided p-value of

0.004 under the null of equal thresholds, reported in the 5th column. Finally, the 6th column

reports that if we were to use a common budget neutral threshold, the first year exam score of the

resulting admitted cohort would be about 1.8 percentage points higher per applicant. Since the

overall applicant success rate is 0.36, this amounts to 1.8/0.36=5 percentage points, i.e., about 1
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Figure 5:

standard deviation of the outcome among the admits.

From table 3A, it becomes clear that male candidates have to cross about a 4 percentage points

higher barrier of expected performance than females in order to get admitted. It is interesting

to contrast this finding with table 1A where we found that application success rates were almost

identical across gender and table 2A where we found that gender was not a significant predictor

of the average application success, conditional on other covariates. This highlights the usefulness

of our approach which, by focusing on the marginal admits, reveals a stark difference between the

treatments of male and female candidates not apparent from the conditional or the unconditional

(on covariates) average success rates by gender. It is also interesting to note that the gender-

difference in expected outcomes for the average admit is about 0.92 percentage points which much

smaller than the 3.9 points difference among the marginal candidates.

Outcome variants and productivity loss: In table 4A, we consider slightly different forms

of the outcome, viz., (i) the chances of scoring 70 or above, (ii) securing at least 60 and (iii) securing
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at least 55. These correspond roughly to the 95th, the 50th and the 20th percentile of the overall

score distribution. In particular, the 55+ criterion corresponds to an admission process designed

to maximize the probability of securing a minimum benchmark. As such, it can be interpreted as

the university acting in a risk-averse way. In all of these cases, estimates of the male threshold are

significantly higher, confirming the previous findings. The difference is marginally significant for

the outcome of 60+.

Results for school-type: Finally, we repeat the analysis reversing the roles of gender and

school background, i.e., we use gender as an explanatory variable and test if applicants from in-

dependent school face a higher threshold than their counterparts who apply from state-funded

schools. The results are reported in the lower panels (marked B) of tables 3 and 4. Now, we see a

difference of about 1.7 percentage points for the average first year score suggesting that students

from independent schools are held to a higher threshold of expected first year performance. The

magnitude of difference and corresponding productivity loss are less than half the corresponding

numbers for gender. In addition, table 4B reveals that for certain variants of the outcome, estimated

thresholds are slightly higher for state-school applicants; however, these differences are statistically

insignificant.

In order to gain some visual insight into how the threshold discrepancies arise, in figure 6, we

plot the empirical marginal c.d.f. of the estimated  () and  ( ) (left panel) and

those of the estimated  ( _) and  ( _) (right panel). It is clear that

the male distribution first-order stochastic dominates the female distribution and the independent

school distribution nearly first-order stochastic dominates the state-school distribution. This means

that even if admissions are centrally conducted and are deterministic conditional on  (i.e., there is

no unobserved heterogeneity across admission officers), any common acceptance rate across gender

will result in a higher  for the marginal accepted male than the marginal accepted female. This

can be see in figure 6, by looking along any fixed cutoff on the vertical axis. Any such horizontal

cut-off line will intersect the female c.d.f. at a point that will lie strictly to the left of the point of

intersection with the male c.d.f. We conjecture that the presence of unobserved heterogeneity across

admission officers does not alter this fundamental dominance situation and produces the results

reported above. A similar, albeit relatively weaker, dominance situation occurs for school-type, as

can be seen in the right-hand graph in figure 6.

Interpretation of the Empirical Findings: It would be natural to conjecture that the

observed threshold-differences arise primarily from the implicit or explicit practice of affirmative
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Figure 6:

action, viz., the overweighting of outcomes for historically disadvantaged groups. A second possi-

bility is that, in face of political and/or media pressure, admissions tutors try to equate application

success rate for, say, male with female applicants, which is also consistent with our empirical find-

ings (see tables 1A and 1B and the last paragraph of the previous section). This would make the

effective male threshold higher if, say, the conditional male outcome distribution has a thicker right

tail (see figure 6) and officer perception errors are identically distributed. Regardless of what the

underlying determinants of the officers’ behavior are, we can conclude from our analysis that the

admission practice under study deviates from the outcome-oriented benchmark and makes male or

independent school applicants face effectively higher admission thresholds.13

13This conclusion is subject to the obvious caveat that if we use a different outcome, such as performance on the

final examinations, the conclusion may be quite different. In that sense, our analysis is consistent with all the papers

in the empirical microeconomics literature, including those cited above, which test "taste-based" treatment motives

by focusing on a single outcome. It would be interesting to repeat our empirical analysis with finals performance

data; however, data on final year scores are unfortunately not currently available for the relevant years, as of date.

Furthermore, as discussed above, the preliminary year examination papers are identical across candidates, unlike

finals where different students write exams in different subjects, depending on which areas they chose to specialize

in.
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7 Summary and Conclusion

This paper has proposed a general empirical methodology for testing whether an existing treat-

ment protocol is economically fair in the sense of equalizing expected returns from treating marginal

candidates across demographic groups, and calculating the productivity loss in situations where it

is not. The focus is on the specific context of admissions to selective universities where allega-

tions of unfairness are frequently made. Specifically, we consider the situation where a university

bases admissions on the applicants’ background data obtained through application forms and on

standardized-test and/or interview-performance. We assume that a researcher can access this back-

ground information by acquiring the application form and the performance scores. Such admission

procedures and data situations are extremely common across universities in the world, making our

methodology fairly generally applicable. Furthermore, academic researchers can easily obtain these

information, possibly in anonymized form, from their own institutions.

Applying our methods to admissions data for a large undergraduate programme of study at

Oxford University and focusing on first-year examination performance as the outcome of interest,

we found that the admission threshold faced by applicants who are male or from independent

schools are systematically higher than those for female or state-school applicants. This contrasts

sharply with the average admission rates, which are seen to be identical across gender and across

school-type, whether or not we control for other covariates. This finding highlights the usefulness

of our approach which, by focusing on the expected outcome of the marginal admits, rather than

the aggregate admissions rate, reveals how applicants of different types face effectively different

admission standards.

Our paper has left several substantive issues to future research. One, we do not consider peer-

effects in our analysis; so we ignore scenarios where a student with relatively weaker predicted

performance can, nonetheless, create positive externalities for other students and may therefore be

preferred over someone with higher predicted individual performance but a negative externality on

peers. However, in real settings, it is a bit unclear if admission tutors have enough information

regarding peer effects to base their admission decisions on it.14 Secondly, we do not consider

a formal analysis of risk-aversion for the university and only provide a brief illustration in the

empirical section. Indeed, for binary outcomes, like those reported in table 4, risk cannot play a

14 In the somewhat different but related context of room-mate assignment policies that explicitly take into account

peer effects, see recent papers by Bhattacharya (2009) and Carrell, Sacerdote and West (2011).
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separate role and we see qualitatively similar results to those obtained when using the continuous

outcome.15 Nonetheless, for the sake of completeness and for use in other applications, this may be

a direction worth further explorations in future.16 Third, it may be useful to perform the empirical

analysis using other types of outcome measures — such as wage upon graduation — as and when

such data are available. However, we suspect that college performance data are much more readily

available in general than wage data because the latter requires costly follow-up of alumni and can

entail non-ignorable non-response. Finally, in ongoing work, we are (i) investigating the related

but reverse question of how individual characteristics should be weighed in admission decisions

and (ii) expanding on the idea outlined in section 3.2 regarding how median independence and/or

symmetry conditions can be used to detect inefficient treatment allocation in medical-type settings.

