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making up a larger part of their lifetimes so far. The experience effect explains why there
is substantial disagreement between young and old individuals about future inflation rates
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1 Introduction

How do individuals form expectations about future inflation rates? Despite being at the core

of macroeconomics and finance, the answer to this question is still debated.

That macroeconomic outcomes and asset prices depend in crucial ways on expectations of

economic actors is well understood at least since Keynes (1936). But we know little about how

economic agents form their subjective beliefs about the future. The literature on adaptive

learning (see Bray (1982); Sargent (1993); Evans and Honkapohja (2001)) views individual

agents as econometricians who make forecasts based on simple forecasting rules estimated on

historical data, but there is yet little direct empirical evidence on the actual forecasting rules

employed by individuals, even though understanding the formation of inflation expectations,

and macroeconomic expectations more generally, is likely to be of first-order importance for

macroeconomic policy (Bernanke (2007)).

In this paper we examine to what extent individuals’ expectations are particularly strongly

influenced by their own “experiences,” by which we mean the macroeconomic data that

individuals experienced during their life time. This learning-from-experience hypothesis is

related to the adaptive learning approach in macroeconomics, but it differs in one key respect.

Suppose that individuals perceive inflation rates to be iid. According to the least-squares

learning rules popular in the adaptive learning literature, these individuals would form their

subjective expectations as a simple average of past inflation realizations, using all available

historical data (whatever “all available” might actually mean in practice). In contrast, our

learning-from-experience hypothesis posits that individuals are more strongly influenced by

data realized during their life-times than by other historical data. This hypothesis carries a

rich set of implications: First, beliefs are heterogeneous. In this simple example, individuals

who lived through periods of high inflation forecast higher future inflation than individuals

who experienced low inflation on average during their life times. Second, learning dynamics

are perpetual. Beliefs keep fluctuating and never converge in the long-run, as memories of

historical data get lost when old generations disappear and new generations emerge. Third,
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the heterogeneity in subjective expectations between individuals contains information that

can be used to estimate the learning rules used by individuals without necessarily using

time-series information about the average level of expectations.

We show that the learning-from-experience hypothesis helps explain many empirical reg-

ularities in individuals’ inflation expectations. We use microdata on inflation expectations of

individuals from the Reuters/Michigan Survey of Consumers (MSC) covering a time span of

more than 50 years. We examine how subjective beliefs about future inflation are influenced

by individuals’ life-time experiences of inflation.

Our empirical framework employs linear regression-based forecasting rules similar to those

used in the adaptive learning literature, in particular Marcet and Sargent (1989), but with

the twist that we allow individuals to learn only from data realized during their life-time. We

consider two models of individuals’ expectations formation. In the first, individuals forecast

inflation by forming a weighted average of inflation rates experienced in the past, in the

second they use the experienced data to recursively estimate an AR(1) model. The learning-

from-experience mechanism is implemented by making the gain, i.e., the strength of updating

in response to surprise inflation, decreasing in age. As a result, young individuals react more

strongly to an inflation surprise than older individuals who have more data accumulated in

their life-time histories. A gain parameter determines how fast these gains decrease with age

as more data accumulates. We estimate this gain parameter by fitting the learning rule to

individuals’ reported inflation expectations in the MSC. The estimate of this gain parameter

reveals how people weight their inflation experiences when forming their beliefs about future

inflation.

The availability of microdata is crucial for our purpose, as it allows us to identify the

experience effect from cross-sectional heterogeneity. Moreover, relying on cross-sectional het-

erogeneity allows us to employ time dummies in the estimation, which makes it possible

separate experience effects from other, potentially unobserved, influences on expectations.

For example, we do not need to assume that past inflation experiences are the only influence
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on people’s subjective beliefs about future inflation. The time dummies absorb any other

variation in inflation expectations that is common to all individuals. For example, all in-

dividuals might rely, to some extent, on the published forecasts of professional forecasters,

which could contain additional information over and above the univariate history of inflation

rates. With time dummies in the regression we can also accommodate the case in which all

individuals draw, to some extent, on the full inflation history, so that life-time experiences

only exert a partial influence on individuals’ expectations. Thus, we do not need to assume

that data realized prior to an individuals’ life-time is completely ignored. Instead, our esti-

mation isolates the incremental explanatory power of life-time experiences over an above any

effects that are common to all individuals.

Our estimation results show that learning from experience has an economically important

effect on inflation expectations. Individuals of different ages often differ substantially in

their inflation expectations, and these differences are well explained by differences in their

inflation experiences. This heterogeneity is particularly pronounced following periods of high

surprise inflation. For example, in the late 1970s and early 1980s, the average inflation

expectations of individuals under the age of 40 exceeded those of older individuals above

age 60 by several percentage points, consistent with the fact that the experience of younger

individuals was dominated by the high inflation years of the 1970s, while the experience of

older individuals also included the low inflation years in the 1950s and 1960s. Our estimated

AR(1) learning-from-experience rule attributes part of this difference in expectations also to

a higher perceived persistence of inflation among younger individuals at the time, not only

a higher perceived mean rate of inflation. This heterogeneity in inflation expectations only

slowly faded away until the 1990s after a many years of moderate inflation.

The estimates of the gain parameter reveal how much weight people put on recently

experienced inflation rates relative to inflation experienced earlier in life. Our estimates imply

that recent inflation experiences receive relatively higher weight, but for older individuals

experiences from 20 to 30 years ago can still have some long-run effect.
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While our estimation exploits cross-sectional differences between cohorts, we also explore

the implications of learning from experience for the time series of average inflation expec-

tations. We show that if one averages across cohorts at each point in time, the average

weighting of past inflation data implied by our estimates of the learning-from-experience rule

from cross-sectional heterogeneity can be approximated very well with constant-gain learning

algorithms that are popular in macroeconomics applied to aggregate data. The value for the

gain parameter in a constant-gain algorithm that best matches the learning-from-experience

weights is quantitatively similar to the gain that Orphanides and Williams (2005) and Milani

(2007) have estimated from macroeconomic data and aggregate survey expectations. This

similarity is a remarkable result, because our estimation utilized only information about cross-

sectional differences between cohorts, and we did not calibrate learning-from-experience rule

to match the average level of inflation expectations or any macroeconomic data. Learning

from experience helps to simultaneously understand both the cross-section and time-series of

inflation expectations.

Learning, and learning in boundedly rational fashion in particular, implies that forecast

errors should be predictable, at least in sample, but possibly also out of sample. Consistent

with this implication, we find that the learning-from-experience forecasts contain information

that can be used to predict forecast errors in the level of average MSC inflation expectations

in sample as well as out of sample. Furthermore, we show that the same predictor variable

also helps predict forecast errors in the Survey of Professional Forecasters and and the excess

returns on nominal long-term bonds (which could reflect the inflation forecast errors of bond

market investors). The forecast error predictability is thus not limited to the non-professional

forecasters in the MSC.

Our paper connects to a number of works in the literature. Conceptually, our approach is

related to Honkapohja and Mitra (2003) who consider a model of bounded memory learning.

Bounded memory learning is similar to the learning-from-experience framework in that mem-

ory of past data is lost, but in bounded memory learning agents are homogeneous, whereas
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in our setting agents’ memory differs depending on their age.

There is only a small, but growing literature that looks at heterogeneity in expecta-

tions formation with micro data. Building on early work by Cukierman and Wachtel (1979),

Mankiw, Reis, and Wolfers (2003) examine the time-variation in dispersion in inflation ex-

pectations, and they relate it to models of ”sticky” information. Carroll (2003) further

investigates the sticky information model, but with aggregate data on inflation expectations.

Branch (2004), Branch (2007), and Pfajfar and Santoro (2010) estimate from survey data how

individuals choose among competing forecasting models. Piazzesi and Schneider (2010) in-

corporate data survey data on heterogeneous subjective inflation expectation in asset pricing,

while Piazzesi and Schneider (2011) use data on subjective interest rate expectations and a

model with adaptive learning. Shiller (1997) and Ehrmann and Tzamourani (2009) examine

the relation between cross-country variation in inflation histories and the public’s attitudes

towards inflation-fighting policies. Our paper contributes to this literature by demonstrating

the important role of learning from experience in expectations formation, which produces

both heterogeneity in expectations and gradually fading memory over time.

Our analysis is related to earlier empirical findings of Malmendier and Nagel (2011),

from data from the Survey of Consumer Finances, that various measures of individuals’ risk-

taking and portfolio allocations are correlated with individuals’ macroeconomic experiences.

Their data, however, did not allow to determine whether these effects are driven by beliefs

(e.g., experiences of high stock returns make individuals more optimistic) or by endogenous

preferences (e.g., experiences of high stock returns make individuals less risk averse or lead

to other changes in ”tastes” for certain asset classes). In this paper, we use direct data on

expectations to focus specifically on the beliefs channel. Interestingly, the weighting of past

experienced data that is implied by the estimated learning-from-experience rules in this paper

matches very closely the weighting scheme implied by the estimates in Malmendier and Nagel

(2011) from a completely different data source.

Evidence consistent with learning-from-experience effects is also presented in Greenwood
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and Nagel (2009) and Vissing-Jorgensen (2003), who show that young mutual fund managers

and young individual investors in the late 90s were more optimistic about stocks, and in

particular technology stocks, than older investors, consistent with young investors being more

strongly influenced by their recent good experience with technology stocks. Vissing-Jorgensen

also points out that there is age-heterogeneity of inflation expectations in the late 1970s and

early 1980s. Kaustia and Knüpfer (2008) and Chiang, Hirshleifer, Qian, and Sherman (2011)

find that investors’ participation decision and bidding strategies in initial public offerings is

influenced by extrapolation from previously experienced IPO returns.

