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ABSTRACT

Mutual funds often disappear following poor performance. When this poor performance is partly

attributable to negative idiosyncratic shocks, the fund’s estimated alpha understates its true

alpha. This paper develops and estimates a structural model to evaluate this bias. I find that

the bias in the mean of the observed alpha distribution is approximately 1 percent per year.

When I correct for this bias using historical data, I find that the majority of fund managers still

have negative net alphas but the average is not nearly as low as what the fund-level estimates

suggest. This reverse survivorship bias affects all studies that run fund-level regressions to draw

inferences about fund managers’ abilities.
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The typical survivorship-bias argument starts from the observation that mutual funds often disap-

pear following poor performance. Thus a study that conditions on fund survival overstates mutual

fund performance.1 In this paper I show that the correlation between poor performance and fund

disappearance induces another pattern with the opposite sign: mutual fund alphas estimated from

a survivorship-bias-free data set are biased downwards relative to the true distribution of alphas.

The mechanics of this bias are transparent in a setting in which investors learn about fund

alphas. (As I discuss below, the bias arises even in the absence of learning. The only requirement

is that funds tend to disappear following poor performance.) Suppose, for the sake of an argument,

first, that investors have a prior belief that a fund’s alpha is zero; second, that the true alpha is fixed;

and third, that investors abandon a mutual fund (and the fund shuts down) when their posterior

belief is that the fund’s alpha is less than −ᾱ. Each month, investors update their beliefs about the

alpha based on the risk-adjusted return. If this return is positive, investors infer skill. If the return

is negative, investors infer less skill. The posterior mean always lies between the prior mean and the

average realized risk-adjusted return. As a consequence, if the posterior mean ever falls below −ᾱ

and the fund disappears then the observed alpha must have been strictly lower than −ᾱ. If not, the

posterior mean, which is an unbiased estimate of the fund’s true alpha, could not have crossed this

threshold. I call the resulting positive gap between the true alpha and the alpha estimated from the

data the reverse survivorship bias.2

The reverse survivorship bias arises from the correlation between risk-adjusted returns and fund

survival probabilities. It does not matter whether this correlation is the product of an underlying

learning process about fund alphas. To appreciate this bias as a statistical result, suppose a mutual

fund has a fixed alpha α and that its risk-adjusted returns are R̃e
t ≡ α + ε̃t, where ε̃t’s have zero

means and are independently distributed. A fund survives for a random T̃ number of months. The

1See, for example, Brown, Goetzmann, Ibbotson, and Ross (1992), Elton, Gruber, and Blake (1996), Carpenter
and Lynch (1999), and Carhart, Carpenter, Lynch, and Musto (2002).

2Pástor, Taylor, and Veronesi (2009) present a closely related argument in the IPO literature. They note that if
a firm has an IPO after the posterior mean about the firm’s profitability exceeds some threshold then the observed
pre-IPO profitability must have been strictly higher than this threshold. As a consequence, the market rationally
expects the firm to experience a post-IPO drop in profitability equal in size to the gap between the average pre-IPO
profitability and the posterior mean at the time of the IPO.
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optional stopping-time theorem3 states that
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This expression shows that if the survival probability is increasing in the risk-adjusted return, that

is, corr(T̃ , ε̃t) > 0, the average risk-adjusted return is a downwards-biased measure of the fund’s

true alpha, E
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Intuitively, this result arises from the ambiguity about whether a realized return is low because

the true alpha is low or because the fund-specific shock is low. (This same noise leaves a Bayesian

investor’s posterior mean between the prior mean and the signal.) A fund manager may have a

small positive alpha, but a negative idiosyncratic shock results in a low return. If such a fund

dies, it leaves behind an in-sample (i.e., frequentist) alpha estimate that is too low. No mechanism

eliminates just-lucky mutual funds to offset this bias. I note that one cannot resolve this bias by

studying mutual funds in isolation of each other. One can only address the covariance term in

expression (2), which represents the bias, by studying the cross section of mutual funds.

I note that this bias is related to, but not an example of, the “baby-boy fallacy”: if parents stop

having children after their first son, there will not be more boys than girls in the population. The

difference between this fallacy and the reverse survivorship bias is the same as the difference between

the sums and averages in expressions (1) and (2): do we count the total number of boys and girls

in the population, or do we compute the average fraction of boys in each family? If parents were

to follow a stop-at-a-boy rule, the boy and girl counts would be the same in the population but the

fraction of girls in the average family would not equal the unconditional probability, 1
2 . If each family

always stops having children after the first boy, the fraction of girls will be zero in 1
2 of families, 1

2

in 1
4 of families (girl-boy), 1

3 in 1
8 of families (girl-girl-boy), and so forth. Continuing ad infinitum,

3See, for example, Williams (1991).
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the expected fraction of girls in a family is then limn→∞
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= 0.3069. Similarly, if mutual funds are more likely to disappear following “bad”

outcomes than “good” outcomes, the observed fund data oversample “bad” outcomes.

This paper investigates the reverse survivorship bias by estimating a structural learning model

from the data. The model assumes each mutual fund’s alpha is fixed and drawn from a distribution

that is known to investors. Each fund generates monthly risk-adjusted returns that exhibit two

sources of uncertainty: idiosyncratic shocks to portfolio returns and the estimation uncertainty from

the asset pricing model. Each period, investors use Bayes’ rule to combine the prior distribution

with the monthly risk-adjusted return to arrive at a posterior distribution for a fund’s alpha. I

remain agnostic about the mechanism that causes funds to disappear from the data and model the

fund disappearance probability as a free function of the posterior distribution. This function nests,

as a special case, the possibility that a fund disappears when the posterior mean falls below some

critical threshold. However, the structural model also can undo the built-in learning process if the

data suggest such a reversal is warranted.

This paper estimates the shape of the alpha distribution, the total variance of risk-adjusted

returns, and the exit-probability function from the CRSP mutual fund data by using the Simulated

Method of Moments. I match, between the data and simulations, the average alphas of both

surviving and disappearing funds, the differences in these averages over fund age, mutual fund

survival rates, and the mean and variance of the observed distribution of alphas. The model matches

these salient characteristics of the mutual fund data. The estimated form of the exit-probability

function supports the learning mechanism: a mutual fund typically disappears when the market’s

belief about its (CAPM) alpha decreases from the prior mean of .05 percent per year to a posterior

mean of −.21 percent per year.

The structural model estimates indicate the reverse survivorship bias is economically important.

Whereas the average true (CAPM) alpha at the estimated parameter values is .05 percent per year,

the average alpha estimated from the data is just −.71 percent per year. The difference in these

figures, 76 basis points, is the estimate of the magnitude of the reverse survivorship bias. When the

structural model is estimated by using the three- and four-factor model alphas, the magnitude of

the bias is 85 basis points and 83 basis points per year, respectively. These estimates of the size of
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the reverse survivorship bias, about 1 percent per year, are similar in magnitude to the estimates

of the direct survivorship bias that plagued early mutual fund databases.4 These computations

suggest that if we take a database that omits all dead funds and then start adding them back

in, the (positive) direct survivorship bias decreases, but at the same time, the (negative) reverse

survivorship bias begins to drag fund-specific alpha estimates down. When all dead funds have been

added back in, as is done in the survivorship-bias-free databases, the mean alpha estimate is too

low by approximately 1 percent per year.

The reverse survivorship bias affects the measurement of fund managers’ true alphas but does

not bias the estimates of the returns available to mutual fund investors. For example, the average

return on a strategy that invests the same amount into each actively managed fund is unaffected

because the profits of such a strategy do not depend on the counterfactual of how well a mutual

fund would have performed had it not disappeared. The reverse survivorship bias is, however, of

crucial importance if we are to draw inferences about fund managers’ stock-picking abilities: How

many fund managers have positive alphas? Or what is the average fund manager’s alpha? The

answers to these questions are important for understanding whether any active fund managers have

access to valuable information. By contrast, the average return available to mutual fund investors,

although an important statistic in its own right, does not measure heterogeneity in managers’ access

to information.

Several recent studies have focused on the question of whether any fund managers are skilled

or whether all seemingly superior performance can be attributed to luck. Kosowski, Timmermann,

Wermers, and White (2006) use a bootstrap technique and find that a “sizable minority” of managers

pick stocks well enough to more than cover their costs. Barras, Scaillet, and Wermers (2010) examine

the distribution of alphas (and the associated p-values) and find the number of negative-alpha funds

(24%) far outweighs the number of positive-alpha funds (.6%). Fama and French (2009) extract

demeaned risk-adjusted returns and run simulations to examine whether chance alone could generate

the alpha distribution observed in the data. They find only weak evidence in net returns of some

managers having enough skill to cover the costs they impose on investors. By contrast, they note

4Grinblatt and Titman (1989) estimate that the direct (upwards) survivorship bias is “relatively small” and between
10 and 30 basis points per year; Brown and Goetzmann (1995) get estimates between 20 and 80 basis points; Elton,
Gruber, and Blake (1996) find estimates between 71 and 91 basis points based on the three-factor model alphas; and
Carhart, Carpenter, Lynch, and Musto (2002) show the bias can be as large as 1 percent in samples longer than 15
years.
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the left tail of the actual alpha distribution is far thicker than the tail of the simulated distribution.