15The literature on outcome-based analysis of fair treatment, cited above, either considers binary outcomes or

assumes risk-neutrality when outcomes are continuous.
16For example, one can consider a family of utility functions for the university, indexed by a risk-aversion parameter,

and ask what range of values of this parameter would rationalize the observed admissions data as the consequence of

average utility maximization. This would naturally lend itself to a partial identification analysis.
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Table 0: Variable labels 

Label Explanation 
GCSE-score Overall score in GCSE, 0-4 

 Alevel-score Average A-level scores 80-120      
Subject 1 

 
Whether studied 1st recommended subject at A-
level 

Subject 2 
 

Whether studied 2nd recommended subject at A-
level 

Aptitude-test Overall score in Aptitude Test 0-100 
Essay Score on Substantive Essay 0-100 

Interview Performance score in interview 0-100 
Prelim_tot Average score in first year university exam; 0-100 

  Offer Whether offered admission           
Accept Whether accepted admission offer 

 
Note: The alevelscore is an average of the A-levels achieved by or predicted for the 

candidate by his/her school, excluding general studies.Scores are calculated on the 
scale A=120, A/B = 113, B/A = 107, B = 100, C = 80, D = 60, E = 40, as per England-
wide UCAS norm. 

Note: gcsescore is an average of the GCSE grades achieved by the candidate for 
eight subjects, where A* = 4, A = 3, B = 2, C = 1, D or below =0. The grades used are 
mathematics plus the other seven best grades. 

Note: Oxford recommends that candidates study two specific subjects at A-levels 
for entry into the undergraduate programme under study. Subject 1 and Subject 2 are 
dummies for whether an applicant did study them at A-level. 
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1A. Summary stats by Gender

Variable Obs Mean Obs Mean Difference p-value
Female Male

gcsescore 499 3.83 980 3.75 0.08 0
took subject 1 499 0.69 980 0.68 0.01 0.54
took subject 2 499 0.48 980 0.52 0.04 0.27

alevelscore 499 119.73 980 119.44 0.29 0.01
aptitude test 499 62.53 980 65.24 -2.71 0

essay 499 63.23 980 64.49 -1.26 0
interview 499 64.68 980 65.29 -0.61 0.04
prelim_tot 165 60.98 306 61.89 -0.92 0.04

offer 499 0.363 980 0.357 0.01 0.41
accept 499 0.34 980 0.34 0.00 0.5

1B. Summary stats by School-Type

Variable Obs Mean Obs Mean Difference p_value
State Indep

gcsescore 818 3.70 661 3.87 -0.17 0
took subject 1 818 119.43 661 119.68 -0.24 0.02
took subject 2 818 0.65 661 0.73 -0.08 0.004

alevelscore 818 0.53 661 0.46 0.07 0.02
aptitude test 818 63.82 661 64.94 -1.12 0.0015

essay 818 64.06 661 64.07 -0.01 0.5
interview 818 65.02 661 65.17 -0.15 0.65
prelim_tot 260 61.15 211 62.10 -0.95 0.03p _

offer 818 0.361 661 0.357 0.00 0.5
accept 818 0.33 661 0.35 -0.01 0.46
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2A. Probit of receiving offer

Coef. Std. Err. z pvalue
gcsescore 0.26 0.25 1.04 0.30

alevelscore 0.08 0.06 1.26 0.21
took subject 1 -0.06 0.17 -0.33 0.74
took subject 2 -0.25 0.15 -1.65 0.10
aptitude test 0.09 0.01 7.01 0.00

essay 0.01 0.01 0.44 0.66
interview 0.23 0.02 10.59 0.00

indep -0.13 0.15 -0.88 0.38
male -0.18 0.16 -1.13 0.26
_cons -31.50 7.76 -4.06 0.00

N=1479, Pseudo-R-squared=0.5

2B. Regression of prelim_score

Coefficient Std. Err. t pvalue
gcsescore 4.19 2.42 1.73 0.09

alevelscore 0.79 0.40 1.96 0.05
took subject 1 0.24 1.11 0.22 0.83
took subject 2 -1.25 0.86 -1.45 0.15
aptitude test 0.28 0.07 4.15 0.00

essay -0.02 0.07 -0.30 0.76
interview 0.17 0.10 1.76 0.08

indep -0.01 0.92 -0.01 0.99
male 1.56 0.89 1.75 0.08
_cons -79.84 49.54 -1.61 0.11_

N=1479, R-squared=0.26

37



3A. Thresholds by Gender

Outcome mean=61.54, std dev=5.2
Method Male-thld Fem-thld Male-Fem p-value Loss

Scale=0.5 60.92 56.44 4.48 0 1.78
Scale=1.00 60.9 57 3.9 0.004 1.86

Scale=2 60.88 56.86 4.02 0.01 1.84
Parametric 60.51 57.86 2.65 0.04 1.36

3B. Thresholds by School-type

Outcome mean=61.54, std dev=5.2
Method Indep thld State thld Ind-State p-value Loss

Scale=0.5 60.67 59.02 1.65 0.16 1.15
Scale=1.00 60.74 59.11 1.63 0.05 1.02
Scale=2.00 60.62 58.96 1.66 0.04 0.9
Parametric 60.34 58.7 1.64 0.05 1.04
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4A. Other outcomes and Productivity Loss by Gender

Outcome Male-thld Fem-thld Male-Fem p-value Loss
70+ (mean 0.06) 0.07 0.013 0.057 0.02 0.012
60+ (mean 0.52) 0.44 0.37 0.07 0.15 0.015
55+ (mean 0.78) 0.8 0.63 0.17 0.05 0.05

Avg (mean 61.54) 60.9 57 3.9 0 1.86

4B. Other outcomes and Productivity Loss by School-type
Outcome Indep-thld State-thld Indep-State p-value Loss

70+ (mean 0.06) 0.007 0.023 -0.016 0.34 0.07
60+ (mean 0.52) 0.421 0.416 0.005 0.48 0.02
55+ (mean 0.78) 0.75 0.79 -0.04 0.65 0.008

Avg (mean 61.54) 60.74 59.11 1.63 0.05 1.02
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8 Technical Appendix

The appendix contains three subsections — subsection 8.1 formally states and derives the asymptotic

distribution of the semiparametric estimator of , on which the application is based; subsection

8.2 outlines the proof of proposition 2; subsection 8.3 states and derives the distribution theory for

the fully nonparametric estimator of .

8.1 Asymptotic distribution theory for semiparametric estimator
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where  () =  () ;  (·) is a kernel function;  is a smoothing parameter (bandwidth);
̂ ( ) and ̂ ( ) are first-step estimators of  ( ) (:= Pr [ = 1| ( ) = ( )]) and  ( ),

respectively. For notational simplicity, we write := ( ). We suppose that consists of
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distributed with its support (⊂ R1) compact; and the 2-dimensional random (row) vector  


takes discrete values with the support  (the number of points of support of  is finite). We let

the last element of the vector  
 be , the variable for gender. In what follows, we often write
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In what follows and in the proofs, we will use the notations:  :=  and  =: , where

the former means that  is defined by , and the latter means that  is defined by . For

a vector/matrix  whose elements are { : 1 ≤  ≤ ; 1 ≤  ≤ } with  and  some positive

integers, |||| = max1≤≤; 1≤≤ | |.
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Our semiparametric estimator can be written as follows:
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 (10)

where ̄ ( ; ) = ̄ (; ) is a consistent (semi) parametric estimator of  () with a finite

dimensional parameter ; ̂ is a consistent estimator for a (pseudo) true parameter 0; and

̄ ( ; ) = ̄ (; ), , ̂ and 0 are defined analogously. We may use various parametric

models, e.g., a probit or logit model for  (); and a linear (regression) model for  (), whose

requirements presented in Assumptions 11 and 12 are quite mild.

Asymptotic Distribution Theory:

Let ̃ be defined as

̃ :=

X

=1
 ( ( )− 12) ( )X

=1
 ( ( )− 12)
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for each  ∈ {}. This is not an feasible estimator, requiring true objects  ( ) and  ( ).

