
Where Have all the Young Men Gone?
Using Gender Ratios to Measure the Effect of Pollution

on Fetal Death Rates∗

Nicholas J. Sanders
Stanford University

Charles Stoecker
University of California, Davis

April 2011
PRELIMINARY — PLEASE DO NOT CITE WITHOUT AUTHOR PERMISSION

Abstract

We estimate the causal impact of ambient prenatal pollution exposure on fetal deaths. Since
a complete census of true fetal deaths is impossible to obtain, we exploit the differential in fetal
susceptibility to environmental stressors across genders to estimate this effect. Males are more
vulnerable to maternal stress in utero, and thus are more likely to suffer fetal death due to
pollution exposure. We use the Clean Air Act Amendments of 1970 (CAAA) as a source of
exogenous variation in county-level ambient total suspended particulate matter (TSPs). We
find that a one standard deviation increase in TSPs decreases the percentage of live births that
are male by 0.9 percentage points. We then use the observed differences in neonatal and one-
year mortality rates across genders in response to pollution exposure to estimate total fetal
losses in utero. Our preferred calculations suggest the pollution reductions from the CAAA
prevented approximately 36,000 fetal deaths in 1972.
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1 Introduction

Improvements in air quality have led to improvements in observable health outcomes such as birth

weight and infant mortality, but little is known about fetal deaths. This is because fetal death data

are rarely available, and when available are selectively measured, making it difficult to estimate the

impacts of policy interventions. Policy choices based only on traditional infant health outcomes

may not be made with full information, as they do not account for any fetal losses in utero. We in-

troduce a metric to measure fetal death rates and use it to estimate the impacts of prenatal pollution

exposure.

Greater information about fetal death effects would clearly be useful in effective policy con-

struction. Unfortunately, examining policy effects on total birth rates cannot be used as an effective

measure of fetal deaths as fertility choices such as frequency of intercourse or other behavioral de-

cisions could also change in response to the policy intervention. Since total fertility may be a

function of factors other than fetal deaths we instead examine the gender ratio at birth. We exploit

the fact that males are more sensitive than females to negative health shocks in utero to estimate the

impact of prenatal exposure to ambient total suspended particulate matter (TSPs) on fetal death.

By using the observable gender differences in pollution-driven neonatal mortality rates as an es-

timate of relative gender sensitivity, we can convert gender ratio changes into an estimate of total

fetal deaths caused by ambient TSPs.

The gender ratio for live births, unlike total fertility, is largely orthogonal to other fertility fac-

tors correlated with changes in pollution, and thus provides a less biased measure of fetal deaths.

Unfortunately, relationships between the gender of live births and socioeconomic status make cross

sectional analysis of pollution and gender ratios difficult (Almond and Edlund, 2007). We there-

fore employ a panel data, instrumental variables strategy, using the Clean Air Act Amendments of

1970 (CAAA), which imposed sanctions on firms in counties with pollution levels over a defined

attainment threshold, as an exogenous driver of ambient TSP levels.1 We use estimated CAAA
1This identification strategy was first used in Chay and Greenstone (2003a) and Chay, Greenstone, and Dobkin
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attainment status as an instrument for changes in ambient pollution levels between 1970-1972, and

then use a first-difference model to estimate the effect of pollution on the gender ratio. We find a

statistically and economically significant association between ambient TSP levels and the fraction

of live births that are male: a one unit increase in ambient TSP levels is associated with approxi-

mately a 0.033 percentage point change in the probability of a live birth being male (or a change

in the gender ratio of males to females of 0.0014 with a baseline of 1.05), and a standard deviation

increase in TSPs is associated with a 0.89 percentage point change (or a change in the gender ratio

of 0.038).2 These effects are larger when considering particularly vulnerable subgroups, such as

less educated mothers, very young or very old mothers, and black children.

Using pollution changes from 1971-1972, Chay and Greenstone (2003a) (hereafter CG) find

that the changes in TSPs associated with the CAAA reduced infant mortality rates. We expand

on their findings by showing this effect differs by gender — the effect of pollution on neonatal

mortality for males is approximately 3.6 times that for females. This observable differential pollu-

tion sensitivity between males and females after birth can be used as an estimate of the differential

sensitivity in utero. Using this approximation, we estimate that a one-unit decrease in TSPs is asso-

ciated with approximately 100 fewer male and 30 fewer female fetal deaths per 100,000 live births.

This implies the changes in air quality between 1970 and 1972 caused by the CAAA in counties

subject to its restrictions prevented approximately 36,000 fetal deaths in 1972, or a change of ap-

proximately 2% of live births in those counties. As a point of comparison, CG find the CAAA

prevented approximately 1,300 infant deaths. This suggests a higher sensitivity to TSPs in utero

than after birth, and that there are substantial health improvements due to reduced air pollution not

currently quantified in the economics literature.

We also contribute to the literature on gender differences in response to external shocks. Prior

research has focused largely on rare, one-time events, such as the “Killer Fog” in London dur-

(2003).
2Baseline values refer to the value in attainment counties in our sample in 1970.
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ing December of 1952 (Lyster, 1974), earthquakes (Fukuda et al., 1998), radioactive fallout (Al-

mond, Edlund, and Palme, 2007; Peterka, Peterková, and Likovský, 2007), famine (Almond et al.,

2007), the collapse of the East German economy (Catalano, 2003), the French Revolutionary War

(Kemkes, 2006), the September 11th attacks (Catalano, Bruckner, and Ahern, 2010), and other

such events. Other work has examined more frequently experienced shocks including temperature

(Lerchl, 1999; Catalano, Bruckner, and Smith, 2008; Helle, Helama, and Jokela, 2008), alcohol

consumption (Nilsson, 2008), and job loss (Catalano et al., 2010). To our knowledge, this is the

first paper to use a quasi-experimental, panel data design to consider the differential gender impacts

caused by a common air pollutant.3

The remainder of this paper is organized as follows. Section 2 presents evidence of gender

differences in susceptibility to external stress, and discusses the potential effects of pollution on

fetal health. Section 3 provides some background on the CAAA. Section 4 outlines our identifi-

cation strategy. Section 5 describes the data used in the analysis. Section 6 describes our main

results. Section 7 presents several falsification tests and alternate specifications. Section 8 places

our findings in context with prior work. Section 9 concludes.

2 Environmental stressors, fetal susceptibility, and gender effects

The health consequences of environmental externalities have received a good deal of attention in

applied research as of late, much of it dedicated to the health impacts of lead, carbon monoxide,

ozone, and particulate matter, four of the six “criteria pollutants” regulated by the EPA.4 Lead has

been linked to lowered IQ and increased aggression (Reyes, 2007; Nilsson, 2009) and increased in-

fant mortality (Clay, Troesken, and Haines, 2010). Carbon monoxide has been linked to increased

3Note that our identification uses the drastic reduction in TSPs seen during the aftermath of the CAAA. Modern
particulate levels are far lower in the United States. If effects are nonlinear, we may be estimating an upper bound of
the effects likely to be seen today. However, in other currently industrializing countries, particulate levels are currently
as high as they were during our period of analysis, if not higher.

4The term criteria pollutants refers to six commonly found air pollutants that are regulated by developing health-
based and/or environmentally-based criteria for allowable levels. The current criteria pollutants are: particular matter,
ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides and lead.
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infant mortality (Currie and Neidell, 2005), low birth weight and preterm birth (Ritz and Yu, 1999;

Currie, Neidell, and Schmieder, 2009), and increased school absences in young children (Currie

et al., 2009). Ozone has been linked to higher asthma rates and cardiac difficulties (Neidell, 2004,

2009; Lleras-Muney, 2010; Moretti and Neidell, 2011). Particulate matter has been found to in-

crease infant mortality rates (Chay and Greenstone, 2003b,a; Knittel, Miller, and Sanders, 2009),

as well as the incidence of low birth weight (Wang et al., 1997).

Studies on less pollutant-specific environmental factors have found negative fetal health effects.