This left tail could indicate some funds have either negative stock-picking skills or high trading

costs or both. I note that this finding also is consistent with the reverse survivorship bias. The

alpha estimates are often too low for funds that disappear and so they thicken the left tail of the

distribution.

This bias has significant implications beyond the evaluation of the abilities of mutual fund

managers. First, individual investors, similar to mutual funds, often stop trading following poor

performance.5 The reverse survivorship bias argument suggests individual investors’ true alphas also

are not necessarily as low as what their estimated alphas suggest. Second, inferences about CEOs

can also be problematic if CEOs’ “survival” correlates with the firm’s performance and policies. A

pooled regression with CEO fixed effects6 will then produce fixed effect estimates that are biased

away from the true distribution of CEOs’ abilities or from their contributions to firms’ policies.

The paper is organized as follows. Section I describes the data and reports on the correlations

between mutual fund survival and alternative alpha estimates. Section II formulates the learning-

based structural model, estimates it by using the simulated method of moments, and uses the

estimated model to draw inferences about the size of the reverse survivorship bias. Section III

concludes.

I. Data and Performance Measurement

I use the mutual fund data from the CRSP (Center for Research in Security Prices) database. I

follow French (2008) and Fama and French (2009) and, first, include only funds that invest in U.S.

common stocks and, second, combine different share classes of the same fund into a single fund. I

restrict the sample to mutual funds that start on January 1984 or after this date. Although the

CRSP mutual fund data start in 1962, the pre-1984 part of the data is not reliable.7 Fama and

French (2009) also cut out the pre-1984 part of the data and note the average returns in this part of

the data are significantly higher for mutual funds that report monthly returns than for those that

5See, for example, Seru, Shumway, and Stoffman (2010).
6See, for example, Bertrand and Schoar (2003).
7See, for example, Elton, Gruber, and Blake (2001) for a critical assessment of the accuracy of the pre-1984 segment

of the CRSP Mutual Fund Database.
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report annual returns.

I let a mutual fund enter the sample after its combined net asset value across all share classes

exceeds $5 million in December 2006 dollars. Once a fund has exceeded this threshold, I keep the

fund in the sample no matter what happens to avoid introducing a selection bias. This net-asset-

value screen guards against the incubation bias of Evans (2009).8 The CRSP mutual fund files

contain monthly returns up to the end of September 2009. I use returns up to July 2009 to assess

which funds are no longer active in September 2009. My sample contains data on 2,599 mutual

funds that have return data for at least six months.

A. On the Correlation between Alphas and Fund Disappearance

In this section, I examine the correlation between fund returns and disappearance because of

the importance of this correlation in determining the size of the reverse survivorship bias (see

expression (2)). Although a number of studies9 find a positive relation between past returns and fund

disappearance, I report on these relations because, first, my sample period (and sample construction)

differs from those used in earlier studies, and second, because these estimates serve as inputs for the

structural model estimation.

I use three measures of performance throughout this study: the CAPM alpha, the alpha from

the three-factor model of Fama and French (1993), and the alpha from the four-factor model of

Carhart (1997). I measure these alphas by employing time-series regressions such as

Ri,t − rf,t = αi + bi (Rm,t − rf,t) + si SMBt + hi HMLt + mi MOMt + ei,t, (3)

where Ri,t is the return on fund i in month t, rf,t is the risk-free rate, Rm,t is month-t return on

the value-weighted CRSP index, and SMBt, HMLt, and MOMt are month-t returns on long-short

portfolios for size, value, and momentum. I require a fund to have at least six months of return data

8Incubation bias arises from fund management companies providing seed money to new funds (to develop a return
history) and then selectively opening the funds with best histories to the public. When these funds were allowed to
backfill their return histories, such incubation drove a positive wedge between the fund’s past performance, which was
selected to be good, and its expected performance. Fama and French (2009) use the same $5 million threshold as their
main specification and suggest this limit probably exceeds the fund’s seed money and thus cuts out the pre-release
period returns.

9See, for example, Brown and Goetzmann (1995), Khorana (1996, 2001), Chevalier and Ellison (1999), and Lynch
and Musto (2003).
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to estimate its alpha. I update alphas continuously as funds age to measure the covariance between

realized alphas and fund survival.

Table I reports on average alphas (as percentage points per year) for mutual funds that either

survive through the tth year or disappear in year t. A mutual fund is included in year t analysis if

the fund is still alive at the end of year t− 1. If the fund disappears by the end of year t, I compute

the fund alpha by using all available data from inception until the last month of returns. If the fund

is still alive at the end of year t, I compute the alpha by using data up to the end of year t. Each

column in Table I reports on average alphas for funds that either survive or disappear in year t. For

example, the four-factor model alphas indicate the average alpha is −3.2 percent per year for a fund

that disappears at some point during its fifth year. By contrast, the alpha estimate is .07 percent

per year for the average fund that survives through its fifth year. Because the dead-fund regressions

in the first column are based on at most 12 data points, and possibly as few as six, the three-factor

and four-factor alpha estimates are very noisy.

The last row in the table, which reports the fraction of funds that survives at least t years,

punctuates the economic importance of the disappearance of mutual funds. For example, 10 percent

of mutual funds disappear before reaching the age of four and approximately two thirds of mutual

funds survive through the tenth year. (If a mutual fund is T -years old at the end of the CRSP

mutual fund data set, I count the fund as a survivor in year 1, . . . , T computations but ignore it in

year T +1, . . . , 10 numbers.)

The alpha estimates suggest mutual funds that disappear perform considerably worse than sur-

viving mutual funds. This conclusion is not sensitive to the year in which the comparison is made

or to the choice of the asset pricing model used to estimate alphas. However, the size of the gap

between the dead and surviving funds varies across the models. These differences in average alphas

suggest the disappearance of poorly performing funds is potentially a significant factor in perfor-

mance evaluation via the reverse survivorship bias channel. For example, the reverse survivorship

bias argument suggests the four-factor model alpha estimate of −3.2 percent for those funds that

die in their fifth year is probably too low relative to these fund managers’ true abilities. The heart

of the issue is that these realized alphas may be low not only because the true alpha is low but also

because these funds experienced negative idiosyncratic shocks. Because of the latter possibility, the

8



expected alpha for these funds at the time of disappearance was probably higher than −3.2 percent

per year. Put differently, had these funds remained in existence, their asymptotic alpha estimates

would probably have been higher than their historical alphas.

Figure 1 plots cumulative risk-adjusted returns for surviving and disappearing funds to show

how these returns vary from year to year leading up to fund disappearance (or survival). In this

figure, I compute the risk-adjusted returns by using both the CAPM and the four-factor model. (I

note that the three-factor model estimates are very similar to the four-factor model estimates and

thus not reported.) The month-t risk-adjusted return from the four-factor model is

R̂e
i,t = Ri,t − rf,t − b̂i (Rm,t − rf,t) − ŝi SMBt − ĥi HMLt − m̂i MOMt, (4)

where b̂i, ŝi, ĥi, and m̂i are fund i’s loadings on the market, size, value, and momentum factors.

I estimate these loadings by using a time-series regression. If a fund disappears in year t, I again

estimate its factor loadings by using all data up to the month of disappearance. If the fund survives,

I use all data up to the end of year t. Figure 1 reports on cumulative risk-adjusted returns for funds

that survive for at least two, four, six, eight, or 10 years, as well as for funds that disappear in years

two, four, six, eight, or ten. The estimates suggest mutual funds often disappear following a string

of low returns. For example, mutual funds that disappear during their sixth year cumulatively lose

approximately 15 percent on a risk-adjusted basis in both specifications.

Table II reports on a set of probit regressions to measure the strength of the correlation between

alpha estimates and mutual fund survival. In each regression, the dependent variable takes the value

of one if the fund disappears in year t and zero otherwise. I estimate these regression month by

month, based on how long each fund has been in existence. For example, one regression uses data

on funds that have existed for eight years and two months. I drop such months from the analysis in

which no mutual funds disappear. I note that the dependent variables are independent of each other

across these cross-sectional regressions because for a fund to appear in the month t regression, its

dependent variable must have been zero in all previous regressions. The regressor in Panel A is the

fund’s alpha (the three leftmost columns) or the t-value associated with the fund’s alpha (the three

rightmost columns), estimated using monthly returns up to month of the cross-sectional regression.

Panel B reports on otherwise identical regressions but lags alpha estimates by one year. I estimate
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alphas using the CAPM, the three-factor model, and the four-factor model.10 Table II reports on

the average coefficient estimates across the monthly cross-sectional regressions.