The rest of the paper is organized as follows. Section 2 introduces our analytic framework

with learning from experience and our estimation approach. Section 3 discusses the data

set on inflation expectations. Section 4 presents our core set of results on learning-from-

experience effects in inflation expectations. In Section 5 we look at the implications of our

results at the aggregate level. Section 6 concludes with some final thoughts.

2 Learning from experience

Consider two individuals, one is member of the cohort born at time s, and the other belongs

to the cohort born at time s + j. Suppose that at time t > s + j they form expectations of

next period’s inflation, πt+1, based on the history of past inflation rates. The essence of the

learning-from-experience hypothesis is that when these two individuals forecast πt+1, they

draw on inflation histories of different lengths, and they place different weights on recent and

distant historical data: The younger individual, born at s+ j, has experienced a shorter data

set, and is therefore more strongly influenced by recent data. As a result, two individuals of

different cohorts may produce different forecasts at the same point in time. Our goal is to

investigate whether individuals’ inflation forecasts do indeed exhibit such experience effects.

To set up an analytical framework, we need to have some prior idea how individuals’

forecasting rules might look like. The candidate forecasting rules we examine have close

resemblance to those in the adaptive learning literature, in particular Marcet and Sargent
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(1989) (see also Sargent (1993) and Evans and Honkapohja (2001)). The key departure

from standard adaptive learning models is that we allow individuals to put more weight

on data experienced during their lifetimes than on other historical data, which results in

cross-sectional heterogeneity in expectations between members of different cohorts. As we

explain below, we do not assume that individuals’ forecasts of inflation are entirely adaptive

and based on the past inflation history alone. Our framework can accommodate additional

sources of information. But we hypothesize that forecasts have an adaptive component, and

that this adaptive component gives rise to cross-sectional differences in expectations between

different cohorts, depending on their life-time inflation experiences.

We consider two specifications of the perceived law of motion that individuals are trying

to estimate. The first one is

πt+1 = µ+ ηt+1, (1)

where πt+1 denotes the annualized inflation rate from the end of quarter t to the end of

quarter t+ 1 and ηt+1 is a white noise shock. This specification is not realistic as a model of

inflation for most of our sample, but we use it as a first cut to check whether heterogeneity

between cohorts in their inflation expectations is correlated with differences in perceived

mean inflation rates. We label this model as the simple mean model.

The second specification of the perceived law of motion is an AR(1), as, e.g., in Orphanides

and Williams (2004),

πt+1 = α+ φπt + ηt+1, (2)

which is a more realistic representation of the time-series process of inflation. Here, cross-

sectional differences between different cohorts can arise not only from differences individuals

perception of the mean, µ = α(1 − φ)−1, but also from differences in the perception of

persistence, φ, of deviations of recent inflation from this perceived mean.

Let xt ≡ 1, b ≡ µ for the simple mean model, and xt ≡ (1, πt)′, b ≡ (α, φ)′ for the AR(1)
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model. We assume that individuals estimate b recursively from past data following

bt = bt−1 + γtR
−1
t xt−1(πt − b′t−1xt−1) (3)

Rt = Rt−1 + γt(xt−1x
′
t−1 −Rt−1), (4)

where the recursion is started at some point in the (distant) past. In our specific setting, as

we explain below, past data gets downweighted sufficiently fast that initial conditions do not

exert any relevant influence. The gain parameter γt determines the degree of updating when

faced with an inflation surprise. With the gain sequence γt = 1/t, this algorithm represents

a recursive formulation of ordinary least squares estimation, using all data available until

time t with equal weights (see Evans and Honkapohja (2001))). With γt set to a constant,

the algorithm becomes a constant-gain learning algorithm. Constant-gain learning implies

that past data is weighted with exponentially decaying weights. Structural breaks can be

a motivation for constant-gain learning, for example. Past data is down-weighted, because

individuals believe that a structural break may have occurred. Alternatively, the parameters

of the inflation process may be perceived as time-varying.

Let πht = h−1
∑h−1

h=0 πt−i denote the h-period average inflation rate (with both πt and πht

measured at annual rates). We use the subscript |t to denote that a forecast was made using

information available to the agent at time t and the superscript h to denote the forecast

horizon. Individuals’ one-step ahead adaptive learning forecast is obtained as

τ1
t+1|t = b′txt (5)

Multi-period forecasts τht+h|t are obtained by iterating on the forecasting model at the time-t

estimates of the model parameters.

Relatively simple learning algorithms like the ones we just outlined are motivated in the

adaptive learning literature by the fact that economic agents face cognitive and computational

constraints which limit their ability to use optimal forecasts. The algorithms are viewed as
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an approximation of the ”rules of thumb” that practitioners and individuals might employ

to form their expectations. The focus of much of the adaptive learning literature is on

the conditions under which such simple learning rules can lead to convergence to rational

expectations. Our objective is different. We use this simple recursive least-squares learning

framework as a starting point for an empirical investigation of individuals’ actual forecasting

rules, and we depart from the standard adaptive learning algorithms in some ways to allow

for learning-from-experience effects.

Our key modification of the standard recursive least-squares learning framework is that

we let the gain parameter depend on the age t − s of the members of the cohort s, instead

of the calendar time t. As a result, individuals of different age can be heterogeneous in their

forecasts and they adjust their forecasts to different degrees in response to surprise inflation.

Specifically, we consider the following decreasing-gain specification,

γt,s =


θ
t−s if t− s ≥ θ

1 if t− s < θ,

(6)

where θ is a constant parameter that determines the shape of the implied function of weights

on past experienced inflation observations. We let the recursion start with γt,s = 1 for

t − s < θ, which implies that data before birth is ignored. (As will become clear below,

though, our econometric specification does allow for all available historical data to affect the

forecast. We do not assume that individuals only use data realized during their life-times,

but rather isolate its effect on expectation formation.) Our gain specification resembles the

one in Marcet and Sargent (1989), but with the difference that the gain here is decreasing in

age, not in time, and individuals use only data realized during their life-times, as opposed to

all historical data. That the gain decreases with age is a sensible assumption in context of the

learning-from-experience hypothesis. Young individuals, who have experienced only a small

set of historical data, should presumably have a higher gain than older individuals, who have

experienced a longer data history, and for whom a single inflation surprise observation should
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have a weaker marginal impact on their estimates of the the inflation process parameters.

To illustrate the role of the parameter θ, Figure 1 presents the sequences of gains (in

the top graph) as a function of the age of the individual and the implied weights (in the

bottom graph) on past inflation observations as a function of the time lag relative to current

time t. In this example, we consider a 50-year (200 quarters) old individual. Focusing on

the top graph first, it is apparent that gains decrease with age at a slower rate when θ is

higher. This means that less weight is given to observations that are more distant in the

past, as shown in the bottom graph. For θ = 1, for example, all historical observations since

birth are weighted equally. For θ > 1 weights on earlier observations are lower than those on

more recent observations. With θ = 3 very little weight is put on observations in the first 50

quarters since birth towards the right of the bottom graph.

We show in Appendix D that the decreasing-gain specification in Eq. (6) produces weight

sequences that are virtually identical to those produced by the weighting scheme in Mal-

mendier and Nagel (2011) for appropriate choices of the weighting parameters. This allows

us to easily compare the weights implied by our estimates of θ from inflation expectations

data, with the earlier evidence in Malmendier and Nagel where the weighting scheme is

estimated from data on portfolio allocations.

It would not be realistic to assume that individuals’ expectations formation is influenced

only by past inflation data and only by data realized during their life-times, and so in setting

up our econometric specification we allow the adaptive learning-from-experience forecast to

be complemented by other information sources. Letting πht+h|t,s denote the forecast of the

average (annualized) inflation rate over the next h periods made by cohort s at time t, we

assume

πht+h|t,s = βτht+h|t,s + (1− β) fht , (7)

The subjective expectation is a weighted average of the learning-from-experience component

τht+h|t,s and an unobserved common component fht of individuals’ h-period forecasts.

This unobserved component fht could represent any kind of forecast based on common
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Figure 1: Examples of gain sequences (top) and associated implied weighting of past data
(bottom)
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information available to all individuals at time t. For example, individuals might rely, to some

extent, on the opinion of professional forecasters, and the representation of their opinions in

the news media (e.g., as in Carroll (2003)). The learning-from-experience effect might only

make an incremental contribution over and above the influence of professional forecasters on

individuals’ opinions. Alternatively, fht could capture a common component of individual

forecasts that is driven by all available historical data, as opposed to their life-time expe-

riences. Again, β then only captures the incremental contribution of life-time experiences

τht+h|t,s to πht+h|t,s over and above this common component. Thus, we do not assume that

individuals only use data realized during their life-times, but our goal is to empirically isolate

the incremental effect of life-time experiences of inflation on expectations formation.

We estimate the following modification of Eq. (7):

π̃ht+h|t,s = βτht+h|t,s + δh′Dt + εht,s, (8)

where π̃ht+h|t,s denotes measured inflation expectations from survey data. In this estimating

equation, we absorb the unobserved fht with a vector of time dummies Dt. We also add the

disturbance εht,s, which we assume to be uncorrelated with τht+h|t,s, but which is allowed to

be correlated over time within cohorts and between cohorts within the same time period.

It captures, for example, measurement error in the survey data and idiosyncratic factors

influencing expectations beyond those explicitly considered here. We use this specification

to jointly estimate θ and β with non-linear least squares (recall that τht+h|t,s is a non-linear

function of θ).