Currie and Walker (2011) find that decreased traffic pollution resulting from the introduction of

EZ-Pass in New Jersey reduced the incidence of low birth weight and premature birth. Currie

and Schmieder (2009) find negative effects of toxic releases for gestation, birth weight, and infant

mortality rates, and Currie, Greenstone, and Moretti (2011) find that proximity to Superfund sites

is associated with up to a 25% increase in the probability of congenital anomalies. Using the short-

term closing of a Utah steel mill as an exogenous source of pollution variation, Parker, Mendola,

and Woodruff (2008) find the plant closure period was accompanied by a reduction in preterm

birth. A more comprehensive review of the fetal environmental literature is available in Currie

(2011).

In this paper, we focus on TSPs as our pollutant of interest, the measure of airborne particulate

matter used by the EPA during the timeframe of the CAAA. The term TSPs refers to all suspended,

airborne liquid or solid particles smaller than 100 micrometers in size.5 Suspended particulates can

be naturally occurring (e.g., dust, dirt, and pollen) or a by-product of common economic activities

such as fuel combustion (e.g., coal, gasoline and diesel), fires, and industrial activity. Particulates

are the cause of a number of environmental problems, including decreased visibility, increased

acidity of both water and soil, and plant death.

5As monitoring technology has advanced, regulatory attention has shifted to finer sizes of particulate matter, with
much of the attention now on two size classifications: particulate matter smaller than 10 micrometers (PM10) and
particulate matter smaller than 2.5 micrometers (PM2.5). Both of these size classifications are contained with the
older TSP measure.
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Exposure to particulate matter may impact fetal development in a number of ways. The

mother’s health may be compromised, which could indirectly harm fetal development. Inhaled

particulates have been associated with health problems including difficulty breathing, decreased

lung function, aggravated asthma, and cardiac difficulties, any of which could harm the mother

and, in doing so, reduce the health capital available for the survival of the fetus. Smaller partic-

ulates can be transferred from the lungs into the bloodstream, causing internal damage for both

the mother and the fetus directly.6 Research supports that such direct fetal impacts are indeed

possible — associations have been found between polycyclic aromatic hydrocarbons (PAHs), a

type of particulate matter, and a number of pre- and early post-natal developmental problems in-

cluding damage to the immune system, hindered neurological development, reduced birth weight

and smaller head circumference, and impairment of neuron behavior associated with long-term

memory formation.7

Research also suggests that negative environmental externalities can have damaging, long-run

effects on a developing fetus. Elevated prenatal radiation exposure has been linked to lower test

scores (Almond, Edlund, and Palme, 2009), and a medical study involving personal air monitor-

ing systems during pregnancy found that higher prenatal pollution exposure was associated with

lower IQ scores at age 5 (Perera et al., 2009). Sanders (2011) looks at the test scores of high

school students in Texas and finds a negative relationship between in utero pollution and later test

performance. The presence of such fetal damages further supports the hypothesis that TSP expo-

sure can impact the fetus as well as infants. For further discussion of how negative fetal shocks

(environmental and otherwise) can have lasting life effects, see Almond and Currie (2011).

Our use of the gender ratio as a measure of fetal deaths is based on the evolutionary theory

that women in poor health are more likely to produce female children than male children. This

hypothesis, first proposed by Trivers and Willard (1973), can be summarized as follows: carrying

6For greater discussion of particulate matter and health, see World Health Organization (1979), available at http:
//www.inchem.org/documents/ehc/ehc/ehc008.htm.

7For a brief review of findings on the potential consequences of PAH exposure, see Perera et al. (2009).

6



a fetus to term is costly and it is beneficial to ensure the ensuing child will produce grandchildren.

Since a man can simultaneously father children with multiple women, men in good health could

secure several mates, and men in poor health might secure none. For women the relationship

between health and mating is less pronounced, as women in poor health can still secure mating

opportunities with men in good health. If maternal health is an indicator for potential future infant

health conditions, the Trivers-Willard hypothesis predicts that mothers are more likely to favor

daughters when in poor health themselves, as this will maximize the mating opportunities for their

children, and thus also maximize their chances of having grandchildren.

In our context, exposure to pollutants may compromise the health of the mother, sending a

signal to the mother’s systems that she is in poor health and that her offspring will also be born

into poor health. The Trivers-Willard mechanism suggests this could lead to a lower probability

of a live male birth. Such favoring could occur via male fetal loss, or shortly after conception via

preventing implantation of male embryos.8 Work in the medical and economics literature using

research designs that can isolate stressors during gestation from those that occurred around the

time of implantation suggests differential implantation cannot be the sole mechanism of altering

gender ratios. For example, Cagnacci et al. (2004) find weight gain during pregnancy had negative

impacts on the probability of bearing a male child. And Almond, Edlund, and Palme (2007)

find that fallout from the Chernobyl disaster had significant negative impacts on the percentage

of live births that are male for cohorts that were in their second trimester during the disaster.

Nilsson (2008) finds lower alcohol prices decreased the percentage of male births among cohorts

that had been conceived prior to the price decrease. Differential implantation rates by gender in

response to pollution may be a contributor to gender ratio differences in the first (or potentially

second) trimester. We examine pollution effects differently by trimester of gestation and find

similar effects across all three trimesters. Effects are indistinguishable across trimesters, and we

8Research using rats has found such favoring could also take place after birth via differential food allotments
(McClure, 1981).
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conclude that differential implantation rates by gender in response to pollution are a small part of

the total share. Henceforth, we use the term fetal death to encompass both failed implantations and

post-implantation fetal deaths.

The Trivers-Willard hypothesis is consistent with a negative impact of pollution on maternal

health, such as restricted oxygen intake caused by lung damage, driving male fetal loss. It may

also be that male fetuses are more susceptible to toxins or chemicals that alter or hinder proper

cellular development. Unfortunately, the direct mechanism through which TSPs might influence

either maternal or fetal health is unknown. For the remainder of the analysis we focus on the

causal relationship between higher pollution rates and fetal death but do not attempt to identify the

mechanism through which this effect operates.

3 The Clean Air Act Amendments of 1970 and ambient pollution

The original Clean Air Act, enacted in 1963, established funding for the study and cleaning of air

pollution. In 1967, Congress passed the Air Quality Act, which allowed the Secretary of Health,

Education, and Welfare to establish “air quality regions,” though air quality standards remained

a responsibility of the state. By 1970 it was clear that little was being done — no state had yet

established a full pollution control program (Rogers, 1990). In response, on December 31, 1970

President Richard Nixon signed the first round of Clean Air Act Amendments, which made air

pollution a concern of the federal government. Around approximately the same time, the National

Environmental Policy Act established the Environmental Protection Agency (EPA), which was

placed in charge of enforcing the various regulations of the CAAA.

The amendments of 1970 established National Ambient Air Quality Standards (NAAQS) and

placed federal limits on pollution levels for six “criteria pollutants:” carbon monoxide, nitrogen

dioxide, ozone, sulfur dioxide, total suspended particulate matter, and lead. States were further

divided into Air Quality Control Regions (AQCR) consisting of multiple counties. As part of its

attempt to reduce ambient pollution, the federal government classified regions as being in “attain-
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ment” or “nonattainment” based on regulatory caps on the various pollutants. Regions found to

be in nonattainment were subject to more stringent regulation as a result — states were required

to establish plant level controls, set emissions caps, and install abatement technologies (for more

information on the CAAA and plant response, see Greenstone (2002)). Following CG, we as-

sign attainment status at the county level, assuming that states placed their regulatory attention on

individual counties within an AQCR when deciding how to best lower ambient air measures.

After the announcement of the NAAQS, states were required to prepare and submit State Im-

plementation Plans (SIPs) which provided information as to how the states were planning on con-

trolling and regulating ambient pollution. The first SIPs were due to the EPA in January, 1972.