The estimates in Table II support the same conclusion as the averages in Table I and the

cumulative risk-adjusted returns in Figure 1. The probability that a mutual fund disappears from

the data decreases significantly as the fund’s alpha estimate increases. The estimates for the CAPM

regression in Panel A indicate the annualized exit probability is 0.027 for a fund with α̂ = 0. This

probability decreases to almost zero (0.0003) if the alpha estimate is 2 percent instead. By contrast,

if the alpha estimate is −2 percent, the exit probability jumps up to 0.498.11 Thus, whereas the

exit probability is close to zero for slightly negative alphas and for all positive alphas, it increases

rapidly as the alpha estimate falls. The results are similar when alpha estimates are replaced with

the t-values associated with these first-stage estimates. In the CAPM regression, for example, the

annualized exit probability increases from 0.006 to 0.055 when the t-value for the fund’s alpha

estimate decreases from +2 to −2. Panel B shows the results are largely the same when we replace

current alpha estimates by estimates lagged by one year.

The probit regression estimates are similar across the three asset pricing models. I note that

two effects may make empirically distinguishingly between these models in exit regressions difficult.

First, the more complicated the asset-pricing model, the more data are needed to estimate alphas

with the same precision. If the amount of data is fixed then the addition of each new factor decreases

the precision at which alphas are estimated. For example, even if the four-factor model alphas

correlated perfectly with survival, the noisiness of these alphas in the data relative to the CAPM

alphas could tilt the regressions to favor the CAPM. Second, if fund disappearance is related to

investors’ inferences about alphas, the relevant question is not what is the true or ex post best asset

pricing model but what is the asset pricing model used by the investors. Before Carhart (1997),

10These regressions are not free of the errors-in-variables problem, because the regressor is a first-stage alpha
estimate. However, if these first-stage residuals are uncorrelated with fund survival, this errors-in-variables problem
does not bias the estimates but lowers the test’s power by adding noise. Moreover, the average alphas reported in
Table I show that the errors-in-variables problem should not materially influence the inferences. These Table I averages
could be estimated from a similar survival regression but with its two sides reversed: the alpha estimate would be the
dependent variable and the regressors would represent interactions between years and survival.

11I compute the annualized numbers as follows. If the alpha estimate is −2 percent, the monthly exit probability,
computed from the average point estimates for CAPM, as reported in the first column of Panel A in Table II, is
Φ

(

(−2.84) + (−0.02) ∗ (−62.64)
)

= 0.0558. Thus the fund disappearance probability is 0.0558 in month 1, (1 −

0.0558)(0.0558) = 0.0527 in month 2, and so forth. The annualized exit probability is the sum of these projected exit
probabilities. This computation assumes the alpha estimate remains unchanged over the year.

10



for example, mutual fund performance studies did not typically include the momentum portfolio

as a risk factor (or as a passive benchmark). Cremers, Petäjistö, and Zitzewitz (2008) note that

practitioners commonly evaluate fund managers by comparing their returns with benchmark indices,

such as the S&P 500 for large-cap stocks and Russell 2000 for small-cap stocks.

The estimates in Tables I and II and in Figure 1 indicate fund survival correlates significantly

with mutual fund performance when performance is measured by fund alphas. These findings, which

are consistent with the prior literature on mutual funds, suggest the reverse survivorship bias will

probably affect inferences about the distribution of fund managers’ abilities.

II. Simulated Method of Moments Estimation

A. Structural Model

In this section, I construct a structural model of mutual fund survival that I then estimate using

the CRSP fund data. The Appendix constructs and calibrates an alternative model to investigate

the size of the reverse survivorship bias.

I assume each mutual fund’s (unobserved) alpha is drawn from a normal distribution with a

mean µ and variance σ2. The market knows the parameters of this distribution. I assume investors

cannot distinguish new funds from each other so this normal distribution is also the market’s prior

distribution about each fund’s alpha. The prior distribution’s mean and variance at date zero are

thus m0 = µ and v0 = σ2, respectively.

Each mutual fund generates monthly return observations. I assume the market uses some asset

pricing model to obtain an estimate of the fund’s monthly risk-adjusted return, R̃e
i,t ≡ αi + ε̃i,t,

where ε̃i,t is normally distributed with a mean zero and variance σ2
e . This risk-adjusted return

variance reflects two sources of uncertainty: the idiosyncratic shocks to returns and the estimation

uncertainty that arises from having to use a finite sample to estimate the asset pricing model for

risk adjustment. I note that the market’s asset pricing model is correct in that E[R̃e
i,t] = αi.

The market uses each risk-adjusted monthly return realization to update from the prior distri-

bution to the posterior distribution. It follows from the normality assumptions that the mean and
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the variance of the posterior distribution evolve by

mi,t =

mi,t−1

vt−1
+

R̃e
i,t

σ2
e

1
vt−1

+ 1
σ2

e

, and (5)

vt =
1

1
vt−1

+ 1
σ2

e

, (6)

where the posterior variance does not have the fund subscript i because its process is deterministic.

I assume the probability that a fund disappears after month t is a function of the fund’s posterior

distribution N(mi,t, vt). I construct this exit function as follows. First, let ᾱ denote some critical

level of alpha. I then compute and record the probability that the fund’s alpha is below this level,

pi,t ≡
∫ ᾱ

−∞
φ(α; mi,t, vt) dα. I assume a fund disappears from the data between months t and t + 1

with probability ξ(pi,t, t), where ξ(·) is a possibly non-linear and time-dependent function. With

these assumptions, the probability that a fund disappears is a function of the amount of mass in

the posterior distribution below some critical threshold ᾱ. I expand ξ(·) twice around pi,t = 0 and

allow it to depend linearly on the fund’s age. The approximation of ξ(·) I estimate from the data is

then

ξ(pi,t, t) ≈ ξ̂(pi,t, t) = γ0 + γ1 pi,t + γ2 p2
i,t + γ3 t, (7)

where t is the fund’s age in years. If the implied exit probability is below zero or greater than one,

I set the probability to zero or one, respectively. I adopt this free-function approach to avoid the

need to specify the economic mechanism that drives the disappearance of mutual funds. Moreover,

because this approach does not force the exit probability to decrease in alpha, it also allows for the

possibility that some successful funds may close as well if the manager, for example, moves to a

hedge fund. When I estimate both the critical threshold and parameters of ξ̂(pi,t, t) from the data,

the structural model can “undo” the built-in learning process if the data suggest such a reversal is

warranted. However, I note this five-parameter specification nests, as a special case, the possibility

that a fund disappears when the posterior mean falls below some endogenous “learning-based”

threshold.

The eight structural parameters of the problem I estimate from the data are µ (the mean of

the alpha distribution), σ2 (the variance of the alpha distribution), σ2
e (the total variance of risk-

adjusted returns), ᾱ (the critical level in the posterior distribution computation), and γ0, γ1, γ2,
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and γ3 (the parameters of the function that translate the amount of probability mass below ᾱ into

an exit probability).

I use 17 moment conditions to identify these eight structural parameters. The first five moment

conditions represent the average alphas of the funds that survive through different points in time.

These are the same numbers as the per-year averages reported in Table I except I aggregate the data

to biennial frequency to reduce noise. The next five moment conditions represent the average alphas

of funds that disappear in these same two-year periods. These 10 moment conditions instruct the

structural model to match the levels of alphas for surviving and disappearing funds and to match

the changes in these alphas as funds mature. The next five moment conditions consist of attrition

rates for these two-year periods: How many new funds disappear during the first two years? How

many of the funds alive after the first two years disappear during years three or four? And so

forth. The inclusion of these attrition rates ensures the rate at which mutual funds fall out of the

model matches the empirically observed rate. The average and the variance of the overall alpha

distribution constitute the last two moment conditions. I compute each fund’s alpha by using up to

10 years of data to construct this overall alpha distribution. These two moments instruct the model

to push the observed alpha distribution in the model close to the alpha distribution in the data. I

use these 17 moments to estimate the eight structural parameters (µ, σ2, σ2
e , ᾱ, γ0, γ1, γ2, γ3) to have

an overidentified model.

Because the structural model does not yield closed-form estimation equations, I use the simu-

lated method of moments (SMM) for indirect inference. I draw random funds from the true alpha

distribution, generate monthly risk-adjusted returns, update the market’s beliefs using expressions

(5) and (6), and then compute the probability that a mutual fund disappears from the data. I create

new funds until I have generated a large simulated sample of mutual funds from which to compute

the simulated moments. The SMM-estimator θ̂ is then

θ̂ = arg min
θ

(

M̂ − M(θ)
)′

W
(

M̂ − M(θ)
)

, (8)

where θ is an eight-by-one vector of the structural parameters, M̂ is the vector of estimated moments

from the data, M(θ) is the vector of model-implied moments, and W is an arbitrary positive-definite

weighting matrix. I use the optimal weighting matrix for estimation.
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The downside of this simulation approach is that the simulated moments reflect randomness

in the simulation process. Even if the number of simulated funds is large, the resultant simulated

moments are too noisy to use derivative-based methods to minimize expression (8). Instead of

applying the simulated-annealing method, I exploit the specific structure of the problem and compute

the simulated moments for expression (8) via numerical integration. Before I begin the minimization

routine, I generate a set of primitive U(0, 1) random variables. If the simulations are for N funds,

I generate N primitive draws of mutual fund alphas and N × 120 (i.e., 10 years) primitive draws

for monthly risk-adjusted returns. I then save these primitive random variables, and each time I

re-evaluate expression (8), I recall this set of draws. For example, as the structural parameters µ

and σ2 change by a small amount, indicating a change in the shape of the alpha distribution, the

same N primitive random variables now correspond to (slightly) different fund alphas because a

fund’s alpha αi can be constructed from a primitive draw ǫi as αi ≡ µ + Φ−1(ǫi) σ.