The presence of time dummies in Eq. (8) implies that we identify β and θ, and hence

the learning-from-experience effect on expectations, from cross-sectional differences between

the subjective inflation expectations of individuals of different age, and from the evolution of

those cross-sectional differences over time. This has a number of advantages over prior work

which has estimated adaptive learning rules from aggregate data, e.g., time-series of mean

or median inflation expectations. If one finds a time-series relationship between the time-t

12



level of average inflation expectations expectations and lagged inflation rates, it is difficult to

establish whether the formation of expectations is really following adaptive learning rules, or

whether the expectations implied by adaptive learning just happen to be highly correlated

with the expectations implied by some other formation mechanism (e.g., rational expecta-

tions). In contrast, in the case of our learning-from-experience hypothesis, there is a clear

prediction about the cross-section: Expectations should be heterogeneous by age, and for

young people they should be more closely related to recent data than for older people. We

can also estimate the gain parameter θ that determines the learning speed from this cross-

sectional heterogeneity. This provides a new source of identification of the learning speed in

adaptive learning algorithms.

3 Data

To estimate the learning-from-experience model, we use long-term historical data on the

consumer price index (CPI). Our survey data starts in 1953, and so, to be able to fully

capture experienced inflation for the oldest individuals in the survey sample, we need inflation

data stretching back 75 years before that date. We use CPI data from Shiller (2005), available

(updated until the end of 2009) on Robert Shiller’s website. This series starts in 1871, and we

use it to calculate annualized quarterly log inflation rates. To illustrate the long-run variation

in inflation rates, Figure 2 shows five-year moving averages of this inflation rate series.

The inflation expectations microdata is from the Reuters/Michigan Survey of Consumers

(MSC), conducted by the Survey Research Center at the University of Michigan. These

surveys were administered since the early 1950s, initially three times per year, then quarterly

from 1960 through 1977, and monthly since 1978 (see Curtin (1982)). Several questions in

these surveys are the basis for the calculation of the University of Michigan Consumer Senti-

ment Index. We obtain data for surveys conducted from 1953 to 1977 from the Inter-university

Consortium for Political and Social Research (ICPSR) at the University of Michigan. From

1959 to 1971, the questions of the winter-quarter Survey of Consumer Attitudes were admin-
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Figure 2: Five-year moving average of annualized CPI inflation rates

istered as part of the Survey of Consumer Finances (SCF ), and so we obtain those data from

the SCF files at ICPSR. The data from 1978 to 2007 is available in from the University of

Michigan Survey Research Center.

In most periods, survey respondents are asked two questions about expected inflation.

One about the direction of expected future price changes (”up”, ”same”, or ”down”) and one

about the expected percentage change in prices. Moreover, in many periods, consumers are

asked these two questions for both their expectations about price changes at a 1-year horizon

and over a 5-10 year horizon.

In our analysis, we focus on percentage expectations about future inflation. Figure 3

highlights the periods in which we have percentage expectations data at a 1-year horizon (top

graph) and 5-10 year horizon (bottom graph). The quarters in which percentage expectations

data is directly available in the survey data set are shaded in light grey. Those shaded in

dark grey are quarters in which respondents in the survey are asked only the categorical

question (”up”, ”same”, or ”down”). In those quarters we impute percentage responses from
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the categorical responses. The imputation procedure is described in detail in Appendix B.

Since our learning-from-experience hypothesis predicts that inflation expectations should

be heterogeneous across different age groups, we aggregate the data at the cohort level. For

each cohort defined by birth year, we compute, each month, the mean inflation expectations

of members of this cohort. In the computation of this mean, we apply the sample weights

provided by the MSC. If multiple surveys are administered within the same quarter, we

average the monthly means within each quarter to make the survey data compatible with

our quarterly inflation rate series. We restrict our sample to respondents whose age ranges

from 25 to 74. This means that for each cohort we obtain a quarterly series of inflation

expectations that covers the time during which members of this cohort are from 25 to 74

years old.

To provide some sense of the variation in the data, Figure 3 plots the average inflation

expectations of young (averaging across all cohorts that are in the age range from 25 to

39) and old (averaging across cohorts that are in the age range 61 to 75), relative to the

full-sample mean expectation at each point in time. Thus, the figure plots cross-sectional

differences, which we focus on in the estimation, not the time-variation in aggregate. To

better illustrate lower frequency variation, we plot the data as 4-quarter moving averages.

For the 1-year expectations in the top graph, the dispersion across age groups widens to

almost 3 percentage points (pp) during the high inflation years of the 1970s and early 1980s.

The dispersion in expectations is even bigger for the 5-10 year expectations in the bottom

graph. The gap between young and old reaches more than 4 pp in the early 1980s. The fact

that young individuals at the time expected higher inflation is consistent with the learning-

from-experience story: The experience of young individuals around 1980 was dominated by

the recent high-inflation years, while older individuals’ experience also included the modest

inflation rates of earlier decades. For younger individuals, with a smaller set of experienced

inflation data points, these recent observations exert a stronger influence on their expecta-

tions. As we show below, differences between young and old in their perception of inflation
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Figure 3: Four-quarter moving averages of mean inflation expectations of young (age < 40)
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persistence matter as well, not just differences in the level of inflation rates they experienced

in the past.

4 Estimation of learning-from-experience effects from expec-

tations heterogeneity

We now estimate the learning-from-experience effects by fitting the estimating equation (8)

to the MSC inflation expectations data, for both the simple mean and the AR(1) model,

using nonlinear least squares on the data aggregated at the (birth-year) cohort level. We

relate survey expectations measured in quarter t to learning-from-experience forecasts τht+h|t,s,

where we assume that the data available to individuals in constructing τht+h|t,s are quarterly

inflation rates until the end of quarter t − 1. To account for possible serial correlation of

residuals within cohorts and correlation between cohorts within the same time period, we

report standard errors that are robust to two-way clustering by cohort and calendar quarter.

Table 1, Panel A, presents the estimation results for 1-year expectations. Using the full

sample, our estimate of the gain parameter for the simple mean model in column (1) is

θ = 2.808 (s.e. 0.159). Comparing this estimate of θ with the earlier Figure 1 one can see

that the estimate implies weights that are declining a bit faster than linearly. The results in

Table 1 also show that there is a strong relationship between the learning-from-experience

forecast τht+h|t,s and measured inflation expectations, captured by the sensitivity parameter

β, which we estimate to be 0.711 (s.e. 0.070). This magnitude of the β parameter implies

that when two individuals differ in the weighted-average inflation experienced during their

life time by 1 pp, their one-year inflation expectations differ by 0.711 pp on average.

The presence of the time dummies in these regressions is important to rule out that

the estimates might pick up effects unrelated to learning from experience. The fact that β

is not equal to zero is direct evidence that differences in experienced inflation histories are

correlated with differences in expectations. If differences in expectations between individuals’
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Table 1: Explaining heterogeneity inflation expectations with learning from experience

Each cohort is assumed to recursively estimate the simple mean or the AR(1) model with decreasing
age-dependent gain using quarterly annualized inflation rate data up to the end of quarter t− 1. The
table reports the results of non-linear least-squares regressions of 1-year inflation expectations (Panel
A) and 5-10 year inflation expectations (expressed in terms of average annual rates) from the MSC

in quarter t on these learning-from-experience forecasts. Standard errors reported in parentheses are
two-way clustered by time and cohort. The sample period runs from 1953 to 2009 (with gaps).

Simple Mean AR(1)
full sample w/o imputed data full sample w/o imputed data

(1) (2) (3) (4)
Panel A: 1-year inflation expectations

Gain parameter θ 2.808 2.994 3.006 3.097
(0.159) (0.184) (0.249) (0.272)

Sensitivity β 0.711 0.711 0.647 0.650
(0.070) (0.069) (0.074) (0.077)

Time dummies Yes Yes Yes Yes

Adj. R2 0.637 0.635 0.636 0.634
#Obs. 8165 7600 8165 7600

Panel B: 5-10 year inflation expectations

Gain parameter θ 1.860 1.845 1.815 1.796
(0.086) (0.090) (0.081) (0.086)

Sensitivity β 1.167 1.153 1.213 1.201
(0.143) (0.147) (0.136) (0.141)

Time dummies Yes Yes Yes Yes

Adj. R2 0.418 0.417 0.421 0.419
#Obs. 6151 5550 6151 5550

18



with different inflation experiences did not exist (for example, because they all learned from

the same historical data set in the same way, applying the same forecasting rules) then β

would be zero, because all the effect of historical inflation rates on current forecasts would

be picked up by the time dummies. The implication that follows from non-zero β is that

recent observations exert a stronger influence on expectations of the young, because their set

of experienced historical inflation rates comprises only relatively few observations.

To check whether the imputation of percentage responses from categorical responses has

any influence on the results, we also re-run the estimation without the imputed data, using

only those time periods in which percentage responses are directly available. The results are

presented in column (2). As can be seen, whether or not imputed data is used has little effect

on the results.

Columns (3) and (4) present the results for the AR(1) model. The results are very similar

to those for the simple mean model in terms of fit and the sensitivity parameter β. At 3.006

(s.e. 0.249), the estimated gain parameter is slightly higher, indicating that the AR(1) model

suggests somewhat higher weights on recent data than the simple mean model. But overall,

the differences between the simple mean and AR(1) models are minor, which indicates that

the cross-sectional differences in expectations produced by the simple mean and AR(1) are

largely identical. We discuss this point further below.

Interestingly, the weighting of past inflation experiences implied by the point estimates of θ

is similar to the weighting implied by the estimates obtained in Malmendier and Nagel (2011)

by relating data on household asset allocation to experienced risky asset returns.1 This is

quite remarkable. Our inflation expectations data here is drawn from a completely different

data set, and we look at beliefs about inflation rather than asset allocation choices, but

the dependence on life-time macroeconomic history in both cases seems to involve a similar

weighting of experienced data. This suggests that that a common expectations-formation
1The weighting function in Malmendier and Nagel (2011) is controlled by a parameter λ which relates to

θ as θ ≈ λ+ 1 (see Appendix D), and which is estimated to be in the range from 1.1 to 1.9 depending on the
specification.
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mechanism may be driving all of these results.