However, we below show that our feasible semiparametric estimator ̂ () and ̃, under the

assumption of correct specification, share the same asymptotic distribution.

To derive the asymptotic distribution of the infeasible estimator ̃, we work with the following

conditions:

Assumption 9 Let

 ( ) :=  [ () |  () =   = ] =  [ ( ) |  ( ) = ] 

For each  ∈ {},  (· ) is twice continuously differentiable on [0 1]. The probability function
 ( ) of random variables  ()(= Pr [ = 1|]) and  exists (: [0 1] × {} → [0∞)
and  ( )  = Pr [ () ∈  = ]); for each  ∈ {},  (· ) is twice continuously differ-
entiable on [0 1] and; there exists some constant   0 such that

inf()∈[12−12+]×{}  ( )  0

Assumption 10 The kernel function  (·) (R→ [0∞)) is of bounded variation and satisfies the
following conditions:

R
R ()  = 1;

R
R  ()  = 0; there exists some constant ̄ ∈ (0∞)

such that sup∈R () ≤ ̄ and
R
R 

2 | ()|  ≤ ̄.
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Lemma 1 Suppose that Assumptions 9-10 hold. Then, as  → ∞ and  → 0 with  → ∞ and

5 =  (1),
√

£
̃ −  − 2B ()

¤ →  (0  ()) 

for each  ∈ {}, where

B () : =

Z
R
2 () 

∙
() ( )× ()  ( )

 ( )
+
1

2

¡
22

¢
 ( )

¸¯̄̄̄
=12

;

V () : =

Z
R
2 () 

Var [ ( ) | ( ) = ]

 ( )

¯̄̄̄
=12



The conditions in Assumptions 9-10 and the result of this lemma is quite standard (see, e.g., Ch.

3 of Li and Racine, 2007), and therefore we omit the proof. We now analyze our semiparametric

estimator ̂ () under the following conditions:

Assumption 11 (i) The estimator ̂ is consistent for the (pseudo) true parameter 
0
 with the

following expression:

̂ − 0 = −1
X

=1
 +

¡
−1

¢
 (11)

where {} is a vector-valued independent (triangular) array with  [ ] = 0 and [| |2] ∞
(the dimension of  is the same as that of ̂); and  is independent of ( ) for  6= .

(ii) There exists some compact set Θ such that ̄ (; ) is twice continuously differentiable with

respect to  in the interior of Θ; 
0
 is in the interior of Θ;

sup
∈×; ∈Θ

¯̄¯̄
() ̄

¡
; 0

¢¯̄¯̄
∞; and sup

∈×; ∈Θ

¯̄¯̄¡
2

0


¢
̄
¡
; 0

¢¯̄¯̄
∞

Assumption 12 The estimator ̂ is consistent for the (pseudo) true parameter 
0
 with

sup
()∈×

¯̄̄
̄
³
; ̂

´
− ̄

¡
; 0

¢¯̄̄
= 

³
−12

´


The condition on ̂ in Assumption 12 is fairly weak and should be satisfied by many parametric

models and estimators. The conditions on ̂ in Assumption 11 are slightly stronger, but are also

satisfied in many cases. The requirement of (11) can be usually fulfilled if ̂ is an estimator

of the extremum type. To see this point, let ̂ be a (quasi) maximum-likelihood or (nonlinear)

least-square type estimator with the
√
-consistency. Then, it can be written as

̂ − 0 = −1


³
̃

´
−1

X

=1


¡
0
¢
 (12)
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where ̃ is on the line segment connecting ̂ to ;
©


¡
0
¢ª
is a zero-mean independent (score)

array (with finite second moments);  is the Hessian matrix with  () := −1
P

=1  ();

and { ()} is an independent array (with finite second moments). Now, for notational simplicity,
let the dimension of  be 1 (a multi-dimension case can be treated analogously). In this case,

−1


³
̃

´
=

h

£


¡
0
¢¤
+ −1

X

=1

¡


¡
0
¢−

£


¡
0
¢¤¢− ()

¡
̌
¢ h

̃ − 0

ii−1
= 

£


¡
0
¢¤−1

+ (1)×
n
−1

X

=1

¡


¡
0
¢−

£


¡
0
¢¤¢− ()

¡
̌
¢ h

̃ − 0

io
= 

£


¡
0
¢¤−1

+

³
−12

´
 (13)

where ̌ is on the line segment connecting ̃ to ; the second equality uses the Taylor expansion

(for  () = 1), as well as some suitable differentiability and boundedness conditions on  ();

and the last equality holds since {( ()− [ ()])} is a zero-mean independent array and
̃ − 0 = 

¡
−12

¢
. By (12) and (13), we can write

̂ − 0 =
n

£


¡
0
¢¤−1

+

³
−12

´o
−1

X

=1


¡
0
¢

= −1
X

=1

£


¡
0
¢¤−1


¡
0
¢
+

³
−12

´
× −1

X

=1


¡
0
¢


Noting that −1
P

=1 
¡
0
¢
= 

¡
−12

¢
and letting  = 

£


¡
0
¢¤−1


¡
0
¢
, we can

check that ̂ − 0 has the expression as in (11).

We also impose the following condition on the kernel function  (·).

Assumption 13 The kernel function (: R → [0∞)) is twice continuously differentiable whose
support is a compact interval in R.

This assumption rules out some class of kernel functions, e.g., the normal kernel. While we

might be able to relax the compactness condition by imposing some other explicit condition on the

tail decay (say, Assumption 3 in Hansen, 2008), we maintain this for the sake of simplicity in our

proof.

Theorem 1 Let the kernel function  satisfy the conditions in Assumptions 9 and 13. Suppose

that Assumptions 11 and 12 hold. If ̄
¡
; 0

¢
=  () and ̄

¡
; 0

¢
=  (), then it holds that as

→∞ and → 0 with 3 →∞,
√

£
̂ ()− ̃

¤
=  (1) 
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Therefore, additionally if →∞ and 5 =  (1), the asymptotic bias and distribution of ̂ ()

are the same as those for ̃ given in Lemma 1.

o. f of theorem 1]: First, consider the convergence of the numerator of (10). We have the following

decomposition:

(
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
̄
³
; ̂

´
−

¡
̄
¡
; 

0


¢− 0
¢
̄
¡
; 

0


¢i
= ̄ + ̄ + ̄

where

̄ : = (
√
)

X

=1


¡
̄
¡
; 

0


¢− 0
¢ h

̄
³
; ̂

´
− ̄

¡
; 

0


¢i
1 { = } ;

̄ : = (
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
−

¡
̄
¡
; 

0


¢− 0
¢i

̄
¡
; 

0


¢
1 { = } ;

̄ : = (
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
−

¡
̄
¡
; 

0


¢− 0
¢i

×
h
̄
³
; ̂

´
− ̄

¡
; 

0


¢i
1 { = } 

By Assumptions 11 and 13, we can easily see that

̄ =  (
√
) and ̄ =  (1

√
)

To find the convergence rate of ̄, observe that



³
̄
³
; ̂

´
− 0

´
−

¡
̄
¡
; 

0


¢− 0
¢

=
1

2
 0
Ã
̄
¡
; 

0


¢− 0



!¡
0

¢
̄
¡
; 

0


¢ h
̂ − 0

i
+
1

23
 00

Ã
̄
¡
; 

0


¢− 0



!h
̂ − 0

i0 ¡
20

¢
̄
³
; ̃

´ h
̂ − 0

i


where ̃ is on the line segment connecting ̂ to 
0
. Then, since ̂−0 = −1

P
=1 +

¡
−1

¢
(Assumption 11),

̄1 =

√


22

X
=1

X
=1

"
 0
Ã
̄
¡
; 

0


¢− 0



!¡
0

¢
̄
¡
; 

0


¢


#
̄
¡
; 

0


¢
1 { = }

+

√


32

X
=1

X
=1

"
 0
Ã
̄
¡
; 

0


¢− 0



!¡
0

¢
̄
¡
; 

0


¢#
̄
¡
; 

0


¢
1 { = } × (1)

= : ̄11 + ̄12

We have


£|̄11|2

¤
=

¡
44

¢× () = (122);


£|̄12|

¤
= (

√
32)×

¡
2
¢
= (1

1232)
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where the former follows from the zero-mean and independence proprieties of {}. From these

arguments, we can see that

the numerator of (10) = (
√
)

X

=1


¡
̄
¡
; 

0


¢− 0
¢
̄
¡
; 

0


¢
+ (

√
) +(1

1232) + (1
√
) (14)

by almost the same arguments as for ̄1, we can also show that

the denominator of (10) = −1
X

=1


¡
̄ ()− 0; 

0


¢
1 { = }+ (1

3232)+(1
2)

which, together with (14), leads to the desired result.