In a given year, areas were deemed to be in nonattainment for TSPs if they violated either of two

conditions: (1) the annual geometric mean was greater than 75 µg/m3, or (2) the second highest

reading for the year was greater than 260 µg/m3. We use this nonattainment status as an instru-

ment for pollution changes within counties, where counties that received the “treatment” of being

classified as nonattainment are anticipated to see greater decreases in pollution. Figure 1 shows

the distribution of 1970 pollution levels for counties in our sample. The regulatory cutoff point

of 75 µg/m3 is indicated with a vertical dashed line. In our preferred specification, we examine

the change in pollution levels between 1970 and 1972 to span a period prior to and just following

the enactment of the CAAA. As a robustness check we also consider a slightly longer 1969-1972

difference, and a shorter 1971-1972 difference, and we cannot reject that these results are equal to

each other at standard confidence levels. This is discussed further in Section 7.

4 Estimation strategy

Using panel data at the county-by-year level, we utilize a quasi-experimental strategy that exploits

variation in pollution levels across counties and over time. For some county c in year t, the re-

lationship between a county level outcome of interest y and ambient pollution can be expressed
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as

yc,t = βTSPc,t + δXc,t + λc + γs,t + εc,t (1)

where β is the coefficient of interest (the marginal impact of TSPs), Xc,t is a vector of aggregated

individual demographic covariates and county-level economic covariates, λc is a time-invariant

county level fixed effect, γs,t is a state-by-year fixed effect, and εc,t is the error term. An analog

to the fixed-effects model is the “first-difference” model, where changes in y are expressed as

functions of changes in TSP and other covariates. Let ∆yc = yc,1972 − yc,1970, with similar

notation for TSP , X , and ε. Then,

∆yc = β∆TSPc, + δ∆Xc + γs + ∆εc. (2)

Time-invariant factors such as λc have been eliminated with the difference, and the state-by-year

fixed effects become simply state fixed effects. The remaining error may still have period-specific,

county-level unobserved factors. This will contribute to bias in the ordinary least squares (OLS) es-

timates if such unobserved factors are correlated with the estimate of interest even after controlling

for covariates, i.e.,

E[∆TSPc,∆εc|∆Xc] 6= 0. (3)

OLS results can also suffer from measurement error, which, if classical, will bias results to-

ward zero. Pollution is assigned at the county level, an inherently noisy measure of true individual

exposure. In addition, we are considering prenatal effects, and the exact exposure timeframe is un-

known.9 Any fixed-effects type model will accentuate existing measurement error, as such models

9Even for live births, reported gestation length information is imprecise. We test to see if exposure calculated using
daily pollution data over an estimated gestation yields different results in Section 6 and find results consistent with our
main specification.
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remove some true variation while doing nothing to eliminate random noise, increasing the noise-

to-signal ratio.

In order to obtain unbiased estimates, we use estimated 1970 county-level attainment status as

an instrument for changes in pollution, similar to Chay and Greenstone (2003a).

∆yc = β ̂∆TSPc + δ∆Xc + γs + ∆εc (4)

∆TSPc = 1(geometric meanc,70 > 75|2nd highestc,70 > 260) + φ∆Xc + γs + ηc (5)

where 1(•) is an indicator function equal to 1 if either condition detailed in Section 3 is true and

η is the first stage error term. Data on actual attainment status in the early 1970s are unavailable.

To construct our instrument we must estimate which regions were most likely to be classified as

in attainment or not based on the available pollution data. We use TSP monitor data from 1970 to

assign likely attainment status at the county level for 1972 (following CG), and when we discuss

counties as being in attainment or nonattainment in 1972, we are referring to a status calculated

using data from 1970 levels. This assumes that, in order to write their SIPs in time for the January

1972 deadline, states would have needed to use pollution information from 1970, as 1971 data

were not yet available.

Figure 2 illustrates the difference in pollution reduction between counties estimated to be in

attainment and those that were not. There is a general trend of declining pollution levels over the

period of interest.10 Between 1970 and 1972 air pollution in attainment counties increased slightly,

while the declines in nonattainment counties were dramatic. Panel A of Table 2 shows the strength

of the first stage of the 2SLS estimation numerically. Counties classified as being in nonattainment

saw pollution drops that were around 17 µg/m3 greater on average than attainment counties. This

relationship is illustrated visually in Figure 3, which plots county-level 1970-1972 changes in the

arithmetic mean as a function of the 1970 geometric mean and fits a locally estimated polynomial

10While pollution sensor data are available prior to 1968, they are available for only a very small number of counties
and are omitted here.
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on either side of the regulatory cutoff (indicated with a dashed vertical line). In all instrumental

variables regressions that follow, we show the standard F-statistics for first stage regressions as a

demonstration of the strength of the first stage.

We assume that attainment status is uncorrelated with the errors in the second stage. This cor-

relation could be present if, for example, pollution decreases are driven by mean reversion rather

than attainment status. In order to control for this potential confounder, we explore specifications

that add the running variable used to calculate attainment status (the 1970 geometric mean), lin-

early and with higher order polynomials, as explicit controls. The remaining variation in pollution

is driven entirely by the predicted discontinuous change in attainment status around the threshold

specified in the 1970 CAAA, and is independent of 1970 pollution levels beyond CAAA cutoff

violation. These results are similar to our main specification and are discussed in Section 7.

5 Data

To examine the effects of pollution exposure on fetal and infant death, we combine data from birth

records, death records, ambient TSP measurements, and local economic indicators. As noted in

Section 4, we conduct our analysis primarily on the changes that occurred between 1970-1972,

though we also examined the 1969-1972 and 1971-1972 periods. In each case, we used a balanced

panel of counties with data from the beginning, ending, and intermediary years for each sample.

Birth data come from the National Center for Health Statistics Vital Statistics Micro-data. Data

begin in 1968, and from 1968-1972 represent a 50% sample of all birth certificates in the United

States (weighted up to represent the full population of births). The data feature a large amount of

information on demographic covariates such as county and day of birth, race and gender of the

child, characteristics of the mother and father, and health indicators for observed births. We use

county and year of birth to match birth cohorts to their relevant ambient pollution levels. In some

specifications, we expand on this by using daily pollution data to calculate exposure levels based

on day of birth and then again collapse data to the county-by-year level.
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We limit the covariates used in our study to those that are least frequently missing in our time

period. These include the child’s race (white, black, and other), whether the birth was in a hospital,

whether a physician was present, birth parity, and mother’s age. In some specifications, as noted,

we include mother’s education, though this reduces the number of observed births (and counties)

available for estimation. When considering joint effects on both genders, we conduct estimation

at the county-by-year of birth level and weight all regressions by the number of births in each cell.

When considering differential effects by gender, estimation is done at the county-by-year of birth-

by-gender level and weighted accordingly. We use a similar strategy when considering differences

by race, age, and education.

Infant death data, used to examine infant mortality rates, are from the full census of deaths

from the National Center for Health Statistics National Vital Statistics System Multiple Cause of

Death Files. Demographic variables include race, gender, and age at death.11 We construct the

neonatal infant mortality rate for year Y by dividing the number of infants born in year Y that died

within 28 days by the number of live births in year Y by gender and race. The one-year mortality

rate is constructed similarly. After 1982, limited fetal death data are available in the Vital Statistics

Fetal Death Detail Record. In Section 8, we discuss these data as potential measure of the fetal

sensitivity differences across genders.

Pollution data are from the EPA Air Quality Database. The EPA has air-monitoring stations

located around the country measuring a variety of air pollutants. We focus on stations that measure

TSPs (pollutant classification number 11101) using the 24-hour average. We collapse the arith-

metic mean measurement of TSPs for all monitor observations by county to calculate the annual

county pollution measure, using the number of valid observations as weights.12 In order to closely

approximate the regulations in the CAAA we estimate each county’s attainment status using the

11We exclude deaths due to external causes (e.g., fractures, injuries, or adverse effects of medical agents) from our
analysis. Such deaths are not causally linked with pollution levels (see Table 8 of CG).