Panel B reports the same nonlinear least squares regressions, but now with 5-10 year

inflation expectations as the dependent variable. The 5-10 year expectations data is available

in fewer time periods, and so the number of observations in Panel B is about 2,000 lower than

in Panel A. The gain parameter estimates for both the simple mean model in columns (1)

and (2) and the AR(1) model in columns (3) and (4) are lower than for 1-year expectations

in Panel A, and the β estimates are higher. But broadly speaking, the results are similar to

the one-year expectations case. Here, too, the differences in explanatory power between the

simple mean and AR(1) models are small. Again, whether we use the full sample or imputed

data does not make much difference.

One possible alternative theory for these (time-varying) age-related differences in inflation

expectations is that different age groups consume different consumption baskets, and that

individuals form inflation expectations based on recent inflation rates they observe on their

age-specific consumption baskets. The concern would be that these inflation differentials

between age-specific consumption baskets could be correlated with differences in age-specific

learning-from-experience forecasts that we construct. In other words, inflation differentials

between age-specific consumption baskets could be a correlated omitted variable. To address

this issue, we re-run the regressions in Table 1 controlling for differences between inflation

rates on consumption baskets of the elderly and overall CPI inflation rates. We measure

the inflation rates of the elderly with the experimental CPI for the elderly series (CPI-E)

provided by the Bureau of Labor Statistics. The results reported in Appendix C show that

this does not affect our results. The cross-sectional differences that we attribute to learning-

from-experience effects are not explained by differences in age-specific inflation rates.

Turning back to the main results, the reported R2 in Panels A and B of Table 1 include

the effect of the time dummies, and so they are of limited use in judging the explanatory

power of learning-from-experience. To get a better sense of the extent to which learning-

from-experience effects explain cross-sectional differences in inflation expectations, Figure 4
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and 5 presents some plots of fitted values for different age groups for the simple mean and

AR(1) models, respectively.

For the purpose of these plots only, we average inflation expectations and the fitted values

within the same young (age < 40) and old (age > 60) categories that we used earlier in Figure

3. Since our estimation with time dummies focuses on cross-sectional differences, we plot the

inflation expectations and fitted values of these subgroups after subtracting the full-sample

mean each period. Thus, the plots focus on cross-sectional differences, just like the estimation

in Table 1. To eliminate high-frequency variation, we show 4-quarter moving averages for

both actual and fitted values.

The top graph in Figure 4 plots the fitted values of 1-year expectations, i.e. those cor-

responding to the estimates in Panel A of Table 1. Fitted values are drawn as lines, raw

inflation expectations are shown as triangles (young) or circles (old). The plot shows that

the simple mean model does a good job of explaining the differences in inflation expectations

between young and old. In particular, it accounts, to a large extent, for the large difference

in expectations between young and old in the late 1970s and early 1980s.

The bottom graph in Figure 4 provides an equivalent plot using 5-10 year inflation ex-

pectations and the corresponding fitted values based on the estimates in Panel B of Table 1.

Here, too, the simple mean model accounts for much of the difference in inflation expecta-

tions between young and old, although it is less successful than for one-year expectations in

explaining some of the more extreme differences, such as the big spike in the mid-1970s.

Figure 5 shows that the fit with the AR(1) model looks similar. The AR(1) model does

slightly better in capturing the big spike in the difference between young and old in the early

1980s and the convergence in the most recent periods.

4.1 Time-path of parameter estimates

It may seem surprising that the simple mean and AR(1) models do roughly equally well in

explaining the cross-sectional heterogeneity between cohorts. To see how this can arise, note
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Figure 4: Simple mean model: Comparison of 4-quarter moving averages of actual and fitted
1-year (top) 5-10 year (bottom) inflation expectations of young and old in excess of the
full-sample mean expectation.

22



(a) 1-year expectations

−.
02

−.
01

0
.0

1
.0

2
Ex

pe
ct

ed
 In

fla
tio

n

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
Quarter

Age < 40 fit Age > 60 fit
Age < 40 actual Age > 60 actual

(b) 5-10 year expectations

−.
04

−.
02

0
.0

2
.0

4
Ex

pe
ct

ed
 In

fla
tio

n

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
Quarter

Age < 40 fit Age > 60 fit
Age < 40 actual Age > 60 actual

Figure 5: AR(1) model: Comparison of 4-quarter moving averages of actual and fitted 1-year
(top) 5-10 year (bottom) inflation expectations for young and old in excess of the full-sample
mean expectation.
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that we can write the one-step ahead learning-from-experience forecast for cohort s according

to the AR(1) model as

τ1
t+1|t,s = µ|t,s + φ|t,s(πt − µ|t,s), (9)

where µ|t,s and φ|t,s represent the AR(1) parameter estimates of cohort s at time t. Labelling

cohorts of older people with “o” and the young with “y”, the difference in their forecasts can

be expressed as

τ1
t+1|t,y − τ

1
t+1|t,o = (1− φ|t)(µ|t,y − µ|t,o) + (φ|t,y − φ|t,o)(πt − µ|t), (10)

where φ|t and µ|t denote the average of the respective parameter estimates of young and old.

The above expression, in conjunction with Figure 6, which reports the time-path of the

learning-from-experience AR(1) parameter estimates for young and old, helps to understand

how the simple mean model and the AR(1) model can produce similar implications for cross-

sectional differences in inflation forecasts. In times of high φ|t, when both young and old

perceive a high degree of inflation persistence, a situation that applied around 1980 (see top

panel of Figure 6), the positive differences in mean µ|t,y−µ|t,o (see bottom panel of Figure 6)

are heavily downweighted by (1−φ|t). However, during this period, φ|t,y −φ|t,o was positive,

and πt − µ|t was strongly positive, too, which means that the downweighting of µ|t,y − µ|t,o

was more than offset by the second term in (10). In contrast, in the last 10 years of the

sample, φ|t was much closer to zero, and hence there was little downweighting of µ|t,y − µ|t,o.

Furthermore, the moderate inflation rates at the time stayed relatively close to µ|t, which

means that the second term in (10) was close to zero.

Thus, the similarity of the cross-sectional differences implied by the simple mean and

AR(1) models are explained by the time-path of the autocorrelation estimates of young and

old. However, even though the simple mean and AR(1) models produce similar predictions

for cross-sectional differences in inflation expectations, their predictions for the time series of

inflation forecast levels are likely to be very different.
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Figure 6: Learning-from-experience AR(1) model estimates (with θ = 3.006) of autocorrela-
tion (top) and mean inflation (bottom) for young and old.
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Table 2: Explanatory power of learning-from-experience forecasts without time dummies

MSC inflation expectations are regressed on the (horizon-matched) forecasts implied by the learning-
from-experience models (simple mean or AR(1)), with θ fixed at the point estimates from Table 1.
Unlike those in Table 1, the regressions here do not include time dummies. Standard errors reported
in parentheses are two-way clustered by time and cohort. The sample period runs from 1953 to 2009
(with gaps), but it excludes all quarters in which percentage expectations had to be imputed from
categorical responses.

1-year expectations 5-10 year expectations
Simple mean AR(1) Simple mean AR(1)

(1) (2) (3) (4)

Learning-from-experience forecast 0.627 0.994 0.778 1.227
(0.141) (0.079) (0.242) (0.212)

Intercept 0.020 0.003 0.011 -0.007
(0.006) (0.003) (0.011) (0.009)

Adj. R2 0.058 0.415 0.053 0.136
#Obs. 7600 7600 5550 5550

4.2 Explanatory power without time dummies

To assess to what extent the estimated learning-from-experience rules help explain not only

cross-sectional differences between cohorts, but also the time variation in inflation expecta-

tions, we now examine how well the estimated learning rules explain the pooled cross section

and times series of survey inflation expectations if we do not absorb the variation in the av-

erage level of survey inflation expectations with time dummies. For this purpose, we re-run

the regressions from Table 1, but with two modifications. First, we omit the time dummies.

Second, we fix the gain parameter θ at the point estimates we obtained in Table 1. In this

way, we investigate how much explanatory power we get from a learning rule that we fitted

only to cross-sectional heterogeneity, without altering θ to better fit the time series of average

survey inflation expectations.

The results are shown in Table 2. Since our imputation method for missing percentage

expectations is designed to impute only cross-sectional differences, but not the average level
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of inflation expectations each period, these regressions use only data from periods in which

percentage expectations are available without imputation from categorical information. Fo-

cusing first on the results for 1-year expectations, column (1) shows, not surprisingly, that

the explanatory power of the simple-mean model is relatively poor once the model is asked

to capture not only cross-sectional heterogeneity, but also the time variation in the average

level of inflation expectations. While the simple mean model does a good job in capturing

cross-sectional heterogeneity (Table 1), it misses much of the variation in the level of inflation

expectations. In contrast, the AR(1) model in column (2) does much better with an adj. R2

of 41.5%. Evidently, the AR(1) model is not only good at capturing cross-sectional hetero-

geneity (Table 1), but also the time-variation in the level of inflation expectations. Moreover,

with 0.994, the coefficient on the expectation learning-from-experience is almost exactly equal

to one, suggesting that observed survey expectations tend to move one-for-one with the ex-

pectation implied by the learning-from-experince AR(1) model. This is quite remarkable, as

θ is set to the estimate from Table 1 and not fitted to get a good match to the level of average

inflation expectations. These results suggest that the AR(1) learning-from-experience model

works well as a model of individuals’ inflation expectations formation.