8.2 Derivation of Bounds on Productivity Change (Proposition 2)

Let ̃ denote acceptance of an offer which would be made using the new threshold ̃; analogously

let ̃ () denote 
³
 | =  =  ̃ = 1

´
.

The magnitude of the productivity loss can then be calculated as the difference between the

gain from admitting more men less the loss from admitting fewer women:  (̃) =  (̃)−  (̃)

where

 (̃) = |=
n

³
̃ |

´
Pr |= [̃ ≤  ()−   ]

o
× 

 (̃) = |=
n

³
̃ | 

´
Pr |=

£
 ≤  ( )−   ̃

¤o× (1− ) , (15)

where  denotes the fraction of males among the applicants,  () denotes as before ( | =  =  = 1)

First, note that since   ̃, if  () +  − ̃ ≤ sup∈X  (), then there will exist

̃ () ∈ X satisfying  (̃ () ) =  () +  − ̃. Then

Pr |== [̃ ≤  ()−   ]

by (6)
= |= ( ()− ̃)− |= ( ()− )

= |= ( (̃ () )− )− |= ( ()− )

= Pr ( = 1| = ̃ ()  = )− Pr ( = 1| =  = ) .

Therefore, we can identify  (̃ () ) as the observed  ( | = ̃ ()   =  = 1) and thus

the probability in the previous display is identifiable from the existing data, as well. Now suppose

 () +  − ̃  max∈X  (). This would imply that

|= ( ()− ̃)  |=

µ
max
∈X

 ()− 

¶
= max

∈X
Pr ( = 1| =  = )
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so that we can bound |= ( ()− ̃) by the interval (max∈X Pr ( = 1| =  = )  1].

If there exists  ∈ X such that Pr ( = 1| =  = ) = 1, then the interval shrinks to the

singleton 1.

The remaining step is to calculate 
³
̃ |

´
which, by assumption 8 is given by  ( | =  = 1),

which is identified from the current data.

Putting all of this together, we get the following bounds for  (̃): with  () denoting

Pr ( = 1| =  = ) and stationarity implying  ( ) ≡  ( ) ≡  ( | =  =  = 1),

 (̃)

≥ 

Z
∈

 ( | = 1 ) { (̃ () )−  ()}  (| = )

+

Z
∈X∩

 ( | = 1 )

½
sup
∈X

 ()−  ()

¾
 (| = )

: =  (̃) ,

and

 (̃)

≤ 

Z
∈

 ( | = 1 ) { (̃ () )−  ()}  (| = )

+

Z
∈X∩

 ( | = 1 ) {1−  ()}  (| = )

: =  (̃) ,

and in case sup∈X  () = 1, we have that

 (̃)

= 

Z
∈

 ( | = 1 ) { (̃ () )−  ()}  (| = )

+

Z
∈X∩

 ( | = 1 ) {1−  ()}  (| = ) .

Lastly, consider

 (̃) = |=
n
Pr
³
̃ |̃ = 1 

´
Pr |=

£
 ≤  ( )−   ̃

¤o× (1− )

For any  ∈ X , if  ( ) +  − ̃ ≥ min∈X  ( ), then there will exist ̄ () ∈ X such that
 (̄ ()  ) =  ( ) +  − ̃. Then for any such ,

Pr |==
£
 ≤  ( )−   ̃

¤
by (6)
= |=

¡
 ( )− 

¢− |= ( ( )− ̃)

= Pr ( = 1| =  = )− Pr ( = 1| = ̄ ()   = ) .
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On the other hand, for any  ∈ X such that  ( ) +  − ̃  min∈X  ( ), by an analogous

argument to the one for males, we will have that

0 ≤ |= ( ( )− ̃)  |=

µ
min
∈X

 ( )− 

¶
= min

∈X
Pr ( = 1| =  = ) .

And, as before, if min∈X Pr ( = 1| =  = ) = 0, then the bounds collapse to the singleton

zero. The independence assumption 8 then gives us the probability of acceptance under the new

threshold. Finally, since ̃   , for any  ∈ X we must have that Pr
³
̃ = 1| =  = 

´
 0.

Therefore,  ( ) is directly identified for all  for which the probability of admission is positive

under the new threshold.

8.3 Distribution theory in fully nonparametric case

Consider a nonparametric estimator of  as a solution to the following estimating equation:

1



X

=1
 (̂− ( )− 12)

£
̂− ( )− 

¤
= 0 for each  (16)

where  () =  () ;  (·) is a kernel function (R → [0∞));  is a smoothing parameter
(bandwidth); ̂− ( ) and ̂− ( ) are leave-one-out nonparametric estimators of  ( )(:=

Pr [ = 1| ( ) = ( )]) and  ( ), respectively, whose forms are provided in (18) and (19).

The estimator of  has the following closed-form expression:

̂ () =

X

=1
 (̂− ()− 12) ̂− ( )1 { = }X

=1
 (̂− ( )− 12)1 { = }

 (17)

For notational simplicity, we write := ( ). We suppose that consists of

 and


 , i.e.,

 =
¡
 

 



¢
, where the 1-dimensional random (row) vector


 is continuously distributed with

its support (⊂ R1) compact; and the 2-dimensional random (row) vector  
 takes discrete

values with the support  (the number of points of support of  is finite). We let the last

element of the vector  
 be , the variable for gender. In what follows, we often write ( ) = 

or
¡
 

¢
;  ( ) =  () or 

¡
 

¢
; and  ( ) =  () or 

¡
 

¢
.

For estimating  ( ) and  ( ), consider the following nonparametric estimators:

̂− ( ) = ̂− () :=

X
1≤≤;  6= 

³
 

 − 
´
1
n
 

 = 
o
X

1≤≤;  6= 

¡
 

 −
¢
1
©
 

 = 
ª ; and (18)

̂− ( ) = ̂− () :=

X
1≤≤;  6=

³
 

 − 
´
1
n
 

 = 
o
X

1≤≤;  6=

¡
 

 − 
¢
1
©
 

 = 
ª


 (19)
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where  () :=  () 1 =  (1     1) 
1 for  ∈ R1 and   0;  (·) is a kernel

function (R1 → R);  ( 0) is a smoothing parameter/bandwidth;  () is defined analogously;

 (·) is another kernel function and  is another bandwidth.

Remark 4 We let bandwidths,  and , be common for all components of continuously distrib-

uted variables. This is mainly for (notational) simplicity, and we may use bandwidth matrices

(as long as the rate conditions provided below are satisfied), Ξ, Ξ ∈ R1×1 , allowing for dif-

ferent bandwidths for different components. In this case, 

³
 

 −
´
in (18) is replaced by


³
Ξ−1

³
 

 − 
´´

det () (det () is the determinant of ).