12We have also explored using the geometric mean as the health-relevant pollution shock. Results are qualitatively
similar and available on request.
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geometric mean and second-highest daily measure from the highest reading monitor in the county

of pollution data from 1970, a strategy identical to CG (see Section 4). This assumes that counties

that may have been borderline nonattainment still felt pressure from the EPA to reduce pollution

levels (Chay and Greenstone 2003a).13

Economic factors may be correlated with both air quality and fetal death rates. In order to

control for such potential confounders, we use the Regional Economic Information System (REIS),

provided by the Bureau of Economic Analysis to obtain county-level economic covariates. These

data contain annual measures of per capita income, per capita net earnings, and several measures

of total government transfer payments which we convert to per capita: total transfers, total medical

transfers, public assistance medical payments, income maintenance, family assistance payments,

food stamps payments, and unemployment insurance. We also control for county level employment

(total employment divided by total population), employment in manufacturing (as the CAAA likely

had differential impacts based on the size of the manufacturing sector), and total population. All

dollar values control for inflation and are adjusted to 2009 dollars (using the 1982-1984 chained

CPI from the Bureau of Labor Statistics).

Summary statistics by attainment status across our period of interest are shown in Table 1. In

general, birth outcomes are similar for attainment counties and nonattainment counties over the

two years of interest. The last two columns report the p-value from a regression of the variable

of interest on the difference-in-difference estimate between attainment and nonattainment counties

across 1970-1972. The second to last column reports the p-values from regressions using all coun-

ties. The last column reports the p-value from regressions restricted to counties with 1970 TSP

levels between 60 and 90 µg/m3. Nonattainment status was not randomly assigned, so we expect

that high pollution counties will be different from low pollution counties, and they are on several

measures. Nonattainment counties are generally more populous, have higher infant mortality rates,

13Using the average geometric mean across all monitors rather than the highest reading monitor yielded similar
results.
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and more a higher share of infants are of low birth weight. When we restrict the sample to coun-

ties that had similar levels of pollution in 1970, many of the statistically significant differences in

changes in these measures disappear. The only statistically significantly different change between

attainment and nonattainment counties occurred in the overall employment rate, which increased

in attainment counties but decreased slightly in nonattainment counties. Given the potential link

between employment and maternal and fetal health, we control directly employment in all of our

preferred specifications. We also note that the decreased level of employment in nonattainment

counties may result in higher maternal stress and a lower percentage of males in that birth cohort.

This effect is in the opposite direction of the main effect we identify, and is unlikely to contribute

to the result we find (see Section 7).

6 Results

In the absence of reliable data on fetal deaths, we must turn to alternative metrics to measure births

that did not occur, but would have occurred in the absence of pollution exposure in utero. One

potential metric is the number of total births in the population. If pollution has a positive effect on

the probability of fetal death, then the decreases in pollution seen as a result of the CAAA could be

associated with an increase in the average number of live births. There are, however, a number of

reasons why the average birth rate may not be the correct metric to measure fetal deaths. Fertility

rates may respond to a wide variety of economic factors potentially correlated with pollution levels.

For example, Lindo (2010) finds that income shocks resulting from husband job displacements can

both reduce total fertility and alter fertility timing, and Dehejia and Lleras-Muney (2004) show

fertility responds to shifts in the business cycle. Even instrumenting for pollution will not remove

all bias when using total births as a proxy for fetal deaths. Any change in the total number of births

necessarily includes the health effect from the policy change as well as any accompanying fertility

behavior changes.14 Total fertility is thus the combined impact of the impact of pollution on fetal
14Instrumental variable estimates showed pollution levels had no identifiable effect on total births — effects were

all small and statistically insignificant. A one-unit increase in TSP had an estimated effect of 0.89 additional births

15



health, and parental conception decisions and an inappropriate metric to examine if the outcome

of interest is fetal health.

The gender ratio at birth presents an alternative measure of fetal health that has the advantage of

being orthogonal to these parental conception decisions.15 As discussed in Section 2, prior research

suggests that the male fetus is more sensitive to external stressors, and thus more likely to suffer

fetal death in the presence of negative health shocks. If pollution exposure has a positive impact

on fetal death rates, and males are more likely to suffer fetal death, than one expected outcome

of higher pollution levels is a decrease in the share of live births that are male. By considering

changes in the gender ratio as they correlate to changes in ambient pollution, we can observe an

indirect measure of the number of male births that did not occur but would have in the absence

of air pollution exposure. This is not a precise measure of the true fetal death rate, as it does not

consider any effects on females (and in fact treats the effect on females as zero). In Section 8, we

expand on these findings to estimate the total fetal death effect.

A raw data comparison of the change in the fraction of live births that are male by attainment

status is illustrated in Figure 4. The average change in the fraction of births that are male between

1970-1972 is larger for nonattainment counties than attainment counties. This is consistent with

reductions in pollution stemming from the CAAA leading to increases in fetal health, though the

graph does not control for any covariates. Panel B of Table 2 presents the reduced form numer-

ically, allowing for the inclusion of controls to better identify the causal effect. Our preferred

specification in column 4 indicates that the CAAA increased the fraction of births that are male by

0.547 percentage points. This result is significant at the 5% confidence level.

Table 3 shows the estimated relationship between the share of births that are male and ambient

per hundred thousand. Combining this zero, or slightly positive, result with our later estimates of total fetal deaths
indicates frequency of intercourse may be positively correlated with pollution levels. These results are available upon
request.

15Individuals may choose to engage in behavior that they believe impacts the gender of the child. We do not attempt
to address whether such behaviors are effective or not. Unless individuals modify this behavior in response to the
CAAA attainment status of their home county, such activities should have no impact on our results.
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TSPs. The outcome variable is the probability of a live birth being male. Coefficients should be

interpreted as percentage point changes. We weight each cell by the number of observed live births

and standard errors are clustered on state. 16 Negative marginal impacts indicate higher pollution

levels are correlated with a lower fraction of males among live births, which in turn suggests an

increase in the fetal mortality rate among males (or a decrease in the number of conceived males,

an alternative which we address in Section 8). Panel A shows OLS results, and Panel B shows

IV results. Column 1 is the most sparsely specified model, while columns 2, 3, and 4 add natality

controls for observed births, economic controls, and state fixed effects, respectively. Column 4 is

our preferred specification.

OLS results are all negative, indicating increased ambient pollution levels decreases the share

of live births that are male. After adding natality and economic controls, results are significant

at 10%. Adding state fixed effects leaves the coefficients effectively unchanged but increases the

standard errors enough to remove statistical significance. The coefficient in column 4 suggests

that an increase in ambient pollution of 1 µg/m3 results in an observed 0.007 percentage point

decrease in the probability of a live birth being male, and a standard deviation increase in pollution

(approximately 23 µg/m3) is associated with an observed 0.20 percentage point change in the

probability of a live birth being male. IV results are larger, and in our preferred specification, which

is statistically significant at the 1% level, a standard deviation increase in pollution is associated

with a 0.89 percentage point decrease in the probability of a live birth being male. Using the 1970

attainment county share of male births (51.28) as a baseline, this is a change of approximately

1.7%.

Measurement error may bias OLS toward zero, but it is unlikely to explain why our IV estimates

are four times larger than our OLS estimates. Omitted variables bias could be influencing the

OLS results if there is some omitted factor that is positively correlated with both pollution levels

16Results with standard errors clustered on county rather than state are negligibly different and are available on
request.
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and the fraction of live births that are male. For example, counties could be experiencing an

economic downturn, which would cause declining pollution levels as well as economic hardship.

The declining pollution level in the county would positively impact fetal health, but the economic

hardship would negatively impact fetal health, and the OLS estimate of the relationship between

pollution and fetal health would be an understatement of the true effect. Using attainment status

as an instrument for the change in pollution will avoid this bias, provided that attainment status is

independent of such confounding trends. We discuss background trends further in Section 7.