I also allow each mutual fund to both disappear and stay alive (probabilistically) each month

in these model-based computations. Each month, I compute the probability that a mutual fund

disappears or stays alive. I then use each simulated fund to construct 2 ∗ 120 fund observations

(with different probability weights) so each observation corresponds to a fund either disappearing

or staying alive in month t. I estimate the model by setting N to 100,000 in this Monte Carlo

integration procedure.

B. Estimation Results

Table III compares the moment conditions between the data and the structural model (Panel A)

and reports on the estimates of the eight structural parameters (Panel B). The χ2 test statistic

in Panel B indicates the learning-based model has the best fit to the data when the alphas are

estimated from the CAPM. This result may suggest the market uses the CAPM (and not the

three- or four-factor models) to evaluate fund performance and to determine which funds should

disappear, or that the three- and four-factor models produce noisy alpha estimates relative to the

CAPM. However, although the model is rejected under the three- and four-factor model alphas, I

note that the inferences from the model are similar irrespective of which asset pricing model one

uses to construct the sample moments.

The structural model matches the salient features of the mutual fund data. First, the observed
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alphas are low for funds that disappear early on but then increase monotonically as the disappear-

ance date recedes. For example, the average CAPM alpha in the data is −4.1 percent for funds

that disappear within the first two years. The corresponding simulated number at the estimated

parameter values is −4.5 percent. For funds that disappear during years nine and 10, these al-

phas are −1.9 percent and −1.8 percent, respectively. The CAPM alphas of surviving funds also

increase in fund age both in the data and simulations. These moment conditions, however, cause

difficulties for the model with the three- and four-factor model alphas. Unlike the CAPM alphas,

the three- and four-factor alphas in the data start positive but then turn negative after five years.

This reversed U-shaped pattern in the surviving funds’ risk-adjusted returns is shown in Figure 1.

Figure 2 replicates this risk-adjusted return computation by using data simulated from the model.

This figure shows that although the model is partially successful in matching the U-shape pattern,

the remaining discrepancies are sufficiently large to reject the model in the three- and four-factor

model specifications.

In contrast to the alphas of the surviving funds, the model matches each of the remaining moment

conditions irrespective of which asset pricing model one uses to measure alphas. The attrition rates,

for example, are nearly the same as in the data. Although the mean of the overall alpha distribution

is different depending on the asset pricing model, the model accommodates these shifts and also

matches the variance of the alpha distribution.

The first two parameters in Panel B describe the shape of the true alpha distribution. (This

distribution also constitutes mutual fund investors’ prior distribution for each fund alpha in the

model.) While I report on the annualized parameters, I note that the fund alphas in the model are

drawn from the underlying monthly distribution. Both the mean and the dispersion of alphas are

significantly greater under the CAPM than they are under the three- and four-factor models. For

example, whereas 1.2 percent of funds have (true) annual alphas greater than 2 percent per year

under the CAPM, this proportion is effectively zero for both the three- and four-factor models.

The risk-adjusted returns, which comprise both the idiosyncratic fund-return component and the

estimation uncertainty inherited from the asset-pricing model, have an annualized standard deviation

of 8.5 percent under the CAPM. (This estimate is close to the median annualized standard deviation

of the CAPM residual in fund-specific regressions that use data on all U.S. equity mutual funds.
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This median is 7.6%.) This estimate is high in terms of what it implies about the speed at which

the market can resolve uncertainty about fund alphas. I note that in the underlying normal-normal

updating problem, the variance of the date T posterior, ignoring the effect of fund attrition, is

v2
T =

1
1
v2
0

+ T
σ2

e

. (9)

This expression indicates the time T it takes to reach any given posterior variance vT is T =
(

1
v2

T

−
1
v2
0

)

σ2
e . The fact that the variance of the idiosyncratic component is orders of magnitude

higher than the variance of the prior implies investors resolve uncertainty about alphas at a low

pace. The variance of the posterior distribution, for example, decreases by approximately 10 percent

in 10 years.

The critical alpha level, which investors in the model use to construct an input for the mutual

fund exit rule, is −2.3 percent (per year) for the CAPM and approximately −1.8 percent for both

the three- and four-factor models. (This critical alpha level, which is estimated quite precisely in

each of the three models, gives the boundary that the market uses to construct the probability-

mass input for the stochastic exit function.) Unlike for the critical boundary ᾱ, the model returns

imprecise estimates of the four parameters (γ0, γ1, γ2, γ3) of the exit-probability function. The point

estimates of the parameters suggest this imprecision is due to over-parametrization of the model.

Although the model permits the exit rule to be stochastic (i.e., the exit probability of a fund can lie

between zero and one), the estimated function suggests the mutual fund disappearance pattern in

the model follows a simpler rule. In the CAPM-based estimates, a fund stays alive almost always

if the probability that the fund’s alpha is below −2.3 percent per year is less than 0.02. However,

when the amount of probability mass below this critical threshold increases above 0.02, the exit

probability jumps to one. In simulations, the result of this rule is that the typical fund disappears

when the market’s belief about its (CAPM) alpha decreases from the prior mean of .05 percent per

year to a posterior mean of −0.21 percent per year.

C. The Size of the Reverse Survivorship Bias

Panel C of Table III reports on the means and percentiles of three different alpha distributions.

I report on these distributions separately for the CAPM and the three- and four-factor models. The
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first column in each block, labeled “Data,” reports the empirical distribution of alphas in the data.

For example, the average alpha over all sample mutual funds, and with each alpha estimated using

all available data, is −0.71 percent per year in the CAPM, −1.24 percent per year in the three-factor

model, and −1.36 percent per year in the four-factor model. (These numbers are not identical to

the numbers in Panel A because Panel A’s numbers use at most 10 years of fund data.) The second

column reports the observed alpha distributions that are computed by simulating from the model at

the estimated parameter values. The means of the model-based (observed) alpha distributions are

somewhat higher but close to the data-based distribution. The overall shapes of these distributions,

however, are close to each other. The similarities in distributions are particularly striking in the

CAPM-based estimates in which even tails of the distributions are similar between the data and the

model. (I note that no moment conditions in the model force the estimated model distribution to

match these percentiles.)

Given that the observed distributions are similar between the data and the model, using the

model to examine how the true, unobserved alpha distribution differs from the observed distribution

is now useful. What underlying true distribution of fund manager ability is responsible for the

observed alpha distribution? The third column in each block, which reports on the true distribution,

shows the differences between the true and observed distributions are economically significant. For

example, starting from the CAPM-based estimates, the observed average alpha is −.71 percent per

year over all funds, but the true mean alpha is far higher, .05 percent per year. The difference

between these numbers, 76 basis points per year, is the mean effect of the reverse survivorship

bias. The estimated magnitude of this bias is similar when one uses either the three- or four-factor

model to estimate the input alphas. The gap between the true and observed mean alpha is 85 basis

points per year in the three-factor model and 83 basis points per year in the four-factor model.

These estimates suggest that although the average mutual fund manager’s true alpha is negative,

between −.5 percent and 0 percent per year after fees, these alphas are not nearly as low as what

the empirical distribution of fund-specific alphas suggests.

The estimates of the true alpha distribution suggest a minority of mutual managers may pick

stocks well enough to cover the fees they impose on their investors. In the CAPM-based estimates,

1 percent of managers have alphas greater than 2.06 percent per year. However, adjustments for the

size, book-to-market, and momentum factors result in a less optimistic assessment. In the three-
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factor model, the top 1 percent of managers have alphas greater than 1.02 percent per year, and in

the four-factor model, these right-tail alphas are greater than 0.65 percent per year. Thus, although

the reverse survivorship bias significantly distorts the observed alpha distribution relative to the

true alpha distribution, the model’s conclusion about fund managers’ abilities is not unlike those

we find in the literature: most mutual fund managers cannot pick stocks well enough to cover the

costs they impose on their investors. However, a minority of managers appear to be able to do so.

The three- and four-factor model estimates of the size of the skilled-manager group lie between

the estimates in Kosowski, Timmermann, Wermers, and White (2006) and Barras, Scaillet, and

Wermers (2010). I note, however, that the benefit of the structural model approach is that it deals

with the luck-versus-skill problem in an interesting way. Whereas the extant literature adjusts test

statistics to account for the multiple-comparisons problem, a structural model can back out the true

alpha distribution from a set of observables. The usual caveat, however, applies and the resultant

skill estimates could be sensitive to the modeling assumptions. The structural model I consider in

this section is fairly flexible, in particular, with respect to the mutual fund attrition mechanism.