For 5-10 year expectations, the explanatory power of the simple mean model in column

(3) is quite low, similar to the result for 1-year expectations. But here the explanatory power

is relatively poor even for the AR(1) model in column (4). Iterating on the quarterly AR(1)

model to produce a forecast at a 5-year horizon eliminates much of the effect of πt, even in

times when the autocorrelation at a quarterly horizon is relatively high. As a result, the

5-year horizon forecasts are driven largely by the µ|t,s, which explains why there is much

less of a difference between the simple mean and AR(1) forecasts in the case of 5-10 year

expectations. Closer inspection of the data shows that survey respondents perceive a much

higher degree of long-run persistence in inflation than the AR(1) model can deliver. The

level of 5-10 year survey expectations is generally very close to the 1-year expectations. For

example, replacing the 5-year horizon forecast in the regression in column (4) with the 1-year
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horizon AR(1) forecast produces a much better fit (adj. R2 = 22.5%). Survey respondents

seem to perceive autocorrelations as decaying roughly consistent with an AR(1) up to a lag of

four quarters, but then with very little decay beyond the fourth lag. We have experimented

with more complex ARIMA models such as ARMA(1,1), for example, that can accommodate

a slow long-run decay in autocorrelations to check if these can help to explain the long-run

persistence implicit in the 5-10 year survey expectations, but we found that this is not the

case.

5 Implications for the level of average inflation expectations

So far we have focused on understanding to what extent learning from experience can help

understand inflation expectations at the cohort level. In our estimation in Table 1, we did not

need to assume that the learning-from-experience mechanism is necessarily the only driving

force behind inflation expectations formation. The time dummies in our regressions could

absorb various other common factors affecting individuals’ expectations. However, from a

macroeconomic perspective it would also be interesting to see to what extent the learning-

from-experience mechanism, based on the estimates of θ from cross-sectional heterogeneity,

helps explain inflation expectations in aggregate. In this section we show that the learning-

from-experience forecasts at the cohort level aggregate to average forecasts that closely re-

semble those from constant-gain algorithms that are popular in macroeconomics. We also

show that one can extract components from the learning-from-experience forecasts that are

useful in predicting forecast errors in the Michigan survey and the Survey of Professional

Forecasters (SPF), as well as the returns on long-term bonds. In this section, we focus solely

on the AR(1) model, as the simple-mean model, while quite good in explaining cross-sectional

heterogeneity, fares poorly in capturing the time-series of average expectations. Like most of

the literature, we focus on expectations at a 1-year horizon in this section.2

2As we noted before, the dynamics of 5-10 year survey expectations are (puzzlingly) similar to those at a
1-year horizon. Thus, all results we show in this section would be roughly similar with 5-10 year expectations
if one makes the assumption that individuals’ apply their 1-year horizon learning-from-experience forecast
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5.1 Approximating learning-from-experience with constant-gain learning

In our learning-from-experience framework, individuals update their expectations with de-

creasing gain: as individuals age, their experienced set of data expands and their expectation

reacts less to a given inflation surprise than a younger individual would. However, as older

individuals leave the population at some point, they are replaced by younger ones. At any

given point in time, there is a distribution of gains in the population, but to the extent that

the age distribution is relatively stable, the average gain should be approximately constant.

Therefore, the average forecast across all age groups can be approximated by a constant-gain

learning algorithm where updating takes place in the same way as laid out in equations (2)

to (4), but with the decreasing gain in (6) replaced by a constant gain, and with a single

“representative” agent.

How well this works can be seen by comparing the average weights on past inflation

data implied by the cohort-level learning-from-experience rules with the weights implied by

constant-gain learning. The solid line in Figure 7 plots the average of implied weights on past

inflation with learning from experience, where the average is taken (equal-weighted) across

all cohorts alive in the population at a point in time. The implied weights are based on our

point estimate of θ = 3.006 from Table 1, column (3). We then look for a constant gain so

that the weights on past data implied by this constant-gain algorithm minimize the squared

deviations from the average learning-from-experience weights. The result is a constant gain

of γ = 0.0175, with implied weights as shown by the dashed line. The figure shows that the

weighting of past data is clearly very similar.

Thus, the implications of learning from experience for expectations formation in aggregate

are likely to be very similar to those of the constant-gain learning algorithms that are common

in macroeconomics (see, e.g., Orphanides and Williams (2005), Milani (2007), Evans and

Honkapohja (2001)).3 There are two important differences, though.

unchanged to the 5-10 year horizon.
3Cross-sectional heterogeneity in expectations between different cohorts could matter for other macroeco-

nomic implications, though; see, e.g., Piazzesi and Schneider (2010).
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Figure 7: Implied aggregate weights for past inflation observations under learning from ex-
perience (equal-weighted average of weights across age groups at point estimate of θ = 3.006
from Table 1, Panel A, column (3)) compared with implied weights under constant-gain
learning by a single agent (with gain γ = 0.0175 that minimizes squared deviations from the
aggregated learning-from-experience weights).

First, the motivation for the loss of memory of past data is different. In constant-gain

learning, the gradual loss of influence of past data is typically motivated as a concern on part

of agents that past data is not relevant anymore to do structural changes and time-variation

in the parameters of the perceived law of motion. While these concerns may also be relevant

in the learning-from-experience framework and lead to θ > 1 so that recent data receives

a higher weight than data realized earlier in life, learning from experience comes with the

additional feature that memory of past data is lost as old generations die and new ones are

born. In aggregate, data in the distant past would be downweighted even if each individual

weighted all life-time experiences equally.

Second, as we demonstrated in the previous section, the gain parameter of the learning-
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from-experience rule can be estimated from cross-sectional data. Our estimate of θ is not

fitted to aggregate expectations. The time dummies in our estimation absorb all variation in

the cross-sectional average expectation, and so θ is identified from cross-sectional information

only. In light of the fact that we did not employ aggregate expectations in estimation of θ

and we did not calibrate θ to achieve the best fit to realized future inflation, it is remarkable

that the constant gain γ = 0.0175 in Figure 7 that best matches the weights implied by our

estimate of θ is virtually the same as the gains that seem to be required to match aggregate

expectations and macro time-series data. For example, Milani (2007) estimates a DSGE

model with constant-gain learning and obtains an estimate of 0.0183 that results in the best

fit of the model to the macro time series employed in estimation. Orphanides and Williams

(2005) choose a gain of 0.02 to match the time series of inflation forecasts from the Survey

of Professional Forecasters (SPF). Thus, our estimation from cross-sectional heterogeneity

between different cohorts brings in new additional data that provides “out-of-sample” support

for values of the gain parameter in this range. This is particularly important because the

identification of the learning speed in macro models from macro data is econometrically

difficult (Chevillon, Massmann, and Mavroeidis (2010)).

5.2 Explaining the level of average inflation expectations

Figure 8 explores how well the average learning-from-experience forecast tracks the average

1-year survey expectations (i.e., the data we used in the estimation in Table 1 is now averaged

across all cohorts each quarter). Since our imputation of percentage responses only targeted

cross-sectional differences, but not the average level of percentage expectations, we omit all

periods from these regressions in which we only have categorical inflation expectations data.

It is apparent that the average learning-from-experience forecast (calculated with θ =

3.006 from Table 1, Panel A, column (3)), shown as the solid line, tracks the average survey

expectations closely. It is important to keep in mind that this is by no means a mechanical re-

sult. Our estimation of θ used only cross-sectional differences in survey expectations between

31



0
.0

5
.1

.1
5

Ex
pe

ct
ed

 In
fla

tio
n

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
Quarter

Actual Learning from experience
Constant−gain learning Sticky information

Figure 8: Average 1-year survey expectations (actual) compared with average learning-from-
experience forecasts and with constant-gain and sticky-information forecasts.

cohorts. It did not utilize any information about the level of the average survey expectation.

Therefore, it could have been possible, in principle, that the θ that fits cross-sectional differ-

ences produces average forecasts that fail to match the level of average expectations. As the

figure shows, though, we find that the two match well.

We also compare the average learning-from-experience forecast to a constant-gain-learning

forecast (with γ = 0.0175 as in Figure 7), shown as the dashed line. Not surprisingly,

given how similar the weights on past inflation data are for the two expectations-formation

mechanisms (see Figure 7), the forecasts are almost indistinguishable. This provides further

support for the idea that at the aggregate level, the learning-from-experience expectations

formation mechanism can be approximated well with constant-gain learning.

Next, we compare the average learning-from-experience forecast to a sticky-information

forecast. Sticky information, as in Mankiw and Reis (2002) and Carroll (2003) induces sticki-
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Table 3: Explaining mean inflation expectations

OLS regressions with quarterly data from 1973Q1 to 2009Q4 (with gaps). The dependent variable
is the forecast of one-year inflation made during quarter t, averaged across all cohorts. Newey-West
standard errors (with 5 lags) are shown in parentheses.

(1) (2) (3) (4)

Learning-from-experience forecast 0.893 0.707
(0.124) (0.130)

Constant-gain-learning forecast 0.943
(0.144)

Sticky-information forecast 0.877 0.385
(0.202) (0.145)

Intercept 0.009 0.008 0.011 -0.001
(0.005) (0.005) (0.006) (0.005)

Adj. R2 0.570 0.557 0.597 0.713
#Obs. 172 172 129 129

ness in expectations, and it is possible that our estimation of the learning-from-experience rule

might be picking up some of this stickiness in expectations. We calculate sticky-information

inflation expectations as in Carroll’s model as a geometric distributed lag of current and past

quarterly SPF forecasts of one-year inflation rates.4 We set the weight parameter λ = 0.25

as in Mankiw and Reis (2002) (Carroll (2003) estimates λ = 0.27). The resulting sticky-

information forecast is shown as the short-dashed line in Figure 8.