An additional possible explanation for the much larger IV estimates is that local average treat-

ment effect (LATE) estimated by the IV specifications is much larger than the average treatment

effect (ATE). OLS results use the entirety of the pollution distribution and identify the ATE. IV,

however, identifies the LATE, driven by counties around the regulatory threshold that had predicted

pollution decreases as a result of the CAAA and would not have otherwise. These counties near the

regulatory point may have had stronger relationships between pollution and fetal deaths for a vari-

ety of reasons: effects may not be detectable at very low pollution rates, or counties with extremely

high pollution rates may have other systematically confounding factors that are not controlled for

using available covariates. As a possible check for OLS results being biased by such “extreme”

counties, we estimate the OLS specifications using only those counties close to the cutoff, with

1970 geometric means between 60 and 90 µg/m3 (we conduct a similar robustness check using the

IV results in Section 7). In the preferred specification analogous to column 4, the result was 0.017

with a standard error of 0.018. While the result is noisy (likely due to the substantially smaller

sample size around the cutoff of 165 counties), it is much closer to the IV results in magnitude,

suggesting that some of the difference is caused by OLS being biased by extreme values in the

1970s TSP distribution. We also repeated the OLS analysis dropping only counties with low 1970

TSP levels (below 60 µg/m3) and then only high 1970 TSP levels (above 90 µg/m3). The estimated

impact is larger in the case of removing the high 1970 TSP counties, further supporting that OLS

results are downward biased by unobservable factors in the high TSP counties. These esults are
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available in Table A-1 in the Appendix.

We next consider the effects of pollution on the gender ratio at birth by subgroups: mother’s

education, child’s race, and mother’s age. If pollution exposure impacts gender ratios though the

fetal death mechanism, we expect to see larger impacts on subgroups that are more sensitive, either

through lower availability of fetal damage abatement capital such as prenatal care and avoidance

behavior, or because of lower baseline fitness and nonlinearities in health effects. Columns 1 and

2 of Table 4 show results for mothers with high school education or lower and greater than a high

school education, respectively. There are a lower number of counties due to the lack of reliable

mother’s education data in the earlier natality data files. Results confirm our prior expectation —

mothers with lower education levels (comprising approximately 3
4

of our sample), a factor highly

correlated with availability of fetal damage abatement capital, see a substantially larger impact

on their gender ratios when exposed to higher pollution levels, and the result remains statistically

significant at 1%. Differences in effect also appear when examining effects by race. Column 3

shows the effect for whites which, while still large and significant, is approximately 1
3

the estimated

effect for blacks. The National Center for Health Statistics reported that for live births in 1970,

an estimated 72% of white mothers received prenatal care during the first trimester, compared

to 44.2% of black mothers. 6.3% of whites either waited until the third trimester or received

no prenatal care at all, compared to 16.6% of black mothers.17 These noted differences in use

of prenatal care across races further support our prior expectation — blacks have a lower use of

prenatal damage abatement capital, and thus see a larger effect on fetal death. Finally, columns 5,

6, and 7 show results for mothers younger than 20, 20 to 34, and 35 years old and up, respectively.

As expected, we see the greatest negative impacts of pollution for the more sensitive groups. Both

younger and older mothers see larger effects, though all results are now significant at only 10%

and the smallest effects are contained within two standard errors of the largest effects.

We also consider the possibility that pollution had larger effects depending on when during

17Table 5 on page 106 of Health, United States, 2010 (National Center for Health Statistics, 2011).
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development the fetus is exposed. Buckles and Hungerman (2008) have shown that mother’s av-

erage socioeconomic status is lower during the winter. Since these seasonal differences may be

related to maternal and fetal health, we begin by looking for different effects by quarter of birth.

Table 5 shows effects by quarter of birth in Panel A and by exposure trimester in Panel B. Panel

A consists of four separate regressions. Column 1 is limited to births that occurred between Jan-

uary and March, Column 2 is limited to births that occurred between April and June, and so forth.

While there are positive effects across all four quarters of birth, the largest effects are for births in

the third quarter of the year. Figure 5, which shows monthly TSP levels over time, may explain

this finding. While pollution levels are generally declining, there is a cyclicality of pollution levels

within each year. Levels are lowest during the fourth quarter and highest during the second quar-

ter. One possible explanation for the higher third quarter effect is that the infants born in the third

quarter were the only infants not exposed to the low pollution levels in the fourth quarter.

As noted in Section 5, our main specifications assign cohort fetal exposure using year of birth.

We next calculate each infant’s TSP exposure using daily pollution data. Using daily pollution

data allows us to consider effects by trimester of exposure, but there is a tradeoff between this

method and what we present for our main analysis. The advantage of this method is that each

observed infant is only associated with the pollution exposure he or she was more likely to have

experienced. However, note that “daily” does not mean each monitor has a reading for every day.

Many monitors have pollution measures every six days, but some go weeks or months without an

observation of pollution — our pollution data are a noisy measure of the true pollution level in the

county. While an infant born in December may not have experienced the pollution levels measured

in January of that year, January’s levels may help to remove some of the noise from the measures

in the subsequent quarters. The results are presented in Panel B of Table 5.

Without data on the exact date of conception, we assume each gestation was nine months in

length, or would have been in the absence of a fetal death. We label the three months before birth

the third trimester, the three months before that the second trimester, and the three months before
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that the third trimester. We then calculate average pollution exposure over those dates. Columns 1

through 3 of Panel B in Table 5 show the results from these calculations by trimester. We cannot

reject that these effects are equal (an F-test of coefficient equality yielded a p-value of 0.89), and

thus can establish no support in the data for variation in exposure by trimester of gestation. Note

we cannot controls for all three trimesters individually in the same regression, as we only have one

available instrument. We have also tried to exploit the exact date of birth from the natality data to

estimate pollution exposure for date-of-birth cohorts rather than overall year cohorts. The fourth

column of Panel B shows the results when we use only the pollution data in the nine months before

observed date of birth to calculate pollution exposure (rather than the average pollution level in the

year of birth). The estimated 0.043 percentage point change we find when using only the pollution

measurements from the nine months before birth is very close to the 0.033 we find in our main

specification that uses all the pollution measurements in the calendar year of birth.

7 Further considerations

Our results suggest that there is a difference between the susceptibility of males and females to

ambient pollution, both in utero and after birth. Further, the fetal death effects appear greatest for

groups we expect to be most sensitive. Effects are largest for blacks, mothers with high school

education or lower, and mothers younger than age 20 and age 35 and older. In order to better

establish the validity of our results, we now consider potential confounders in our analysis such

as regression to the mean in pollution and differential background trends between polluting and

nonpolluting counties.

We first examine the sensitivity of our results with respect to the identifying assumptions of

the discontinuity used in the first stage. Results are shown in Table 6. Panel A addresses the

assumption that counties that fall short of the regulatory cutoff serve as good controls for those

beyond the cutoff. This assumption becomes more likely to hold as we restrict the bandwidth

around the cutoff for the counties to be used in the analysis — thus we begin by removing more
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extreme counties. Columns 1-3 show how our results vary when we limit the data to counties with

1970 pollution levels within bandwidths of 35, 25, and 15 µg/m3 on either side of the regulatory

cutoff. There is a tradeoff here between the strength of assumption required for the instrument to

be valid and the statistical power available to identify effects. It is more likely that attainment and

nonattainment counties are similar on unobservables in this restricted sample than in the full sample

we use for our main results. However, due to the smaller number of counties in the restricted

sample we do not have the statistical power to precisely identify effects. The estimated impact of

pollution on the share of male births remains negative for all bandwidths, and all are within two

standard errors of the full sample estimate. This gives credence to the assumption that attainment

status is excludable from our second stage in the full sample.