Moreover, the model I consider matches not only the explicit moment conditions but also the general

shape of the observed alpha distribution. These two considerations increase my confidence in the

validity of the inferences I draw about the true alpha distribution.

III. Conclusions

The reverse survivorship bias affects the measurement of mutual fund managers’ stock-picking

abilities. Because mutual funds often disappear following poor performance, some funds disappear

because they experience negative idiosyncratic shocks and not because their true alpha is low. A

fund that disappears because of a negative idiosyncratic shock leaves behind an alpha estimate that

is too low. Because no offsetting mechanism exists to eliminate just-lucky mutual funds, the observed

distribution of alphas is biased downwards relative to the true distribution of alphas. In this paper,

I first solve a portfolio choice model for a representative fund investor that endogenizes mutual fund

survival to theoretically demonstrate the economic significance of the reverse survivorship bias. I

then estimate a variant of this model to measure the size of the bias in the CRSP mutual fund data.

I find the mean effect of this bias is large, between 76 and 85 basis points per year depending on
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the asset pricing model. Thus the average mutual fund manager’s alpha is not nearly as low as the

observed alpha distribution suggests.

The question of whether any active fund managers have valuable information is one of the central

questions in the empirical asset pricing literature. Although the average actively managed dollar

must lose money because of the market-clearing constraint and transaction costs (French 2008), the

necessity of these aggregate losses do not rule out the possibility that some active investors profit at

the expense of their peers. A small number of mutual fund managers could, for example, be privy

to a stream of signals that allows them to profit at the expense of other mutual funds, household

investors, or pension funds. The reverse survivorship is of crucial importance in a study that

examines whether any mutual managers trade on valuable information. Although the bias described

in this paper does not influence the returns available to mutual fund investors, this average return

also does not measure heterogeneity in mutual fund managers’ information. The correct answer

(to the question of how many managers, if any, have enough skill to cover their costs) depends on

the counterfactual of what would have happened had no fund actually disappeared following poor

performance.

In this paper, I do not consider the equilibrium effects of money flows on alphas. In Berk and

Green (2004), alphas get pushed to zero because investors can perfectly diversify all non-market

risk and because the model’s mutual fund can monopolistically set its fee (to choose its own size).

In Pástor and Stambaugh (2009), by contrast, equilibrium alphas do not equate to zero because,

first, investors cannot diversify away all risk; second, because the active management industry is

competitive; and third, because there is a finite number of mutual fund investors. I note that even

if expected alphas are sensitive to money flows, the equilibrium considerations should not alter the

premise of the reverse survivorship bias. As long as poorly performing mutual funds still shut down,

as they do in the data, the observed alphas will deviate from the true, unobserved alphas.

No simple resolution to the reverse survivorship bias exists, because the endogeneity between

fund performance and survival–not the lack of data–drive it. One cannot, for example, resolve this

bias by applying a rule that leaves out funds that survive for fewer than k years. The issue is that

although the fund performance improves as k increases, we do not know a priori what k should

be. Moreover, even if we could choose k so the mean of the observed distribution coincides with
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the true mean, the overall shape of the observed alpha distribution would still differ from the true

distribution. Any inferences drawn about the managers in the tails would not be reliable. A viable

resolution to the bias would be to estimate fund alphas by using as little data as possible from the

very beginning of funds’ lives, before any funds shut down. (This period would need to be less than

a year because 1% of funds already shut down during the first year.) However, even though this

approach in principle circumvents the bias, the problem is that the alpha estimates based on a just

handful of data points would be extremely noisy.

The ramifications of the reverse survivorship bias are not limited to the evaluation of mutual

fund managers’ abilities. This bias also undoubtedly influences inferences about individual investors’

abilities. Similar to mutual funds, individual investors stop trading following poor performance. This

sensitivity to poor performance, which also could arise because individual investors learn about

their abilities12, must drive a wedge between investors’ observed returns and their true, unobserved

abilities. The size of the reverse survivorship bias is the product of three factors: this bias increases

in the volatility of returns, the dispersion in survival times, and the correlation between returns and

survival. This bias is thus probably large for individual investors as well because, first, individual

investors hold under-diversified portfolios, which increases return volatility, and, second, because

individual investors appear to be at least as sensitive as mutual funds to poor performance.

12See, for example, Seru, Shumway, and Stoffman (2010) and Linnainmaa (2009).
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Appendix: A Bayesian Portfolio Choice Model with Endogenous

Fund Attrition

This appendix calibrates a portfolio choice model with endogenous fund attrition to measure

the economic significance of the reverse survivorship bias. In this model, a single mutual fund

investor can invest in a risk-free asset, the market portfolio, and an actively managed mutual fund.

The key features of the model are that, first, the investor is uncertain about the fund’s alpha and,

second, that the fund’s survival depends on the investor’s continuing investment. Each period, the

investor can abandon the current fund and, if the investor exercises this option, the old mutual fund

disappears and the investor draws a new fund with an unknown alpha. This switch “resets” the

investor’s prior belief about the fund’s alpha.13

I estimate a different model in the body of the paper for two reasons. First, the main model

is more parsimonious because it directly specifies a mapping from posterior distributions to exit

probabilities. The portfolio choice model described here generates qualitatively similar mapping,

but it requires one to specify (or to estimate from the data) many parameters that are not of

direct interest, such as the properties of market returns, the risk-free rate, subjective discount rates,

and so forth. Second, the model described here makes restrictive assumptions about the mutual

fund industry and equilibrium: there is a single investor and the fund’s survival is contingent on

the investor’s continuing investment; this is a partial equilibrium model with exogenously specified

return processes; and the investor can invest in, and learn about, only one mutual fund at a time.

By contrast, the use of the exit function in the estimated model sidesteps such concerns because

as long as the functional form of the exit function is general enough, it can match any underlying

economic model.

13Dangl, Wu, and Zechner (2008) also study a model in which investors learn about mutual fund managers’ abilities
and the management company has the option to replace the manager. However, whereas they focus on the model’s
implications on the relations between fund size, portfolio risk, and the fund manager’s tenure, I examine how the
endogenous survival mechanism biases fund-specific performance estimates.
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A. Assumptions

I assume an infinite-horizon investor maximizes log-utility over consumption:

E

[

∞
∑

t=0

βt log ct

]

, (10)

where β is the investor’s discount rate. The wealth dynamics are given by

Wt+1 = (Wt − ct)
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf )
)

, (11)

where rf is the risk-free rate, θm is the proportion of wealth invested in the market portfolio, r̃m,t

is the return on the market portfolio, θz is the proportion of wealth invested in the mutual fund,

and z̃t is the return on the mutual fund. I assume θz ≥ 0 so the investor cannot short the fund.

The investor knows all parameters of the problem except the fund’s alpha. The date t return on the

market portfolio is

r̃m,t = µm + ε̃m,t, (12)

where is µm is the (known) expected market return and ε̃m,t’s are i.i.d. from period to period. I

assume each ε̃m,t is drawn from a left-truncated normal distribution with truncation at x = −1.

The underlying untruncated distribution has a mean zero and variance σ2
m. I assume the fund’s

market-model beta is one so that its return is

z̃t = α + r̃m,t + ε̃z,t, (13)

where α is not known to the investor. The model I have in mind is one where the fund’s market

exposure is unknown and the estimation of this exposure from the data increases the variance

of signals about alpha. However, instead of formalizing this estimation uncertainty by modeling

β as either unknown to the investor or an i.i.d. draw each period, I interpret expression (13) as

delegating, for simplicity, this estimation uncertainty component to the residual ε̃z,t. I assume

each ε̃z,t is also drawn from a left-truncated normal distribution with truncation at x = −1. The

underlying untruncated distribution has a mean zero and variance σ2
z . I apply these truncation

assumptions to give both the market portfolio and the mutual fund limited liability.
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The investor updates his beliefs after each date as follows. First, after observing both fund

and market returns, the investor backs out the signal st ≡ z̃t − r̃m,t about the fund’s alpha. The

investor then reverses the truncation by computing the signal realization s′t by mapping the truncated

distribution to an untruncated distribution. The investor’s date t prior belief about the mean of

this untruncated distribution is normal with mean mt and variance vt. The investor knows the true

population distribution of alphas, N(µα, σ2
α), so m0 = µα and v0 = σ2

α. The belief dynamics are

then given by14

mt+1 =

mt

vt
+

s′t
σ2

z

1
vt

+ 1
σ2

z

, (14)

vt+1 =
1

1
vt

+ 1
σ2

z

. (15)

Each period, the investor can abandon the current fund (thus causing the fund to disappear)

and, if the investor so chooses, draw a new fund with an unknown alpha. I assume that abandoning

a fund and drawing a new fund costs the investor κ percent of wealth. This cost may represent

components such as front-end loads, back-end loads, and the abnormal transaction costs incurred

when assets are sold in the event of fund termination.