Remark 5 The suggested estimators (17), (18) and (19) are of the form of so-called frequency

estimators (see, e.g., Ch. 3 of Li and Racine, 2007), which do not use any smoothing for discrete

variables. The use of these estimators is only for simplicity, and we can instead think of estimators

smoothing discrete variables, as found in Ch. 4 of Li and Racine (2007).

Asymptotic behavior of the nonparametric estimator: We here show that the asymptotic

distribution of ̂ () is determined by that of ̃. For this purpose, we work with the following

conditions:

Assumption 14 For each  ∈ , the functions 
¡· 

¢
, 
¡· 

¢
and 

¡· 
¢
are compactly

supported on . Let   be some positive integers with   ≥ 2. For each  ∈ ,


¡· 

¢
is -times continuously differentiable on R1 except for boundary points of , 

¡· 
¢

is -times continuously differentiable on R1 except for the boundary points of , and 
¡· 

¢
is

max { }-times continuously differentiable on R1 except for the boundary points of .

Assumption 15 The kernel function  (·) (R1 → R) satisfies the following conditions: , the

support (⊆ R1) of  is bounded;  (·) is continuously differentiable on R1 ;
R
R1  ()  = 1;

and  (·) is the th-order kernel, i.e.,
R
R1

hN
=1 

i
 ()  = 0 for  = 1     ( − 1).

Assumption 16 The kernel function  (·) (R1 → R) satisfies the following conditions: the sup-

port (⊆ R1) of  is bounded;  (·) is continuously differentiable on R1; RR1  ()  = 1

and  (·) is the th-order kernel, i.e.,
R
R1

hN
=1 

i
 ()  = 0 for  = 1     ( − 1).

Assumption 17 (i) The probability function of (i.e., a function 
¡
 

¢
satisfying 

¡
 

¢
 =

Pr
£
 

 ∈  
 = 

¤
) exists, and there exists some constant 1 ∈ (0∞) such that

1 ≤ inf()∈× 
³
 

´
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(ii) There exists some set ◦ such that if  = 1, then

 
 ∈ 

◦ ( 

and that any boundary points of ◦ are in the interior of , and there exist some constant 2 ∈
(0∞) such that

2 ≤ inf()∈◦× 
³
 

´


Assumptions 14-16 are standard for establishing uniform convergence results for ̂ () and ̂ ()

(see Lemmas 2 and 3 in the Appendix). The last condition in Assumption 15 and that in Assumption

16 require that the kernels are of higher order (bias reducing) of orders  and , respectively.

These conditions are used to guarantee that the estimation errors due to the first step are negligible

in the second step. We impose Assumption 17 to avoid the so-called boundary-bias problem. Our

nonparametric estimators ̂ () and ̂ () are of the Nadaraya-Watson type (with symmetric kernel

functions), and have slower uniform convergence rates around the boundary points of  (see, e.g.,

arguments in Bouezmarni and Scaillet, 2005).17 The condition (ii) of Assumption 17 is similar to

that imposed in Ahn and Powell (1993), called "exogenous trimming," which, together with the

condition (i), is useful to allow us to avoid the so-called random-denominator problem. Note that

these two conditions are imposed only for simplicity. We may be able to proceed without (i) and/or

(ii) of Assumption 17. However, to do so, we will require a trimming device and more intricate

conditions on the bandwidths and trimming parameters.

Given these conditions, we obtain the following result:

Theorem 2 Let the kernel function  satisfy the conditions in Assumptions 10 and 13. Suppose

that Assumptions 9, 14, 15, 16 and 17 hold. Let

∆ : = 
2
 + (log)

2−1
 + −1 (log)2 −21 ;

∆ : = −12 + 
2
 + −34 + −1 (log)2 −3−21 + −1 (log) 2−1 ;

∆ : = −12 
2
 + −1 (log)2 −1−1 −1 + (log)−12 −1 + (log)−1−1 

2
 

Let  → ∞, and   and  → 0 with [log(log)]4 [log]2 1 → 0, (log)/1 → 0, and

∆∆∆ → 0. Then, for each  ∈ {},
√

£
̂ ()− ̃

¤
=  (

p
∆ +∆ +∆) =  (1) 

17The boundary bias may be avoided by using asymmetric kernels as in Bouezmarni and Scaillet (2005) and

Gospodinov and Hirukawa (2010), or by usimg the local polynomial method as in Masry (1996).
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Therefore, additionally if →∞ and 5 =  (1), the asymptotic bias and distribution of ̂ ()

are the same as those for ̃ given in Lemma 1.

To prove the above theorem, we will utilize two lemmas.

Lemma 2 Suppose that Assumptions 14, 15 and 17 hold. Let →∞ and  → 0 with

[log(log)]4 (log)2 1 → 0. Then, it holds that

̂− ()−  () = −1
X

1≤≤;  6=


¡
 

 − 
¢
1
n
 

 = 
o
[ ()−  ()]  ()

+([

 +

q
(log) 1 ]

2); (20)

uniformly over  ∈ {1     } and  ∈ ◦ × ; and that

̂− ()−  () = (

 +

q
(log) 1 ) (21)

uniformly over  ∈ {1     } and  ∈  × .

Lemma 3 Suppose that Assumptions 14, 16 and 17 hold. Let  → ∞ and  → 0 with with

(log)/1 → 0. Then, it holds that

̂− ()−  () = −1
X

1≤≤;  6=


¡
 

 − 
¢
1
n
 

 = 
o
 [ ()−  ()]  ()  ()

+ ([

 +

q
(log) 1 ]

2); (22)

̂− ()−  () =  (

 +

q
(log) 1 ) (23)

uniformly over  ∈ {1     } and  ∈ ◦ × .

The proofs of these lemmas are provided below.18 Now, we start the proof of Theorem 2. We

write 0 = 12 throughout this proof.

18To establish the almost sure convergence result, we impose a slightly stronger condition on the bandwidth in

Lemma 2 than in Lemma 3. The almost sure result might not be necessarily required, but it turns out to be very useful.

In particular, it allows us to obtain a sharp convergence rate between  ( ( )− 12) and  (̂ ( )− 12)
without some extra rate loss due to . The almost sure result is also useful for us to avoid the boundary bias problem

under a simple compact-support condition on  (imposed below). For these technical points, see the arguments in

deriving (25). Note also that except for (21), the uniform rates are established over the set ◦ × , where ◦ is

some subset of  given in Assumption 17. We may be able to derive uniform rates over  × . However, under

the compact-support condition of , our current results are sufficient for our purpose.
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s. t look at the denominator of (17).