In addition to the informal graphical comparison in Figure 8, Table 3 reports the results

from a regression of quarter t average survey expectations on the learning-from-experience

forecast in quarter t. Column (1) shows that with 0.893 the coefficient on the learning-from-

experience forecast is very close to one, and less than one standard error away from it. With

57.0% the adj. R2 is high. This is another confirmation of the fact that the learning-from-

experience forecast tracks the actual average survey expectations very closely. Not surpris-

ingly, given the similarity of average learning-from-experience forecasts and constant-gain
4We use the 1-year inflation forecasts that the SPF constructs from median CPI inflation forecasts for each

of the four quarters ahead. Before 1981Q3, when the CPI inflation forecast series is not available, we use the
GDP deflator inflation forecast series.
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learning forecasts, using the constant-gain learning forecast as explanatory variable in col-

umn (2) produces almost identical results. The explanatory power of the sticky-information

forecast in column (3) is lower. Adding the sticky-information forecast as an explanatory

variable along with the learning-from-experience forecast in column (4) lowers the coefficient

on the learning-from-experience forecast a little, but the effect is small. This shows that

the learning-from-experience forecast does not just pick up the sticky-information effect of

Mankiw and Reis (2002) and Carroll (2003).

5.3 Predictability of forecast errors

Adaptive learning may lead to predictable and persistent forecast errors (from the econo-

metrician’s perspective). If such forecast errors do not cancel out in the aggregate, they

can influence macroeconomic outcomes. We therefore now turn our attention to the question

whether we can link the learning-from-experience behavior to predictability of level of average

forecast errors.

That learning-from-experience can lead to predictable and persistent forecast errors can

be seen in the following simplified example. Consider first the simple mean model with a

time-varying mean, πt+1 = µt + ηt+1, as the true as well as the perceived model of inflation.

The average one-step ahead learning-from-experience forecast results in the forecast error

π1
t+1|t − πt+1 = µ|t − µt − ηt+1. (11)

Now consider an econometrician who analyzes subjective expectations data ex-post with

data available. If µt is equal to a constant µ, the econometrician can, with a sufficiently large

sample (which is not restricted to the [s, t] interval that learning-from-experience agents in

cohort s are learning from), approximately observe the true mean. Any fluctuations of µ|t

around µ translate, predictably and one-to-one, into forecast errors. Regressing π1
t+1|t −

πt+1 on µ|t would yield a coefficient of one, with the second term in (11) absorbed by the

intercept. If µt is time-varying, µ|t is likely to have positive correlation with µt which lowers
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the regression coefficient. Of course, it is also possible that agents have some biases in their

forecasts that influence the coefficient upwards.

In the case of a true and perceived AR(1) model for inflation with time-varying parame-

ters, πt+1 = µt + φt(πt − µt) + ηt+1, the situation is more complicated. The one-step ahead

forecast error in the average learning-from-experience forecast is given by

π1
t+1|t − πt+1 = µ|t(1− φ|t)− µt(1− φt) + φ|tπt − φtπt. (12)

If µt and φt are constant, regression of π1
t+1|t − πt+1 on µ|t(1− φ|t), φ|tπt, and πt produces a

coefficient of one on the first two variables, and a coefficient of φ on the third. The second

term in (12) is absorbed by the intercept. If µt and φt are time-varying, this can result in

lower coefficients on the first two variables, just like in the simple mean model above, but, in

addition, regression coefficients here can also be impacted by correlation between the various

terms in (12).

We now run these regressions in our data. We work with 1-year ahead forecasts (h = 4

quarters). The multi-period expression corresponding to the right-hand side of equation (12)

can be obtained by iterating on the AR(1) model. The three predictors in this multi-period

case are µ|t

(
1−

∑4
i=1 i

−1φi|t

)
, which we label as the mean component,

(∑4
i=1 i

−1φi|t

)
πt,

which we label as the AR component, and πt. The µ|t and φ|t parameter estimates are

averages of the parameter estimates across all cohorts at time t, where we computed the

cohort-level estimates from the learning-from-experience rule with θ = 3.006 as in Table 1.

In the computation of the average survey expectation on the left-hand side (from which we

subtract the realized four-quarter inflation rate π4
t+4), we take care to first align individuals’

reported expectations with realized inflation rates by interview month, i.e., we align it with

the inflation rates realized over the 12 months following the interview month.

Table 4 presents the results. As column (1) shows, there is a strong positive relationship

between the mean component of the learning-from-experience forecast at time t and average

inflation forecast errors of the participants in the Michigan survey during the forecast period
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Table 4: Predictability of average forecast errors

OLS regressions with quarterly data from 1973Q1 to 2009Q4 (with gaps). The dependent variable is
the forecast of 1-year inflation made during quarter t, averaged across all cohorts, minus the inflation
rate realized over the 12 months following the interview month. Newey-West standard errors (with
5 lags) are shown in parentheses. Out-of-sample (OOS) forecasts for the OOS tests at the bottom
of each panel are constructed recursively, with an initial minimum window size until 1976Q3 (20
observations), except for column (3), where the initial window extends until 1989Q4.

Full sample Post-1989 SPF
(1) (2) (3) (4)

Mean component 2.553 2.432 1.526 3.203
(0.750) (0.735) (0.864) (1.004)

AR component -0.380 -0.839 -0.049
(0.318) (0.648) (0.337)

Lagged inflation 0.090 0.199 -0.062
(0.112) (0.098) (0.112)

Intercept -0.073 -0.068 -0.036 -0.096
(0.023) (0.023) (0.024) (0.031)

Adj. R2 0.222 0.243 0.158 0.288
#Obs. 152 152 80 148

OOS RMSE with constant only 0.019 0.019 0.018 0.020
OOS RMSE with constant and predictor(s) 0.017 0.017 0.016 0.017
Diebold-Mariano one-tailed p-value 0.019 0.011 0.044 0.052

t to t + 4. The coefficient estimate of 2.553 (s.e. 0.750) is greater than one, which suggests

that the regression picks up not only forecast errors induced by learning, but also other

errors over and above the error induced by learning. The point estimate is just about two

standard errors above one, though, so a coefficient of one is still within the likely range of

possible values that one might find if one had a larger sample. The adj. R2 of 22.2% indicates

that predictability of forecast errors is substantial. Column (2) adds the AR component and

the lagged inflation rate πt−1 as predictors,5 but both of these are not significant, neither

statistically nor in terms of their incremental explanatory power. To check whether all the

predictability is driven by the high-inflation periods around 1980, the regression reported in
5As before, we assume here that forecasts in quarter t are made with information up to end of quarter

t− 1, and so µ|t, φ|t, and the lagged inflation rate are also calculated from inflation rates up to quarter t− 1.

36



column (3) is run with the sample restricted to the post-1989 period. The coefficient on the

mean component is lower, but the adj. R2 of 15.8% still indicates substantial predictability.

Evidently, the forecast error predictability is not just limited to the high-inflation periods.

Another interesting issue is to what extent inflation expectations of professional fore-

casters mirror the predictability that we find in individuals’ forecast errors in the MSC.

Individuals’ forecast errors may be more significant for individuals’ decisions (e.g., house-

hold investment decisions, labor market choices), while professional forecasts may be more

relevant for asset pricing in financial markets. For this reason, column (4) reports results

from a regression where we use the forecast error from the SPF as dependent variable. The

results are similar to those with the MSC data in column (2): A large coefficient on the

mean component, close-to-zero coefficients on the AR component and lagged inflation, and

an adj. R2 greater than 20%. Thus, the forecasts of professionals exhibit similar forecast

error predictability.

Our focus so far has been on tests of in-sample predictability. To check for predictabil-

ity induced by learning along the lines discussed above, this is the appropriate perspective.

Learning does not necessarily induce predictability of forecast errors out-of-sample (OOS),

though (although it might, to the extent that rationality is bounded and individuals dis-

card information, as in learning from experience, or use information in suboptimal ways, or

work with misspecified models). In addition to shedding light on individuals’ expectations

formation mechanism, exploring OOS predictability would also have the potential practical

implication that it could help to extract better inflation forecasts from the Michigan survey

data by removing some predictable errors in real time.

To provide some perspective on the OOS predictability of forecast errors in the Michigan

survey, the bottom rows of Table 4 report (pseudo) OOS test results. The prediction for

the forecast error in period t to t + 4 is constructed from estimates of a regression using

data from the start of the sample up to quarter t. We use an initial window until 1976Q3

(20 observations) for the first prediction, with the exception of column (3), where the initial
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window extends until 1989Q4. We report the root mean squared error (RMSE) from this

OOS prediction exercise for two specifications: one regression with only a constant, and one

with the predictors included. In column (1), including the mean component of the learning-

from-experience forecast in addition to the constant lowers the OOS RMSE to 0.017 from

0.019. To check the significance of this difference, we calculate the Diebold and Mariano

(1995) statistic (with Newey-West adjustment). We obtain a p-value of 0.019, indicating

evidence for OOS predictability. Adding additional predictors in column (2) has little effect.

Out-of-sample predictability is also evident in the late sample in column (3) and the SPF in

column (4).

5.4 Predictability of bond excess returns

As an alternative way of assessing whether the predictability of forecast errors is pervasive

among macroeconomic forecasters and financial market participants and not just confined to

the individuals in the MSC sample, we now examine excess returns on nominal long-term

bonds. The tests with bond market returns have the additional benefit that we can use data

that extends further back in time, because we only need inflation and return data, but not

survey data for these tests.