In Panel B we return to the full data set and add smooth functions of the running variable

(geometric mean of pollution in year 1970) in the second stage. This check allows us to see if our

identification is arising from a smooth change in pollution across the spectrum, i.e., regression to

the mean in higher pollution counties over time, rather than the assumed discontinuity in pollution

changes. Columns 1-3 control for linear, quadratic, and cubic forms of the running variable, adding

subsequently higher order terms. As with the case of restricted bandwidth, the additional strain on

the data reduces the predictive strength of the excluded variable, but results remain significant at

5% with a linear function and 10% using a quadratic. While results are no longer significant when

controlling for a cubic function, the coefficient remains negative. In all three cases, the estimated

effect has the same sign as and is similar in magnitude to our main effect. Based on the illustrated

relationship between the geometric mean and changes in pollution seen in Figure 3, we believe the

simple linear relationship is a relatively good approximation of the truth.18

We next investigate whether general background trends are driving our results. Nonattainment

status may have been assigned to counties that already had a positive trend in the percent of each

18We have also allowed the running variable to have differential effects on either side of the cutoff by interacting
the linear, quadratic, and cubic functions with the indicator for nonattainment. Since we lack the statistical power to
identify these models the results are omitted, but are available upon request.
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birth cohort that were male. To test for the existence of this confounder, ideally we would examine

county-level trends in the fraction of births that were male prior to the CAAA. As noted in Section

5, detailed natality data do not exist prior to 1968. In the absence of data on births by gender and

county from the pre-period we examine trends in the post-period. We repeat the analysis using the

1970-1972 pollution changes, but assign them to the controls and gender ratios of other two-year

difference pairs, ranging from 1973-1975 up through 1985-1987. If a difference in trends between

attainment and nonattainment counties is responsible for our findings rather than a true causal link

between pollution and fetal deaths, this trend would likely continue in the years after our analysis.

This would manifest as negative, statistically significant relationships between 1970-1972 pollution

levels and the percentage of births that are male in subsequent years. Results are shown in Table 7.

Column 1 repeats our main estimates (1970-1972), and columns 2-6 show the results using natality

and economic covariate data from later two-year periods. The number of counties changes slightly

across specifications due to availability of REIS data across periods. Results are not significant

for any other two-year pair, and more importantly we can rule out point estimates for any of these

relationships as large as the main effect, suggesting background trends are not driving our results.

We also tested to see if the choice of the two-year 1970-1972 difference is of importance. As

noted in Section 3, we prefer to use this two-year window to allow for a “before” and “after” of

the enactment of the CAAA. However, since there are other possible choices for a “pre” period,

we have repeated our analysis using a three-year window spanning the CAAA (1969-1972) and a

one-year window (1971-1972). Our results are robust to several valid choices of the before period

— regardless of the window chosen, the estimates are similar, and we cannot reject equality of the

estimates across year specifications (an F-test of coefficient equality yielded a p-value of 0.63).19

19Results available upon request.
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7.1 Potential non-pollution impacts

There remains concern that our estimated effect is driven by some unobservable factor which re-

mains even after utilizing an IV strategy. One such confounder is macroeconomic changes resulting

from the CAAA. For example, Greenstone (2002) shows that the CAAA had substantial economic

consequences, particularly for the manufacturing sector. The use of gender ratios as our measure

of fetal death avoids the concern of economic factors resulting in selection into fertility. However,

male fetuses are more susceptible to fetal death from stressors other than pollution, which could

bias our findings if, for example, the CAAA led to job loss in nonattainment counties, which then

led to decreased mother health, either though income loss or additional non-pollution stress. This

would suggest that, as a byproduct of the non-pollution effects of the CAAA, the number of male

births should decrease due to the increased stress levels. Similarly, if job loss as a result of the

CAAA leads to lower levels of maternal nutrition, findings by Almond, Hoynes, and Schanzen-

bach (Forthcoming) indicate that the fraction of male births should decrease. We find the lower

pollution caused by the CAAA is associated with an increase in the number of male births —

both of these effects should exert pressure in the opposite direction of our main effect and bias our

results toward zero, if at all.

A similar concern is that differences in human capital and stresses across socioeconomic status

are correlated with lower male birth rates. In a cross-sectional comparison, Almond and Edlund

(2007) find significant differences between gender ratios among socioeconomic groups. Specif-

ically, single mothers with less than a high school education are 0.8% less likely to have males

than married mothers with some college education. This could be problematic if the CAAA is

associated with a change in the composition of mothers. Specifically, if in response to the CAAA

policies, lower education mothers move out of nonattainment counties (or are more likely to avoid

pregnancy), we might mistake the change in mother composition as evidence of changes in fetal

death rates.20 Looking at empirical data cannot answer this question, as the composition of moth-

20See Dehejia and Lleras-Muney (2004) for a discussion of motherhood composition changes and birth outcomes.
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ers might change due to fetal deaths as well — the characteristics of mothers that never give birth

are just as unobservable as births that never occur. However, we can place bounds on the potential

bias. The reduced form result in Table 2 suggest that the CAAA led to a change in the probability

of a male birth of 0.547 percentage points, which is an increase of approximately 1.1% from a

baseline of 51.32. If, prior to the CAAA, every birth in nonattainment counties was to a single

mother without a high school degree, and afterward every birth was to a married mother with some

college, the implied change would be 0.8% — even in the most extreme case, a shift in the mother

population cannot explain the entirety of our findings.

Finally, we note that the estimated effects need not necessarily be limited to pregnancies that

suffered from fetal death after successful insemination. Research in the medical field has proposed

that observed changes in the gender ratio in response to maternal stressors are the result of stress-

ful situations favoring the implantation of female over male embryos (Cameron, 2004). Sperm

carrying the Y chromosome that determines the male gender may be weaker than those that carry

the X chromosome, or sperm carrying the Y chromosome may combine less efficiently with the

egg, and maternal stress may disrupt zygote formation with “Y sperm” more than zygote formation

with “X sperm” (Boklage, 2005). If pollution exposure can change the probability of a successful

implantation in ways that vary across genders, or can weaken Y sperm in such a way as to reduce

the relative probability of a male zygote, such changes in the male birth population would be in-

terpreted in our findings as male fetal deaths. Our results may include within them not only fetal

deaths, but avoided initial pregnancies, though effects on the sex ratio for pollution exposure in the

estimated second and third trimesters suggest this is at most a small portion of the effect.

8 Discussion

The decrease in ambient pollution levels after the CAAA resulted in a decrease in male fetal deaths,

as measured by changes in the probability of a live birth being male.21 Of more interest to policy
21While we currently attribute our findings to changes in TSPs, other unobserved pollutants that are strongly cor-

related with TSPs could be included in our findings. Unfortunately, data on other pollutants are not available for our
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makers, however, is the effect on fetal death for both genders. Our finding can be interpreted as a

measure of total fetal deaths only if female fetuses are completely unresponsive to pollution, which

is unlikely. We combine our findings, which calculate the difference in losses between males and

females in utero, with several estimates of relative in utero sensitivities of males and females to

estimate the total fetal losses. We use the relative causal impacts of pollution on neonatal deaths

and the relative causal impacts of pollution on deaths within one year to provide a range of plausible

estimates of the total in utero mortality effect of pollution levels. We also discuss the observed total

male and female fetal deaths reported in the fetal death data between 1982 and 1989, though we

note these are not causally linked to pollution.

Panels A and B of Table 8 present the causal impact of pollution on one year and neonatal

mortality (death within 28 days of birth) separately for males (column 1) and females (column 2).

Each of these four cells is a coefficient from a first-difference regression using changes from 1970-

1972 and controlling for natality covariates, economic covariates, and state fixed effects. Female

and male losses during both the one-year and neonatal periods are all positively signed, as were the

results found in CG for the overall population. Consistent with our findings of differential fetal loss

rates in utero, male live births have higher mortality than females in response to pollution shocks.

Panel A estimates each additional unit of TSP leads to an additional 6.7 male neonatal deaths per

100,000 live male births and 2.0 female neonatal deaths per 100,000 live female births, an impact

ratio of 3.36 to 1. Panel B presents similar findings for the one-year mortality rate: the increase

in the male mortality rate is approximately 8.9 per 100,000 live male births, while females see a

smaller increase of approximately 2.1 deaths per 100,000 live female births, a ratio of 4.28 to 1.