1



X

=1
 (̂− ()− 0)1 { = } = 1



X

=1


µ
 ()− 0



¶
1 { = }| {z }

=:1

+
1

2

X

=1
 0
µ
̌− ()− 0



¶
1 { = } [̂− ()−  ()]| {z }

=:2

 (24)

where ̌− () is on the line segment connecting ̂− () to  (), and the first equality holds

by the mean-value theorem. We find the probability bounds of 1 and 2. Now, by standard

arguments for kernel-based estimators (see, e.g., Ch. 3 of Li and Racine, 2007), we can show that

1
→  (0 ). To find the bound of 2, we note that by Assumptions 10 and 13, there exist

some function K∗(·) and some positive constant ̄ ( 0) such that sup||≤̄ | 0 (+ )| ≤ K∗ ()
for any  ∈ R, sup∈R |K∗ ()|  ∞ and

R
R |K∗ ()|   ∞. Note also that [̌− ()− ]  =

[− ()− ]  +  (1) uniformly over  ∈ {1     } (by the result (21) of Lemma 2 and the
stated condition on the shrinking rates of  and ). Therefore, for each  ∈ Ω∗ (Ω∗ is an event
with Pr (Ω∗) = 1), there exists some ̄ such that for any  ≥ ̄,¯̄̄̄

̌− ()− 0


− − ()− 0



¯̄̄̄
=

¯̄̄̄
̌− ()− − ()



¯̄̄̄
≤ ̄

Therefore, for  large enough, it holds that

2 ≤ 1

2

X

=1
K∗
µ
− ()− 0



¶
× max
1≤≤

sup
∈×

|̂− ()−  ()|

=  (1)×(

 +

q
(log) 1 ) (25)

where the equality holds since

1



X

=1
K∗
µ
− ()− 0



¶
=  (1)  (26)

which follows from standard arguments for kernel-based estimators. Now, we have shown that

1



X

=1
 (̂− ( )− 0)1 { = } =  (0 ) +  (1) 

Next, we look at a scaled version of the numerator of (17). Look at the following decomposition:

(
√
)

X

=1
 (̂ ()− 0) ̂ () =  + +  (27)

where

 : = (
√
)

X

=1
 ( ()− 0)

£
̂− ()−  ()

¤
1 { = } ;

 : = (
√
)

X

=1
[ (̂− ()− 0)− ( ()− 0)] ()1 { = } ;

 : = (
√
)

X

=1
[ (̂− ()− 0)− ( ()− 0)]

£
̂− ()−  ()

¤
1 { = } 
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For these terms, we have the following convergence rates:

 =  (

q
−1−1+2 + 2 + 

2
 ) + (

√
[


 +

q
(log) 1 ]

2); (28)

 =  (

q
−1−1−1+2 + −12 + 

2
 ) + (

12−32[ +
q
(log) 1 ]

2) (29)

 =  (
12−12[ +

q
(log) 1 ][


 +

q
(log) 1 ]) (30)

which are proved below. By expanding the right-hand sides of these, we can obtain the conclusion

of the theorem.

The convergence rates of the term  in (28). Recall that if  
 ∈ ◦, then  = 0 and

 () = 0 (by Assumption 17). In this case, we have

 ( ()− 0) = −1 (−0) = 0 for  ( 0) small enough, (31)

since the support of  is bounded and −0(= −12) is large enough. Therefore, for  small
enough, we can only restrict our attention to the case  

 ∈ ◦, and thus obtain

 = (
√
)

X

=1
 ( ()− 0)

£
̂− ()−  ()

¤
1 { = }1 { 

 ∈ 
◦}

= (
√
2)

X

=1

X
1≤≤;  6=  ( )

+(
√
)

X

=1
 ( ()− 0)1 { ∈ 

◦}1 { = }

× ([

 +

q
(log) 1 ]

2) (32)

where the first equality holds by (22) of Lemma 3 with

 ( ) : =  ( ()− 0)

¡
 

 − 


¢
1
n
 

 = 


o
 [ ()−  ()]

×−1 () 
−1 ()1 { = }1 { 

 ∈ 
◦} 

We can show that



∙¯̄̄X

=1

X
1≤≤;  6=  ( )

¯̄̄2¸
= 

³
2−1−1+2 + 3−12 + 4

2


´
; (33)

−1
X

=1
 ( ()− 0)1 { ∈ 

◦} =  (1)  (34)

where the former result is proved below and the latter follows from standard arguments for kernel-

based estimators. By (32), (33) and (34), we obtain (28) as desired. It remains to show (33).
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Proof of (33). To derive the moment bound in (33). Look at



∙¯̄̄X

=1

X
1≤≤;  6=  ( )

¯̄̄2¸
=  (− 1)© £2 (1 2)¤+ [ (1 2)  (2 1)]

ª
+ (− 1) (− 2) { [ (1 2)  (1 3)] + [ (1 2)  (3 1)] + [ (1 2)  (2 3)]

+ [ (1 2)  (3 2)]}
+ (− 1) (− 2) (− 3) [ (1 2)] [ (3 4)]  (35)

For the components in the first terms on the RHS of (35), we have


£
2 (1 2)

¤
= (−1−1+2 ) and  [ (1 2)  (2 1)] = (−1−1+2 ) (36)

These two results can be shown analogously, and we only consider the former:


h
| (1 2)|2

i
≤ (12)

−2

221


h
2

³
(1)−0



´
2

³
 
2− 

1


´
1
n
 
2 = 

1

o
[ (2)−  (1)]

2
i

=
(12)

−2

221

X
1∈

Z
1∈

Z
2∈

2

µ
(11)−0



¶
2

³
2−1


´
×
h

³

2 


1

´
− 

³

1 


1

´i2 × 
³

1 


1

´

³

2 


1

´


1

2

≤ (12)
−2

21

X
1∈

Z
1∈

Z
2∈{| 1+∈}

2

µ
(11)−0



¶
23

2 (2) ||2||2 2

×
³

1 


1

´

³

1 + 2 


2

´


12

≤ (12)
−2

21−2

X
1∈

Z
1∈

2

µ
(11)−0



¶

³

1 


1

´


1 × 234

Z


2 (2) ||2||2 2

= (−1−1+2 ) (37)

where the first inequality holds since inf()∈×  ()  () ≥ 12 and |2| ≤ 1 (1 and 2

are constants given in Assumption 17); the inequality in the fifth line uses the change-of-variable

argument and the mean-value theorem with 2 = (

2 − 

1) ¯̄̄

³

1 +  


2

´
− 

³

1 


1

´¯̄̄
=
¯̄̄D
 (

) 
³
̃
1 


1

´E¯̄̄
≤ 3 |||| 

3 := sup()∈×
¯̄¯̄
() 

¡

1 


1

¢¯̄¯̄
; and the inequality in the seventh line holds with

4 := sup()∈× 
¡

1 


1

¢
(3 and 4 are finite by Assumption 14); and the last equality

holds sinceX
1∈

Z
1∈

2

Ã

¡

1 


1

¢− 0



!

³

1 


1

´


1 =

Z 1

0
2

µ
 − 0



¶
 ()  =  () 
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where  () :=  ( ) +  ().

For the components in the second term on the RHS of (35), it holds that

 [ (1 2)  (1 3)] = 
¡
−12

¢
;  [ (1 2)  (3 1)] = 

¡
−12

¢
;

 [ (1 2)  (2 3)] = 
¡
−12

¢
;  [ (1 2)  (3 2)] = 

¡
−12

¢


(38)

These four results can be shown in almost the same manner, and we only prove the last one.

Similarly to (37),

 [ (1 2)  (3 2)]

≤ (12)
−2

221


h

³
(1)−0



´ ¯̄̄

³
 
2− 

1


´¯̄̄
1
n
 
2 = 

1 = 
2

o
| (2)−  (1)|

×
³
(3)−0



´ ¯̄̄

³
 
2− 

3


´¯̄̄
| (2)−  (3)|

i
=

(12)
−2

221

X
1∈

Z
1∈

Z
2∈

Z
3∈



µ
(1)−0



¶ ¯̄̄

³
2−3

− 1−3



´¯̄̄ ¯̄̄

³

2 


1

´
− 

³

1 


1

´¯̄̄

×
µ
(3)−0



¶ ¯̄̄

³
2−3


´¯̄̄ ¯̄̄

³

2 


1

´
− 

³

3 


1

´¯̄̄

³

1 


1

´

³

2 


1

´

³

3 


1

´


1

2


3

≤ (12)
−2 ̄

2

X
1∈

Z
1∈{|3+∈}

Z
2∈{|3+∈}

Z
3∈

 (2 − 1)

×
¯̄̄

³

3 + 2 


1

´
− 

³

3 + 1 


1

´¯̄̄


µ
(3)−0



¶
| (2)|

¯̄̄

³

3 + 2 


1

´
− 

³
3 


1

´¯̄̄
×

³

3 + 1 


1

´

³

3 + 2 


1

´

³

3 


1

´


1

2


3

≤ (12)
−2 ̄2

2

X
3∈

Z
3∈



µ
(3)−0



¶

³

3 


1

´


3

×2324
Z


Z


(||2||+ ||1||) ||2|| | (2 − 1)| | (2)| 23
= 

¡
2

−1¢ 
For the component of the third term on the RHS of (35), we have

 [ (1 2)  (3 4)] = { [ (1 2)]}2 = (
2
 ) (39)
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This can be shown by arguments similar to those for (37), and we only outline main points. Letting


 :=

©
 ∈ | 2-th element of  is 

ª
, it holds that

 [ (1 2)] =
1

1

X
1∈

Z
1∈◦

Z
2∈



Ã

¡

1 


1

¢− 0



!