For default-free bonds, an identity connects realized (log) returns in excess of the one-

period risk-free rate from holding an n period bond from t to t + 1 as follows (see, e.g.,

Piazzesi and Schneider (2011)):

rx
(n)
t+1 = (n− 1)(f (n−1,n)

t − i(n−1)
t+1 ), (13)

where rx(n)
t+1 denotes the excess return, f (n−1,1)

t is the time-t forward interest rate rate for the

period starting at t + 1 to t + n and i
(n−1)
t+1 is the time t + 1 yield yield of an n − 1 period

bond. Taking subjective expectations, Êt[.], of (13),

Êt[rx
(n)
t+1] = (n− 1)(f (n−1,n)

t − Êt[i(n−1)
t+1 ]). (14)
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Taking objective expectations of (13),

Et[rx
(n)
t+1] = (n− 1)(f (n−1,n)

t − Et[i(n−1)
t+1 ]). (15)

If we assume, for simplicity, that investors price bonds with zero risk premia so that the

expectations hypothesis holds under investors’ subjective beliefs and hence Êt[rx
(n)
t+1] = 0,

then, substituting this into (14) and then into (15) yields objectively expected excess returns

Et[rx
(n)
t+1] = (n− 1)(Êt[i

(n−1)
t+1 ]− Et[i(n−1)

t+1 ]), (16)

i.e., objective expected excess returns are driven by deviations of investors’ subjective expec-

tations of future n period yields from objective expectations. These subjective expectations

of future yields are in turn likely to be driven by subjective expectations of future inflation.6

Suppose Êt[i
(n−1)
t+1 ] = ψÊt[πt+1] and Et[i

(n−1)
t+1 ] = ψEt[πt+1] for some constant ψ. Then,

Et[rx
(n)
t+1] = ψ(n− 1)(Êt[πt+1]− Et[πt+1]), (17)

i.e., the predictability of bond excess returns is linked to the predictable component of infla-

tion forecast errors Êt[πt+1]−Et[πt+1]. The more investors’ subjective expectations of higher

inflation (and hence higher future bond yields) exceed those under objective expectations,

the higher the objectively expected excess returns.

For this reason, we now investigate whether we find predictability patterns in bond returns

that are similar to those in survey forecast errors. Since only the mean component of the

learning-from-experience forecast emerged as an economically and statistically significant

predictor of survey forecast errors in Table 4, we focus on this single predictor here.

To measure long-term bond returns we use a return series of U.S. Treasury Bonds with
6One way of making the link between yield expectations and inflation expectations explicit would be to

combine a factor model of bond yields, most simply a single-factor model in which all bond yields are linear
in the short-term interest rate, with an interest-rate policy rule under which the short-term interest rate is a
function of current inflation
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Table 5: Predictability of bond excess returns

Quarterly and annual regressions of long-term U.S. Treasury bond returns in excess of 1-month Trea-
sury Bill returns on the mean component of the learning-from-experience forecast (calculated with
θ = 3.006). Quarterly and annual bond returns are calculated by compounding monthly returns. The
regression with annual returns uses non-overlapping windows. The sample period runs from 1952Q1
to 2010Q4. The table shows OLS estimates along with a 90% Bonferroni confidence interval following
Campbell and Yogo (2006) for the coefficient on aggregate experienced inflation.

Quarterly Annual
(1) (2)

Intercept -0.019 -0.075
OLS s.e. (0.008) (0.033)

Mean component of learning-from-experience forecast 0.891 3.614
OLS s.e. (0.343) (1.401)
Campbell-Yogo 90% Bonferroni CI [0.154, 1.384] [0.830, 6.624]

Adj. R2 0.021 0.077

AR order of predictor by BIC 2 1
90% CI for largest AR root [1.001, 1.008], [0.935, 1.002]

#Obs. 236 59

maturities between 61 and 120 months from the Fama Bond database at the Center for

Research in Security Prices (CRSP ) and we construct excess returns by subtracting the 1-

month T-Bill return (from Ibbotson Associates). We use quarterly returns as well as returns

compounded to annual returns in our return-prediction regressions.

The results are presented in Table 5. The OLS coefficient estimate with quarterly returns

in column (1) is 0.891 (s.e. 0.343), which yields an adj. R2 of 2.1%. For return-prediction

regressions this is an economically significant and plausible R2. With annual returns, the

magnitudes of coefficient and standard errors roughly quadruple and the adj. R2 rises to

7.7%.

The predictor variable in these regressions is highly persistent, and its innovations (which

are closely related to innovations in inflation) are contemporaneously correlated with long-

term bond returns. Under these circumstances, it is well known that inference based on
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conventional OLS t-statistics leads to hypothesis tests that reject the null of no predictability

too frequently in finite samples (Stambaugh (1999)). For this reason, we construct confidence

intervals using the methods of Campbell and Yogo (2006). Campbell and Yogo use local-to-

unity asymptotics to achieve a better approximation of the finite-sample distribution in cases

when the predictor variable is persistent. Their construction of the confidence interval uses

the Bonferroni method to combine a confidence interval for the largest autoregressive root of

the predictor variable with confidence intervals for the predictive coeffficient conditional on

the largest autoregressive root.

As Table 5 shows, the Campbell-Yogo confidence interval for the regression coefficient

of the predictor variable do not include zero, and they are approximately centered around

the OLS point estimate.7 This indicates that there is statistically reliable evidence in favor

of predictability. The mean component of the learning-from-experience forecast thus not

only predicts the forecast errors in survey expectations from the MSC, but it also helps

predict bond excess returns, which indicates that the learning-from-experience expectations-

formation mechanism may be relevant for understanding expectations formation of bond

market investors, too.

Unlike for the survey expectation forecast errors, there is, however, no evidence of out-of-

sample predictability. OOS regressions with a constant (i.e., predicting simply with the past

average return) yield a slightly lower OOS RMSE than regressions that include the mean

component of learning-from-experience forecasts as a predictor. This suggests that bond

market investors might be better than the respondents in the MSC and SPF in avoiding

out-of-sample predictable forecast errors. As a caveat, though, it is difficult to interpret the

out-of-sample results in return prediction regressions. Lack of OOS predictability is a common

feature of return prediction regressions, and, as discussed in Campbell and Thompson (2008),
7At the bottom of the table, we also report the estimated autoregressive lag length for the predictor variable,

as determined by the Bayesian Information Criterion (BIC), as well as a confidence interval for its largest
autoregressive root. These are among the inputs to Campbell and Yogo’s construction of confidence intervals.
The confidence intervals for the largest autoregressive root contain an explosive root. This is similar to the
dividend-price ratio regressions in Campbell and Yogo (2006), and it underscores the potential importance of
accounting for the persistence of the predictor variable in testing for predictability.
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OOS tests have low power to detect predictability.

6 Discussion and conclusion

Our empirical analysis shows that individuals’ inflation expectations differ depending on the

characteristics of the inflation process experienced during their life times. Differences in the

experienced mean inflation rate and the persistence of inflation shocks generate (time-varying)

differences in inflation expectations between cohorts. Younger individuals’ set of experienced

data is dominated by recent observations, while older individuals draw on a more extended

historical data set in forming their expectations.

This learning-from-experience expectations-formation mechanism can explain, for exam-

ple, why young individuals forecasted much higher inflation than older individuals following

the high inflation years of the late 1970s and early 1980s. This is due to a combination of a

high mean rate of inflation and high persistence in the short data set experienced by young

individuals at the time. Learning-from-experience also provides an alternative and comple-

mentary mechanism to the sticky information hypothesis in Mankiw and Reis (2002) and

Carroll (2003) that contributes to the high level of disagreement about inflation expectations

around that time noted in Mankiw, Reis, and Wolfers (2003).

For the most recent periods towards the end of our sample in 2010, our results suggest

that individuals perception of the persistence of inflation shocks is close to zero, particularly

for young individuals. This suggests that unexpected movements in the inflation rate are

currently unlikely to move inflation expectations much. As argued in Roberts (1997), Or-

phanides and Williams (2005), and Milani (2007), these changes in individuals’ perceptions

of persistence are also likely to influence the persistence of inflation rates.

Even though the learning-from-experience framework is substantially different from more

conventional representative-agent applications of learning in that it generates heterogeneity

in inflation expectations, its implications for the average level of inflation expectations are

similar to those resulting from representative-agent constant-gain learning algorithms that
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are popular in macroeconomics (see, e.g., Orphanides and Williams (2005); Milani (2007)).

There are, however, two important differences.

First, the learning-from-experience theory provides an alternative motivation for a constant-

gain learning at the aggregate level. With learning-from-experience, information in the dis-

tant past is discarded not only because individuals believe that structural shifts and pa-

rameter drift could occur, but also because individuals’ memory is bounded: Memory of

macroeconomic history is lost as new generations emerge whose subjective beliefs are shaped

by relatively recent experience. This is an additional reason why learning dynamics may be

perpetual, without convergence in the long-run.

Second, in the learning-from-experience framework, the heterogeneity between cohorts can

be exploited to estimate the parameter controlling the gain in individuals’ learning rule, and

hence the speed of updating in response to inflation surprises, from cross-sectional differences

alone, without using information about the level of average inflation expectations. This is

useful, because identifying the gain from macro data seems to be difficult. In light of this,

it is remarkable that our estimate of the speed of updating, averaged across cohorts, are

quantitatively similar to those obtained in earlier work in macroeconomics that estimated

the speed of updating to fit macroeconomic time-series or aggregate survey expectations.
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Appendix

A Michigan Survey data

The inflation expectations data is derived from the responses to two questions, the first
is categorical, while the second one elicits a percentage response. For example, for 1-year
expectations the two questions are:

1. “During the next 12 months, do you think that prices in general will go up, or go down,
or stay where they are right now?”

2. “By about what percent do you expect prices to go (up/down) on average during the
next 12 months?”

As outlined in Curtin (1996), some adjustments to the raw data are necessary to address
some known deficiencies. We follow Curtin’s approach, which is also the approach used by
the Michigan Survey in constructing its indices from the survey data:

For respondents who provided a categorical response of “up” (“down”), but not a percent-
age response, we drew a percentage response from the empirical distribution of percentage
responses of those who gave the same categorical response of “up” (“down”) in the same
survey period. Prior to the February 1980 survey, respondents were not asked about percent-
age expectations if they responded (in the categorical first part of the question) that they
expected prices to decline. We assign a value of -3% to these cases before February 1980. In
most survey periods, they account for less than 2% of observations.