B. Solution

The investor’s indirect utility is a function of three state variables: the current wealth Wt, the

mean of the prior distribution mt, and the variance of the prior distribution, vt. Because the investor

maximizes log-utility, the wealth and belief terms are additive in the indirect utility function. I

conjecture that

V (Wt,mt, vt) = A + B log Wt + g(mt, vt), (16)

14The trick I apply here to keep the posterior distribution closed under updating is more transparent in an alternative
setup with log-normally distributed returns. Instead of working with a log-normal likelihood function, an investor could
be uncertain about the mean of the normal variate x̃ in r̃ ≡ e

x̃
− 1. The investor would then back out from each

return observation the normal variate realization, log(1 + r̃), and use this signal to update beliefs about the mean of
x̃. I do not use this log-normal assumption because of its downside that the variance of r̃ also changes as the mean of
x̃ changes. By contrast, the truncation of the normal distribution at x = −1 is an innocuous return-distribution twist
because, for reasonable return volatilities, the amount of truncated mass is effectively zero. See Johnson, Kotz, and
Balakrishnan (1994) for details on truncated normal distributions.
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where A and B are constants and g(·) is a function of the investor’s date t beliefs. The investor’s

optimization problem with this conjecture becomes

V (Wt,mt, vt)

= max
ct,θm,θz≥0

E

{

log ct + βV
(

(Wt − ct)
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf )
)

, m̃t+1, vt+1

)

}

= βA + max
ct

{

log ct + βB log(wt − ct)

}

+ max

{

βB max
θm

{

E
[

log
(

1 + rf + θm(r̃m,t − rf )
)]

}

+ βg(mt, vt),

βB max
θm,θz≥0

{

E
[

log
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf )
)]

}

+ βE
[

g(m̃t+1, vt+1)
]

,

βB max
θm,θz≥0

{

E
[

log
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf ) − κ
)]

}

+ βE
[

g(m̃1, v1)
]

}

.

(17)

The last three lines of expression (17) account for the fact that each period, an investor can

make a choice that disrupts the natural evolution of beliefs from (mt, vt) to (m̃t+1, vt+1). The first

possibility, shown on the third to the last line, is that the investor invests in neither the current nor

a new mutual fund. The investor withdraws the money from the current fund, the fund disappears,

and the evolution of beliefs stops. I note that if κ is low and if the investor has ever invested in a

mutual fund, the investor can never reach a belief state in which he would choose this option. If

the investor has ever invested in a fund, the option to draw a new fund must dominate this quitting

choice. This option is chosen only if the distribution of alphas is so unattractive that the investor

never invests in a mutual fund.

The second possibility, shown on the second to the last line, is that the investor remains with

the current mutual fund. The investor’s belief about the mean mutual fund return z̃t is mt, and

the investor updates his beliefs to (m̃t+1, vt+1) after observing the risk-adjusted (and transformed)

return. The third possibility, shown on the last line, is that the investor abandons the current

mutual fund (the fund disappears) and draws a new fund. The investor’s prior distribution about

the new fund is the same as the original prior distribution, (m0, v0), and so the investor’s beliefs

“restart” if the investor exercises this abandonment option. If the investor draws a new fund, the
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investor’s prior mean about the next-period mutual fund return is m0 and the investor updates to

(m̃1, v1) based on the return realization. The investor pays κ to exercise this option.

The optimal consumption from the first-order condition of expression (17) is c∗t = 1
1+βB

Wt.

Constants A and B can be solved by inserting the optimal consumption back into expression (17)

and matching the coefficients against the conjecture in expression (16). The value function then

simplifies to

V (Wt,mt, vt) =
β log β + (1 − β) log(1 − β)

(1 − β)2
+

1

1 − β
log Wt + g(mt, vt), (18)

where g(mt, vt) solves the following functional equation:

g(mt, vt)

= β max

{

1
β(1−β)2 max

θm

{

E
[

log
(

1 + rf + θm(r̃m,t − rf )
)]

}

,

1
1−β

max
θm,θz≥0

{

E
[

log
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf )
)]

}

+ E
[

g(m̃t+1, vt+1)
]

,

1
1−β

max
θm,θz≥0

{

E
[

log
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf ) − κ
)]

}

+ E
[

g(m̃1, v1)
]

}

.

(19)

Expression (18) verifies the conjecture about the form of the value function. The investor’s

optimal investment decisions are determined by g(mt, vt) in expression (19). The first argument

in the inner-maximization problem simplifies the corresponding line in expression (17) by noting

that if an investor ever abandons a mutual fund without picking a new one, the investor’s beliefs

must forever remain stuck in the same belief state. The investor’s problem then becomes a standard

stochastic log-utility investment problem that has the solution shown on the first line of expression

(19). I note that the function g(mt, vt) also can be solved, up to a static portfolio choice problem, in

those belief states where the investor has resolved all uncertainty about a fund’s alpha. Analogously

to the permanent-exit case, such an investor must remain in the same belief state, and the value of

g(mt, vt) at such a vt = 0 boundary point is

g(mt, 0) =
β

(1 − β)2
max

θm,θz≥0

{

E
[

log
(

1 + rf + θm(r̃m,t − rf ) + θz(z̃t − rf )
)]

}

. (20)
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The form of function g(mt, vt) in expression (19) shows that an investor’s decision to either

remain with the current fund or to switch to a new fund depends crucially on the evolution of

beliefs. The path of beliefs, in turn, depends crucially on the posterior uncertainty about the

fund’s alpha. If the prior distribution about a fresh mutual fund’s alpha “dominates” the posterior

distribution about the current fund’s alpha (net of the strike price κ), the investor abandons the

current fund and restarts the problem with a new fund. The log-utility assumption, which shuts

down the intertemporal hedging demand component, cleanly isolates the value of this abandonment

option.

I solve the problem in three steps. First, I create a mean-variance belief grid with 1,000 points

for the posterior mean mt and 1,200 points for the posterior variance vt.
15 Second, I solve the

static portfolio choice problems in expression (19) for each grid point in the mt dimension of the

grid. Third, I generate initial guesses about the value of g(mt, vt) for each grid point and then start

iterating over the grid, sweeping recursively from vT toward v0 at each iteration. I compute the

value of g(mt, vt) from expression (19) at each grid point given the initial guesses of the value of

this function at other grid points. I note that the expectation about next period’s g(m̃t+1, vt+1)

depends on the uncertain evolution of beliefs. I compute the transition probabilities from mt to all

different states m̃t+1 using expression (14) together with the distributional assumptions about the

signal s̃t. I iterate over the mean-variance belief grid until the values of g(mt, vt) have converged at

each grid point. The solution to the investor’s problem requires value-function iterations because

of the abandonment option. An investor who abandons the fund transitions back to g(m0, v0) and

the function value in this grid point, in turn, depends on his optimal choices in every possible state

that follows.

C. Calibration

I assume each period in the model represents one month and fix the parameters of the model to

the following values. First, I set the mean and standard deviation of the true distribution of annual

(net) alphas to µα = −0.5% and σα = 1.25%. This standard deviation is the middle estimate in

15I choose the grid for vt to match the deterministic evolution of the posterior variance in expression (15). Thus the
last node corresponds to the variance of beliefs after having invested in the same fund for 100 years. (I calibrate the
model so that one period corresponds to one month.) I assume the variance of beliefs drops to zero after this date. I
create the grid for mt so it covers 99.99 percent of the true population distribution of α.
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Fama and French (2009). I set the standard deviation of the idiosyncratic fund return component

ε̃z,t to 8 percent per year, which is between the mean and median estimates for the annualized

standard deviation of the CAPM residual in monthly fund-by-fund regressions. Second, I fix the

non-mutual fund parameters of the model by setting the risk-free rate to rf = 5% and the expected

return and standard deviation of the market portfolio to µm = 10% and σm = 30%. I set the

investor’s discount rate (β) to .9. Finally, I choose the cost of switching a fund, κ, so that the

10-year survival rate in the model is close to the empirical survival rate in the mutual fund data. A

value of κ = 0.064 gives a survival rate of 69.3 percent, which is close to the 70 percent survival rate

reported in Table I. I note that survival rate increases monotonically in κ because it only decreases

the one-period expected return in expression (19).

Panel A of Table IV reports the average alphas (in percentage points per year) for mutual

funds that either survive through the tth year or that disappear in year t. Both the underlying

computations and the presentation of the results in this table are identical to Table I, which is

based on the CRSP sample. The alpha estimates in the model-based simulations exhibit the same

upward-sloping pattern observed in the actual sample. The average alpha is negative for both

surviving and dead funds in year one (−0.5% and −35.5%, respectively), but both of these averages

increase over time. For example, the average observed alpha is 1.98 percent per year for funds that

survive through the tenth year. By contrast, the average alpha is −4.12 percent for funds that

disappear during the tenth year.