µ

2 −

1



¶

×
¡

2 


1

¢ £

¡

2 


1

¢− 
¡

1 


1

¢¤

¡

1 


1

¢ 
³

2 


1

´


1

2

=
1



X
1∈

Z
1∈◦

Z
2∈{| 1+∈}



Ã

¡

1 


1

¢− 0



!
 (2)

×
¡

1 + 2 


1

¢

¡

1 


1

¢ h

³

1 + 2 


1

´
− 

³

1 


1

´i

³

1 + 2 


1

´


12

Then, by standard arguments for the kernel estimators (with applying Taylor expansion to 
¡

1 + 2 


1

¢
and 

¡

1 + 2 


1

¢
and by changing variables involving ), we have  [ (1 2)] = 


 . Putting

(35), (36), (38) and (39) together, we now obtain (33).

The convergence rate of  in (29). Applying the Taylor expansion to  (̂ ( )− )−
 ( ( )− ), we have

 = 1 +2

where

1 = 12−12 × 1



X

=1

1


 0
µ
 ()− 



¶
[̂ ()−  ()] () ;

2 = 12−32 × 1

2

X

=1

1


 00

µ
̌− ()− 



¶
[̂ ()−  ()]

2  () ;

and ̌− () is on the line segment connecting ̂− () to  (). We derive the convergence rates

of these terms.

To derive the convergence rate of 1, we use (20) in Lemma 2. Then, we have

1 = 12−12 × 1

2

X

=1

X
1≤≤;  6=  ( )

+12−12 × 1



X

=1

1


 0
µ
 ()− 



¶
 ()×([


 +

q
(log) 1 ]

2)| {z }
= (12−12[


 +


(log)

1
 ]2)



where

 ( ) :=
1


 0
µ
 ()− 



¶


¡
 

 − 


¢
1
n
 

 = 


o
[ ()−  ()] ()  () 
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and the rate of the second term on the RHS follows from the same arguments as before. As for the

first term, we have



∙¯̄̄X

=1

X
1≤≤;  6=  ( )

¯̄̄2¸
= (2−1−1+2 + 3−12 + 4

2
 )

whose proof is almost the same as that of (33), and is omitted. Given this, we have

1 = (

q
−1−1−1+2 + −12 + 

2
 ) + (

12−12[ +
q
(log) 1 ]

2) (40)

The convergence of 2 can be shown in the same manner as for 2. That is, we can find some

function K∗∗ (·) and some positive constant ̄ such that sup||≤̄ 00 (+ ) ≤ K∗∗ () for any  ∈ R,
sup∈R |K∗∗ ()| ∞ and

R
R |K∗∗ ()|  ∞. Then,

|2| ≤ 12−32 × 1

2

X

=1

1


K∗∗

µ
 ()− 



¶
×max∈{1} sup∈× |̂− ()−  ()|2 × sup∈× | ()|

=  (
12−32[ +

q
(log) 1 ]

2) (41)

where the first equality holds almost surely for  large enough; and the equality uses the bounded-

ness of  and (21) of Lemma 2. Now, (40) and (41) imply the desired result (29).

The convergence rate of  in (30). Let  ( 0) any (small) constant. Then, by (21) of

Lemma 2, for  ∈ Ω∗ such that Pr (Ω∗) = 1, there exists some ̄ such that for any  ≥ ̄,

max∈{1} sup∈× |̂− ()−  ()| ≤ 

In this case, if  
 ∈ ◦,  () = 0 and thus max∈{1} sup∈× |̂− ()| ≤ . Therefore,

for  small enough, [̂− ()− 0]  is large enough and  (̂− ()− 0) = 0. This, together

with (31), implies that if  ∈ ◦ and  is large enough (with  small enough),

[ (̂− ()− 0)− ( ()− 0)]
£
̂− ()−  ()

¤
= 0

Thus, for deriving the upper bound of , it is sufficient to consider only the case where  ∈ ◦

and the following expression is valid:

|| ≤
³
12−12

´
× 1



X

=1

1


K∗
µ
 ()− 0



¶
×max∈{1} sup∈× |̂− ()−  ()| ×max∈{1} sup∈◦×

¯̄
̂− ()−  ()

¯̄


where K∗ is the function used for deriving the bound of 2 in (25). By (21), (23) and (26), we
now obtain the desired result (30).
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It remains to prove two auxiliary lemmas:

o. f of Lemma (2) Let

̂− () : = −1
X

1≤≤;  6= 
( 

 −)1
n
 

 = 
o
;

Γ̂− () : = −1
X

1≤≤;  6= 

¡
 

 −
¢
1
n
 

 = 
o
[ ()−  ()] 

̂− () : = −1
X

1≤≤;  6= 

¡
 

 −
¢
1
n
 

 = 
o
[ −  ()] 

Then, for each , we can write

̂− ()−  () =
h
Γ̂− () + ̂− ()

i
×
"

1

 ()
+

 ()− ̂− ()
̂− ()  ()

#
 (42)

For the components on the RHS of (42), we can show the following convergence results:

max∈{1} sup∈◦×
¯̄̄
̂− ()−  ()

¯̄̄
= (


 +

q
(log) 1 ); (43)

max∈{1} sup∈×
¯̄̄
̂− ()−  ()

¯̄̄
= ( +

q
(log) 1 ); (44)

max∈{1} sup∈×
¯̄̄
Γ̂− ()

¯̄̄
= (


 +

q
(log) 1 ); (45)

max∈{1} sup∈×
¯̄̄
̂− ()

¯̄̄
= (

q
(log) 1 ) (46)

whose proofs are provided below. Now, fix any  ∈ Ω∗, where Ω∗ is an event with Pr (Ω∗) = 1.

Then, (44) implies that as →∞, max∈{1} sup∈×
¯̄̄
̂− ()−  ()

¯̄̄
 12. In this case,

since inf()∈×  () ≥ 1 (1 is the constant given in Assumption 17), it holds that

max∈{1} sup∈× 1̂− ()

= max∈{1} sup∈× 1
h
 () + ̂− ()−  ()

i
≤ 1 (12) 

implying that

1̂− () =  (1) , uniformly over  ∈ {1     } and  ∈  ×  (47)

Given these, we have the following expression:

̂− ()−  () = Γ̂− ()  () +([ +
q
(log) 1 ]

2) +(
q
(log) 1 )

Then, this leads to the first result (20). By (43), we have the second result (21). It remains to

show show (43), (44), (45) and (46).