Starting in March 1982 the administrators of the Michigan survey implemented additional
probing, which revealed that the categorical response that prices will remain the “same” was
often misunderstood as meaning that the inflation rate stays the same. We use the adjustment
factors developed in Curtin (1996) to adjust a portion of “same” responses prior to March
1982 to “up”, and we assign a percentage response by drawing from the empirical distribution
of those observations in the same survey period with a categorical response of “up”.

B Imputation of percentage expectations from categorical re-
sponses

In the early years of the Michigan survey, only categorical responses about prices going “up”,
“down”, or stay the “same” were elicited, but no percentage responses. We nevertheless
attempt to use the information in those surveys in our analysis of percentage expectations
by imputing percentage responses from the categorical information. We do so by estimating
the relationship between categorical responses, the dispersion of categorical responses, and
percentage responses in those periods in which we have both categorical and percentage
response data. We conjecture that the average percentage response of individuals in an age
group should be positively related to the proportion of “up” responses and negatively to the
proportion of “down” responses.
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Figure A.1: Actual and imputed one-year (top) and 5-10 year inflation expectations in excess
of the full-sample mean.
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We first calculate the proportion of “up” and “down” responses, pupt,s and pdownt,s , within
each cohort s at time t (in this case t denotes a calendar month). We then run a pooled
regression of measured percentage inflation expectations, π̂et+1|t,s, on pupt,s and pdownt,s , including
a full set of time dummies, and obtain, for one-year expectations, the fitted values

π̂e,impt+1|t,s = ...time dummies... + 0.052pupt,s − 0.069pdownt,s (R2 = 35.3%)

(0.001) (0.004)

and for 5-10 year expectations,

π̂e,impt+1|t,s = ...time dummies... + 0.050pupt,s − 0.047pdownt,s (R2 = 29.6%)

(0.003) (0.004)

with standard errors in parentheses that are two-way clustered by quarter and cohort.
Because we employ time dummies in our main analysis, our main concern here is whether

the imputed expectations track well cross-sectional differences of expectations across age
groups, rather than the overall mean over time, and so we also estimate the relationship
between percentage expectations and categorical responses with time dummies included in
the regression.

Figure A.1 illustrates how the imputed percentage expectations compare with the actual
expectations in the time periods in which we have both categorical and percentage expecta-
tions data. To focus on cross-sectional differences between age groups, the figure shows the
average fitted and actual values (in terms of four-quarter moving averages) for individuals
below 40 and above 60 years of age after subtracting the overall mean expectation in each
time period.

C Controlling for age-specific inflation rates

We re-run the regressions from Table 1 with controls for age-specific inflation-rates. We
measure the inflation rates of the elderly from the experimental CPI for the elderly series
(CPI-E) provided by the Bureau of Labor Statistics. We calculate annualized quarterly log
inflation rates from the CPI-E, similar to our calculation of overall CPI inflation rates. We
then include in our regressions the differential between the CPI-E and CPI inflation rates,
πElderlyt−1 − πt−1, interacted with age.

Panel A of Table A.1 presents the results for one-year expectations. The inflation series
based on the CPI-E is only available from the end of 1983 onwards, and so the sample in
this table is restricted to 1984Q1 to 2009Q4. As a basis for comparison, we therefore first
re-run the regression without the additional age-dependent inflation control on this shorter
sample. The results in column (1) show that the estimate of the gain parameter is similar
to the earlier estimate in Table 1, but the sensitivity parameter β is estimated to be lower
than before. Its magnitude is still statistically, as well as economically significant, though. In
column (2) we add the interaction term between age-related inflation differentials and age,
as well as age itself (the πElderlyt−1 − πt−1 variable itself without the interaction is absorbed by
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Table A.1: Controlling for age-specific inflation rates

The estimation is similar as in Table 1, but with the experimental CPI for the elderly interacted with
age included as control variable. The sample runs from 1984Q1 to 2009Q4, the period for which lagged
12-month inflation rates from the experimental CPI for the elderly is available. Standard errors in
parentheses are two-way clustered by time and cohort.

Simple mean AR(1)
(1) (2) (3) (4)

Panel A: One-year inflation expectations

Gain parameter θ 2.438 3.502 2.702 3.901
(0.213) (0.510) (0.286) (0.633)

Sensitivity β 0.412 0.449 0.455 0.511
(0.068) (0.086) (0.092) (0.105)

Age 0.000 0.000
(0.000) (0.000)

Age×(πElderly
t−1 − πt−1) -0.003 -0.001

(0.002) (0.002)

Time dummies Yes Yes Yes Yes

Adj. R2 0.245 0.247 0.244 0.245
#Obs. 5350 5350 5350 5350

Panel B: 5-10 year inflation expectations

Gain parameter θ 1.489 3.127 1.448 3.292
(0.082) (0.292) (0.083) (0.318)

Sensitivity β 0.695 0.731 0.735 0.816
(0.093) (0.118) (0.109) (0.132)

Age 0.000 0.000
(0.000) (0.000)

Age×(πElderly
t−1 − πt−1) -0.001 0.000

(0.003) (0.003)

Time dummies Yes Yes Yes Yes

Adj. R2 0.297 0.303 0.295 0.302
#Obs. 4600 4600 4600 4600
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the time dummies). We obtain a negative coefficient on the interaction term, which is not
consistent with the idea that inflation expectations of the elderly may be positively related to
the inflation rates on the consumption basket of the elderly. One should not overemphasize
this negative coefficient, though, as it is not statistically significant. Including age and the
interaction term does, however, have some effect on the estimates for θ. With 3.502, the
point estimate is substantially higher than in column (1), and the standard error is much
higher as well. For the AR(1) model in columns (3) and (4), the picture is quite similar.

Panel B repeats the same analysis for 5-10 year expectations, and the results are similar,
too. The point estimates on the interaction term are again close to zero and statistically not
significant, and the inclusion of the interaction term does not drive out the learning-from-
experience effect. Overall, the evidence does not support the alternative theory that different
consumption baskets could explain the age-related heterogeneity in inflation expectations
individuals.

D Implied weighting of past data with learning from experi-
ence

The learning-from-experience algorithm in our analysis implicitly weights past observations
in almost exactly similar fashion as the (ad-hoc) weighting function in Malmendier and Nagel
(2011). Moreover, the parameter θ that controls the strength of updating in the framework
here maps into the parameter that controls the weighting function in Malmendier and Nagel
(2011). This makes the results easily comparable. For simplicity, we illustrate the connection
between the two weighting schemes in the case of the simple mean model, where an agent
tries to estimate the mean. But an analogous result applies in the AR(1) case or other
regression-based forecasts.

Consider an individual of age t− s making an inflation forecast at time t. The weighting
function in Malmendier and Nagel (2011) implies that this individual forms a weighted average
of past inflation, where the inflation rate observed at time t − k (with k ≤ t − s) gets the
following weight:

ωt,s (k) =

(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ . (A.1)

This implies that the most recent observation, i.e. time-t inflation, πt, receives the weight

ωt,s (0) =
1∑s

j=0

(
t−s−j
t−s

)λ . (A.2)

For comparison, in the learning-from-experience algorithm, the forecast τ1
t+1|t,s is a weighted

average of the prior-period forecast and πt,

τ1
t+1|t,s = (1− γt−s) τ1

t|t−1,s + γt,sπt. (A.3)
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which implies that the most recent observation carries the weight ω̃t,s (0) = γt,s. Iterating,
one finds that earlier observations receive the weight

ω̃t,s (k) =
{

γt,s for k = 0
γt−k,s

∏k−1
j=0 (1− γt−j,s) for k > 0

. (A.4)

We now show that both weighting schemes are equivalent if the gain sequence is chosen to
be age-dependent in the following way:

γt,s =
1∑t−s

j=0

(
t−s−j
t−s

)λ (A.5)

We present a proof by induction. First, the choice of γt,s in (A.5) implies that ω̃t,s (0) =
ωt,s (0). It remains to be shown that if ω̃t,s (k) = ωt,s (k), then ω̃t,s (k + 1) = ωt,s (k + 1)
(with k + 1 ≤ t− s). Thus, assume that

ω̃t,s (k) =

(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ . (A.6)

Then, from Eq. (A.4),

ω̃t,s (k + 1) = γt−s−k−1
(1− γt−s−k)
γt−s−k

ω̃t,s (k)

=

[∑t−s−k
j=0

(
t−s−j
t−s−k

)λ]
− 1∑t−s−k−1

j=0

(
t−s−j

t−s−k−1

)λ
(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ

=

[∑t−s−k
j=0

(
t−s−j
t−s−k

)λ]
− 1∑t−s−k−1

j=0

(
t−s−j
t−s−k

)λ
(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
=

∑t−s−k−1
j=0

(
t−s−j
t−s−k

)λ
∑t−s−k−1

j=0

(
t−s−j
t−s−k

)λ
(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
=

(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
= ωt,s (k + 1) ,

where for the third-to-last equality we multiplied numerator and denominator by
(
t−s−k−1
t−s−k

)λ
.

This concludes the proof.
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Finally, we show that the gain sequence (A.5) can be approximated by

γt,s ≈
λ+ 1
t− s

,

i.e., by the gain specification in (6) with θ = λ+ 1. To see this write the gain in (A.5) as

γt,s =
(t− s)λ∑t−s

j=0 (t− s− j)λ
.

Focusing on the denominator of this expression, note that if one were to make the increments
j infinitesimally small (instead of being discrete steps of 1), the denominator would become∫ t−s
0 xλdx = 1

λ+1(t − s)λ+1. Therefore, in this limiting case of infinitesimal increments, we
get

γt,s =
λ+ 1
t− s

.

In our case with quarterly increments, this approximation is, for all practical purposes, vir-
tually identical with the true gain sequence in (A.5).
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