Figure 3 plots the critical posterior mean value in the model that the investor uses to decide

whether to abandon the existing fund and to draw a replacement fund from the true alpha distribu-

tion. The critical threshold is initially low, approximately −10 percent per year. This low threshold

value suggests the investor abandons a fund early only if the realized return is low. This low thresh-

old value thus explains why alphas are as low as they are in Panel A for funds that disappear early

on. The critical alpha threshold increases smoothly over time. After 10 years, the critical value is

approximately −3 percent per year, and after 25 years, the threshold is −1 percent per year. The

increase in the critical threshold leads to the increasing pattern in average alphas seen in Panel B

of Table IV.

Panel B of Table IV reports the size of the reverse survivorship bias within this portfolio choice
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model. The first column (“biased”) reports the distribution of observed alphas from the actual

model. The second column (“unbiased”) changes the model so that every time a mutual fund

disappears in the real model, a randomly chosen fund disappears in this alternative model. This

computation constitutes a benchmark for the “biased” column because the distributions of mutual

fund sample lengths are identical. Finally, the third column reports the true (noiseless) alpha

distribution. I simulate at most 10 years of monthly return data from the model for 100,000 mutual

funds to construct these distributions. Although the true mean of the alpha distribution is −0.5

percent in the calibrated model, the observed distribution has a significantly lower mean of −1.13

percent because of the disappearance of poorly performing funds. Thus, in this rough calibration,

the mean effect of the reverse survivorship bias is 63 basis points per year.

The percentiles for the observed and true alpha distributions show that the reverse survivorship

bias does not evenly shift the distribution downwards. The funds that disappear must have low

realized alphas, so the salient result of the reverse survivorship bias is the thickening of the left

tail of the observed alpha distribution relative to the true distribution. The worst 5 percent of

funds in the observed alpha distribution have alpha realizations that are −11.6 percent or lower.

If funds were to disappear randomly, as they do in the second column, this 5th percentile of the

distribution would be just −9.1 percent. Although this shift is most pronounced in the left tail of

the distribution, it also appears subtly in the right tail of the distribution. The biased and unbiased

values for the 95th percentile of the empirical alpha distribution are, for example, 7.8 percent and 8.1

percent, respectively. This calibration suggests the reverse survivorship bias can significantly distort

the shape of the observed alpha distribution. This distorting effect of the reverse survivorship bias

is important because the literature on alpha distributions draws inferences about the tails of this

distribution and not about its mean.
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Figure 1. Cumulative risk-adjusted returns for mutual funds conditional on fund sur-
vival. I use time-series regressions to estimate the CAPM (Panel A) and Carhart’s four-factor
model (Panel B) loadings for all mutual funds that either survive through year t or that disappear
in year t. I then compute from these estimates the cumulative risk-adjusted returns up to the end
of year t or the month the fund disappears. The sample includes all 2,599 mutual funds that invest
primarily in U.S. common stocks, that first appear in the CRSP data on or after January 1984, and
that have at least six months of return data. The sample covers a 25-year period up to the end of
September 2009. Different share classes of the same fund are combined into a single fund. Thick
solid lines denote average cumulative risk-adjusted returns of the funds that survive through the
year; thin dashed lines denote average cumulative risk-adjusted returns of the funds that disappear
during the year. This figure plots cumulative risk-adjusted returns for even-numbered survival and
disappearance years.
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Figure 2. Cumulative risk-adjusted returns for mutual funds conditional on fund sur-
vival, simulated from a structural model. I simulate data from the structural model for 100,000
mutual funds and compute cumulative risk-adjusted returns up to the end of year t or the month
the fund disappears. Thick solid lines denote average cumulative risk-adjusted returns of the funds
that survive through the year; thin dashed lines denote average cumulative risk-adjusted returns
of the funds that disappear during the year. This figure plots cumulative risk-adjusted returns
for even-numbered survival and disappearance years. This figure is a model-based counterpart of
Figure 1.
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Figure 3. Critical posterior mean boundary for alpha (in percentage points per year)
in a Bayesian portfolio choice model with endogenous fund attrition. This figure shows
the critical level for the posterior mean for alpha in a Bayesian portfolio choice model below which
a fund shuts down. In this model, an infinitely lived representative mutual fund investor with log-
utility can invest in a risk-free asset, the market portfolio, and an actively managed mutual fund.
The investor is uncertain about the fund’s alpha but updates beliefs each month using Bayes’ rule.
Each month, the investor can abandon the existing mutual fund by paying a cost of κ. He then
draws a new fund from the true alpha distribution and restarts the problem. The mean of the true
alpha distribution (µα) is −0.5 percent and its standard deviation (σα) is 1.25 percent; the expected
return of the market portfolio (µm) is 10 percent, and its standard deviation (σm) is 30 percent;
the risk-free rate (rf ) is 5 percent; and the investor’s discount rate (β) is .9. (These are annualized
parameter values. Each period in the model is one month long.) The standard deviation of the
idiosyncratic return component is 8 percent. The cost of switching a fund is κ = 0.064.
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Table I

Mutual Fund Alpha Estimates Conditional on Fund Survival, Percentage Points per Year

This table reports the average alpha estimates for mutual funds based on whether the mutual fund survives or does not survive over
t years. The sample includes all 2,599 mutual funds that invest primarily in U.S. common stocks, that first appear in the CRSP
data on or after January 1984, and that have at least six months of return data. The sample covers a 25-year period up to the end
of September 2009. Different share classes of the same fund are combined into a single fund. If a fund is still alive at the end of
year t − 1, I estimate a time-series regression by using monthly returns up to the end of year t. If the fund disappears before the
end of year t, I include returns up to the last available one. A fund that disappears by the end of year t is assigned to a pool of
year-t dead funds; funds still alive at the end of the year are assigned to a pool of year-t alive funds. This table reports average
α’s for funds that either survive or do not survive year t. I use CAPM, a three-factor model, and a four-factor model to estimate
alphas. The minimum time-series length requirement is six months for the CAPM, eight months for the three-factor model, and
nine months for the four-factor model to equalize the minimum number of degrees of freedom in the regressions. I report t-values
in parentheses. Row “Survival rate” reports the fraction of funds that survive for at least t years.

Fund Age in Years
Model Survive 1 2 3 4 5 6 7 8 9 10

CAPM Yes 0.25 −0.07 0.18 0.55 0.55 0.63 0.69 0.75 0.74 0.70
(1.00) (−0.38) (1.12) (3.99) (4.25) (5.33) (6.12) (6.96) (7.24) (6.88)

No −4.08 −4.08 −4.66 −4.51 −3.66 −2.87 −2.54 −3.04 −1.60 −2.23
(−2.93) (−4.94) (−6.55) (−5.92) (−7.22) (−2.92) (−6.20) (−6.50) (−3.32) (−6.75)

Three-Factor Yes 0.95 0.65 0.60 0.57 0.30 0.14 −0.03 −0.11 −0.13 −0.13
Model (4.01) (4.01) (4.16) (4.44) (2.53) (1.36) (−0.25) (−1.13) (−1.35) (−1.31)

No −0.69 −3.91 −3.73 −4.24 −3.35 −2.60 −2.25 −2.83 −2.46 −2.09
(−0.25) (−5.41) (−6.42) (−7.21) (−6.43) (−2.88) (−6.45) (−7.25) (−6.78) (−6.33)

Four-Factor Yes 0.95 0.51 0.43 0.38 0.07 −0.04 −0.19 −0.25 −0.29 −0.29
Model (4.07) (3.18) (3.16) (3.23) (0.68) (−0.40) (−2.05) (−2.77) (−3.19) (−3.19)

No −2.91 −4.45 −3.36 −4.22 −3.17 −2.71 −2.39 −2.90 −2.25 −2.19
(−2.05) (−5.28) (−5.80) (−8.13) (−7.43) (−3.12) (−6.03) (−6.76) (−6.37) (−6.20)

Survival Rate 0.990 0.966 0.929 0.900 0.861 0.830 0.801 0.767 0.738 0.700

N(Alive) 2,603 2,517 2,300 2,137 1,974 1,834 1,697 1,559 1,384 1,214
N(Dead) 18 64 90 72 79 70 59 65 65 72
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Table II

Mutual Fund Survival and Alphas: Probit Analysis

This table reports Fama-MacBeth-style probit regressions of mutual fund disappearance on rolling
estimates of fund alphas (three leftmost columns) or on rolling estimates of t-values associated with
fund alphas (three rightmost columns). The sample includes all 2,599 mutual funds that invest
primarily in U.S. common stocks, that first appear in the CRSP data on or after January 1984, and
that have at least six months of return data. The sample covers a 25-year period up to the end
of September 2009. Different share classes of the same fund are combined into a single fund. The
dependent variable in this table’s exit regressions takes the value of one if a fund disappears during
year t and zero if it does not. I estimate the exit regression separately for each month (based on
how long each fund has existed) and drop out months in which no mutual funds disappear. For
example, one regression uses data on funds that have existed for eight years and two months. This
table reports the averages and t-values of the resultant 125 cross-sectional estimates. I estimate
fund alphas from monthly time-series regressions by using all data from the first month of fund
returns up to the last available return (Panel A). Panel B lags the alpha estimates by a year. The
underlying panel data contain 294,771 observations.