Column 4 of Table 8 shows the estimated total fetal impacts using these relative sensitivity

estimates. Using neonatal mortality rates, the estimated change of 0.547 percentage points from

Table 2 translates to a combined impact of 35,900 prevented fetal deaths as a result of the CAAA,

timeframe. Regardless of the pollutant, however, the reduced form estimate in Table 2 is identifying the impact of the
additional CAAA regulation on fetal deaths, and is informative from the standpoint of policy evaluation.
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or a change in the overall live birth rate of approximately 2.1% for nonattainment counties. Us-

ing one-year mortality rates, the total effect is estimated at around 31,200 prevented fetal deaths,

which is approximately 1.8% of the total birth population in nonattainment counties.22 As noted in

Section 5, fetal death data are available beginning in 1982. These data on observed fetal deaths can

also be used to construct a ratio of male to female fetal deaths, though the deaths are not causally

linked to pollution. We prefer our estimates that use the causal impact of pollution on relative

neonatal mortality rates as we believe those are the closest to the effects of pollution in utero, and

are less likely to be biased by the selectivity of measured fetal deaths. However, for completeness

we note that for all data available in the 1980s, a period somewhat close to our period of interest,

the number of recorded fetal deaths was 133,706 males and 115,553 females, for a relative ratio of

1.16.23

Using our preferred relative gender susceptibilities, the above calculations translate to a one-

unit drop impact of 111-128 fewer fetal deaths per 100,000 live births.24 These effects may appear

large when compared to the literature on pollution and post-natal infant deaths. A number of

factors could explain this difference. It is likely that live births are more robust to stresses than a

developing fetus, and abatement actions in the presence of health complications are more easily

enacted with infants. For example, if air pollution causes an infant to display respiratory difficulty,

the infant may be brought to a hospital, where active medical attention helps to offset the negative

effects. No such effects can be easily observed with an injured fetus, and treating a fetus may be

more difficult that providing medical treatment to an infant.

22These estimates can be obtained by noting that

βCAAA =
M

M + F
− (M −maledeaths)

(M −maledeaths) +
(
F − 1

Ωmaledeaths
) (6)

where M and F are the 885,759 male and 842,878 female births in all observed nonattainment counties in 1972 and Ω
is the sensitivity of males relative to females, provided above.

23Using this relative fetal sensitivity yields a total estimated effect of 320,700 avoided fetal deaths, or 18.6% of the
total birth population.

24Marginal impacts are calculated by dividing the estimated number of avoided deaths by the average TSP reduction
caused by the CAAA as shown in Panel A of Table 2. This assumes a linear impact of TSPs.
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It is also informative to consider our effects in the light of other studies that have found gender

differences in the presence of other external stresses. Using the 1970 birth ratio for attainment

counties as a baseline, our estimates put the change in the probability of a male birth at approxi-

mately 0.03% per unit of TSPs, with the total effect of the CAAA being a change of approximately

1.1%. The 2007 working paper version of Almond, Edlund, and Palme (2009) finds that exposure

to the fallout from Chernobyl in Sweden resulted in a decrease in the probability of having a male

of 1.6% in Sweden. Using similar identification, Peterka, Peterková, and Likovský (2004) find the

radiation-induced change in the number of male births to be almost 4% for the Czech Republic.

Almond, Hoynes, and Schanzenbach (Forthcoming) examine the effect of Food Stamp Program

(FSP) rollout at the beginning of the third trimester in utero and find that it increases the fraction

of births that are male among whites by 0.09% and blacks by 0.32%. Our effect is smaller than the

effects observed for Chernobyl radioactive fallout, but larger than the maternal nutritional effects

of the FSP. We are unaware of any conversion of health impacts from subclinical levels of radia-

tion or nutritional deficiencies to the reduction in air pollution levels we examine, but we note that

findings for other in utero health shocks are qualitatively similar to those we find for air pollution.

Finally, there is the challenge of quantifying the value of the change in gender ratios at birth.

In the case of infant mortality, there are measures of the value of a statistical life that can be

used to financially quantify the impacts. Fetal deaths, however, are more complicated. Some may

occur without the knowledge of the mother, and one could argue the social costs of such foregone

pregnancies are effectively zero, or at least no greater than the loss of births resulting from other

medical factors such as impotency. Of the fetal deaths that occur in known pregnancies, the social

cost should be less than that of an infant death — fewer resources have been invested, and given

that the mother can become pregnant again, the largest costs may be a shifting of the pregnancy

time frame and the psychological impacts. Of course, changes in fetal deaths are also indications

of changes in maternal health, but converting changes in the gender ratio to the value of changes
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in maternal health is difficult.25 Given these complications, we cannot monetize our estimated

impacts.

9 Conclusion

Measuring the impacts of policy on fetal health presents several challenges. Post-natal measures

of fetal health are net of selection, as birth weight averages and mortality rates are only observed

among those infants that survive to term. Fetal deaths themselves are rarely observed, recorded

only for a selected subset of the population, and unavailable prior to 1982. Policy changes may

have causal impacts on fertility choices as well as impacts on fetal health and separating the two

can be difficult, making changes in total live births a potentially biased metric. Our solution to

these complications is to use changes in the gender ratio of live births as a potential proxy for fetal

deaths, which exploits the medical finding that male fetuses are more susceptible to death from

external stresses. Such a measure has the advantage that gender determination is orthogonal to

many traditional sources of fertility bias, and could be used to estimate the effects of other policy

measures intended to improve maternal health and infant outcomes. The benefit of this metric is

that it requires only that the researcher have information regarding, (1) the gender ratio of live

births, and (2) the differential effects of the policy on a measurable post-birth outcome by gender,

which can be used to extrapolate the total effect from the observed impact on male fetal losses

relative to females.

We use the Clean Air Act Amendments of 1970 as an exogenous shock to ambient total sus-

pended particulate pollution to examine the impacts of prenatal pollution exposure on the gender

ratio of live births. In the absence of other confounders associated with the CAAA, a change in the

gender ratio in the presence of decreased pollution can be interpreted as avoided male fetal deaths.

We then scale our findings using TSP-driven neonatal and one-year infant mortality rates to ap-

proximate the impact on total fetal deaths. We find that a one-unit decrease in ambient TSP levels

25In the very long run, Angrist (2002) notes that excess females at marriage age lead to worse outcomes for females.
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is associated with a 0.033 percentage point increase in the probability of a live birth being male,

suggesting reducing pollution reduces male fetal deaths. Given the relative sensitivity of males to

females in pollution-induced neonatal mortality, we estimate the total impact of a one-unit TSP

reduction to be approximately 2,200 total avoided fetal deaths. This suggests that the pollution de-

creases seen as a result of the 1970 CAAA prevented almost 36,000 fetal deaths in nonattainment

counties, a change of approximately 2.1% of overall births in those counties. As conventional

estimates of the social cost of pollution include only observable infant health outcomes such as

mortality and birth weight, such estimates are lower bounds of the true costs.
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10 FIGURES

Figure 1
Density of 1970 TSP Levels
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Notes: Kernel density is calculated with a bandwidth of 10 µg/m3. County level geo-
metric mean levels are calculated as discussed in Section 4.