Proofs of (43) and (44). Letting

̂ () := −1
X

1≤≤ 
( 

 − )1
n
 

 = 
o
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we have the following decomposition:

̂− ()−  () = ̂ ()−  ()−
³
1

´−1


µ
 

 − 



¶
1
n
 

 = 
o

=
n
̂ ()−[̂ ()]

o
+
n
[̂ ()]−  ()

o
+(1) (48)

where the last equality holds uniformly over  ∈ {1     } and  ∈ × by the boundedness of

the kernel function . By applying Theorem 3 of Hansen (2008), we can show that the first term

on the RHS of (48) is (
q
(log) 1 ) uniformly over  ∈  × . As for the second term,

noting that ◦ is strictly in the interior of , we can also show that

sup()∈◦×
¯̄̄
[̂ ()]−  ()

¯̄̄
= (


 )

which follows from standard arguments for biases of kernel-based estimators, say change-of-variable

and Taylor-approximation arguments with Assumption 15 (see, e.g., proofs of Theorems 6 and 8 in

Hansen, 2008). This implies the desired result (43). Next, if we let the domain of  as the whole

set , we have

sup()∈×
¯̄̄
[̂ ()]−  ()

¯̄̄
= sup

()∈×

¯̄̄̄X
∈ 

−1


Z
∈



µ
 − 



¶
1
n
 = 

o

³
 

´
 −  ()

¯̄̄̄

= sup
()∈×

¯̄̄̄
¯
Z
∈ ()

 ()
h

³
 + 

 
´
− 

³
 

´i


¯̄̄̄
¯

= sup
()∈×

¯̄̄̄
¯
Z
∈ ()

 ()
D


 () 
³
̃ 

´E


¯̄̄̄
¯

≤ 

Z
∈

| ()| ||||  × sup()∈×
¯̄̄¯̄̄
() 

³
 

´¯̄̄¯̄̄
= 

¡

¢

(49)

where  
¡
 

¢
:=
©
|  +  ∈ 

ª
; h i is the inner product of vectors  and ; ̃ is on the

line segment connecting  and  + 
; the second equality holds by changing variables with

( −)  = ; and the third equality uses the mean-value theorem; and the inequality uses

the fact that  
¡
 

¢ ⊃  (uniformly) over any  ∈  for  is small enough (note  is the

support of , and  and  are compact). Now, we can see that the above arguments and (49)

implies the desired result (44).

Proof of (45). We write

Γ̂ () := −1
X

1≤≤ 

¡
 

 − 
¢
1
n
 

 = 
o
[ −  ()] 
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By the same arguments as for (48), it holds that

Γ̂− () = (
q
(log) 1 ) +[Γ̂ ()]

uniformly over  ∈ {1     } and  ∈  × . To derive the bound of [Γ̂ ()], find a set


+

¡⊂ R1
¢
satisfying the following conditions: (1) ◦ ( 

+ ( ; (2) all the boundary points of ◦

are in the interior of 
+, and all the boundary points of 


+ are in the interior of 

. By Assumption

(17), such 
+ exists. Let 


+ :=

©
 ∈ |  ∈ 

+

ª
. Then, we look at the following bound:

sup()∈× [Γ̂ ()] ≤ sup()∈+×
¯̄̄
[Γ̂ ()]

¯̄̄
+ sup()∈

+×
¯̄̄
[Γ̂ ()]

¯̄̄
 (50)

The first term on the RHS of (50) is 
¡
2
¢
. This can be shown by the standard arguments for the

biases of kernel-based estimator (note that all the points of 
+ are strictly in the interior of 

).

As for the second term on the RHS of (50), we see

sup()∈
+×

¯̄̄
[Γ̂ ()]

¯̄̄
= sup()∈

+×

¯̄̄̄
¯
Z
∈

1

1


µ
 − 



¶h

³
 

´
− 

³
 

´i

³
 

´


¯̄̄̄
¯

= sup()∈
+×

¯̄̄̄
¯
Z
∈{| +∈; ∈}

 () 
³
 + 

 
´

³
 + 

 
´


¯̄̄̄
¯ = 0

where the second equality holds since 
¡
 

¢
= 0 for

¡
 

¢ ∈  
+ × , and the last equality

holds for  small enough, since 
¡
 + 

 
¢
= 0 for such , which follows from the fact that

 + 
 ∈ ◦ for  ∈  

+ and for any , if  is small enough (we note that the support of ,

, is supposed to be bounded and ||||   for some positive constant). Therefore, we have the

desired result of (45).

Proof of (46). This result follows from arguments analogous above, and we omit details (note

that each summand is a zero-mean random variable, and we apply Theorem 3 of Hansen, 2008).

Now, the proof is completed.

o. of of Lemma 3] Let

̂− () : = −1
X

1≤≤;  6=
( 

 − )1
n
 

 = 
o
;

 () : =  ()  () ;

Π̂− () : = −1
X

1≤≤;  6=

¡
 

 − 
¢
1
n
 

 = 
o
[ ()  ()−  ()  ()]

Θ̂− () : = −1
X

1≤≤;  6=

¡
 

 − 
¢
1
n
 

 = 
o
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Then, for each  ∈ ◦, we can write

̂− ()−  () =
h
Π̂− () + Θ̂− ()

i
×
∙
1

 ()
+

 ()− ̂− ()
̂− ()  ()

¸
 (51)

where we note  () ≥ 13 ( 0) for any 
 ∈ ◦ (by Assumption 17).

We can show that

̂− ()−  () =  (

 +

q
(log) 1 ); (52)

Π̂− () =  (

 +

q
(log) 1 ); (53)

Θ̂− () =  (
q
(log) 1 ); (54)

1̂− () =  (1)  (55)

uniformly over  ∈ {1     } and  ∈ ◦ × , whose proofs are provided below. Analogously to

the proof of Lemma 2, by (51)-(55), we obtain the desired results (22) and (22).

Proofs of (52), (53) and (54). The proofs of these three results use almost the same arguments,

and they are analogous to the proof of (45) in Lemma 2). Thus, we only outline main points for

the proof of (53). By letting

Π̂ () := −1
X

1≤≤

¡
 

 −
¢
1
n
 

 = 
o
 [ ()−  ()] 

we can write

Π̂− () =
n
Π̂ ()−[Π̂ ()]

o
+[Π̂ ()] + (1) 

uniformly over  ∈ {1     } and  ∈ ◦ × . Using Theorem 2 of Hansen (2008), we have

sup()∈◦×
¯̄̄
Π̂ ()−[Π̂ ()]

¯̄̄
=  (

q
(log) 1 )

We can also show that sup()∈◦×
¯̄̄
[Π̂ ()]

¯̄̄
= 

¡




¢
by the same arguments as for

sup()∈◦× [Γ̂ ()], the first term on the RHS of (50) in Lemma 2). From these, we ob-

tain the desired result (53).

Proof of (55). Let  be an arbitrary positive constant, and define an event  as

 :=
©
max∈{1} sup∈◦× |̂− ()−  ()| ≤ 122

ª


where 1 and 2 are constants given in Assumption 17. Denote by 
 the complement event of

. Then,

Pr

"
max

∈{1}
sup

∈◦×
|1̂− ()|  

#
≤ Pr

∙
max

∈{1}
1 inf

∈◦×
|̂− ()|  

¯̄̄̄


¸
Pr [] + Pr

£



¤
≤ Pr

£
132   | 



¤
+Pr

£



¤
 (56)
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where the last inequality holds since

inf∈◦× |̂− ()| = inf∈◦× | () + [̂− ()−  ()]|

≥ min

(
inf

∈◦×
| ()| 

Ã
inf

∈◦×
| ()|− sup

∈◦×
|̂− ()−  ()|

!)
 min {12 122} = 122

uniformly over  ∈ {1     }, under the condition that sup∈◦× |̂ ()−  ()| ≤ 122. The

first term on the RHS of (56) is zero for  large enough, and the second term Pr
£



¤
converges to

zero for any   0 as →∞ (by (52)). Therefore, Pr
£
max∈{1} sup∈◦× |1̂− ()|  

¤→
0 for  large enough, which imply the desired result of (55). The proof of Lemma 3 is now completed.
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