Panel A: Current Alpha Estimates

Slope Estimates as Regressors t-values as Regressors
CAPM FF3 FF4 CAPM FF3 FF4

Intercept −2.84 −2.84 −2.84 −2.89 −2.89 −2.88
(−160.01) (−171.00) (−181.20) (−139.88) (−138.33) (−162.36)

Slope −62.64 −55.39 −60.56 −0.19 −0.15 −0.15
(−8.40) (−10.48) (−12.53) (−12.49) (−11.59) (−13.43)

Panel B: Alpha Estimates Lagged by a Year

Slope Estimates as Regressors t-values as Regressors
CAPM FF3 FF4 CAPM FF3 FF4

Intercept −2.81 −2.79 −2.80 −2.85 −2.84 −2.84
(−163.35) (−173.08) (−174.92) (−144.84) (−157.35) (−163.56)

Slope −59.85 −46.24 −53.18 −0.20 −0.14 −0.15
(−8.42) (−9.08) (−11.10) (−13.62) (−12.18) (−13.13)
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Table III

Estimates of the Structural Learning Model

This table reports the estimates of the structural learning-based model of mutual funds. The model is estimated using data on
2,599 mutual funds that invest primarily in U.S. common stocks, that first appear in the CRSP data on or after January 1984,
and that have at least six months of return data. Each mutual fund’s alpha is drawn from a normal distribution with a mean of µ

and a variance of σ2. Each mutual fund generates monthly return observations R̃e
i,t ≡ αi + ε̃i,t, where ε̃i,t is normally distributed

with a mean of zero and a variance of σ2
e . The market uses each risk-adjusted monthly return realization to update from the

prior distribution to a posterior distribution. The probability that the fund disappears after month t is a function of the posterior
distribution N(mi,t, vt). Investors first compute the amount of mass below some critical level of alpha ᾱ. A fund disappears after

period t with probability ξ(pt, t), where ξ(·) is approximated by ξ(pt, t) ≈ ξ̂(pt, t) = max(min(γ0 + γ1 pt + γ2 p2
t + γ3 t, 1), 0). I

estimate the model using a simulated method of moments. The first five moment conditions represent the means of the alpha
distributions for the funds that survive through years two, four, six, eight, and 10; the next five moment conditions represent
the means of the alpha distributions for funds that disappear in the same two-year periods; and the next five moment conditions
indicate the fraction of funds that disappear during these two-year periods. The last two moment conditions are the mean and
the variance of the overall alpha distribution. I estimate alphas using at most 10 years of data. All parameters are annualized.
I multiply the mean-alpha moment conditions by 100, and the variance moment condition by 10,000. I use the optimal weighing
matrix to estimate the model. I estimate the model three times by using the CAPM, the three-factor model, and the four-factor
model. Panel A compares simulated moments to sample moments, Panel B reports the (annualized) structural parameter estimates,
and Panel C tabulates three alpha distributions for each asset pricing model (the actual distribution in the data, the observed
distribution in the model, and the true [unobserved] distribution).
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Panel A: Actual Moments versus Simulated Moments

CAPM Three-Factor Four-Factor
Moment Condition Data Model Data Model Data Model

Alpha Estimates for Disappearing Funds
Years 1–2 −4.077 −4.531 −3.329 −4.909 −4.210 −5.674
Years 3–4 −4.593 −4.892 −3.956 −4.270 −3.738 −4.203
Years 5–6 −3.286 −3.436 −2.993 −2.995 −2.954 −2.806
Years 7–8 −2.803 −2.543 −2.552 −2.435 −2.660 −2.273
Years 9–10 −1.933 −1.845 −2.264 −1.893 −2.219 −1.806

Alpha Estimates for Surviving Funds
Years 1–2 −0.073 0.183 0.054 −0.021 0.042 −0.032
Years 3–4 0.552 0.465 0.048 −0.003 0.032 −0.015
Years 5–6 0.627 0.576 0.012 0.003 −0.003 −0.010
Years 7–8 0.751 0.617 −0.009 0.006 −0.021 −0.008
Years 9–10 0.699 0.647 −0.011 0.008 −0.024 −0.006

Fraction of Funds Disappearing
Years 1–2 0.031 0.030 0.031 0.033 0.031 0.033
Years 3–4 0.065 0.068 0.064 0.068 0.065 0.069
Years 5–6 0.065 0.066 0.062 0.062 0.065 0.064
Years 7–8 0.058 0.061 0.055 0.056 0.058 0.058
Years 9–10 0.065 0.057 0.064 0.053 0.065 0.054

Mean of the Observed Alpha Distribution −0.562 −0.389 −1.084 −0.777 −1.205 −0.937
Variance of the Observed Alpha Distribution 0.171 0.178 0.140 0.144 0.125 0.129
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Panel B: Structural Parameter Estimates

CAPM Three-Factor Four-Factor
EST SE EST SE EST SE

µ (%) 0.052 (0.052) −0.383 (0.044) −0.529 (0.044)
σ (%) 0.249 (0.003) 0.173 (0.001) 0.147 (0.001)
ᾱ (%) −2.254 (1.268) −1.795 (0.162) −1.779 (0.082)
σe (%) 8.496 (2.419) 7.350 (2.119) 6.961 (2.051)
γ0 0.084 (0.081) 0.270 (0.117) 0.279 (0.116)
γ1 −4.240 (14.145) −5.667 (2.964) −7.969 (3.242)
γ2 49.393 (363.714) 28.313 (29.563) 55.022 (29.337)
γ3 −0.012 (0.008) −0.027 (0.010) −0.025 (0.009)

J-test, χ2 (p-value) 12.781 (0.173) 88.312 (0.000) 90.075 (0.000)

Panel C: Observed versus True Alpha Distributions

CAPM Three-Factor Four-Factor
Model Model Model

Data Obs. True Data Obs. True Data Obs. True
Mean −0.709 −0.427 0.052 −1.237 −0.830 −0.383 −1.358 −0.989 −0.529
Percentiles

1% −16.208 −16.396 −1.958 −14.198 −15.264 −1.781 −13.499 −14.904 −1.711
5% −8.147 −9.065 −1.369 −7.623 −8.544 −1.371 −7.317 −8.366 −1.365
25% −2.577 −2.131 −0.531 −2.988 −2.281 −0.788 −3.069 −2.316 −0.871
50% −0.540 0.014 0.052 −1.099 −0.431 −0.383 −1.156 −0.569 −0.529
75% 1.618 2.005 0.635 0.624 1.275 0.023 0.526 1.019 −0.186
95% 5.783 5.328 1.474 4.674 4.169 0.606 4.043 3.677 0.307
99% 9.996 13.940 2.063 8.780 12.691 1.015 7.877 11.478 0.654
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Table IV

Calibration Results for a Bayesian Portfolio Choice Model with Endogenous Fund Attrition

This table reports the calibration results for a Bayesian portfolio choice model. In this model, an infinitely lived representative
mutual fund investor with log-utility can invest in a risk-free asset, the market portfolio, and an actively managed mutual fund.
The investor is uncertain about the fund’s alpha but updates beliefs each month using Bayes’ rule. Each month, the investor can
abandon the existing mutual fund by paying a cost of κ. He then draws a new fund from the true alpha distribution and restarts
the problem. The mean of the true alpha distribution (µα) is −0.5 percent and its standard deviation (σα) is 1.25 percent; the
expected return of the market portfolio (µm) is 10 percent and its standard deviation (σm) is 30 percent; the risk-free rate (rf ) is
5 percent; and the investor’s discount rate (β) is .9. The standard deviation of the idiosyncratic fund return component (ε̃z,t) is 8
percent per year. (These are annualized parameter values. Each period in the model is one month long.) Panel A reports average
alphas conditional on fund survival. The cost of switching a fund, κ, is set to .064 to match, between the model and the data, the
10-year survival rate of 70 percent. Panel B simulates from the model and reports the observed distribution in the correct model
(“biased”), the observed distribution in an alternative model in which funds disappear randomly (“unbiased”), and the actual alpha
distribution. The observed distribution in the model is different from the unbiased distribution because of the disappearance of
poorly performing funds. The results in this table are based on simulating 100,000 funds through the model. I simulate at most 10
years of monthly returns for each fund.

Panel A: Mutual Fund Alpha Estimates Conditional on Survival

Model Years after Inception
Specification Survive 1 2 3 4 5 6 7 8 9 10

Yes −0.50 −0.33 0.05 0.46 0.84 1.14 1.41 1.63 1.82 1.98

No −35.54 −21.70 −14.68 −10.88 −8.61 −7.10 −6.03 −5.24 −4.61 −4.12

Panel B: Observed versus True Alpha Distributions

Biased Unbiased True

Mean −1.131 −0.502 0.000
Percentiles

1% −17.908 −12.694 −10.573
5% −11.617 −9.087 −7.622
25% −4.857 −3.993 −3.421
50% −0.524 −0.505 −0.500
75% 2.862 2.986 2.421
95% 7.758 8.079 6.622
99% 11.174 11.784 9.573
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