35



Figure 2
Trends in TSPs by Estimated 1970’s Attainment Status
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Figure 3
Local Polynomial Estimation of Changes in Arithmetic Mean by 1970 TSP Level
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Figure 4
Changes in Probability of a Live Birth Being Male Between 1970 and 1972
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Figure 5
TSP Levels by Month 1970-1972

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0
T

S
P

s
 (

µ
g

/m
3
)

1970 1971 1972 1973

39



11 TABLES

Table 1
Comparing Change in Covariates from 1970-1972 by Attainment Status

Means p-value for Difference
Attain Nonattain in Changes (95%)

1970 1972 1970 1972 All Restricted

Variables of Interest

Number of Births 509,028 440,947 1,750,584 1,480,411 0.000 0.000
Infant Mortality (one-year) 1,524 1,392 1,756 1,598 0.030 0.638
TSPs 57 55 94 78 0.000 0.001
% Low Birth Weight 0.078 0.075 0.082 0.079 0.065 0.587
% Very Low Birth Weight 0.012 0.011 0.012 0.013 0.008 0.148
% Male 0.513 0.510 0.513 0.513 0.084 0.216

Natality Controls

Second Child 0.282 0.302 0.275 0.295 0.795 0.663
Third Child or Higher 0.325 0.287 0.331 0.295 0.488 0.686
White 0.834 0.820 0.808 0.790 0.249 0.713
Black 0.126 0.134 0.178 0.192 0.096 0.329
Born out of Hospital 0.003 0.005 0.003 0.005 0.920 0.331
Physician Present 0.998 0.997 0.998 0.997 0.614 0.438
Mothers Age 24.794 24.677 24.690 24.573 0.429 0.334

Economic Controls

Employment Rate 0.428 0.433 0.496 0.494 0.644 0.018
Manufacturing Rate 0.077 0.073 0.114 0.107 0.056 0.543
Per Capita Income 23,196 24,546 24,567 26,036 0.323 0.062
Per Capita Net Earnings 17,867 18,717 19,144 20,129 0.421 0.062
Population 538,546 525,972 1,525,895 1,499,970 0.878 0.287
Per Capita Unemployment Insurance 124 164 126 158 0.346 0.182
Per Capita Total Income Transfers 2,113 2,484 2,048 2,444 0.558 0.338
Per Capita Public Medical Assistance 192 252 169 229 0.836 0.307
Per Capita Medical Transfers 408 488 377 459 0.883 0.270
Per Capita Income Maintenance Payments 305 354 289 374 0.022 0.815
Per Capita Food Stamp Payments 28 47 28 50 0.330 0.563
Per Capita Family Assistance Payments 157 186 156 213 0.010 0.244

Notes: Observations are at the county level and weighted by the number of births in the county-
year. TSP measurements are from the EPA Air Quality Database. Natality and mortality data are
from the Vital Statistics of the United States. Economic data are from the Regional Economic
Information System. Dollar values are in 2009 terms. Differences in the final column are restricted
to a sample of counties with 1970 geometric mean TSP levels between 60 and 90 µg/m3. Standard
errors for tests of differences are clustered at the state level.
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Table 2
The Impact of CAAA Nonattainment Status on Ambient TSPs and the Probability of Live Births Being

Male

(1) (2) (3) (4)

Panel A: First Stage — Change in Mean TSPs from 1970-1972

Classified Nonattainment -15.286*** -14.597*** -14.620*** -16.594***
(3.227) (3.333) (2.392) (2.123)

Panel B: Reduced Form — Impact of Nonattainment on Probability of a Live Birth Being Male

Classified Nonattainment 0.317* 0.321* 0.471** 0.547**
(0.180) (0.188) (0.194) (0.212)

Natality Controls N Y Y Y
REIS Controls N N Y Y
State Fixed Effects N N N Y

Counties 457 457 457 457

Data are described in Section 5. Regressions are done at the county-year level and are weighted by
the number of live births. Estimated standard errors, clustered by state, are shown in parentheses.
Coefficients in Panel B indicate percentage point changes.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 3
Probability of a Live Birth Being Male

(1) (2) (3) (4)

Panel A: OLS

Mean TSPs -0.005 -0.005 -0.007* -0.007
(0.004) (0.004) (0.004) (0.005)

Impact of 1 st dev -0.15 -0.13 -0.20 -0.20

Panel B: IV

Mean TSPs -0.021* -0.022 -0.032*** -0.033***
(0.012) (0.013) (0.011) (0.010)

First Stage F 22.43 19.18 37.68 61.11
Impact of 1 st dev -0.56 -0.60 -0.87 -0.89

Natality Controls N Y Y Y
REIS Controls N N Y Y
State Fixed Effects N N N Y

Counties 457 457 457 457

Notes: Data are described in Section 5. Outcome variable is the probability of a live birth being
male. Coefficients indicate percentage point changes. Regressions are done at the county-year
level and are weighted by number of births. Instrumental variables estimates of the effect of TSP
on total births use the first stage estimates shown in Table 2.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 5
Timing of Effects by Quarter of Birth and Trimester

(1) (2) (3) (4)

Panel A: Effect by Quarter of Birth

Quarter 1 2 3 4

Mean TSPs -0.02 -0.028 -0.056*** -0.014
(0.028) (0.028) (0.021) (0.018)

Counties 422 437 457 457

Panel B: Effect by Trimester of Exposure

Trimester 1 2 3 1,2,and 3 (jointly)

Mean TSPs -0.055** -0.045** -0.037*** -0.043***
(0.027) (0.019) (0.012) (0.016)

Counties 457 457 456 456

Notes: Data are described in Section 5. Outcome variable is the probability of a live birth being
male. Coefficients indicate percentage point changes. Regressions are done at the county-year level
and are weighted by number of births. See Section 6 for a discussion of how pollution exposure
was calculated using daily pollution data. Instrumental variables estimates of the effect of TSP on
total births use the first stage estimates shown in Table 2.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 6
IV Estimates Using Limited Bandwidth and Running Variables

(1) (2) (3)

Panel A: Restricted bandwidth

40-110 50-100 60-90

Mean TSPs -0.035* -0.016 -0.039
(0.020) (0.035) (0.065)

First Stage F 40.09 11.16 5.17
Counties 318 256 165

Panel B: Inclusion of running variable (no interaction)

Linear Quadratic Cubic

Mean TSPs -0.056** -0.057* -0.066
(0.023) (0.030) (0.091)

First Stage F 13.37 11.73 4.59
Counties 457 457 457

Notes: Data are described in Section 5. Outcome variable is the probability of a live birth being
male. Coefficients indicate percentage point changes. Regressions are done at the county-year
level and are weighted by number of births. Instrumental variables estimates of the effect of TSP
on total births use the first stage estimates shown in Table 2.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 7
Repeated IV Results Assigning 70-72 Pollution to Various Year-Pairs

(1) (2) (3) (4) (5) (6)

70-72 73-75 76-78 79-81 82-84 85-87

Mean TSPs -0.032*** -0.003 -0.008 -0.005 -0.009 -0.008
(0.010) (0.010) (0.010) (0.011) (0.007) (0.006)

First Stage F 62.42 44.84 60.89 62.31 87.12 43.86
Counties 457 454 455 457 457 457

Notes: Data are described in Section 5. Outcome variable is the probability of a live birth being
male. Coefficients indicate percentage point changes. Regressions are done at the county-year
level and are weighted by number of births. Column 1 repeats the result from column 4 of Table
3, all other columns use 1970-1972 pollution changes but all other data from indicated two-year
difference span (see Section 7). Instrumental variables estimates of the effect of TSP on total births
use the first stage estimates shown in Table 2.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 8
Estimated Impact on Total Fetal Deaths - Conversion Metrics Using IV Estimates of the Impact of

Pollution on Infant Death

(1) (2) (3) (4)
Male Deaths Female Deaths Relative Sensitivity Impact of CAAA

Panel A: Neonatal Mortality Rate

6.645** 1.978 3.36 35,860
(3.029) (2.664)

Panel B: One-Year Mortality Rate

8.855** 2.071 4.28 31,151
(3.633) (3.038)

Notes: Data are described in Section 5. The regression estimates (Columns 1 and 2 of Panels A
and B) show the impact of a one-unit change in TSPs on the probability of a post-natal death.
Regressions are done at the county-year level using 457 counties, are weighted by number of
births, and control for natality and economic covariates as well as state fixed effects as in column
4 of Table 3. Responses to the CAAA use the estimates from Table 2. Calculations are detailed in
Section 8.
* significant at 10%; ** significant at 5%; *** significant at 1%
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A APPENDIX

Table A-1
OLS Using Various Cutoffs

All Counties 60 ≤ TSP ≤ 90 TSP ≤ 90 60 ≤ TSP

Mean TSPs -0.007 -0.017 -0.012 -0.006
(0.005) (0.018) (0.012) (0.006)

Counties 457 165 282 340

Notes: Data are described in Section 5. Outcome variable is the probability of a live birth being
male. Coefficients indicate percentage point changes. Regressions are done at the county-year
level and are weighted by number of births.
* significant at 10%; ** significant at 5%; *** significant at 1%
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